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Abstract

We propose a finite-horizon continuous-time framework for coalitional bargaining
that has the following features: (i) Expected payoffs in Markov-perfect equilibrium
(MPE) are unique, generating sharp predictions and facilitating comparative statics
investigations; (ii) MPE are the only subgame-perfect Nash equilibria (SPNE) of the
model that can be approximated by SPNE of nearby discrete-time bargaining models
satisfying a genericity condition, providing justification for focusing on MPE in our
model; (iii) The model is relatively tractable analytically. We investigate MPE payoffs
as the time horizon goes to infinity. In convex games, we connect these limit payoffs
to the core of the characteristic function underlying the bargaining game.
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1 Introduction

The idea of explicitly modeling the dynamic aspects of bargaining goes back to Stahl (1972)
and Rubinstein (1982). They analyze a bargaining game between two players who take
turns at making proposals. The key element of the model is impatience: players care not
only about what share of the surplus they acquire, but they prefer to reach an agreement
earlier rather than later. Remarkably, any nonzero degree of impatience leads to a unique
subgame-perfect Nash equilibrium (SPNE) prediction.

The Stahl-Rubinstein model was extended in many directions.1 In particular, the litera-
ture on multilateral group bargaining examines situations in which there are more than one
parties involved, and all of them must agree in order to implement an agreement. A straight-
forward extension of Rubinstein’s model yields a severe multiplicity of SPNE if the number
of players is at least three, even though there is a unique stationary SPNE.2 Coalitional
bargaining investigates more complicated situations, when agreements are possible among
subgroups of players, and the surpluses that different coalitions of players can split among
each other can differ. In these games, a proposer has to choose both a coalition to approach
and a division of the surplus that the coalition generates.3 A simple subclass of coalitional
bargaining problems is legislative bargaining (Baron and Ferejohn (1989)), which spawned
many applications (see for example Chari et al. (1997), and Snyder et al. (2005)). In these
games, there are only two coalitions: winning ones that generate a fixed positive value, and
losing ones that generate zero value.

This paper investigates a model framework for general coalitional bargaining, which is
relatively tractable, and has several attractive properties that enhance its applicability. The
key features of the model are that time is continuous, and that there is a deadline for negotia-

1A major extension of the dynamic bargaining model framework that we do not take up in this paper
involves incorporating private information held by one or more of the bargaining parties. For early references
on bargaining with asymmetric information, see Fudenberg and Tirole (1983), Sobel and Takahashi (1983),
Cramton (1984), Rubinstein (1985), Gul et al. (1986), and Fudenberg et al. (1987). For a relatively recent
survey of the topic, see Ausubel et al. (2002).

2See for example Osborne and Rubinstein (1990, p63). Krishna and Serrano (1996) modify the game
such that players can exit the game with partial agreements, and obtain a unique equilibrium. See also
Merlo and Wilson (1995) for extending the bargaining framework with unanimity requirement to stochastic
environments, and providing a condition for uniqueness of stationary equilibrium.

3For discrete-time models, see Gul (1989), Chatterjee et al. (1993), Moldovanu and Winter (1995), Bloch
(1996), Okada (1996), Ray and Vohra (1997) and (1999), Evans (1997), Konishi and Ray (2003), and Gomes
(2005). For a continuous-time model, see Perry and Reny (1994).
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tions.45 In particular, we consider a framework in which players get random opportunities to
approach others and make proposals according to independent Poisson arrival procedures.6

The model can be considered to be a limit of discrete-time models in which the amount of
time between time periods goes to zero, but the probability that some player gets the right
to make a proposal at a given time period also goes to zero. The possibility of no one getting
the chance to propose at a given period differentiates discrete-time approximations of our
continuous model from discrete-time random-arrival coalitional bargaining games typically
considered in the literature (see Okada (1996)).

Once an offer is made, we assume that the approached parties react immediately, and
all of them have to accept the proposal in order for an agreement to be reached. Once an
agreement is reached (by some coalition), the game ends. If a proposal is rejected by any
of the approached players, the game continues, and players wait for the next arrival. Two
highlighted special cases that fit into this framework are n-player group bargaining, where
only the grand coalition can generate positive surplus, and legislative bargaining, where any
large enough coalition of players (in the case of simple majority, voting coalitions involving
more than half of the players) can end the game by reaching an agreement. Another example
is a patent race in which several different coalitions of players have the opportunity to develop
the same technology, but the race ends after some coalitions successfully obtained a patent.

The main results we show for this framework are the following. A Markov perfect equi-
librium (MPE), that is an SPNE in which strategies only depend on the payoff-relevant part
of the game history, always exists, and expected payoffs in MPE are uniquely determined.
This greatly facilitates the applicability of the model, and in particular comparative statics
exercises with respect to the parameters of the model (the time horizon for negotiations,
arrival rates for proposals, and the characteristic function indicating the values of different
coalitions).7 Furthermore, we show that the MPE are the only SPNE of the model that can

4Our motivation for imposing a deadline is twofold. First, in many real-world bargaining situations,
there are natural deadlines that end negotiations. If the NHL (National Hockey League) and the NHL
Players’ Association do not reach an agreement by a certain date, then the season needs to be canceled,
as happened in 2004. For reaching an out-of-court settlement, the announcement of the verdict poses a
final deadline. Second, we use the resulting model for selecting among SPNE of the infinite-horizon model:
we pay highlighted attention to characterizing limit equilibrium payoffs as the deadline gets infinitely far
away, and investigate which SPNE payoffs of the infinite-horizon game can be attained this way. We note
that several papers investigate deadline effects in discrete-time bargaining models: Fershtman and Seidmann
(1993) examine bilateral bargaining with a particular commitment; Ma and Manove (1993) study bilateral
bargaining with imperfect control over the timing of offers; Norman (2002) investigates legislative bargaining
with deadline; finally, Yildiz (2003) and Ali (2006) consider long finite horizon games in which players disagree
over their bargaining powers.

5For continuous-time bargaining models in the existing literature, see Perry and Reny (1993,1994) and
Sákovics (1993). These models differ in substantial ways from the one proposed in the current paper. See a
related discussion in Subsection 3.1.

6In our model, players with higher arrival rates can propose more frequently in expectation. This might
be either a consequence of institutional features, like certain members of a legislature (party leaders or other
elected officials within the legislature) enjoying preferential treatment in initiating proposals, or of how much
attention and resources a player can devote to the bargaining procedure at hand. For models in which the
right to make an offer is endogenous, see Board and Zwiebel (2005) and Yildirim (2007).

7In a companion paper (Ambrus and Lu (2010)), we apply our model to legislative bargaining with long
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be approximated by SPNE of nearby discrete-time bargaining models satisfying a regularity
condition, that holds generically. This provides a justification for focusing on MPE in the
continuous-time model if one regards it as a limit of discrete-time environments.

By providing microfoundations for stationary SPNE in convex and legislative bargaining
games, the paper fills a gap in the literature. Both the literature on general coalitional
bargaining and the literature on legislative bargaining in stationary environments primarily
focus on analyzing stationary SPNE, because of the severe multiplicity and relative com-
plexity of SPNE. However, despite the large number of papers using the solution concept in
multilateral bargaining games, there is little work on formally justifying this practice.8 In
fact, Norman (2002) provides negative results in this direction: he shows that in legislative
bargaining, there can be many non-Markovian SPNE, even if the game is finite. Moreover,
even when one restricts attention to specifications of the game that have unique SPNE in
finite horizons, expected equilibrium payoffs in general do not converge, as the horizon goes
to infinity, to stationary SPNE payoffs of the infinite-horizon version of the game.

Our uniqueness result for MPE differs sharply from existing uniqueness results in the
bargaining literature. In finite-horizon coalitional bargaining games, there generically is a
unique SPNE, as shown in Norman (2002) in the context of legislative bargaining. This is
because for generic vectors of recognition probabilities, no player is ever indifferent between
approaching any two coalitions of players, so strategies and continuation payoffs can be
simply computed by backward induction.9 This is not the case in our continuous-time
framework: in MPE, indifferences are generated endogenously, for open sets of arrival vectors,
for nondegenerate intervals of time during the game. For this reason, SPNE payoffs in our
games are not unique, even generically. In light of this, we find it surprising that MPE payoffs
are still unique in the continuous-time game, and the arguments needed to show this are
unrelated to those establishing generic uniqueness of SPNE in finite-horizon discrete games.
Moreover, our uniqueness result is also very different from uniqueness results for stationary
SPNE in special classes of infinite-horizon coalitional bargaining games, for example the main
result of Eraslan (2002) in the Baron and Ferejohn (1989) legislative bargaining context.
It is well known that those uniqueness results do not extend to general random-proposer
coalitional bargaining games. On the other hand, the uniqueness of MPE payoffs in our finite
horizon games holds for coalitional bargaining games with general characteristic functions.

We obtain further results in games with convex characteristic functions. In this context
we show that, for low enough discount rate, as the time horizon goes to infinity, MPE payoffs
converge to stationary equilibrium payoffs of the infinite-horizon game. This, together with
our previous results, establishes a two-step justification for focusing on stationary SPNE in

finite-time horizon.
8Baron and Kalai (1993) show that the stationary equilibrium is the unique simplest equilibrium in the

Baron and Ferejohn legislative bargaining game. Chatterjee and Sabourian (2000) show that noisy Nash
equilibrium with complexity costs leads to the unique stationary equilibrium in n-person group bargaining
games (that is, when unanimity is required for an agreement). See also Baron and Ferejohn (1989) for
informal arguments for selecting the stationary equilibrium in their game.

9The flipside of this simplicity is that strategies (including which coalitions to approach) and continuation
values typically do not converge as the time horizon goes to infinity, instead “jump around”.
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these games: given any sequence of SPNE expected payoffs of regular finite-horizon discrete-
time games, first taking the limit to continuous time and then taking the limit as the time
horizon goes to infinity achieves expected payoffs in a stationary SPNE of the infinite-horizon
continuous model.

In convex games, we also show that as the discount rate goes to 0, the infinite-horizon
limit MPE payoff converges to a point of the core of the underlying characteristic function, for
any vector of arrival rates. Conversely, it also holds that for any point of the core, there is a
vector of arrival rates such that as the discount rate goes to 0, the infinite-horizon limit MPE
payoff converges to the given point. Hence, by varying the arrival rates, we can establish
an exact equivalence between points of the core of the underlying characteristic function
and infinite-horizon limit MPE payoffs of the continuous-time bargaining game. We show
by example that this core equivalence result does not generally hold for nonconvex games
with nonempty core. Our results complement existing ones on noncooperative foundations
of the core in coalitional bargaining games, such as in Chatterjee et al. (1993), Perry and
Reny (1994), or Yan (2002). However, our results are novel in that for any vector of arrival
rates, the limit MPE payoffs are unique, but varying the arrival rates establishes an exact
equivalence between limit MPE payoffs and the core. In some papers, like in Perry and Reny
(1994), for a given specification of the model, there can be a severe multiplicity of equilibrium
payoffs (including all points of the core), making comparative statics analysis more difficult
than in our model. In other models, only one direction of the equivalence relationship holds:
either that all equilibrium payoffs in a class of games correspond to points of the core (as
in Chatterjee et al. (1993)), or that all points of the core can be supported as equilibrium
outcomes (as in Yan (2002)).

2 The model

The underlying cooperative game
Consider a bargaining situation with set of players N = {1, 2, ..., n} and characteris-

tic function V : 2N → R+, where V (C) for C ⊂ N denotes the surplus that players in
C can generate by themselves (without players in N\C). We refer to elements of 2N as
coalitions. We assume that if C1 ⊂ C2, then V (C1) ≤ V (C2). Occasionally, we will re-
fer to the collection (N, V ) as the underlying cooperative game behind the dynamic bar-
gaining model investigated. The core of the underlying cooperative game is defined as:
C(V ) = {(x1, x2, ..., xn) ∈ Rn :

P
i∈C

xi ≥ V (C) ∀ C ⊂ N and
P
i∈N

xi = V (N) }.

Basic description of the noncooperative game
The dynamic bargaining game we investigate is defined as follows. The game is set in

continuous time, starting at −T < 0.10 There is a Poisson arrival process associated with
each player i, with arrival rate λi > 0. The processes are independent from each other. For

10We use the nonstandard notation of negative time because fixing the deadline at zero facilitates a
convenient way of keeping track of reservation values at time t, independently of the length of the game.
This is because in MPE the latter only depends on the time remaining before the deadline, not on when the
game started. This notation allows us to have increasing t as time progresses.

5



future reference, we define λ ≡
Pn

i=1 λi. (In an abuse of notation, we will also refer to λ as
the vector of arrival rates.) Whenever the process realizes for a player i, she can make an
offer x = (x1, x2, ..., xn) to a coalition C ⊆ N satisfying i ∈ C. The offer x must have the
following characteristics:
1. xj ≥ 0 for all 1 ≤ j ≤ n;
2.
Pn

j=1 xj ≤ V (C).
Players in C\{i} immediately and sequentially accept or reject the offer (the order in

which they do so turns out to be unimportant). If everyone accepts, the game ends, and all
players in N are paid their shares according to x. If an offer is rejected by at least one of the
respondents, it is taken off the table, and the game continues with the same Poisson arrival
rates. If no offer has been accepted at time 0, the game ends, and all players receive payoff
0.
We assume that players discount future payoffs using a constant discount rate r ∈

(0,∞).11
For a formal definition of strategies in the above game, see the Appendix.

3 Examples

3.1 Group bargaining

In order to facilitate understanding of the model framework, we start with the simplest
possible specification. Here we assume that V (N) = 1, and that V (C) = 0 ∀ C 6= N . Since
only the grand coalition can generate value, the acceptance of every player is required for
any outcome with nonzero payoffs.

