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1 Introduction

A distinguishing feature of online auctions, relative to spot auctions, is that
they typically last for a relatively long time.! However, this aspect is often
suppressed in the related economics literature. In particular, for bidders with
private evaluations, online auction mechanisms such as ebay, where bidders can
leave a proxy bid and the highest bidder wins the object at a price equal to the
second highest bid (plus a minimum bid increment) are commonly regarded as
strategically equivalent to second-price sealed-bid auctions. Since bidding one’s
true evaluation in the latter context is a weakly dominant strategy, and placing
a bid takes some effort, the argument establishes that a rational bidder at an
ebay-like auction should only place one bid, equal to her true evaluation, at her
earliest convenience.

In contrast with the above predictions, observed bidding behavior on ebay
involves both a substantial amount of gradual bidding and last-minute bidding
(commonly referred to as sniping). Ockenfels and Roth (2006) report that the
average number of bids per bidder is 1.89 and 38 % of bidders submit more
than one bid. In the field experiment of Hossain and Morgan (2006) 76 % of
the auctions had at least one bidder placing multiple bids. Regarding sniping,
Roth and Ockenfels (2002) report that 18% of auctions in their data received
bids in the last minute, while Bajari and Hortacsu (2003) find that the median
winning bid arrives after 98.3% of the auction time elapsed, while 25% of the
winning bids arrive after 99.8% of the auction time elapsed.

While Roth and Ockenfels (2002) proposes a model in which last-minute bid-
ding can be an equilibrium,? the existing literature typically considers gradual
bidding to be a naive (irrational) behavior. Relatedly, Ku et al. (2005) explain
bidding behavior on online auctions with a model of emotional decision-making
and competitive arousal, Ely and Hossain (2009) describe incremental bidders
as confused, mistaking eBay’s proxy system for an ascending auction, while
Hossain (2008) explains observed bidding behavior using behavioral buyers who
learn about their own valuations through the process of placing bids.?

In this paper we show that if bidders are not present for the whole duration
of the auction (a clearly unrealistic scenario for online auctions), instead they
have periodic random opportunities to check the status of the auction and place

1On eBay sellers can specify durations ranging from 1 day to 30 days.

2However, Hasker et al. (2009), using ebay data, reject the hypothesis that bidders follow
a war of snipe profile as in Roth and Ockenfels (2002). See also Ariely et al. (2005) for a
related laboratory experiment.

3See also Compte and Jehiel (2004) and Rasmusen (2006) for bidders learning their true
evaluations during the auction. Other explanations include the presence of multiple over-
lapping auctions for identical or close substitute objects as in Peters and Severinov (2006),
Hendricks et al. (2009), and Fu (2009). However, gradual and last-minute bidding seems
to be prevalent for rare or unique objects, too, not only for objects with many close substi-
tutes being auctioned at any time (for example, they occur in the experiments of Ariely et
al. (2005) despite there is no concurrent competing auction). Furthermore, as Hossain (2008)
points out, this type of argument also has trouble explaining many bids by the same bidder
in a short interval of time, which is quite common in ebay. Bajari and Hortacsu (2003) raise
the possibility that all ebay auctions have some common value component.



bids,* then despite the possibility of proxy bids, there can be many different
equilibria of the resulting game with perfectly rational bidders, in a private
value context. The best equilibrium for the seller in this game still implies
truthful bidding by the bidders, upon the first time they can place a bid. If the
time horizon of the auction is long, the seller’s revenue in this equilibrium is
approximately what he could get in a second-price sealed bid auction. However,
there are typically many other equilibria, in weakly undominated strategies,
which imply incremental bidding, long periods of intentionally not placing bids,
and potentially sniping. The expected revenue of the seller from these equilibria
can be a very small fraction of the expected revenue from the best equilibrium,
even when the time horizon for the auction is arbitrarily large and bidders get
frequent opportunities to place bids.

To understand the intuition for the existence of such equilibria, consider two
bidders, each with evaluation v > 2 and getting random chances to make bids
(including potentially proxy bids exceeding what becomes the leading price)
over the course of the auction according to a Poisson arrival process. Suppose
that the initial price is 0. Clearly, there is an equilibrium in which whenever
the current price is below v and a bidder has the opportunity to make a bid,
he places a bid of v. However, there is another equilibrium in which a bidder,
when she gets the chance, increases the price gradually, by the minimum bid
increment. The key insight here is that gradual bidding is self-enforcing: if
other bidders follow such a strategy then it is strictly in the interest of a bidder
to do likewise. Increasing the price by more than the minimum increment does
not increase the likelihood of eventually winning the object, only speeds up the
increase of the leading price, reducing the surplus that the winning bidder gets.
Hence, gradual bidding is a form of implicit collusion among bidders that is
consistent with equilibrium in our model.