As is well-known in the literature, if the number of players is at least 3, in an alternating-
offer bargaining game with infinite horizon, any division of the surplus can be supported
in subgame-perfect Nash equilibrium (SPNE), if players are patient enough. The same
conclusion holds in our continuous-time framework with random arrivals.12 In stark contrast
to this, in the game with deadline, there is a unique SPNE for any vector of arrival rates.
Players in the unique SPNE play Markovian strategies. The proof (in the Appendix, as are
all other proofs in the paper) uses a similar argument as in Shaked and Sutton (1984).

Theorem 1: In any SPNE, the n-player group bargaining game ends at the first re-
alization of the Poisson arrival process for any player. After any arrival, an offer is made
to N and all players accept. SPNE payoff functions are unique, with player i receiving
λi+r
λ+r

+ λ−λi
λ+r

e(λ+r)t when she makes the offer at time t, and λi
λ+r
(1 − e(λ+r)t) when she is not

the proposer.

11The presence of a deadline, together with the possibility of no arrival occurring over any given time
horizon, implies that most of our conclusions also apply to a model with no discounting (r = 0). See an
earlier circulated version of this paper in which we focused on the case of no discounting.
12In particular, the type of construction in p63 of Osborne and Rubinstein (1990), originally by Shaked,

supports even the most extreme allocation in which one player gets all the surplus when the discount rate is
r = 0.
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Theorem 1 implies that player i’s expected payoff converges to λi
λ+r

as T →∞. Moreover,
a player’s expected payoff, both unconditionally and conditionally on getting an arrival, is
monotonically increasing in her arrival rate, at all times. The fact that in our model, a
player’s ability to make offers more frequently increases her expected payoff is in contrast
with the predictions of the models in Perry and Reny (1993) and Sákovics (1993). In the
latter models, a player that can only speak infrequently (both to propose and to respond)
obtains a higher share of the surplus because she can credibly threaten to impose a higher
time cost on other players, should her offer be rejected. The intuition is that in these models,
the longer a player’s waiting time is, the more costly it is for her opponent to reject an offer,
as the opponent would have to wait a long time before her counteroffer could be accepted.
By contrast, in our model, approached players respond to offers instantaneously (time only
lapses between two offers, and not between an offer and a response); hence, the above effect
is not present.

Figure 1 below depicts the limit of expected MPE continuation payoff functions of the
game as r → 0, if n = 3 and arrival rates are λ1 = 1

2
, λ2 = 1

3
, and λ3 =

1
6
. Continuation

values at the deadline are 0 for all players. Going back in time, continuation values start
increasing at the rate corresponding to arrival rates, and converge to the relative arrival
rates.

Figure 1.

Expected payoffs conditional on arrival follow a reverse pattern. Any player close to
the deadline can keep most of the pie to herself, and payoffs conditional on proposing are
monotonically decreasing in the time left before the deadline.
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3.2 Examples of coalitional bargaining

In this subsection, we present two examples that demonstrate the role of subcoalitions in
determining play and expected payoffs in MPE. In both examples, expected MPE payoffs
are unique. This is a general feature of our model, which we establish in the next section.
In the examples, we focus on the limit case when r → 0 (the qualitative conclusions drawn
from the examples remain the same for low enough r). We also normalize V (N) = 1.

1. Subcoalitions imposing bounds on limit equilibrium payoffs
Consider a game in which λ1 = λ2 = λ3 =

1
3
, V ({1}) = 1

2
, V ({1, 2}) = 5

6
, and let the value

of all coalitions other than the grand coalition be 0. MPE continuation payoffs are depicted
in Figure 2. Going back in time from the deadline, all players’ payoffs start increasing at
the same rate, corresponding to the common Poisson arrival rate. However, when player 3’s
continuation payoff reaches 1

6
, her marginal contribution to the grand coalition, the other two

players stop approaching her with probability 1, in a way that keeps player 3’s continuation
payoff constant at 1

6
.13 The other two players’ continuation payoffs keep increasing until

player 2’s payoff reaches 1
3
, which is her marginal contribution to the value of coalition

{1, 2}. At this point, player 1 starts proposing with positive probability to the singleton
coalition involving only herself (that is, excluding player 2), and player 2’s continuation
payoff is kept constant at 1

3
. Finally, player 1’s payoff converges to 1

2
, the value she can

generate by herself. As T → ∞, the probability that the grand coalition is approached
goes to 1, since as the proposer surplus shrinks, players 2 and 3 need to be excluded with
smaller and smaller probability for their expected continuation payoffs to be held constant.
This reveals an interesting nonmonotonicity with respect to efficiency: near the deadline, all
players approach the efficient grand coalition, and far away from the deadline, all players
approach the grand coalition with probability close to 1. However, for intermediate time
horizons, inefficient subcoalitions can form with high probability.

13In cases where player 3’s relative arrival rate is very high, her continuation payoff may momentarily
increase above 1

6 .
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Figure 2.

The example demonstrates that the values subcoalitions can generate by themselves can
act as lower bounds on how much players of the coalition can expect in MPE, if players
are patient enough and the time horizon is long enough. In the previous example of group
bargaining, relative expected payoffs are purely determined by the arrival rates (relative
likelihoods of being the proposer). In games with more complicated characteristic functions,
both the arrival rates and the values of subcoalitions play a role in shaping expected payoffs
in MPE.

2. Limit inefficiency
The next example features a situation in which the underlying cooperative game has

an empty core. Let λ1 = λ2 = λ3 =
1
3
, V ({1, 2}) = V ({1, 3}) = V ({2, 3}) = 3

4
and

V ({1}) = V ({2}) = V ({3}) = 0. Here, each player’s marginal contribution to the grand
coalition is 1

4
. Hence, once MPE continuation values reach 1

4
, all players switch to proposing

to 2-player coalitions with probabilities that keep everyone’s continuation payoff constant
at this level. This implies that players make inefficient agreements even in the limit as the
deadline gets far away (and players are infinitely patient).

9



Figure 3.

4 Basic properties of Markov-perfect equilibrium

In this section, we first connect MPE of coalitional bargaining games in the continuous-time
framework to SPNE of nearby discrete-time coalitional bargaining games. A corollary of
this result is the existence of MPE in our model. Then we establish uniqueness of expected
payoffs in MPE, for every game in our framework. That is, while strategies in our model
might not be uniquely determined in MPE, they can only vary in a payoff-irrelevant way.14

We also show, by example, that the uniqueness result in the general case does not extend to
all SPNE in the continuous-time framework, even generically.

Let k ∈ Z++, and fix a set of players N with |N | = n, a characteristic function V, and a
vector of arrival rates λ ∈ Rn

++. As usual, we abuse notation and denote λ = λ1+λ2+...+λn.
In what follows, we assume a fixed discount rate r.

First we formally define discrete coalitional bargaining games, and such games being close
to a continuous-time game.

Definition: A k-period discrete random arrival coalitional bargaining game with time
horizon T , denoted Gk(N,V, λ, T ), is a k-period random-arrival discrete game in which T

k

14For example, if there are three players with equal arrival rates, and all players approach two-player
coalitions in a way that every player is approached by others with the same probability, then it is payoff-
irrelevant whether all players approach each of the other two players with probability 1/2-1/2, or whether
player 1 always approaches player 2, player 2 always approaches player 3, and player 3 always approaches
player 1.
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units of time lapse between subsequent periods, and in each period player i gets the chance
to make a proposal with probability λi

λ
(1− e−λ

T
k ), while with probability e−λ

T
k no one gets

to propose. The periods are denoted {1, 2, ..., k}.

Definition: A sequence of discrete coalitional bargaining games {Gk(j)
j (N,V, λj, T )}∞j=1

converges to continuous-time bargaining game G(N,V, λ, T ) if k(j) → ∞ and λj → λ as
j →∞.

If {Gk(j)
j (N, V, λj, T )}∞j=1 converge to G(N,V, λ, T ), then the arrival process indeed con-

verges to Poisson process defined for the continuous game: see Billingsley (1995), Theorem
23.2 (p302). From now on, for notational simplicity, we omit the superscript k(j) for discrete
games indexed by j.

Next, we focus an a particularly useful class of discrete games.

Definition: Gk(N, V, λ, T ) is regular if it has a unique SPNE payoff vector.

If the game is regular, then expected continuation payoffs in SPNE are Markovian: they
depend only on the time remaining before the deadline. It is to these payoffs that we wish
to relate MPE payoffs in the continuous-time game.

Next we show that regularity is a generic property for discrete-time coalitional bargaining
games in the arrival rates, for any fixed characteristic function.15 This implies that for any
continuous-time game, we can pick a sequence of regular discrete-time games that converges
to it.

Claim 1 (Genericity): U = {λ ∈ Rn
++|Gk(N,V, λ, T ) is regular} is open and dense.

To show openness, we rely on the fact that when no player is indifferent between proposing
to different coalitions, payoffs in each period are continuous in the payoffs of the following
period. Thus, a slight perturbation in the latter implies a slight perturbation in the former,
and the lack of indifference is preserved throughout the game for small enough changes. For
density, we first show that small changes in λ ∈ Rn

++ lead to full-dimensional changes each
period’s payoff until (going back in time) a period where some proposer is indifferent. Full
dimensionality follows from the facts that: (i) an increase in λi, holding λj constant for all j 6=
i, increases i’s payoff in each period and weakly decreases all other players’ as long as (going
back in time) no proposer is indifferent, and (ii) reservation value functions are infinitely
differentiable in λ and the following period’s values, and therefore linear approximations
can be used for small changes. Then if λ /∈ U , it is possible to make an arbitrarily small
perturbation breaking the latest point of proposer indifference while preserving the lack
thereof in subsequent periods. Iterating this argument yields a λ0 arbitrarily close to λ such
that all indifferences are broken.

Next, we establish that if a sequence of regular discrete coalitional bargaining games
converges to a continuous-time bargaining game, then the following holds. The sequence
15Norman (2002) established an analogous result in the context of discrete time legislative bargaining

games.
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has a subsequence such that the associated (unique) SPNE collections of continuation payoff
functions, extended to continuous time in a natural way, converge uniformly to an MPE
collection of continuation payoff functions of the limit game. To show this, we construct
strategy profiles in continuous time such that the associated continuation value functions
approximate the SPNE continuation payoff functions arbitrarily well as k → ∞. These
generated functions are Lipschitz-continuous, with a uniform Lipschitz constant given by
the discount rate, the arrival rates, and V (N). Hence, by the Ascoli-Arzela theorem, there is
a subsequence of the games such that the associated continuation payoffs uniformly converge
to a limit function (which is Lipschitz-continuous with the same constant) for each player.

To establish that these limit functions constitute the continuation payoff functions of an
MPE of the limit game, we first prove a mathematical theorem, that at points t where both
the continuation payoff functions along the sequence and the limit functions are differentiable
(which holds for almost all points of time), the derivatives of the limit functions are in the
convex hull of points that can be achieved as limit points of derivatives at points t1, t2, ... along
the sequence, where tk → t as k →∞. Each of these limit points correspond to (proposer)
strategies that are played arbitrarily close to t arbitrarily high along the sequence. It follows
that these corresponding strategies are optimal in the limit game, assuming that players play
Markovian strategies and the limit functions are indeed the continuation payoff functions.
The same holds for mixtures of these strategies. We can use this fact to define strategies
that are optimal if the continuation payoff functions are given by the limit functions, and at
the same time generate the limit functions as the continuation payoff functions of the game.
Put simply, we can create an MPE strategy profile such that the equilibrium continuation
payoff functions are exactly the limit functions.

Given regular discrete coalitional bargaining game Gj, let wGj : [−T, 0]→ Rn denote the
SPNE continuation payoff function of Gj, embedded in the continuous time framework as a
step function. See Appendix B for the formal definition of wGj .

Claim 2: Suppose that the sequence of regular discrete coalitional bargaining games
{Gj(N,V, λj, T )}∞j=1 (G1, G2, ... for short) converges to continuous-time bargaining game
G(N,V, λ, T ). Then the sequence has a subsequence {Gjh}∞h=1 such that {wGjh (.)}∞h=1, the se-
quence of SPNE payoff functions, converges uniformly. Moreover, for any such subsequence,
the limit of {wGjh (.)}∞h=1 corresponds to the continuation payoff functions of an MPE of
G(N,V, λ, T ).

A straightforward consequence of Claim 2 is existence of MPE.

Corollary 1 (Existence): Every continuous-time random arrival coalitional bargaining
game has an MPE.

We proceed by showing a simple result that reveals an important feature of MPE in our
model, and will be used in the subsequent uniqueness proof. It states that at any point of
time in an MPE, any player with an arrival only approaches coalitions that maximize the
difference between the value of the coalition and the sum of continuation payoffs of players
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in the coalition. Intuitively, players only approach coalitions that are the cheapest to buy
relative to the value they can generate.

Claim 3: In any MPE, at any t ≤ 0 where i ∈ N receives an arrival, she approaches
a coalition C ∈ argmax

D3i
V (D) −

P
j∈D\{i}

wj(t) and offers exactly wj(t) to every j ∈ C\{i}.

Furthermore, the offer is accepted with probability 1.

We now establish the uniqueness of MPE payoffs. The intuitive summary of the proof
is as follows. Suppose that there are two Markov-perfect equilibria, A and B, with different
continuation payoff functions. Suppose that t is the earliest time such that continuation
payoffs in the two equilibria are equal for all times on the interval [t, 0] (note that such
time exists, as equilibrium continuation functions are continuous, and at t = 0, all players’
continuation payoffs are 0 in all equilibria).

In the first part of the proof, we show that close to t, for any player, continuation values
depend primarily on the probability of being approached. To see why this is the case, note
that in general, holding arrival rates and future expected payoffs fixed, one expects that
both the probability of being approached and the share obtained when proposing influence
continuation values. However, close to t, the difference between the two equilibria for the
former, a jump variable, is of a greater order of magnitude than for the latter, which is
Lipschitz-continuous. The second part of the proof notes that optimality imposes that a
coalition can take proposals away from another as we switch equilibria only if it has become
relatively “cheaper”. Therefore, loosely speaking, for any coalition, having a strictly higher
continuation value in A than in B is generally associated with being approached less often
under A than under B. Combining the two parts of the proof produces a contradiction.

In more detail, the proof proceeds as follows: define fi(τ) as the difference between player
i’s payoff in equilibrium A (wA

i ) and her payoff in equilibrium B (wB
i ), at time τ ; let gi(τ)

be the analogous difference in the density of being proposed to by another player. We wish
to show that we can find τ arbitrarily close to t such that

P
j∈N

h
fj(τ)

R t
τ
gj(t

0)dt0
i
> 0:

summing over all players, continuation values and probability of being approached change
in the same direction. To do so, we argue that for τ close enough to t,

R t
τ
gj(t

0)dt0 is at least
sometimes of the same sign as fj(τ), and cannot be too strongly of the opposite sign. We
start by showing that fi(τ)−

R t
τ
e−(λ+r)(t

0−τ)wB
i (t

0)gi(t
0)dt0 is bounded by a quantity on the

order of (t − τ)fi, when (roughly speaking) |fi| is large enough compared to |fj| for j 6= i.
A technical result (see Lemma 2 in the proof) allows us to eliminate the e−(λ+r)(t

0−τ)wB
i (t

0)
term inside the integral. We also show that the right endpoint of the interval [τ , t] can be
taken to be different from t, as long as it is close enough to t. In particular, this allows
us to pick an interval I where, for any pair of coalitions (C,C 0), the sign of the change (as
we move from B to A) in the difference of continuation values between the two coalitions
(fC,C0 ≡

P
i∈C fi −

P
i∈C0 fi) remains the same for all times within I.

For the second part of the proof, denote the change (from equilibrium A to equilibrium
B) in the relative probability of the two coalitions being approached by gC,C0. Then we have
fC,C0gC,C0 ≤ 0. Since within I, fC,C0 retains the same sign, then so does gC,C0, so that for any
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τ ∈ I, fC,C0(τ)
R
I
gC,C0 ≤ 0. This observation is the opposite of the one made in the first part

of the proof (
P

j∈N

h
fj(τ)

R t
τ
gj(t

0)dt0
i
> 0), but for coalitions instead of individual players.

Finally, using simple calculations, we derive a contradiction with the result obtained in the
first part.

Theorem 2 (Uniqueness): In every continuous-time coalitional bargaining game, MPE
payoff functions are unique.

Claim 2 and Theorem 2 together establish that given a sequence of regular discrete-time
coalitional bargaining games converging to a continuous-time coalitional bargaining game,
any convergent subsequence of the SPNE continuation payoff functions converges to the
unique MPE payoff function of the limit game. This can be used to show that the original
sequence of SPNE continuation payoff functions has to be convergent, with the same limit.

Theorem 3: Suppose that the sequence of regular discrete coalitional bargaining games
G1, G2, ... converges to continuous-time bargaining gameG(N,V, λ, T ). Then the correspond-
ing sequence of SPNE collection of continuation value functions converges to the unique MPE
collection of continuation value functions of G(N,V, λ, T ).

We conclude the section by pointing out that Theorem 2 (uniqueness) does not extend
to SPNE. To see this, consider the second example from Subsection 3.2, with small r. Let
t∗ denote the time at which players’ continuation payoffs in MPE reach 0.25. In any MPE,
before t∗, players always approach coalitions such that all players are approached with equal
probabilities, and players’ continuation payoffs are constantly 0.25 before t∗. Consider now
the following non-Markovian strategy profile. After t∗, play is according to an MPE. Before
t∗, if no offer was rejected so far in the game, a player who gets the chance to propose
approaches the grand coalition and offers 0.25 to each of the other players (and keeps 0.5 for
herself). In this phase, any approached player accepts an offer iff she is offered at least 0.25.
However, once an offer is rejected, players switch to an MPE. Note that in the above profile,
players’ continuation values, provided that no rejection occurred so far, increase strictly above
0.25 before t∗. Nevertheless, they are willing to accept an offer of 0.25, because rejecting
an offer moves play to a different phase, in which players’ continuation payoffs are exactly
0.25. Such discontinuous change in continuation payoffs is not possible in MPE. Note that
the above non-Markovian SPNE strictly payoff-dominates the MPE if the time horizon is
longer than −t∗, and payoffs converge to the efficient division (1/3, 1/3, 1/3) as T →∞ and
r → 0.

The qualitative conclusions from the previous game carry through to an ε-neighborhood
of arrival vectors around (1/3, 1/3, 1/3). In particular, for small enough ε > 0, there exists
δ ≥ 0 such that before time t∗ − δ, the MPE continuation payoff of all three players is
0.25. Nevertheless, using exactly the same construction as above (with t∗ − δ instead of t∗

as the switching point between the history-dependent and the history-independent phases of
the game), one can create an SPNE in which all players’ payoffs converge to (1/3, 1/3, 1/3)
as T goes to infinity. This shows that there is an open set of arrival rates, for the given
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characteristic function, for which there are multiple SPNE with distinct expected payoff
vectors.16

5 Limit of MPE payoffs in convex games

In this section, we investigate MPE payoffs as the time horizon of the game goes to infinity, in
games with convex characteristic functions. We first show that for any low enough discount
rate r > 0, the MPE payoff vector converges, as T → −∞, to a payoff vector corresponding
to a stationary SPNE payoff of the infinite-horizon bargaining game with the same discount
rate. Given the justification for focusing on MPE in finite-horizon coalitional bargaining
games, this result provides a justification for selecting stationary SPNE in infinite-horizon
coalitional bargaining games, provided that the game is convex and players are patient
enough.

Second, we establish an exact equivalence result in convex games between the core of the
underlying characteristic function and the set of payoffs that can be achieved in the limit
as the time horizon goes to infinity and players become more patient. In particular, any
such limit MPE payoff, for any vector of arrival rates, corresponds to a point in the core.
Conversely, for any point of the core, there is a vector of arrival rates such that the limit
MPE payoff of the game with the given arrival rates corresponds to the selected point. In
fact, the second result holds for all games in our framework. On the other hand, we show
by example that the first result does not extend to all games with a nonempty core: in
non-convex games, it is possible that the limit MPE payoff vector is outside the core of the
underlying characteristic function.

Throughout this section, we let vC = V (N)− V (N\C) for any C ∈ 2N .

Definition: A bargaining game is convex if V (C ∪ A) − V (C) ≥ V (C 0 ∪ A) − V (C 0),
whenever C ⊃ C 0 and C ∩A = C 0 ∩A = ∅.

We start by establishing a lower bound for each coalition’s continuation value far enough
from the deadline. Intuitively, since a coalition C’s marginal contribution to any other
coalition is at least V (C) in a convex game, as long as C’s continuation value is below V (C),
it should be approached by any player (the proof of the claim uses induction to rule out only
part of C being approached). When this player is part of C, then the proposal will give a
total payoff of at least V (C) to players in C, since otherwise the proposer can do better by
approaching C only.

Claim 4: Let λM = mini∈N λi. If V is convex, then for any ε > 0, there exists T ∗

such that in any MPE of a game with T > T ∗, continuation values satisfy
P
i∈C

wi(t) ≥
λM

λM+r
V (C)− ε, ∀ C ⊆ N and t ≤ −T ∗.

Claim 4 implies that far away from the deadline, there is an upper bound on the extra
surplus one gets from proposing, and it tends to at most r

λM+r
V (N) as the deadline recedes.

16Slight changes in the characteristic function do not alter these conclusions either.
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Thus, in a convex game where players are very patient and the deadline is far away, a player’s
payoff from proposing is only a little higher than her payoff from being approached. This
implies that a player i’s continuation value, going back in time, would fall if no other player
approaches her, which occurs if it is above v{i}. The proof for Claim 5 shows that the value
must in fact fall to v{i}, and inductively extends the argument to coalitions. Thus, for low
discount rates and far enough away from the deadline, it is optimal to approach N .

Claim 5: If V is convex, there exists br such that whenever r ∈ (0, br), ∃t such that
∀t0 ≤ t, N ∈ argmaxC⊆N{V (C)−

P
i∈C wi(t

0)}.

For the rest of this section, we only consider r < br and early enough times so that N is
an optimal coalition to approach for all players. Let S(t) be the set of all coalitions that are
as attractive as N at time t, i.e. C ∈ S(t) iff V (C)−wC(t) = V (N)−wN(t) (note that this
must be positive).

Due to the convexity of the game, S(t)must have an element that is contained in all others
("minimal optimal coalition"). To see this, suppose that were not the case. Then there must
be two non-nested coalitionsD,E ∈ S(t) with V (D)−wD(t) = V (E)−wE(t) = V (N)−wN(t)
and V (D ∩E)−wD∩E(t) < V (N)−wN(t), implying that V (E)− V (D ∩E) > wE\(D∩E)(t).
By convexity, we have wE\(D∩E)(t) < V (D ∪ E) − V (D), which implies that it is strictly
better to approach D ∪ E than D, a contradiction. Note that this argument also implies
that for any D,E ∈ S(t), D ∩E ∈ S(t) and D ∪E ∈ S(t).

Let C(t) be the minimal optimal coalition at t, and let P (t) be the coarsest partition of N
such that each element of S(t) can be expressed as a union of cells defined by P (t). Note that
C(t) ∈ P (t). Since, as shown above, for any D,E ∈ S(t), D∩E ∈ S(t) and D∪E ∈ S(t), it
follows that the union of C(t) and any collection of the other cells in P (t) is an element of
S(t). In particular, this means that wD(t) = V (N)− V (N\D) for all D ∈ P (t), D 6= C(t).

Using the above structure, we show that the proposer surplus V (N) − wN(.) is weakly
monotonic far enough away from the deadline. Intuitively, we first note that the function
must be monotonic whenever the minimal optimal coalition C(.) does not change. But,
going back in time, if C(.) grows at t, it must be that the proposer surplus is decreasing
both to the right and to the left of t, while if C(.) shrinks at t, then because the continuation
value of the group of players leaving C(.) goes from rising to being flat, the proposer surplus
cannot attain a maximum at t. If the proposer surplus increases going back in time, then no
player can join C(.), while if it decreases, then no group of players can join at two different
times. Either way, due to the finiteness of players, C(.) must be constant far enough from
the deadline; we then argue that P (.) must be so as well to establish Claim 6.

Claim 6: For small enough r, there exists bt such that ∀t ≤ bt, P (t) remains constant.
Because the structure of proposals remains constant before a certain time, we can compute

each player’s limit payoffs (Theorem 4).

Theorem 4: For a convex game V and small enough r, let P be the earliest partition
and C be the earliest minimal optimal coalition. Then: (i) limτ→−∞wi(τ) =

λi
r+λC

V (C) for
all i ∈ C, and (ii) limτ→−∞wi(τ) =

λi
λD

vD for all i ∈ D ∈ P\{C}.
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Because the set of optimal coalitions to approach is upper-hemicontinuous in continuation
values, the union of C and any set of the other cells of P is an optimal coalition to approach
if the values correspond to the limits in Theorem 4. Using this fact, we check that the limit
payoffs from Theorem 4 constitute stationary equilibrium payoffs.

Corollary 2: In convex games, for small enough r, MPE limit payoffs (limτ→−∞wi(τ))
constitute stationary equilibrium payoffs.

For any P and C, let wP,C = (w1, ..., wn) where wi =
λi
λC
V (C) for all i ∈ C and wi =

λi
λD

vD
for all i ∈ D ∈ P\{C}. If wP,C /∈ C(V ) (the core of V ), then again by upper-hemicontinuity,
for low enough r, P and C cannot describe the earliest structure of proposals in an MPE.
Thus, for low enough r, whenever some P and C describe the earliest proposal structure, it
must be that wP,C ∈ C(V ). This directly implies Claim 7.

Claim 7: If V is convex, then for low enough r, the Euclidean distance between the
limit of MPE payoffs when taking T to infinity and C(V ) is bounded above by nr

r+λM
V (N).

The converse of the above result can be established for all games with nonempty core,
even nonconvex ones. The central idea is that with relative arrival rates proportional to
relative payoffs in a core allocation, if every player always proposes to the grand coalition
(offering the appropriate continuation payoff to every other player), then expected payoffs
as T →∞ converge to the core allocation at hand, from below. This means that the sum of
continuation payoffs of players of any coalition at no time exceeds the marginal contribution
of the coalition to the grand coalition, confirming the optimality of proposing to the grand
coalition.

Claim 8: For every x ∈ C(V ), there exist arrival rates {λi}i∈N such that the expected
MPE payoffs converge to x

1+r
as T →∞.

Claim 8 is similar to the main result in Yan (2002) on ex ante expected payoffs in
stationary SPNE of infinite-horizon random-proposer discrete-time games, with the caveat
that in our model, the discount rate has to converge to 0 to achieve the core convergence
result because in our model, the expected time before the first proposal is positive. Therefore,
the limit case of our model with infinitely patient players can be compared to the model in
Yan (2002). In addition, we establish in Claim 7 that in our context, the unique MPE payoff
of a convex game with any vector of arrival rates converges to a core allocation if the deadline
goes to infinity and the discount rate goes to zero. The analog of this result is absent from
Yan (2002).17

Combining Claims 7 and 8 immediately yields the equivalence between the core of a
convex game and the limit set of possible MPE payoffs as T →∞ and r → 0.