If the time horizon of the auction is long (relative to the arrival rates) then
besides gradual bidding, it also becomes optimal for bidders to wait and pass
on opportunities to increase the current price, for prolonged periods of time.
In particular, we show that for certain prices there are cutoff points in time
such that bidders pass on opportunities to increase the price further if they get
arrivals before the cutoff, instead prefer to remain losing bidders at the current
price. This implies that if the time horizon is long (relative to the arrival rates)
then players are inactive for most of the duration of the auction, and only start
incrementing bids near the deadline. For this reason, the expected revenue of
the seller can be a small fraction of v no matter how long the auction is, or
how frequently players get opportunities to bid. Another noteworthy feature
of a gradual equilibrium is that it can prescribe placing a bid of 1 upon the
first arrival, and then a long period of inactivity, followed by all bidders trying
to incrementally overbid each other towards the end of the auction. This is
consistent with the finding reported in Roth and Ockenfels (2002) and in Bajari

41t is important for our results that whenever a bidder gets the chance to check the status
of the auction, she can place multiple bids. In particular, if she places a bid incrementing the
current price but gets notified that this bid was not enough to take over the lead, she can
place a subsequent higher bid.



and Hortacsu (2003) that the distribution of bid timing as fraction of auction
duration is bimodal, with a small peak at the beginning and a lot of activity at
the very end.

For symmetric bidders we characterize both the worst Markovian equilib-
rium for the seller, and for two symmetric bidders the worst non-Markovian
equilibrium as well. The latter has the feature that players wait until the very
end of the auction (with bids placed earlier triggering switching to a truthful
bidding equilibrium) and then bid gradually. This bidding behavior is similar
to sniping, as in Roth and Ockenfels (2002), with the difference that the snipers
only overbid incrementally instead of truthfully. In fact, it can be shown that in
our framework Roth and Ockenfels type strategy profiles, in which bidders wait
till the end of the auction and then bid truthfully, cannot be an equilibrium.
Such profiles in a continuous-time framework (with no special “last period” as
in Roth and Ockenfels) unravel, with each bidder wanting to start sniping at
least a little bit earlier than the others.

A paradoxical feature of the worst equilibrium is that as the value of the
object for the bidders increases, gradual bidding starts later, decreasing the
expected revenue of the seller. Increasing the number of bidders also delays the
start of bidding, but over all increases the expected revenue of the seller.

We also show that equilibria involving gradual bidding and periods of wait-
ing extend beyond the complete information symmetric bidders case where we
can derive general analytical results. With both a low evaluation and a high
evaluation bidder present, the new feature relative to the symmetric case is
that the high evaluation bidder wants to opt for standard sniping by the end
of the auction (if getting an arrival then), since a truthful proxy bid secures
winning the object at the price of the other bidder’s evaluation. However, at
earlier times the high evaluation bidder can either engage in gradual bidding or
just wait (depending on the exact specification of evaluations). Hence, in these
equilibria gradual bidding can be followed by a jump bid. If there is uncertainty
regarding the evaluation of one of the bidders, the opposite can happen: a high
evaluation bidder might want to start with a jump bid corresponding to the
evaluation of a low type, taking her out of the contest. But if the other bidder
turns out to be a high evaluation type, she responds by incremental bidding,
leading to a gradual bidding continuation profile.

Gradual bidding equilibria also exist when arrival rates change over time,
such as when they increase over time as the end of the auction approaches.
Relative to constant arrival rates, in the latter case players wait longer before
they start placing bids, and (gradual) bidding might only take place for a short
interval before the end of the auction. For this reason, even when arrival rates
reach very high levels before the end of the auction, as long as they are bounded
from above, the expected number of bids and the winning price can remain very
low. In line with this point, in the survey of Roth and Ockenfels (2002), 90
percent of bidders reported that sometimes when they specifically planned to
bid late, something came up that prevented them from being available at the



end of the auction, and they could not place a bid as planned.®

We note that our work is part of a recent string of papers examining continu-
ous time games with random discrete opportunities to take actions, in different
contexts: Ambrus and Lu (2009) investigates multilateral bargaining with a
deadline in a similar context, while Kamada and Kandori (2009), Kamada and
Sugaya (2010) and Calgano and Lovo (2010) examine situations in which play-
ers can publicly modify their action plans before playing a normal-form game.
An important difference between these models and the current one, leading to
different types of predictions, is that in the latter models the actions players can
take are unrestricted by previous history. In contrast, in an auction game like
in the current paper previous bids restrict the set of feasible bids subsequently,
as the leading price can only increase. There is also a recent string of papers
in industrial organizations, on structural estimation of continuous-time models
in which players can change their actions at discrete random times, but payoffs
are accumulated continuously (Doraszelski and Judd (2010), Arcidiacono et al.
(2010)).

2 The model and the benchmark truthful equi-
librium

A continuous-time single-good auction A is defined by a set of n potential bidders
with reservation values vy, vs,...,v, and arrival rates A1, A9, ..., A\,, and a start
time 7" < 0. We normalize the end time of the auction to 0, the starting bid to 0,
and the minimum bid increment to 1. We assume that v; € Z44 and \; € R4y
for every i = 1,...,n.

Between times T' and 0 bidders get random opportunities to place bids ac-
cording to independent Poisson processes with arrival rates as above. We nor-
malize the starting bid to 0, and minimum bid increment to 1. Bidders may
make multiple bids during a single arrival and can observe the outcome of each
bid. For simplicity we assume that all bids made during an arrival are carried
out instantaneously.

We assume that bidders can leave proxy bids, hence we need to distinguish
between current price P and current highest bid B > P. The set of available
bids is given by {b € Z,,|b > B + 1} for the bidder who holds the highest
bid at time ¢ and {b € Z;,|b > P + 1} otherwise. When a bid b is made, the
price adjusts as follows: if b > B + 1, then P becomes B + 1 and B becomes
b. Otherwise, P becomes b and B remains the same. At the end of the auction
(t = 0) the current high bidder wins the good and pays the current price. We
assume that the evolution of P is publicly observed, but B is only known by the

5We also provide an example of gradual bidding equilibrium with two bidders with different
arrival rates. The qualitative features of this equilibrium are similar to the gradual bidding
equilibria with symmetric bidders. In particular, the cutoff points for incremental bidding at
different prices are the same for the slow and the fast bidder. The example shows that very
busy bidders who can only check the status of the auction infrequently do not necessarily have
more incentive to leave truthful proxy bids.



bidder holding the highest bid (with the exception of P = 0, which necessarily
implies B = 0).

The assumption that bidders can place multiple bids at an arrival oppor-
tunity enables them to bid incrementally, no matter what the current highest
bid is. In particular, a bidder can achieve this by always bidding the current
price plus one, until she becomes the winning bidder. This is an important
component of our model.

Strategies of bidders specify bidding behavior (that is either placing an avail-
able bid or not placing a bid) upon arrival as a function of calendar time, public
history (time path of P) and private history (previous arrival times of the player
and previous actions chosen at those arrival times). In order for expected pay-
offs to be well defined for all strategy profiles, we restrict bidders’ strategies to
be measurable with respect to the natural topologies.®

We say that a bidder’s strategy is Markovian if it only depends on payoff-
relevant information, namely the current leading price P, high price B (if
known), and calendar time ¢. The latter is payoff relevant as it determines
the distribution of future arrival sequences by the bidders (in particular, the
probability that the given bidder will not get another chance to place a bid).

As a solution concept we use perfect Bayesian Nash equilibrium on weakly
undominated strategies (from now on, for the sake of exposition, referred to
simply as equilibrium). Note that without the latter requirement, even in sealed-
bid second-prize auctions typically there exist many equilibria, as low valuation
bidders may place bids above their evaluations, influencing the winning price,
as long as they do not win the object. The weak undomination requirement
implies that no bidder i ever places a bid above v;.”

It turns out the weak undomination requirement, although considerably less
restrictive in our game than in a static auction, is still a relatively easy to check
restriction. In particular, it rules out placing bids above one’s evaluation after
any history, and with the exception of one particular price level below it does
not rule out placing any bid at or below the true evaluation, after any history.

Claim 1: A strategy of player i is weakly undominated iff it satisfies the
following: (i) it never calls for placing a bid b > v; after any history; (ii) it never
calls for taking over the lead with B = v; — 2; (iii) if ¢ is not the current winner
and P < v; — 1 then it never calls for not placing a bid at times ¢ > t*, where t*
is the infimum of times at which ¢ would prefer to take over the lead at a price
smaller than v; even when the other bidders follow the trigger strategy that
prescribes not placing any new bid until ¢ places a bid and bid v; afterwards.

The proof of Claim 1 is given in the appendix. It is easy to see that a
strategy profile in which each bidder ¢ bids v; whenever arriving and current

6For the formal details, see Appendix A of Ambrus and Lu (2009) in a similar continuous-
time game with random arrivals.

7A strategy in which at some history i places a bid above v; is weakly dominated by a
strategy which at this history specifies placing a bid v; (or restraining from bidding if P > v;),
otherwise identical to the original strategy.



price being below this level, and otherwise not placing a bid, constitutes an
equilibrium. Given other bidders’ strategies, no bidder can gain at any history
by deviating from this strategy, and Claim 1 implies that these strategies are
weakly undominated. Furthermore, there cannot be any equilibrium giving a
higher expected revenue to the seller, given that in equilibrium as defined above,
no player ever places a bid above her evaluation. For this reason, and because
it is analogous to the unique equilibrium in a second-price sealed bid auction,
the above truthful equilibrium is a natural benchmark to compare all other
equilibria to in the subsequent analysis.

3 Symmetric bidders

In this section we consider symmetric bidders, that is when v; = v and \; = A for
every ¢ = 1, ..., n. For this case we can analytically characterize a class of gradual
bidding equilibria that contain the most gradual possible bidding equilibrium
(that is when bidding always implies raising the price incrementally, with one
caveat when the price gets close to v) on one extreme, and truthful equilibrium
on the other. For the case of two bidders, we characterize both the worst over all
equilibrium for the seller, and the worst symmetric Markovian equilibrium, for
any time horizon. For more than two bidders we characterize these equilibria for
short enough time horizons, and the worst symmetric Markovian equilibrium for
any time horizon. We then compare the expected revenue of the seller in these
equilibria to that in the benchmark truthful equilibrium. The latter is close to
v for long auctions.