17Yan shows that if players are sufficiently patient and the vector of arrival rates is outside the core, the
resulting stationary SPNE allocation is inefficient, but does not examine whether the inefficiency vanishes
as players become patient.
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Theorem 5: Let S(r, V ) be the set of possible limit MPE payoffs (as T →∞) obtained
by varying λ ∈ Rn

++, and let S(V ) be the limit of S(r, V ) as r → 0. If V is convex, then
S(V ) = C(V ).

We conclude the section by providing an example of a 4-player game with a nonempty
core, in which payoffs converge to a point outside the core, as the deadline gets infinitely far
away in the limit r → 0. In this example, the underlying game is not totally balanced; that
is, although the game has a nonempty core, it is not true that all subgames have a nonempty
core. We do not know whether the core convergence result can be extended to all totally
balanced games, a superset of both convex games and 3-player games with nonempty core.

Example. Let N = {1, 2, 3, 4}, V (N) = 1, V ({1, 2, 3}) = 1
2
, V ({1, 2}) = V ({2, 3}) =

V ({3, 1}) = 3
8
, λ1 = λ2 = λ3 =

1
15
, λ4 = 4

5
. The game is not totally balanced since the

core in the subgame with players 1, 2 and 3 is empty. However, the complete game has
a nonempty core; for example, (1

4
, 1
4
, 1
4
, 1
4
) ∈ C(V ). It can be shown that in the limit as

the deadline gets infinitely far away, expected payoffs converge to the inefficient allocation
(1
2
, 1
8
, 1
8
, 1
8
).

6 Discussion: extensions

Our model can be extended in many directions. Some of them, like incorporating asymmetric
information, are beyond the scope of this paper. Others are relatively straightforward; we
discuss two of these below.

6.1 Infinite horizon

Without a deadline, our model yields very similar results to a discrete-time model in which a
proposer is selected randomly at every period (with perhaps a positive probability of no one
being selected). As previously noted, in the group bargaining case with infinite horizon and
constant discount rate r, any given allocation of the surplus can be supported in SPNE for r
low enough. A further similarity with the discrete model is that there is only one stationary
SPNE in discounted infinite-horizon group bargaining, which is characterized by:

wi =

∞Z
0

[λie
−(λ+r)τ(1−

X
j∈N\{i}

wj) +
X

j∈N\{i}

λje
−(λ+r)τwi]dτ.

The solution of this system is wi =
λi
r+λ
, the same as the limit in the finite-horizon model

as the horizon goes to infinity.18

6.2 Gradually disappearing pies

Our model assumes that the surplus generated by any coalition stays constant until a cer-
tain point of time (the deadline) and then discontinuously drops to zero. Although there are

18For small r this is a special case of Theorem 4, since group bargaining games are convex.
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many situations in which there is such a highlighted point of time that makes subsequent
agreements infeasible, in other cases, it is more realistic to assume that the surpluses start
decreasing at some point, but only go to zero gradually. For example, agreeing upon broad-
casting the games of a sports season yields diminishing payoffs once the season started, but
if there are still remaining games in the season, a fraction of the original surplus can still be
attained.
Some of our results can be extended to this framework. For example, the case of

group bargaining remains tractable when V (N) is time-dependent, even without assum-
ing specific functional forms. Indeed, if V (N)(t) is continuous and nonincreasing, and
there is some time t∗ at which V (N) becomes zero, our argument for the uniqueness of
SPNE payoffs applies with minor modifications. Continuation payoff functions are then
wi(t) = λi

R∞
t

e−(λ+r)(τ−t)V (N)(τ)dτ , so payoffs remain proportional to arrival rates at all
times, and since the grand coalition always forms at an arrival, the sum of expected payoffs
across all players is simply the expected size of the pie at the next arrival (0 after t∗). Even
if we do not assume that there is a time t∗ as above, but instead only that V (N)(t) is non-
increasing and limt→∞ V (N)(t) = 0, it is possible to show uniqueness of MPE payoffs. It is
an open question whether this uniqueness result for gradually disappearing pies extends to
general coalitional bargaining.

7 Conclusion

In this paper, we propose a tractable noncooperative framework for coalitional bargaining,
which can be used to derive sharp predictions with respect to the division of the surplus. In
subsequent research, we plan to extend the framework to settings with asymmetric informa-
tion, as well as situations in which a successful agreement by a proper subcoalition does not
end the game, and the remaining players can continue bargaining with each other.
We also plan to use our framework in various applications. In a companion paper (Ambrus

and Lu (2010)) we apply our model to legislative bargaining, where there is a natural upper
bound for negotiations: the end of the legislature’s mandate. We characterize limit payoffs
when the time horizon for negotiations goes to infinity, and show that there is a discontinuity
between long finite-horizon legislative bargaining and infinite-horizon legislative bargaining.
In particular, even in the limit the model with deadline puts restrictions on the distributions
of surplus that can be achieved by varying recognition probabilities of different players,
leading to a lower-dimensional subset of all feasible distributions.19

8 Appendix A: Formal definition of strategies

First, we define the set of possible histories of the game formally. We need to consider two
types of histories.
For any t ∈ [−T, 0], a time-t proposer-history consists of:

19In contrast, Kalandrakis (2006) shows that in the infinite-horizon Baron and Ferejohn legislative bargain-
ing model, any division of the surplus can be achieved as an expected stationary SPNE payoff if recognition
probabilities can be freely specified.
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(i) arrival times −T ≤ t1, ..., tk < t for k ∈ Z+;
(ii) proposers assigned to the above arrival times it1, ..., itk ∈ N ;
(iii) feasible proposals (Ctm, xtm) by itm , where Ctm ⊆ N and xtm ∈ Rn

+, for every m ∈
{1, ..., k}; and
(iv) acceptance-rejection responses (ytmjm,1

, ..., ytmjm,nm
) such that, for every m ∈ {1, ..., k}:

nm = |Ctm|− 1, jm,1, ..., jm,nm ∈ Ctm, jm,k0 6= jm,k00 if k0 6= k00, ytmjm,k0
∈ {accept, reject} for

every k0 ∈ {1, ..., nm}, and ytmjm,k0
= reject for some k0 ∈ {1, ..., nm}.

Let Hp
t denote the set of all time-t proposer-histories, and let Hp = ∪

t∈[−T,0]
Hp

t .

For any t ∈ [−T, 0], a time-t responder-history of i ∈ N consists of:
(i) a time-t proposer history hpt ∈ Hp

t ;
(ii) a time-t proposer j ∈ N\{i};
(iii) a feasible proposal at time t : (Cj, xj) by j, where Cj ⊆ N and xj ∈ Rn

+, such that
i ∈ Cj;
(iv) previous acceptance-rejection decisions at time t : (yj1, ..., yjm) such that j1, ..., jm ∈

Cj\{i, j}, jk0 6= jk00 if k0 6= k00, and yjk0 ∈ {accept, reject} for every k0 ∈ {1, ...,m}.
Let Hri

t denote all time-t responder-histories of i, and let Hri = ∪
t∈[−T,0]

Hri
t .

Next we construct metrics on the spaces of different types of histories, which we will use
to impose a measurability condition on strategies.
Define a metric dp on Hp such that dp(hpt ,ehpt0) < ε for ε > 0 iff (i) |t − t0| < ε; (ii) hpt

and ehpt0 have the same number of arrival times k ∈ Z+; (iii) denoting the arrival times of hpt
and ehpt0 by t1, ..., tk and t01, ..., t

0
k, |tl − t0l| < ε ∀ l ∈ {1, ..., k}; (iv) itl = i0t0l

∀ l ∈ {1, ..., k},
where itl is the proposer assigned at tl by h

p
t and i0t0l

is the proposer assigned at t0l by ehpt ; (v)
Ctl = C 0

t0l
∀ l ∈ {1, ..., k}, where Ctl is the approached coalition at tl in hpt and C 0

t0l
is the

approached coalition at t0l in ehpt ; (vi) ||xtl − x0tl || < ε, where || · || stands for the Euclidean
norm in Rn, and xtl and x0t0l

are the proposed allocations at tl in hpt and at t
0
l in ehpt ; (vii)

ytl = eyt0l ∀ l ∈ {1, ..., k}, where ytl and eyt0l are the vector of acceptance-rejection responses at
tl in hpt and at t

0
l in ehpt .

Define a metric dri on Hri such that dri(hrit ,ehrit0 ) < ε for ε > 0 iff (i) |t − t0| < ε; (ii)
dp(hpt ,ehpt0) < ε, where hpt and ehpt0 are the proposer-histories belonging to hrit and ehrit0 ; (iii) the
time-t proposer in hrit and the time-t

0 proposer in ehrit0 is the same player j ∈ N\{i}; (iv)
Cj = C 0

j and ||xj − x0j|| < ε, where (Cj, xj) is the time-t proposal in hrit and (C
0
j, x

0
j) is the

time-t0 proposal in ehrit0 ; (v) (yj1 , ..., yjm) = (y0j1, ..., y
0
jm), where (yj1, ..., yjm) is the previous

acceptance-rejection responses in hrit and (y0j1 , ..., y
0
jm) is the previous acceptance-rejection

responses in ehrit0 .
The set of proposer action choices of player i at any t ∈ [−T, 0], denoted by Ap

i , is defined
as {(Ci, xi)|i ∈ Ci ⊆ N,

P
j∈N

xji ≤ V (Ci), xi ≥ 0}. Define a metric dap,i on Ap
i such that

dap,i((Ci, xi), (C
0
i, x

0
i)) < ε for ε > 0 iff Ci = C 0

i and ||xi − x0i|| < ε.

Definition: A pure strategy of player i in game G is a pair of functions: a proposal
function Hp → Ap

i that is measurable with respect to the σ-algebras generated by dp and
dap,i, and a responder function Hri → {accept, reject} that is measurable with respect to
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the σ-algebra generated by dri and the σ-algebra belonging to the discrete topology on
{accept, reject}.

The measurability requirement on pure strategies is imposed to ensure that the expected
payoffs of players are well-defined after any history.20

9 Appendix B: embedding continuation payoff func-
tions of discrete games into continuous time

For regular discrete coalitional bargaining game Gk(N, V, λ, T ), let wk
i (m) be player i’s SPNE

continuation value before the random arrival in periodm, form ∈ {1, 2, ..., k} (thus, wk
i (k) =

1−e−λ
T
k

λ
λi). Let wk

i (k+1) = 0. We extend these regular SPNE continuation payoff functions
to continuous time.

Definition: For all t ∈ [−T, 0], let wGk

i (t) = e−r∆wk
i (
¥
T+t
T
k
¦
+ 1), where ∆ satisfies

e−r∆(1 − e−λ
T
k ) = λ

r+λ
(1 − e−(r+λ)

T
k ). Thus, wGk

i (t) is a step-function derived from the
discrete game payoffs.

Note that for k high enough, ∆ ∈ (0, T
k
). Also note that as k →∞, ∆→ 0.

The definition is consistent with the following setup: place the mth period of the dis-
crete game at time −k−(m−1)

k
T + ∆. For t ∈ [−k−(m−1)

k
T,−k−m

k
T ) (which corresponds to

the mth of the k T
k
-sized interval in [−T, 0]), wGk

i (t) is simply wk
i (m) discounted from the

perspective of time −k−(m−1)
k

T . At time −k−(m−1)
k

T , a player receiving an expected payoff x

with density λe−λ(τ+
k−(m−1)

k
T ) throughout [−k−(m−1)

k
T,−k−m

k
T ) has value x

R T
k
0
λe−(λ+r)τdτ =

xλ(1−e−(λ+r)
T
k )

r+λ
, while a player receiving the same expected payoff x at time −k−(m−1)

k
T +∆

with probability
R T

k
0
λe−λτdτ = 1− e−λ

T
k has value xe−r∆(1− e−λ

T
k ). Thus, our definition of

∆ implies that any player will be indifferent between the continuous and the discrete arrivals
specified above.

10 Appendix C: Proofs

Proof of Theorem 1: Let vi(t) and vi(t) be the supremum and the infimum, over all SPNE
and all histories preceding t, of player i’s share when she makes an offer at time t. Let wi(t)
and wi(t) be the supremum and the infimum of player i’s share when no player is making an
offer, over all SPNE, histories and j 6= i.
Note that the density of i getting the next arrival of any player, at x time units from the

current time, is λie−λx, and payoffs received at that point are discounted by a factor e−rx.

20We do not need the measurability assumption to make sure that strategies lead to well-defined outcomes
for any realization of the Poisson arrival processes. In contrast with differential games, the conceptual
problems pointed out in Alós-Ferrer and Ritzberger (2008) do not arise in our context.
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First, note that vi(t) +
P

j 6=iwj(t) = 1, since this will be true in an SPNE where i offers
everyone wj(t) and takes the rest, and where, if any such offer by i is rejected, we move to
a SPNE giving a continuation value of wj(t) to the first rejector.21

Consider the following profile:
1. When any player k 6= i makes an offer, the offer to player i must be wi(t), and the

offer to all j 6= i, k is wj(t). If k offers less to any player, the offer is rejected by that player;
if player j 6= i, k is the rejector, we move to an SPNE giving player k an expected payoff of
wk(t), and if player i is the rejector, we move to an SPNE giving player i an expected payoff
of wi(t). If k makes the correct offer and player j is the first rejecting the offer, then we
move to an equilibrium giving wj(t) to j.
2. When i makes an offer, she gives herself vi(t) and gives wj(t) to all j 6= i, as specified

above.
To show that the exhibited profile is an SPNE, we need to verify that it indeed exists,

i.e. that offers are feasible. Note that player k’s offer is feasible if wi(t) +
P

j 6=iwj(t) ≤ 1.
But this must be true since the sum of all continuation values in any SPNE must be less
than 1, and the SPNE where wi(t) is attained has a sum of continuation values at t of at
least wi(t) +

P
j 6=iwj(t). As established above, player i’s offer is feasible. We also need to

check that players’ actions are optimal. The only case where this is not trivial is that when
k makes an offer, she may prefer to make one that is rejected by i. However, this will not be
the case in an interval close to 0 where the probability of any future arrival ≤ 1

n
, since then

wk(t) ≤ 1
n
= 1− n−1

n
≤ 1−

P
i6=k wi(t), so k will want the offer to be accepted. Denote this

interval [s, 0] (so s = 1
λ
ln(n−1

n
)).