In 3.1 we provide an example of an incremental equilibrium, and explain
the main features of the dynamic strategic interaction in such equilibrium. In
subsections 3.2-3.4 we focus on Markovian equilibria, in short auctions, in long
auctions with two bidders, and in long auctions with more than two bidders. In
3.5 we discuss non-Markovian equilibria.

3.1 A 2-Bidder Example

Consider an auction with 2 symmetric bidders with values and arrival rates
given by v = 5 and A = 1, and let T' = —1. We would like to construct an
equilibrium in which bidders make only the minimal bid necessary to hold the
current high bid, whenever they arrive. We first note that at p = 2, bidding 3
is weakly dominated by bidding 4 or 5, therefore incremental bidding may only
occur at prices p = 0 and p = 1. Claim 1 implies that incremental bidding at
these prizes is not weakly dominated.

Formally, we consider a strategy profile in which a losing bidder bids p + 1
when p € {0,1,3,4}, bids 4 when p = 2 and restrains from bidding when p > 5.
At the same time, a winning bidder restrains from increasing the current (proxy)
price if she gets the chance to do so.

Let W (p,t) and L(p,t) denote the expected payoff of a winning bidder (the
bidder holding the current high bid) and the losing bidder respectively at time



t when current price is p, conditional on the above prescribed profile. Note that
we suppress the current high bid as this is uniquely determined by the price
along the path of play.

Trivially, W (5,t) = 0 and L(p,t) = 0 for p > 2. At p = 2 and p = 3 the
winning bidder gets a payoff of v—p if the other bidder does not arrive before the
end of the auction and 0 otherwise. Therefore W (3,t) = 2e* and W (2,t) = 3e’.
The expected value of being a losing bidder at L(2, ) is given by the expectation
over the likelihood of arriving and becoming the winning bidder at p = 3,

0
L(2,1) :/ e~ TTOW (3, t)dr = —2te!
t

Similarly, L(1,t) = —3te’.The expected value of being a winning bidder at p = 1
is equal to 4 if the other bidder does not arrive and is equal to the expectation
of being the losing bidder at p = 2 if the other bidder does arrive.

0
W(l,t) = / e" T L(2, t)dT + 4t = t2et 4 4¢
¢

At p = 0, neither bidder holds the high bid and so the expected payoff expec-
tation over becoming either the winning bidder at p = 1 or the losing bidder at

p=1
0
L(0,t) = / e 20TO(L(1,t) + W(1,t))dr = 3e! — 3e%t — tet + 2t
t

Figure 1 depicts the expected continuation payoffs of winning and losing bidders
at different prices, for the time horizon of the game. It is straightforward to
check that for ¢ > —1, all the incentive compatibility conditions hold for the
above strategy profile to be an equilibrium. In particular, a losing bidder always
prefers to take over the lead upon arrival, and being a winning bidder at a
lower price is strictly better than at a higher price, providing an incentive for
incremental bidding. In fact, at low prices bidders strictly prefer following the
equilibrium strategy to taking any other action.

The intuition behind the above incremental bidding equilibrium is that if
the opponent uses an incremental bidding strategy, a losing bidder faces a clear
trade-off in her bidding decision. On one hand, placing a bid makes her the
current high bidder which increases her chance of winning the auction. The
downside is that placing a bid raises the expected price at which the good will
sell and hence lowers the expected value from winning the auction through a
further sequence of bids (e.g. if an opponent arrives and then she arrives again).
Placing a bid greater than the increment proscribed in equilibrium increases the
downside without affecting the upside and hence if she chooses to place a bid it
will also be incremental. Further, the upside is increasing in ¢ while the downside
is decreasing in ¢. If an auction is short enough, it will support an incremental
equilibrium in which bids are placed at every arrival by a losing bidder. This
argument also hints that in longer auctions equilibrium also requires periods of



2-Bidder Auction (v=3)
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Figure 1: 2-Bidder example with v = 5.

waiting (losing bidders passing on opportunities to place a bid and take over
the lead), as the incentive to slow down the increase of the current price might
become stronger than the incentive to take over the lead. We discuss incremental
equilibria with delay in long auctions in Subsection 3.3.

We conclude this subsection by noting that in the above equilibrium, a bid-
der’s expected payoff is L(0, —1) a2 1.43, and the expected revenue for the seller
is (1 —e72)5—2L(0,—1) ~ 1.46. These expected payoffs are considerably more
favorable to the bidders than those in the benchmark equilibrium, in which the
expected payoffs are roughly 0.93 and 2.46 for the bidders and seller respectively.

3.2 Short Auctions with Symmetric Bidders

We now generalize the existence of equilibria with incremental bidding behavior.
In particular, we characterize a class of equilibria in which bidding behavior only
depends on the current price and whether the bidder is currently winning the
object.

Definition: A bidding sequence S = {by,...,b;} is an integer-valued set that
satisfies 0 < by < ... < by, = v. A proper bidding sequence satisfies b; # v — 2 for
any ¢ € {1,....,k}

Definition: A bidder follows an incremental bidding strategy over bidding se-
quence S = {by, ..., b} by bidding min, b, such that b, > P whenever she arrives




at the auction and is the losing bidder, and otherwise restrains from bidding.