The above profile is of course the best possible one for i, so on [s, 0] we have:

wi(t) =

Z 0

t

"
λie

−(λ+r)(τ−t)vi(τ) +
X
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

#
dτ

=

Z 0

t

"
λie

−(λ+r)(τ−t)(1−
X
j 6=i

wj(τ)) +
X
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

#
dτ

21Strictly speaking, at this point in the argument, it is possible that wj(t) is not attained in any SPNE.
However, since values arbitrarily close to it are attained in some SPNE, it follows that vi(t) can be arbitrarily
close to 1−

P
j 6=i wj(t), which implies that vi(t)+

P
j 6=i wj(t) = 1. To simplify exposition, we proceed in the

proof as if all suprema and infima are attained, keeping in mind that we are actually referring to arguments
analogous to the one presented in this footnote.

22



Since wi(t) is the integral of a continuous function, its derivative exists, so:

wi
0(t) = −λi(1−

X
j 6=i

wj(t))−
X
j 6=i

λjwi(t)

+(λ+ r)

Z 0

t

"
λie

−(λ+r)(τ−t)(1−
X
j 6=i

wj(τ)) +
X
j 6=i

λje
−(λ+r)(τ−t)wi(τ)

#
dτ

= −λi(1−
X
j 6=i

wj(t))−
X
j 6=i

λjwi(t) + (λ+ r)wi(t)

= (λi + r)wi(t)− λi(1−
X
j 6=i

wj(t)).

Similarly, we note that vi(t) +
P

j 6=iwj(t) = 1 on [s, 0], since this occurs when i offers
everyone wj(t) and takes the rest, and where, if i gives any less than wj(t) to a player, we
move to a SPNE giving a continuation value of wj(t) to the first rejector. On [s, 0], wj(t)
and the probability of a future arrival are close to 0, so it will be optimal for i to make such
an offer. By a similar argument as above, we can show that:

wi
0(t) = (λi + r)wi(t)− λi(1−

X
j 6=i

wj(t))

Thus on a nontrivial interval [s, 0], we have a system of 2n differential equations con-
tinuous in t, and Lipschitz continuous in 2n unknown functions with initial values wi(0) =
wi(0) = 0. By the Picard-Lindelof theorem, this initial value problem has a unique solution.
It is easy to check that the following functions constitute the solution:

wi(t) = wi(t) =
λi

λ+ r
(1− e(λ+r)t) ≡ wi(t)

The above argument can be iterated for [2s, s] since the game ending at s with payoffs
wi(s) is simply a scaled version of the original game, and so on. QED

Proof of Claim 1: Let S = {v ∈ Rn
+|∃C1, C2 ∈ 2N s.t. C1, C2 ∈ argmaxC3i(V (C) −P

j∈C vj) for some i ∈ N}. This is the set of reservation payoff vectors for which at least one
player has at least two different optimal coalitions to approach.
Let vk(m) denote an SPNE reservation value vector in periodm ∈ {1, ..., k} inGk(N, V, λ, T ).

Since k is fixed in the following proof, we abbreviate by writing v(m). Note that in any

Gk(N, V, λ, T ), v(k − 1) = e−r
T
k V (N)

∙
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

¸
. When we vary λ, we will

write vλ(m).
Suppose that the reservation value is arbitrarily given to be v in periodm, and all players

play optimally in that period. Then, we denote the set of reservation value vectors attainable
in period m − 1 as F (v, λ), where F is a correspondence. Note that v /∈ S ⇔ F (v, λ) is
single-valued, in which case we denote its unique element as f(v, λ). Since S is a finite
collection of (n − 1)-dimensional hyperplanes, the set on which F is single-valued is open
and dense (call this set W ) within Rn

+ ×Rn
++

22; within W , f is clearly continuous.

22Obviously, if (v, λ) ∈W , then (v, λ0) ∈W as well.
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Openness: Suppose λ ∈ U . By definition, for all m ∈ {1, 2, ..., k − 1}, (vλ(m), λ) ∈
W , with vλ(k − 1) = e−r

T
k V (N)

∙
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

¸
and vλ(m) = f(vλ(m + 1), λ).

Now note that because f is continuous and W is open, for any λ0 close enough to λ,
we have that for all m ∈ {1, 2, ..., k − 1}, vλ0(m) is close to vλ(m), where vλ

0
(k − 1) =

e−r
T
k V (N)

∙
1−e−λ

0 T
k

λ0 (λ01, λ
0
2, ..., λ

0
n)

¸
and vλ

0
(m) = f(v(m+1), λ0). Again due to the openness

of W , this implies that λ0 ∈ U .
Density: We show that a payoff vλ(t) can be changed in "any direction" in Rn by per-

turbing λ. To do so, we argue that in the linear approximation of changes in vλ(t) with
respect to changes in λ, the transformation has full rank. This will allow us to break any
indifferences at t using infinitesimal changes in λ.
When v(m) /∈ S, we can write:

vi(m−1) =
"
λi
λ
(1− e−λ

T
k )max

C3i
(V (C)−

X
j∈C

vj(m)) +
h
1− (1− pi(m))(1− e−λ

T
k ))
i
vi(m)

#
e−r

T
k

where pi(m) is the probability that i is included in period m’s proposal given that there is
one. Note that in a neighborhood of v(m) /∈ S, argmaxC3i(V (C) −

P
j∈C vj(m)) is single-

valued and constant. Fixing λ and in such a neighborhood, vi(m − 1) is linear in each
vj(m), so we can write f(v(m) + δ, λ) − f(v(m), λ) = Amδ, where Am is an n × n matrix.
Note that the ith column of Am must have a strictly positive ith element and have all
other elements weakly negative. Similarly, fixing v(m) /∈ S, we note that each vi(m − 1)
is infinitely differentiable in each component of λ, so we have the linear approximation
f(v(m), λ + γ) − f(v(m), λ) ≈ Bmγ, where Bm is an n × n matrix. Just like Am, the
ith column of Bm must have a strictly positive ith element and have all other elements
weakly negative. We have f(v(m) + δ, λ + γ) − f(v(m), λ) ≈ Amδ + Bmγ. Define Bk =

Dλ[e
−r T

k V (N)1−e
−λT

k

λ
(λ1, λ2, ..., λn)].

Fix ε > 0, and suppose λ /∈ U . Then ∃τ such that v(τ) ∈ S. Let t be the largest such τ .
We still have that all m ∈ {t+ 1, t + 2, ..., k − 1}, F (., .) is single-valued in a neighborhood
of (v(m), λ), with v(k− 1) = e−r

T
k V (N)

∙
1−e−λ

T
k

λ
(λ1, λ2, ..., λn)

¸
and v(m) = f(v(m+1), λ).

Let λ1 = λ+ γ be in a neighborhood of λ. Then we have the linear approximation vλ
0
(t) ≈

vλ(t) + (At+1At+2...Ak−1Bk +At+1At+2...Ak−2Bk−1 + ...+At+1Bt+2 +Bt+1)γ ≡ vλ(t) +Mγ.
Since the set of matrices with strictly positive diagonal entries and weakly negative entries
elsewhere is closed under addition and multiplication, M must retain that property. Thus,
M has full rank. Therefore, ∃λ1 within distance ε

2
of λ such that vλ

1
(τ) /∈ S for all τ ≥ t.

Now with λ1, go back in time until the next indifference point, and iterate the argument
with ε

4
, ε
8
, etc. Since there is a finite number of periods k + 1, there is a finite number, say

q, of indifferences to be broken. So λq, which is by construction within ε of λ, ensures that
Gk(N, V, λq, T ) is regular. QED

Lemma 1: Suppose f1 ≡ (f11 , ..., f
1
n), f

2 ≡ (f21 , ..., f
2
n), ... is a sequence of collections

of functions, where fkj : [0, T ] → R are Lipschitz-continuous with Lipschitz-constant L, for
every k ∈ Z++ and j ∈ {1, ..., n}. Moreover, suppose that the sequence converges uniformly
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to f ≡ (f1, ..., fn), where each fj is also Lipschitz-continuous with Lipschitz constant L.
Let Ξ be the set of all subsequences of f1, f2, ... For any t ∈ [0, T ], let D(t) = {x ∈ Rn|∃
(f j1 , f j2, ...) ∈ Ξ and t1, t2, ... → t s.t. ∇f ji(ti) → x as i → ∞}. Then f differentiable at t
implies ∇f(t) ∈ co(D(t)), where co stands for the convex hull operator.
Proof: First we show that co(D(t)) is closed. Consider a sequence of points in D(t),

x1, x2, ..., converging to x ∈ Rn. This means there are (f j
m
1 , f j

m
2 , ...) ∈ Ξ and tm1 , t

m
2 , ...→ t s.t.

∇f jmi (tmi )→ xm as i→∞, for everym ∈ Z++. Let k(.) be such that |∇f j
m
k(m)(tmk(m))−xm| <

ε
m
and |tm+1k(m+1) − t| < |tmk(m) − t|. Then the sequence ∇f j

1
k(1)(t1k(1)),∇f

j2
k(2)(t2k(2)), ... converges

to x, and t1k(1), t
2
k(2), ... → t, hence x ∈ D(t). This implies that D(t) is closed. Since

−L ≤ Di(t) ≤ L for every i ∈ N , D(t) is compact. Hence, co(D(t)) is compact.
For every δ ≥ 0, let coδ(D(t)) = {x ∈ Rn|d (x, co(D(t))) ≤ δ}, where d (x, co(D(t))) is the

Hausdorff-distance between point x and set co(D(t)). Suppose the statement does not hold.
Then, since co(D(t)) is closed, there is δ > 0 such that ∇f(t) /∈ coδ(D(t)). By definition of
D(t), there exist nε(δ)(t), a relative ε(δ)-neighborhood of t in [0, T ], and k ∈ Z+ such that for
any k0 ≥ k and for any t0 ∈ nε(t) at which fk

0
is differentiable, ∇fk0(t0) ∈ coδ(D(t)). Then for

any t0 ∈ nε(t) and any k0 ≥ k, fk
0
(t0)−fk0(t) ∈ (t0−t)coδ(D(t)). However, ∇f(t) /∈ coδ(D(t))

implies that there is t0 ∈ nε(t) such that f(t0) − f(t) /∈ (t0 − t)coδ(D(t)). This contradicts
that f1, f2, ... converges uniformly to f . QED

Proof of Claim 2: We first consider an arbitrary k-period regular discrete game of the
form Gk(N,V, λk, T ).
Notation: Let sk denote a pure strategy SPNE strategy profile in Gk(N, V, λk, T ), for

every k ∈ Z++. Let Ck
i (m) denote the coalition that player i approaches in sk in period m,

for m ∈ {1, ..., k}.
Based on sk, for every i ∈ N, define as follows strategy bski of i in the continuous-time

game G(N, V, λk, T ):
Divide [−T, 0] into m equal intervals. If i gets an arrival in the mth interval (i.e. at

t = −T + (m − α)T
k
for α ∈ [0, 1) and m ∈ {1, ..., k}), she approaches Ck

i (m) and offers
e−r

T
kwk

j (m+1) to every j ∈ Ck
i (m)\{i}. If player i is approached in the mth interval by any

player, then she accepts the offer if and only if it is at least e−r
T
kwk

j (m+ 1).
Let bwk

i (t) be player i’s continuation value in the continuous-time game generated by the
profile bsk = (bsk1, bsk2, ..., bskn), and let bwk(t) = (bwk

1(t), bwk
2(t), ..., bwk

n(t)).

Fact 1: For any ε > 0, there is a kε ∈ Z++ such that for any k > kε, bsk = (bsk1, bsk2, ..., bskn)
is an ε-perfect equilibrium of Gk.
Note that by construction, whenever t = −T +mT

k
, we have bwk(t) = wGk

(t), for every
m ∈ {1, ..., k}. (Recall that wGk

i (t) is a step-function derived from the discrete game payoffs.)
Second, note that given bsk−i, strategy bski specifies an optimal action for i if she has an

arrival, at every t ∈ [−T, 0].
Next, we bound the suboptimality of bski when i considers an offer. Observe that as we

approach the end of the mth interval (i.e. for t = −T + (m − α)T
k
, as α & 0), bwk

i (t) →
wGk

i (−T + mT
k
) = e−r∆wk

i (m + 1). Given that bsk is Markovian, the optimal action for i
in Gk when she is approached by any other player at t = −T + (m − α)T

k
for α ∈ [0, 1)

and m ∈ {1, ..., k} is, independently of payoff-irrelevant history, to accept the offer if it
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is at least bwk
i (t), and reject it otherwise. Instead, strategy bski specifies that i accepts the

offer if and only if it is at least e−r
T
kwk

i (m + 1); hence, after some histories, bski specifies a
suboptimal action for i. However, since bwk

i (t) is between e−r∆wk
i (m) and e−r∆wk

i (m + 1),
the difference between the expected payoff resulting from following bski versus choosing the
optimal action at t is bounded by

¯̄
wk
i (m)− wk

i (m+ 1)
¯̄
+ wk

i (m + 1)(e−r∆ − e−r
T
k ). Given

that the probability of an arrival between t = −T +(m−1)T
k
and t = −T +mT

k
is 1−e−λk Tk ,¯̄

wk
i (m)− wk

i (m+ 1)
¯̄
≤ V (N)(1 − e−(λ

k+r)T
k ). Thus, as k → ∞, since ∆, T

k
→ 0, we have¯̄

wk
i (m)− wk

i (m+ 1)
¯̄
+wk

i (m+ 1)(e
−r∆ − e−r

T
k )→ 0. This means that for any ε > 0, there

is a kε ∈ Z++ such that for any k > kε, bsk specifies an ε-perfect equilibrium of Gk (which is
also Markovian, by construction).

We now return to our original sequence {Gk(j)
j (N, V, λj, T )}∞j=1 ≡ G1, G2, ...

Fact 2: Uniform convergence of bwk(.) along a subsequence of G1, G2, ...
Define btk(τ) = §(T + τ) k

T

¨
. By construction,

bwk
i (t) =

0Z
t

e−(r+λ
k)(τ−t)[λki

⎛⎝V [Ck
i (btk(τ))]− X

j∈Ck
i (t

k(τ))\{i}

e−r
T
kwk

j (btk(τ) + 1)
⎞⎠

+
X

j 6=i:i∈Ck
j (t

k(τ))

λkj e
−r T

kwk
i (btk(τ) + 1)]dτ.

It is easy to see that for every i ∈ N and k ∈ Z+, bwk
i (.) is Lipschitz-continuous with Lipschitz

constant (r + λk)V (N). Moreover, all bwk
i (.) are uniformly bounded by 0 below and V (N)

above. Therefore, returning to our sequence G1, G2, ... (and, for simplicity, now indexing
our continuation value functions by the index of the corresponding game rather than the
number of periods), by the Ascoli-Arzela theorem (see Royden (1988), p169), the sequence
of functions {bwj(.)}∞j=1 has a subsequence {bwjh(.)}∞h=1 that converges uniformly to functionsbw∗(.) = (bw∗1(.), ..., bw∗n(.)), as h → ∞. Moreover, because λjh → λ as h → ∞, each bw∗i (.)
is also Lipschitz-continuous with constant (r + λ)V (N). Without loss of generality, assume
that the original sequence G1, G2, ... is convergent.

Facts 1 and 2 taken together establish that if strategies are history-independent and
continuation payoff functions are given by bw∗(.), then when approached at t, an optimal
strategy for j0 is accepting the offer iff it gives her at least bw∗j0(t). Below, we complete the
proof by constructing optimal strategies for proposers that generate these payoff functions

Let T stand for the set of points in [−T, 0] where bw∗i (.) and bwj
i (.) are differentiable, for

every i ∈ N and j ∈ Z++. Since the above functions are all Lipschitz-continuous, [−T, 0]\T
is a null set.
By Lemma 1, for any t ∈ T , ∇bw∗(t) ∈ co(D(t)). By Caratheodory’s theorem, there exist

points x1, ..., xn+1 ∈ co(D(t)) such that ∇bw(t) = α1x1 + ... + αn+1xn+1 for α1, ..., αn+1 ≥ 0

such that
n+1P
i=1

αi = 1. For every m ∈ {1, ..., n + 1}, let Gm1, Gm2 , ... be a subsequence

of G1, G2, ... and tm1, tm2, ... be a sequence of points in [−T, 0] converging to t such that
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∇bwmh(tmh) → xm. Because there are only a finite number of coalitions, Gm1, Gm2, ... has
a subsequence Gm1, Gm2, ... such that for every i ∈ N and bmh ∈ Z++, Cmh

i (tmh) = Cm∗
i

for some Cm∗
i ∈ 2N . If approaching Cm∗

i and offering bwmh
p (tmh) to every player p ∈ Cm∗

i

is an optimal strategy for i in Gmh
at tmh given bsmh, then by upper hemicontinuity of the

best-response correspondence, approaching Cm∗
i and offering bw∗p(t) to every p ∈ Cm∗

i is an
optimal strategy for i in G(N,V, λ, T ) at t, provided that any approached player p0 at any
point of time t0 accepts an offer iff the offer to her is at least bw∗p0(t0).
Since the above holds for allm ∈ {1, ..., n+1}, the strategy of approaching Cm∗

i with prob-
ability αm (and offering bw∗p to to every p ∈ Cm∗

i ) is an optimal strategy for i in G(N,V, λ, T )
at t, provided that any approached player p0 at any point of time t0 accepts an offer iff the
offer to her is at least bw∗p0(t0).
Consider now the following Markovian strategy profile s∗ in G(N, V, λ, T ): (i) For any

i ∈ N and any t ∈ [−T, 0], if i is approached at t, she accepts the offer iff it gives her at
least bw∗i (t); (ii) For any i ∈ N and any t ∈ T , if i gets an arrival at t, she approaches Cm∗

i

with probability αm and offers bw∗p(t) to every p ∈ Cm∗
i \{i}, for every m ∈ {1, ..., n+1}; (iii)

For any i ∈ N and any t ∈ [−T, 0]\T , if i gets an arrival at t, she approaches some coalition
C ∈ argmax

C0∈2N :i∈C0
(V (C 0)−

P
p∈C0\{i}

bw∗p(t)) and offers bw∗p(t) to every p ∈ C\{i}.

By construction, if all players follow the above Markovian strategies, then the gradient of
the continuation payoff function at t is exactly∇bw∗(t) at every t ∈ T . Note also that bw∗(0) =
0 and continuation payoffs at 0 are also equal to 0. Given that both the continuation payoff
functions given the above strategies, and bw∗i (.) for all i ∈ N are Lipschitz-continuous, this
implies that the continuation payoff functions generated by the above strategies are exactlybw∗(.). Since we established above the optimality of these strategies given that continuation
payoffs are bw∗(.), we constructed an MPE of G(N,V, λ, T ) such that the continuation payoffs
defined by the MPE are given by bw∗(.).
Finally, note that sup

t∈[−T,0]
|wGj

i (t) − bwj
i (t)| ≤ (r + λj)V (N) T

k(j)
, where the right-hand

sides goes to 0 as j → ∞. Hence, the sequence of SPNE continuation payoff functions
{wG

k(jh)
jh (.)}∞h=1 converges to the same limit as any convergent subsequence bwj1(.), bwj2(.), ...

QED

Proof of Claim 3: Note that
P
j∈N

wj(t) ≤ V (N)− eλt, where eλt > 0 is the probability

that no one has the chance to make an offer during [t, 0]. Furthermore, in any MPE, if
C ⊂ N is approached by i at t, and every j ∈ N\{i} is offered strictly more than wj(t),
then the offer has to be accepted by everyone with probability 1. Therefore, player i can
guarantee a payoff strictly larger than wi(t) by approaching N and offering wj(t)+ε to every
j ∈ N\{i} for small enough ε > 0. On the other hand, a rejected offer results in continuation
payoff wi(t) for i. Next, note that approaching a coalition C and offering strictly less than
wj(t) to some j ∈ C results in rejection of the offer with probability 1, and is therefore not
optimal. Approaching a coalition C and offering wj(t) + ε for ε > 0 to some j ∈ C is also
suboptimal, because offering instead wj(t) + ε/n to every j ∈ C\{i} results in acceptance
of the offer with probability 1 and strictly higher payoff. Therefore, whatever coalition C
is approached, player i has to offer exactly wj(t) to every j ∈ C\{i}. It cannot be that
this offer is accepted with probability less than 1, since then player i could strictly improve
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her payoff by offering slightly more than wj(t) to every j ∈ C\{i}, and that offer would be
accepted with probability 1. Finally, it cannot be that C /∈ argmax

D⊂N
V (D)−

P
j∈D\{i}

wj, since

then approaching some C 0 ∈ argmax
D⊂N

V (D) −
P

j∈D\{i}
wj instead, and offering slightly more

than wj(t) to every j ∈ C 0\{i} would result in a strictly higher payoff. QED

Lemma 2: Let g(.) be an integrable function taking values between −K and K, and let

h(.) ≥ 0 be Lipschitz continuous with Lipschitz bound L. Then
¯̄̄R t

τ
g(t0)h(t0)dt0 − h(t)

R t
τ
g(t0)dt0

¯̄̄
<

2L(t− τ)maxτ 0∈[τ,t]

¯̄̄R t
τ 0 g(t

0)dt0
¯̄̄
.

Proof: Suppose
R t2
t1
g(t0)dt0 = 0 and

¯̄̄R t2
τ
g(t0)dt0

¯̄̄
≤ C for all τ ∈ [t1, t2]. Then¯̄̄R t2

t1
g(t0)h(t0)dt0

¯̄̄
< LC(t2 − t1), as the maximum corresponds to the case where h(τ)

follows a Lipschitz bound, g(τ) = K for τ ∈ [max{t2 − C
K
, t1+t2

2
}, t2], g(τ) = −K for

τ ∈ [t1,min{t1 + C
K
, t1+t2

2
}], and g(τ) = 0 for τ ∈ (min{t1 + C

K
, t1+t2

2
},max{t2 − C

K
, t1+t2

2
}).

Now partition [τ , t] into measurable sets A and B, where
R
S
g(t0)dt0 = 0 for any connected

set S ⊂ A and
R
U
g(t0)dt0 has the same sign as

R t
τ
g(t0)dt0 for any connected set U ⊂ B. Then

we have
¯̄̄R t

τ
g(t0)h(t0)dt0 − h(t)

R t
τ
g(t0)dt0

¯̄̄
≤
¯̄R

A
g(t0)h(t0)dt0

¯̄
+
¯̄R

B
g(t0)h(t0)dt0 − h(t)

R
B
g(t0)dt0

¯̄
<

LC(t− τ) + L(t− τ)
¯̄̄R t

τ
g(t0)dt0

¯̄̄
, where C = maxτ 0∈[τ,t]

¯̄̄R t
τ 0 g(t

0)dt0
¯̄̄
. QED

Proof of Theorem 2: First note that if λi = 0, the only possible MPE continuation
value for i is 0 at all times. The game is then equivalent to an alternative game with players
N\{i} and characteristic function V 0(C) = V (C ∪ {i}),∀C ⊆ N\{i}. So we assume without
loss of generality that λi > 0,∀i ∈ N .
The proof requires the introduction of some extra notation.

Let vi(t) = maxC3i

⎧⎨⎩v(C)−
X

j∈C\{i}

wj(t)

⎫⎬⎭. Also, let pij(t) be the probability of j re-
ceiving an offer at time t given that i gets an arrival at that time, and let piC(t) be the
probability of C (and only C) receiving an offer at time t given that i gets an arrival at that
time.

We proceed by contradiction. Suppose two MPE, A and B, of the same bargaining game
with characteristic function V and arrival rates (λ1, ..., λn) do not have the same continuation
value functions.
Define fi(τ) = wA

i (τ)− wB
i (τ), and note that fi(τ) is Lipschitz continuous.

Let t = min{τ |fi(t0) = 0,∀t0 ∈ [τ , 0],∀i ∈ N}. Note that t < 0 since there must be some
nontrivial interval just before time 0 where proposing to a coalition of value V (N) is strictly
optimal for everyone. When the only such coalition is N , MPE payoffs are clearly unique
within this interval; the same can be shown if multiple coalitions have value V (N).23 Thus
we have wi(t) > 0.
23Note that at t = 0, the left derivative of continuation value functions must exist since wi(0) = 0 (so the

probability of being proposed to given an arrival, which may be discontinuous, does not affect the rate of
change of wi). In fact, we have w0i(0) = −λiV (N). So when there are coalitions C1, ..., Cm 6= N with i ∈ Cj
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Define gj(τ) =
X
i6=j

λip
A
ij(τ) −

X
i6=j

λip
B
ij(τ). Note that by our definition of strategies,

continuation value functions exist, which implies that
R t
τ
gj(t

0)dt0 exists for all τ < t.

Step 1: We establish that:

∀ ε > 0,∃ τ ∈ [t− ε, t) s.t.
X
j∈N

∙
fj(τ)

Z t

τ

gj(t
0)dt0

¸
> 0. (1)

Please refer to the main text for an explanation of our procedure.
Note that:

fj(τ) =

tZ
τ

e−(λ+r)(t
0−τ)

⎡⎢⎢⎢⎢⎣
λj(v

A
j (t

0)− vBj (t
0)) + (wA

j (t
0)− wB

j (t
0))

ÃX
i6=j

λip
A
ij(t

0)

!