Proposition 1 In an auction with n symmetric bidders, for any proper bid-
ding sequence S, there exists a t* < 0 such that if T > t* the auction has an
equilibrium in which bidders follow the incremental bidding strategy over S.

Proof. The following proof is for the two bidder case where we can show that
incremental equilibria exist iff T > —%. The proof for n bidders is conceptually
the same but notationally more demanding, and it is given in the Appendix.
Let W(b,t) and L(b,t) denote the expected continuation value of the winning
and losing bidder respectively at time ¢ and current high bid b, conditional on
bidders using an incremental bidding strategy over S = {b1,...,bx }. Note that
we suppress the current price as the current high bid uniquely determines the
price in equilibrium.

We construct the expected continuation values recursively, with L(bg,t) = 0
and W (b, t) = (v —bx_1 +1)eM and for 0 < k < K,

0
L(bk,t) = / Ae_A(T_t)W(bk+1,T)dT
t
0
W (bg,t) = / Ae AT by, T)dT 4 (v — bp_q + 1)eM
t

The following incentive conditions on the continuation value functions are
sufficient to show that an incremental bidding strategy is a best response:

L(bg+1,t) (1)
L(bg,t) (2)

L(b,t) >
W(bky1,t) >
The first condition ensures that incremental bids are weakly better than higher
bids; higher bids weakly reduce the expected continuation value from becoming
a losing bidder without affecting the expected continuation value from remaining
the winning bidder until the end of the auction. Note that this also implies that
winning bidders will weakly prefer to not adjust their initial bid upon subsequent
arrival. The second inequality implies that making an incremental bid is always
weakly preferred to remaining a losing bidder.

We will prove the incentive conditions hold with an inductive proof.

0
W(bx_1,t) = / Ae AT Lbge, 7)dr + (v — b o + 1)eM
t

= (’U —brg_o+ 1)6)\t

10



and
0
L(bK_l,t):/ e MW (bge, 7)dr
t
0

= / )\e_/\(T_t) (('U — bK*l + 1)€>\T) dr
t

= —(U —brg_1+ 1))\teM

0
L(bK_Q,t):/ )\B_A(T_t)W(bK—laT)dT
t

0
= / Ae AT (v—bg—1+ 1)6>\T) dr
t
= —(’U —bg_o+ 1))\t6/\t

From above, L(bg,t) = 0 and W (bg,t) = (v — bg_1 + 1)e!, which implies
that W(bk,t) > L(bg_1,t), W(bg_1,t) > L(bg—2,t) when t > —1. It is
trivially the case that L(bgx_2,t) > L(bk—1,t) > L(bk,1t).

We now prove the inductive step; if W(bg,t) > L(bx—1,t) and L(bg_1,t) >
L(bk,t) then W(bk_g,t) > L(bk_g,t) and L(bk_g,t) > L(bk_g,t).

0
L(bg_3,t) :/ e ANTTOW (by_o, 7)dr

t

0 0
:/ e ATt [/ )\e_”\(s_t)L(bk,l, s)ds+ (v —bg_3 + l)e’\T] dr
t T

0 0 0
:/ e ATt / )\e_A(s_t)L(bk,l, s)dsdr + / )\e_’\(T_t)(v — b3+ 1)eNdr
t T

t

0 0 0
g/ Ae**“*t)/ )\e’/\(s’t)W(bk,s)dsdT—k/ Ae 2T (y — b5 4 1)eMdr
t T t

0
:/ Ae MO (b_y, 7)dr — (v — p + 2)Ate
t

:W(bk_Q, t) — (U —bip_3+ 1)6“‘ — (1} —bp_3+ 1))\tet)‘
<W (br—2,1)

The first inequality follows from our assumption that W (bg,t) > L(bg_1,t) and

11



the second inequality follows from ¢ < %

0
L(bg_3,t) :/ e AW (b o, 7)dT
t

0 0
:/ Ae A7) U Ae MO L(b_1, 8)ds + (v — be_s + 1)6”} dr
t

T

T

0 0
>/ Ae M) U e MO L(by, s)ds + (v — bp_o + 1)6”] dr
t

0

:/ e M TOW (b _y, 7)dr
t

=L(bg-2,1)

At the beginning of the auction both bidders are active until the first bid is
placed, hence the continuation values at p = 0 must be treated separately. The
expected continuation value at p = 0 is given by,

0
L(0,1) = / AT (W by, 7) + L(by, 7))dr
t
To prove that W (by,t) > L(0,t) for ¢t > —%, we show more generally,

0
W be, t) > / A0 (W (b, 7) + L(by, 7))dr
t

The argument at bx_1 and bx _o is identical,

0
/ AT (W (b1 7) + Libie 1, 7))dr
t

0
= / e A1) ((v —bg_o+ 1)6’\T —A(v—brg_1+ 1)) e Ndr
t

0
< / Ae~ A=) (v —br_o+1)e’ —Ar(v—bg_2+1)) e dr
¢

=—(v—bg_2+1)
< Wi(bg—1,t)

and the inductive step is as follows,

12



e 22T (W by, 7) + L(bg, 7))dr

0
—2A(7—1) (/ )\e_A(S_T)(W(ka, 8) + L(bgt1,8))ds + (v —br—1 + 1)6>\T> dr

22— ( / Ao T>( Ae—w—@((W(bm,w+L<bk+2,r>>dr) ds) ar

A

Ae

/\6_” Y (/ Ae AT (W (b, ) + Libgoa, ))dS) dr + (1= eM)(v = by + 1)

/\e
—(A)H (v — by + e+ (1 — M) (v — by +1)e

/\

0
~Als=T) ( / Ae AT—s) / Ae”(Tt>((W(bk+2,r)+L(bk+2,r))dr> dr) ds
t

(e — (A (v —bp +1D)eM 4+ (1 — M) (v —bp_y + 1)eM

e
0 0
)\67)\(577) (/ AeAT—s) (/ e 22T (W (bjgo, 7) + L(bk+2,7'))d7') dr) ds
M1 -\ (v —bp +1)eM+ (1 —eM)(v— by + 1)eM

Ae

0 0
< ~Ms=m) ( / AeM”)W(bm,r)dr) ds
t

/0
+(
+ (M —1— () (v — by + l)e)‘t + (1 —eM(v—bp_y+1)e
=W (bg,t) — (v — br_1 + 1)

+ (M =1— () (v—bp 4+ 1)eM + (1 — ) (v —bp_y + 1)eM
W (bg,t) — (1 — (M) (v — b + 1)eM — 2 ) (b — by

W (b, 1)

A

The proof of Proposition 1 reveals that if ¢ > t* then a losing bidder prefers
overtaking the lead even when the other bidder’s subsequent bid is sufficiently
high to prevent the former bidder from obtaining any surplus from the auction.
Intuitively, for short enough auctions there cannot be sufficient incentives to
prevent losing bidders from overtaking the lead, since the probability that an-
other bidder arrives is low enough that even the most severe punishment by the
other bidders (switching to a truthful equilibrium) is not sufficient in preventing
such behavior.

Another observation we make is that in a symmetric Markovian equilibrium
bidding cannot stop until price reaches v, even though at P = v — 1 a bidder
is indifferent between placing a bid of v and abstaining. This is because if with
some positive probability players abstain from overbidding P = v — 1, a bid of
v — 1 becomes strictly better at any point than bidding v — 3 (the next lower
weakly undominated bid). Hence, players would never bid v — 3. But then the
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same argument can be used iteratively to establish that players would never bid
v —4, v —5 and so on, leading to the unraveling of any gradual bidding.

The above two observations imply that in short enough auctions the worst
symmetric Markovian equilibrium is given by the most gradual incremental
bidding equilibrium - the one over S = {1,2,...,v—3,v—1,v}.% For the over all
worst equilibrium, which along the equilibrium path has a very similar structure,
see Subsection 3.5.

3.3 Long Auctions with Two Symmetric Bidders

In this section we characterize incremental bidding in auctions with longer time
horizons where incremental equilibria with no waiting are not supported. The
failure of the latter equilibria in long auctions can be seen by extending the
length of the 2-bidder auction example from the previous section such that T =
—2. Figure 2 plots the non-trivial bidder value functions in the fully incremental
equilibrium over the interval [—2,0]. As we demonstrated previously, for all p
and t > —1, placing a bid is optimal as W (p + 1,¢) > L(p,t). However, at any
time ¢t < —1, a winning bidder’s expected value at p = 3 is lower than a losing
bidder’s expected value at p = 2 and hence a losing bidder facing a price of
2 would find it profitable in expectation to wait until ¢ > —1 to place a bid.
Nonetheless, we can still construct equilibria with incremental bidding behavior
in long auctions.

Sustaining incremental bidding in equilibrium requires intervals during which
bidders abstain from bidding even though the price is below their value and
they do not hold the current high bid. Bidders choose to wait when the cost
of increasing the price outweighs the likelihood of winning the object with the
current bid. In our example, the trade-off is straightforward. Bidding at p = 3,
since it induces the other player trying to bid again, yields a positive payoff only
in the event that the other bidder does not return to the auction. This occurs
with decreasing likelihood as we extend the time remaining in the auction. On
the other hand, the likelihood of returning to the auction at the same price but
closer to the end of the auction, and thereby face a more favorable trade-off, is
increasing in the time remaining in the auction. For these reasons, far enough
from the deadline a losing bidder at p = 3 prefers waiting, while close enough
to the deadline he prefers taking over the lead.

We refer to the point in time 7, at which at which a bidder is indifferent
between overtaking the current high bid at price p and waiting for the next
opportunity, as the cutoff for price p. An incremental equilibrium with waiting
is characterized by a bidding sequence and its corresponding set of cutoff points.
In this subsection we provide a general result on the existence of such equilibria
for two bidders. The next subsection discusses extension of the analysis to more

8There can be asymmetric Markovian equilibria in which one player stops bidding at P =
v — 1. Moreover, there can be asymmetric non-Markovian equilibria in which all players stop
bidding at P = v — 1.

9This equilibrium is outcome-equivalent to the incremental bidding equilibrium over S =
{1,2,...,v = 3,v}.
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than two bidders.