+wB
j (t

0)

ÃX
i6=j

λip
A
ij(t

0)−
X
i6=j

λip
B
ij(t

0)

!
⎤⎥⎥⎥⎥⎦ dt0

= λj

Z t

τ

e−(λ+r)(t
0−τ) £vAj (t0)− vBj (t

0)
¤
dt0 +

Z t

τ

e−(λ+r)(t
0−τ)fj(t

0)

ÃX
i6=j

λip
A
ij(t

0)

!
dt0

+

Z t

τ

e−(λ+r)(t
0−τ)wB

j (t
0)gj(t

0)dt0

For τ < t, let Fi(τ) = maxt0∈[τ,t] |fi(t0)|, so Fi(τ) is Lipschitz continuous and nonincreas-

ing. Using the fact that on [τ , t], e−(λ+r)(t
0−τ) < 1 and

X
i6=j

λip
A
ij(t

0) < 1, we have the following

bound:¯̄̄̄
fj(τ)−

Z t

τ

e−(λ+r)(t
0−τ)wB

j (t
0)gj(t

0)dt0
¯̄̄̄
≤ (λ+ r)(t− τ)

X
i∈N\{j}

Fi(τ) + (λ+ r)(t− τ)Fj(τ)

= (λ+ r)(t− τ)
X
i∈N

Fi(τ)

Now we relate
R t
τ
gj(t

0)dt0 to
R t
τ
e−(λ+r)(t

0−τ)wB
j (t

0)gj(t
0)dt0. By Lemma 2,¯̄̄R t

τ
gj(t

0)dt0 − e(λ+r)(t−τ)

wBj (t)

R t
τ
e−(λ+r)(t

0−τ)wB
j (t

0)gj(t
0)dt0

¯̄̄
< 2Lj(t− τ)maxτ 0∈[τ,t]

¯̄̄R t
τ 0 e

−(λ+r)(t0−τ)wB
j (t

0)gj(t
0)dt0

¯̄̄
≤ 2Lj(t− τ)

¡
Fj(τ) + (λ+ r)(t− τ)

P
i∈N Fi(τ)

¢
where Lj, the Lipschitz constant for e(λ+r)(t−τ)

wBj (t)
, is finite when wB

j (t) 6= 0. Combining this
with the above yields:

and V (Cj) = V (N) for j = 1, ...,m, it must be true that in a neighborhood of 0, i only proposes to Ck

with positive probability if
P

l∈Ck λl ≤
P

i∈Cj λl for j = 1, ...,m. When there are multiple such coalitions,
if feasible, they will be approached such that their continuation values are equalized; if equalization cannot
be achieved, those having the choice between many such coalitions will propose to the cheapest one.
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¯̄̄
fj(τ)−

wBj (t)

e(λ+r)(t−τ)

R t
τ
gj(t

0)dt0
¯̄̄

< (λ+ r)(t− τ)
P

i∈N Fi(τ) + 2
wBj (t)

e(λ+r)(t−τ)
Lj(t− τ)

¡
Fj(τ) + (λ+ r)(t− τ)

P
i∈N Fi(τ)

¢
≤ (λ+ r + 2Ljw

B
j (t))

P
i∈N Fi(τ)(t− τ) + 2(λ+ r)Ljw

B
j (t)

P
i∈N Fi(τ)(t− τ)2

≡
P

i∈N Fi(τ)(t− τ)(kj + qj(t− τ))

For (t− τ) small enough, qj(t− τ) is negligible, so we omit it below. Thus:

fj(τ)
wB
j (t)

eλ(t−τ)

Z t

τ

gj(t
0)dt0 ≥ [fj(τ)]2 − kj(t− τ)

X
i∈N

Fi(τ) |fj(τ)|

We are now ready to provide bounds for fj(τ)
R t
τ
gj(t

0)dt0. Let I(τ) = argmaxi Fi(τ), and
let S = {t0|FI(t0)(t

0) =
¯̄
fI(t0)(t

0)
¯̄
and t0 < t}. Note that for all τ < t, S ∩ [τ , t) 6= ∅. We show

that for all τ ∈ S, fj(τ)
R t
τ
gj(t

0)dt0 cannot be more than second-order negative for any j,
and that fI(τ)(τ)

R t
τ
gI(τ)(t

0)dt0 must be first order positive. The intuition is that just before
t, the payoff effect of differences in other players’ payoffs between A and B is generally small
relative to the payoff effect of differences in the probability of being approached. While for
an individual player, the two might be roughly equal, there must be a player, namely I(τ),
for whom this holds strongly, since all players other than I(τ) have payoff differences smaller
than I(τ)’s.
We have that for all τ ∈ S:

fj(τ)

Z t

τ

gj(t
0)dt0 ≥ 1

wB
j (t)

¡
[fj(τ)]

2 − kj(t− τ)n
¯̄
fI(τ)(τ)

¯̄
|fj(τ)|

¢
This expression is minimized when |fj(τ)| =

kj(t−τ)n|fI(τ)(τ)|
2

, so:

fj(τ)

Z t

τ

gj(t
0)dt0 ≥

−k2j (t− τ)2n2
¯̄
fI(τ)(τ)

¯̄2
4wB

j (t)

Moreover,

fI(τ)(τ)

Z t

τ

gI(τ)(t
0)dt0 ≥

(1− kI(τ)(t− τ)n)
¯̄
fI(τ)(τ)

¯̄2
wB
I(τ)(t)

Thus, for small enough (t − τ), we have
P

j∈N

h
fj(τ)

R t
τ
gj(t

0)dt0
i
> 0. This establishes

(1), since for all τ < t, S ∩ [τ , t) 6= ∅.

Intermediate Observation: Now let fC,C0(τ) ≡ fC(τ)−fC0(τ) ≡
P

i∈C fi(τ)−
P

i∈C0 fi(τ),

and Zt0(τ) ≡
P

j∈N

h
fj(t

0)
R t
τ
gj(s)ds

i
. So we know that ∀ε > 0, ∃t0 ∈ [t − ε, t) such that

Zt0(t
0) > 0.
Since Zt0(τ) and fC,C0(τ) are Lipschitz continuous in τ , and Zt0(t) = 0, we have that for

all ε > 0, there must exist a nontrivial interval [t0, t00] ∈ [t−ε, t] where fC,C0(τ) do not change
sign for all (C,C 0) ∈ 2N × 2N , and 0 < Zt0(t

0)− Zt0(t
00) =

P
j∈N

h
fj(t

0)
R t00
t0 gj(s)ds

i
.
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Step 2: We show that
P

j∈N

h
fj(t

0)
R t00
t0 gj(s)ds

i
≤ 0, which gives us the desired contra-

diction.
Let O : 2N\{∅}→ {1, 2, ..., 2n−1}. We will use this ordering of coalitions to define shifts

of proposals from a coalition to another in an intuitive (but cumbersome) way. [Readers
may wish to skip the tedium and proceed to the word description of gC,C0(τ), below its
definition.] Define giC(τ) = pAiC(τ) − pBiC(τ). Let the sequences (ordered according to O)
A0i (t) = {C ∈ 2N\{∅}|giC(τ) > 0} and B0

i (t) = {C ∈ 2N\{∅}|giC(τ) < 0}. Let g0iC(τ) =
|giC(τ)|. Denote the kth element of A0i (t) as A0i (t)k, and similarly for the other sequence. If
gk
iAk

i (t)1
(τ) > gk

iBk
i (t)1

(τ), let Ak+1
i (t) = Ak

i (t), and Bk+1
i (t) be such that Bk+1

i (t)m = Bk
i (t)m+1

(so Bk+1
i (t) is one element shorter than Bk

i (t); this will be referred to as "shifting B
k
i (t)");

if gk
iAki (t)1

(τ) < gk
iBk

i (t)1
(τ), shift Ak

i (t), but leave B
k
i (t) unchanged; if g

k
iAki (t)1

(τ) = gk
iBk

i (t)1
(τ),

shift both sequences. Then define:

gk+1iC (τ) =

⎧⎪⎨⎪⎩
gkiC(τ)− gk

iBk
i (t)1

(τ) if C = Ak
i (t)1 and gk

iAk
i (t)1

(τ) > gk
iBk

i (t)1
(τ)

gkiC(τ)− gk
iAk

i (t)1
(τ) if C = Bk

i (t)1 and gk
iAki (t)1

(τ) < gk
iBk

i (t)1
(τ)

gkiC(τ) otherwise

⎫⎪⎬⎪⎭
Now define:

giC,C0(τ) =

⎧⎨⎩ min{gkiC(τ), gkiC0(τ)} if C = Ak
i (t)1 and C 0 = Bk

i (t)1 for some k
−min{gkiC(τ), gkiC0(τ)} if C = Bk

i (t)1 and C 0 = Ak
i (t)1 for some k

0 otherwise

⎫⎬⎭
Finally, let:

gC,C0(τ) =
X
i∈N

λigiC,C0(τ)

Observe that gC,C0(τ) has a simple interpretation: it measures the frequency of proposals
gained by coalition C from C 0 in equilibrium A relative to equilibrium B. It is easy to verify
that

P
C0∈2N gC,C0(τ) = −

P
C0∈2N gC0,C(τ) ≡ gC(τ), and gi(τ) =

P
C3i gC(τ).

By optimality, it is clear that fC,C0(τ)gC,C0(τ) ≤ 0, for all C,C 0 ∈ 2N and τ < 0. Since
fC,C0(τ) maintain their sign in [t0, t00], we have: fC,C0(t0)

R t00
t0 gC,C0(s)ds ≤ 0. Now note that:X

(C,C0)∈2N×2N
fC,C0(t

0)

Z t00

t0
gC,C0(s)ds =

P
(C,C0)∈2N×2N fC(t

0)
R t00
t0 gC,C0(s)ds

−
P

(C,C0)∈2N×2N fC0(t
0)
R t00
t0 gC,C0(s)ds

=
X
C∈2N

fC(t
0)

Z t00

t0
gC(s)ds+

X
C0∈2N

fC0(t
0)

Z t00

t0
gC0(s)ds

= 2
X
C∈2N

ÃX
i∈C

fi(t
0)

Z t00

t0
gC(s)ds

!

= 2
X
i∈N

fi(t
0)

ÃX
C3i

Z t00

t0
gC(s)ds

!

= 2
X
i∈N

fi(t
0)

Z t00

t0
gi(s)ds
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Thus,
P

i∈N fi(t
0)
R t00
t0 gi(s)ds ≤ 0, which completes the contradiction. QED

Proof of Theorem 3: Note that the functions bwj
i () defined in the proof of Claim 2 are

Lipschitz-continuous with Lipschitz constant (r + λj)V (N), with λj → λ. Moreover, they
are uniformly bounded, by 0 from below, and V (N) from above. Combining Claim 2 and
Theorem 2 implies that all convergent subsequences of continuation functions of G1, G2, ...
(with respect to the uniform topology) converge to the same limit, namely the unique MPE
continuation payoff functions of G(N, V, λ, T ). The set of uniformly bounded Lipschitz-
continuous functions on [−T, 0] with Lipschitz constant (r + λ + ε)V (N) is compact with
respect to the uniform topology for any ε > 0, from which it follows that the sequencebw1(.), bw2(.), ... itself converges uniformly to the unique MPE continuation payoff functions
of G(N,V, λ, T ). Again, note that sup

t∈[−T,0]
|wGj

i (t) − bwj
i (t)| ≤ (r + λj)V (N) T

k(j)
, where the

right-hand sides goes to 0 as j → ∞. Hence, the SPNE continuation payoff functions of
games in the sequence G1, G2, ... converge to the same limit as the sequence bw1(.), bw2(.), ...
QED

Proof of Claim 4: First, note that for any i ∈ N and any t ≤ 0, wi(t) < V ({i})
implies that V (C ∪ {i}) − wi(t) > V (C) for any i /∈ C. This and Claim 3 imply that
at any time where wi(t) < V ({i}) in a Markov perfect equilibrium, any player j ∈ N
will include player i in the approached coalition at an arrival, and offer her exactly wi(t).
Furthermore, note that if player i has the chance to make an offer at t, then she can guarantee
a payoff of at least V ({i}) by approaching herself. This implies that wi(t) is bounded below

by
0R
t

[λie
−(λ+r)(τ−t)V ({i}) +

P
j 6=i

λje
−(λ+r)(τ−t)wi(τ)]dτ . It is easy to check that this implies

wi(t) ≥ λi
λi+r

V ({i})(1 − e(λi+r)t) in every MPE. Therefore, if T1(ε) = min
i∈N

1
λi+r

log ε(λi+r)
λiV ({i}) ,

then for any t ≤ T1(ε) and i ∈ N , wi(t) ≥ λi
λi+r

V ({i})− ε, for every ε > 0.
Assume now that for some K ∈ {1, ..., n − 1}, there exists a finite TK(ε) for any ε > 0

such that for every C ⊂ N with |C| ≤ K, it holds that
P
i∈C

wi(t) ≥ λM
λM+r

V (C) − ε, ∀

t ≤ TK(ε). Below we show that this implies that for any ε > 0, there exists a finite TK+1(ε)
such that for every C ⊂ N with |C| ≤ K + 1, it holds that

P
i∈C

wi(t) ≥ λM
λM+r

V (C) − ε,∀

t ≤ TK+1(ε). Fix any ε > 0 and any C with |C| = K + 1. From the induction assumption,P
i∈C0

wi(t) ≥ λM
λM+r

V (C 0)− ε, ∀ t ≤ TK(ε) and C 0 $ C. Consider now any such t, and assume

that
P
i∈C

wi(t) <
λM

λM+r
V (C)− ε. Suppose that there is i ∈ N such that i does not approach

everyone in C with probability 1 at t. Let D be such that there is a positive probability that
D is approached at t by i, and C * D. Since t ≤ TK(ε),

P
i∈C∩D

wi(t) ≥ λM
λM+r

V (C ∩D)− ε.