Definition: Let S = {b1,...,br} be a bidding sequence, a cutoff sequence is an
ordered set Cg = {t1,...,t;} such that for all j, ¢; <O.

Definition: A bidder following an Incremental Bidding Strategy with Delays
over bidding sequence S = {by,...,b;} and cutoff sequence Cg = {ti,...,tx}
places a bid of min;{b;|p < b;} upon arriving at time ¢ and price p if and only
if she is a losing bidder and ¢ > ¢; and otherwise does not place a bid.

In an equilibrium in which bidders follow a symmetric Incremental Bidding
Strategy with Delays, bidder value functions are constructed in the same manner
as for incremental equilibria with no waiting. When Cs = {1,2,..,v — 3, v}, the
value functions are given by

0
L(p,t) = /Aeik(T*S)W(p—Fl,T)dT
0
W(p,t) = /)\e_’\(T_s)L(p-l—LT)dT—&-(v—p)e’\s
SO 0
L(0,t) = /Ae*2A<T*S>W(1,7)dT+/ Ae AT LA, 1) dT

where s = max{t, 7, }. Non-trivial cutoffs satisfy L(p,7,) = W(p+1,7p).

In our example, there are two relevant cutoffs (i.e. not equal to T); 79 =
—%log(6e +e?) and 7, = —1. Figure 3 plots the value functions for bidders
following these cutoffs. The auction is divided into three periods; in the first
period no bidding occurs and price remains 0 even if bidders get arrivals. In
the second period an arriving player bids incrementally if p € {0,1} but passes
on opportunities to bid if p > 2. Finally, in the third period a losing bidder
submits a bid until price reaches p = 5.

The equilibrium expected bidder payoff and seller revenue in this example are
1.35 and 2.09 respectively. The seller revenue compares favorably to that of the
short auction but it is still significantly less than in the benchmark equilibrium.
Further, extending the length of the auction has no further effect on the expected
revenue as it serves only to lengthen the period in which no bidding occurs.

The existence of non-trivial cutoffs for every second bid is not specific to
the above example, but a general feature of incremental bidding equilibria with
waiting. Note that at any price, the winning bidder’s expected value is greater
than that of the losing bidder. Now suppose a losing bidder arrives at time ¢
and faces a price p— 1. If bidding at price p does not begin until 7, > ¢, a losing
bidder cannot do better than to be the winning bidder at price p at time 7, and
hence he must at least weakly prefer placing a bid. The same intuition for the
existence of the final cutoff for bidding v — 3 implies that if there is no cutoff
for bidding p — 1, then there exists a cutoff for bidding p — 2.

Proposition 2 generalizes the existence of incremental equilibria with delay
in auctions of arbitrary length.
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Proposition 2: In symmetric 2-bidder auctions, for any proper bidding
sequence S there exists a cutoff sequence Cg such that incremental bidding
strategies with delay over S, C's form an equilibrium.

The proof of this proposition, featured in the Appendix, consists of two parts.
In the first part, we construct a set of cutoff points such that the resulting value
functions satisfy the bidding incentive constraints. The final cutoff is given by
—% and is independent of the bidding sequence. This holds because a bidder
facing the decision to bid at the final cutoff (at p = 1 in the above example) can
only win the auction with positive payoff at one price (p = 2 in the example) and
hence the trade-off is only between the likelihood of having another arrival and
the likelihood of the other bidder arriving. All other cutoffs may be constructed
recursively. Suppose that we know the cutoff for price p, 7, as well as the bidder
value functions at 7,. For any time ¢ such that 7,_o < ¢ < 7,, we can derive
W(p—2,t) and L(p—3,t) as a functions of L(p—3,t), W(p—2,7,), L(p—1,7p)
and t—7,. Setting W (p—2,t) and L(p—3,t) equal allows us to solve for 7,_o—7,
in terms of L(p — 3,t), W(p —2,7,), L(p — 1, 7).

The second part of the proof requires proving that overbidding is suboptimal.
In short auctions it is easy to show that overbidding is dominated because it
increases the price that a bidder would face if he were outbid and returned to
the auction without providing any increased likelihood of winning the auction.
However, when there are periods of inactivity in an auction, overbidding has
more subtle consequences. Suppose that at 7, the current price is p — 1 and
consider the outcomes at 7,42. Bidding p results in either W (p, 7p42) or L(p +
1, 7p+2), whereas bidding p+ 1 results in either W(p+1, Tp42) or W(p, Tpt2) —k
where k reflects the loss associated with overbidding after the cutoff. The loss
from overbidding occurs when the other bidder does not arrive, hence the cutoffs
cannot be too far apart or they will induce overbidding. We show that the cutoffs
satisfy this condition.

The incremental equilibrium with S = {1, 2, ...,u—3,v—1, v} and correspond-
ing Cs constitutes the most gradual Markovian bidding equilibrium. However,
it is not the revenue-minimizing equilibrium over all strategies. The latter is
non-Markovian, and discussed in Subsection 3.5.