Then
P
i∈C

wi(t) <
λM

λM+r
V (C) − ε implies

P
i∈C\D

wi(t) <
λM

λM+r
V (C) − λM

λM+r
V (C ∩ D). Con-

vexity of V then implies
P

i∈C\D
wi(t) < λM

λM+r
[V (D ∪ C) − V (D)]. By Claim 3, i could

strictly improve her payoff by approaching D ∪ C instead of D, a contradiction. There-
fore, for any C ⊂ N for which |C| ≤ K + 1,

P
i∈C

wi(t) <
λM

λM+r
V (C) − ε and t ≤ TK(ε)
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imply that everyone in C is approached by every player at t with probability 1. There-
fore, for t ≤ TK(ε),

P
i∈C

wi(t) is bounded below by min( λM
λM+r

V (C) − ε, k(t)), where k(t) =

TK(ε/2)R
t

"µP
i∈C

λi

¶
e−(λ+r)(τ−t)V (C) +

ÃP
j /∈C

λj

!
e−(λ+r)(τ−t)

µP
i∈C

wi(τ)

¶#
dτ . Thus, there ex-

ists TC
K+1(ε) such that

P
i∈C

wi(t) ≥ λM
λM+r

V (C) − ε, ∀ t ≤ TC
K+1(ε). Then for TK+1(ε) =

min

½
min

C:|C|=K+1
TC
K+1(ε), TK(ε)

¾
, for every C ⊂ N with |C| ≤ K+1, it holds that

P
i∈C

wi(t) ≥
λM

λM+r
V (C)− ε, ∀ t ≤ TK+1(ε). QED

Proof of Claim 5: It is sufficient to show that ∃ t such that
P

i∈C wi(t
0) ≤ vC , for every

t0 < t and C ⊂ N . We proceed by induction.
First, suppose |C| = 1. Note that given an arrival at t0, player i’s expected payoff

is λi
λ
maxD3i{V (D) −

P
j∈D wj(t

0)} + pi(t
0)wi(t

0), where pi(t
0) is the probability that i is

included in the proposal (which may or may not be her own) at t0. If wi(t
0) > v{i}, then

no one in N\{i} would include i in a proposal at t0, and player i’s expected payoff becomes
λi
λ
maxD3i{V (D)−

P
j∈D wj(t

0)}+ λi
λ
wi(t

0). By Claim 4, for r low enough and some δ < 1, ∃ ti
s.t. maxD3i{V (D)−

P
j∈D wj(t

0)} is small enough that player i’s expected payoff at all t0 < ti
is less than max{δwi(t

0), δv{i}} as long as no one in N\{i} includes i in a proposal. This
implies that going back in time, wi will eventually reach v{i}, and can then never increase
from that value. Thus, with low enough r, ∃ t1 s.t. our claim holds for all |C| = 1.
Now let tm be such that our claim holds for all coalitions of size at most m. Let |C| =

m + 1, and t0 < tm. Define λC =
P

i∈C λi, wC(t
0) =

P
i∈C wi(t

0). Note that if wC(t
0) > vC,

we have wC(t
0) > V (D)−V (D\C) for all D ⊃ C. Thus C cannot be entirely included in the

proposal of anyone outside C. Moreover, for any E ⊂ C, wC\E(t
0) ≤ vC\E by the induction

hypothesis, so wE(t
0) > vC − vC\E = V (N\(C\E)) − V (N\C) ≥ V (D ∪ E)− V (D) for all

D ⊆ N\C. Thus no part of C can be included in the proposal of anyone outside C. Due
to Claim 4, by an argument similar to the |C| = 1 case, it follows that ∃tm+1 s.t. our claim
holds for |C| = m+ 1. QED

Proof of Claim 6: First, we establish the following lemma:
Lemma 3: There exists a time to the left of which V (N)−wN(.) is weakly monotonic.
Proof: We will show that within any time interval [A,B] early enough so that N is

always the optimal coalition to approach, the proposer surplus V (N) − wN(.) attains its
rightmost maximum at A or at B.
First, we note that since V (N) − wN(.) is continuous, the maximum on [A,B] indeed

exists, and there exists a rightmost point where it occurs. We proceed by contradiction:
assume that the rightmost maximum is attained at t ∈ (A,B).
Suppose C(t) = C, somaxD:C(t)*D{V (D)−wD(t)} < V (C)−wC(t). Because continuation

value functions are Lipschitz continuous, ∃δ > 0 such that C ⊆ C(t0) for all t0 ∈ (t−δ, t+δ).
We say that, going back in time, C(.) "changes at t" if:
a) for all ε > 0, C(t) $ C(t0) for some t0 ∈ (t, t+ ε) [C(.) shrinks at t]; and/or
b) for all ε > 0, C(t) $ C(t0) for some t0 ∈ (t− ε, t) [C(.) grows at t].
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Note that within a time interval [t1, t2]whereC(.) = C, we havewC(τ) = e−(λ+r)(t2−τ)wC(t2)+
t2R
τ

£
λCe

−(λ+r)(τ 0−τ)(V (C)− wC(τ
0)) + λe−(λ+r)(τ

0−τ)wC(τ
0)
¤
dτ 0. Thusw0C(τ) = rwC(τ)−λC(V (C)−

wC(τ)), which implies that wC(.) is monotonic (increasing iff wC(.) >
λC

r+λC
V (C)), so the pro-

poser surplus V (N)− wN(.) is monotonic. Thus, it must be that C(.) changes at t.
In each of the scenarios a) and b), let C(t0) = C(t)∪D. Scenario b) can only occur if for

any ε > 0, ∃t00 ∈ (t, t + ε) such that V (N)− wN(t
00) ≥ rvD

λD
(otherwise, D either would have

joined the minimal optimal coalition to the right of t), and V (N) − wN(t) =
rvD
λD

(can’t be
strictly less due to Lipschitz continuity, or strictly more because then D couldn’t join C(.)).
This violates our assumption, so we rule out scenario b).
Scenario a) can be further subdivided into two cases:
1) V (N)− wN(t) =

rvD
λD
: this can be ruled out since for any ε > 0, ∃t00 ∈ (t, t + ε) such

that V (N) − wN(t
00) > rvD

λD
(otherwise, wD(.) could not go from being strictly less than vD

immediately to the right of t to equaling vD at t);
2) V (N)−wN(t) >

rvD
λD
: in this case, in an interval to the right of t, it must be that wD(.)

is strictly increasing going back in time. Thus, it is always approached within that interval,
and has strictly negative derivative bounded away from 0. To the left of t, wD(.) = vD. Also,
we know that wC(t)(.)’s derivative exists and is continuous in an interval around t. Finally,
the continuation value of any cell of P (t) not included in this case (i.e., either not joining or
leaving C(.)) is constant in some interval around t. Combining the above facts implies that
V (N)− wN(.) = V (C(.))− wC(.)(.) cannot attain a maximum at t.
Having exhausted all possible cases, we conclude that the lemma holds. QED
Proof of Claim: We distinguish two cases:
a) Going back in time, V (N)−wN(.) is weakly increasing (has weakly negative derivative

where it exists). This means that no new players can ever join C(.) (since this happening at
some time t requires V (N) − wN(t) =

rvD
λD

and V (N) − wN(t
0) < rvD

λD
at some t0 to the left

of, and arbitrarily close to, t), which implies that there’s a time before which C(.) remains
constant.
b) Otherwise, going back in time, V (N) − wN(.) is weakly decreasing forever (has a

weakly positive derivative where it exists). As above, if a group of player D ∈ P (t) joins
C(t) = E at some time t, it must be that V (N)−wN(t

0) < rvD
λD
at some t0 to the left of, and

arbitrarily close to, t. Thus, at any point τ < t, V (N) − wN(t
0) < rvD

λD
, so D cannot once

again join C(.) at any point to the left of t. Since there is a finite number of coalitions, this
implies again that there’s a time before which C(.) remains constant.
Given that there’s a time before which C(.) remains constant (≡ C), we just need to

show that it is impossible for the other cells of P (.) to change indefinitely. Suppose that
at t, D 6= C is a cell of P (t), so wD(t) = vD = V (C ∪ D) − V (C). But from previous
arguments, we know that for early enough times, wD(.) can never exceed vD or drop below
V (C ∪D)− V (C), so it must in fact hold constant. This implies that at all times prior to
t, D can be expressed as the union of cells of P (.). Thus, going back in time, P (.) can only
get finer. The finiteness of the number of players then implies Claim 6. QED

Proof of Theorem 4: (i) For each i ∈ C and t < bt, we have wi(t) = e−(λ+r)(t−t)wi(bt) +
34



tR
t

£
λie

−(λ+r)(τ−t)(V (C)− wC(τ)) + λe−(λ+r)(τ−t)wi(τ)
¤
dτ , so

wC(t) = e−(λ+r)(t−t)wC(bt)+ tR
t

£
λCe

−(λ+r)(τ−t)(V (C)− wC(τ)) + λe−(λ+r)(τ−t)wC(τ)
¤
dτ . Thus

w0i(t) = rwi(t) − λi(V (C) − wC(t)) and w0C(t) = rwC(t) − λC(V (C) − wC(t)). Therefore,
wC(t) = (wC(bt)− λC

r+λC
V (C))e(r+λC)(t−t)+ λC

r+λC
V (C), and algebraic manipulations show that

wi(t) = [wi(bt)− λi
λC
wC(bt)]er(t−t)+ λi

λC
[wC(bt)− λC

r+λC
V (C)]e(r+λC)(t−t)+ λi

r+λC
V (C), which implies

our result.
(ii) At all times t < bt and for allD ∈ P\{C}, we must have wD(τ) = vD, so it must be that

λD
λ
(V (C)−wC(t))+pD(t)vD =

λ+r
λ
vD, where pD(t) is the common value of pi(t) for all i ∈ D.

We havewi(t) = e−(λ+r)(t−t)wi(bt)+ tR
t

£
λie

−(λ+r)(τ−t)(V (C)− wC(τ)) + λpD(τ)e
−(λ+r)(τ−t)wi(τ)

¤
dτ ,

sow0i(t) = (V (C)−wC(t))(
λD
vD
wi(t)−λi) (we can differentiate since pD(.) is continuous). There

must be a time before which V (C)−wC(t) > 0, which implies that wi(.) is monotonic as t→
−∞, so it converges. Since limt→−∞(V (C)− wC(t)) > 0, we must have limt→−∞

λD
vD
wi(t)−

λi = 0, as desired. QED

Proof of Corollary 2: Take the earliest partition P from the game with deadline.
Suppose that limit stationary payoffs are as follows: wi =

λi
λD

vD for all i ∈ D ∈ P\{C},
and wi =

λi
r+λC

V (C) for all i ∈ C. Let qD be the stationary probability that D ∈ P is
approached given an arrival. Note that

R∞
0

e−(λ+r)τdτ = 1
λ+r
. We need to verify that the

following condition is satisfied: wi =
1

λ+r
(λi

r
r+λC

V (C) + λqDwi), where D is the cell of P
containing i, with qC = 1 and qD ∈ [0, 1] for all D ∈ P\{C}.
It is easy to check that our condition is satisfied for i ∈ C. For i /∈ C, the condition

becomes: qD = λ+r
λ
− λD

λvD

r
r+λC

V (C). This expression is clearly continuous and approaches
1 as r → 0. We need only check that it is decreasing in r in a right neighborhood of
0⇐⇒ 1 < λD

vD
V (C) λC

(r+λC)2
for small enough r ⇐⇒ V (C)

λC
> vD

λD
.

In the game with deadline, note that for i ∈ D,

wi(t) < e−(λ+r)(t−t)wi(bt)+ tR
t

£
λie

−(λ+r)(τ−t)(V (C)− wC(τ)) + λe−(λ+r)(τ−t)wi(τ)
¤
dτ = [wi(bt)−

λi
λC
wC(bt)]er(t−t)+ λi

λC
[wC(bt)− λC

r+λC
V (C)]e(r+λC)(t−t)+ λi

r+λC
V (C), which converges to λi

r+λC
V (C).

Thus, limτ→−∞wi(τ) =
λi
λD

vD ≤ λi
r+λC

V (C) < λi
λC
V (C), which implies V (C)

λC
> vD

λD
, as desired.

QED

Proof of Claim 7: The distance in dimension i ∈ C is ( λi
λC
− λi

r+λC
)V (C) < r

r+λM
V (N),

while it is 0 in all other dimensions. QED

Proof of Claim 8: The statement holds vacuously if C(V ) = ∅, so we assume C(V ) 6= ∅.
Normalize payoffs with V (N) = 1. Let x ∈ C(V ), and set λi = xi. For any T > 0, consider
continuation value functions wi(t) =

λi
1+r
(1 − e(1+r)t), ∀ t ∈ [−T, 0], i ∈ N , and specify

strategies as follows:
For every i ∈ N , if player i gets the chance to make an offer at t ∈ [−T, 0], she approaches

the grand coalition and offers exactly wj(t) to every j ∈ N\{i}. If player i gets approached
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at t, then independently of who approached her and what coalition was approached, she
accepts the offer if and only if she is offered at least wi(t).
We will show that the strategies specified above comprise a Markov perfect equilibrium,

in which expected payoffs are given by xi
1+r
(1− e(1+r)t) for every i ∈ N . First, note that if no

offer is accepted at t, and everyone subsequently plays according to the prescribed strategies,
then the expected continuation payoff of player j is:

0R
t

[λje
−(1+r)(τ−t)(1−

P
k 6=j

λk
1+r
(1−e(1+r)τ))+

ÃP
k 6=j

λk

!
e−(1+r)(τ−t)

λj
1+r
(1−e(1+r)τ)]dτ = wj(t).

In particular, the expected payoff of player j at the beginning of the game is wj(−T ) =
xj
1+r
(1− e−(1+r)T ).
Second, note that given other players’ strategies, the best offer player i can give to the

grand coalition is the one specified above, and since 1−
P
j 6=i

wj(t) > wi(t), it yields a higher

payoff than making an unacceptable offer.
Next, note that wj(t) < xj ∀ t ∈ [−T, 0] and j ∈ N . Since x ∈ C(V ), this implies thatP

j∈C
wj < V (N) − V (N\C) for any C ⊂ N . Given others’ strategies, this means that there

is no C ⊂ N such that player i could give an acceptable offer to coalition N\C and get a
strictly higher payoff than what she obtains when following the strategy prescribed above.
We conclude that no player can profitably deviate, given the above profile, at any point

where it is her turn to make an offer.
If player i ∈ N is approached by another player at t, then rejecting the offer results in

continuation payoff wi(t), which means that it is optimal to reject the offer when it is not
above wi(t), and it is optimal to accept the offer when it is not below wi(t). Hence, the
strategy prescribed above is optimal for i.
Thus, the MPE expected payoffs are given by xj

1+r
(1− e−(1+r)T ) for every i ∈ N .

Finally, note that as T → ∞, the expected MPE payoff of player i converges to xi
1+r
.

QED
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