3.4 Long auctions with more than two bidders

Partially incremental equilibria in long n-player auctions are considerably more
complicated to characterize than in the 2-bidder case. We present an example
in which v = 5, A\ = 1, and T = —oco. As in the 2-bidder long auctions, we
construct a Markovian equilibrium in which bidders bid incrementally according
to a bidding sequence S = {1,2,5} and a set of cutoffs {m1,72,75}. Value
functions for p > 0 are defined recursively by
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0
Wi(p,t) = / Ae” (DA (n — D) L(p+ 1, 7)dr + (v — p)el 1M
t
0
Lip.t) = [ AN (W (ot Lr) (0= DL+ 1,7) dr
t

where s = max{t, ming 7|k > p}. W(3,t) = 2=+t and L(3,t) = 0 (as in
the 2-bidder example, bidding 3 is weakly dominated and hence 2 is the highest
incremental bid.) Finally, L(0,t) is given by

L(0,t) = / DA (W(L,7)+ (n—1)L(1,7))dr

The structure of the incremental equilibrium supported in this auction is
sensitive to the number of bidders n. When n is large, the supported incremental
equilibria resemble the Fully Incremental Equilibria of short auctions and when
n is small the auction supports Partially Incremental Equilibria with cutoffs at
alternating bids. More specifically, for n large, 71 > 7, for all p. As a result, no
bidding occurs in equilibrium before 71 at which point bidders proceed to follow
a fully incremental bidding strategy. Hence, bidder payoffs and seller revenue
are independent of the length of the auction for T' < ;. In contrast, when n is
small 71 > 7, no longer holds for all p. Bidders may prefer to wait early in the
auction and when prices are low, and expected payoffs may dependent on the
length of the auction.

We illustrate this point by considering the equilibria for two values of n in
our example. Figures 4 and 5 show the expected payoffs at p = 0 and p =1 for
an auction with 10 bidders and 3 bidders respectively. In the auction with 10
bidders, bidding begins at 71 = —0.439 < 19, 73. The expected payoff to a bidder
is only 0.06, but the total bidder payoff is still greater than 10% of v. In the
3 bidder auction, 71 = —oo and 7 = —0.79, which imply that the first bidder
to arrive will place a bid of 1. At p = 1, bidding only resumes at ¢t = —0.79.
The expected payoff to a bidder in this case is 0.77 and the seller’s revenue is
2.68. Figure 6 plots the seller’s expected revenue as a function of the number
of bidders in the most gradual Markovian equilibrium. The non-monotonicity
of expected seller revenues highlights the shift in equilibrium structure as the
number of bidders changes from 8 to 9. We note that the non-monotonicity
is mitigated as the length of the auction is reduced and the importance of the
initial period prior to 7 declines.

3.5 Non-Markovian equilibria

History dependent strategies allow the construction of equilibria that further
reduce the seller’s expected revenue beyond the most gradual Markovian equi-
libria. In this section we characterize the seller-revenue minimizing equilibria
in 2-bidder auctions. Strategies in the seller revenue-minimizing equilibrium
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take the following form: bidders pass on all bidding opportunities prior to
t* < 0 after which bidders engage in incremental bidding without delay over
S ={1,2,..v—3,v—1}. Any deviation in this stage is punished by reverting
to a truthful equilibrium, which is the most severe punishment a defector can
face as it implies that any subsequent arrival by the other bidder reduces the
deviator’s payoff to 0.

We begin by noting that the threat of punishment allows the final bid to
be v — 1 without causing unravelling; the threat of punishment makes a bidder
indifferent between bidding v — 3 and v — 1. Further, if t* is greater than the
final cutoff in the equilibrium without punishment then placing any bid strictly
dominates waiting. In particular this means placing a bid of v dominates waiting
and hence the threat of punishment cannot induce a bidder to wait.

In a symmetric value auction with 2 bidders, let W (p,t) and L(p,t) denote
the expected payoffs of winning and losing bidders respectively at time ¢ and
price p, conditional on bidders following an incremental bidding strategy over
S ={1,2,..w—3,v—1,v—1}. The cutoff ¢} is the point at which reversion to
truthful bidding no longer provides sufficient incentives for a bidder to refrain
from bidding. Therefore, at ¢}, a bidder is indifferent between triggering truthful
bidding, for an expected payoff of (v — 1)6(”+1)t;m, and waiting, which yields
an expected payoff of L(0, ty.n)- We begin by showing that ¢} ,, is increasing in
v. Suppose t} satisfies

0
(v — 1)t = / ) (W(L,7) + L(1,7)) dr
;
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then,

0 0

e_(T_t*) (w1, T)+L(1,T))d7—/ e~ TR (W(2,7) + L(2,7)) dT

t*

v

s~

0
/t ) (WL, 7) = W(2,m) + (L(L,7) = L(2,7))) dr

0
>/ﬁ (et )UiQ((W(LT)Jr(L(l,T)))dT

v—1 .«
_v72€
> (v —1)etv — (v —2)e*

which implies that

0
(v — 2)et: > / e~ (1) (W(2,7)+ L(2,7))dr
t

*

and therefore t7_, , < t;. over S ={1,2,..v —3,v —1,v—1}.

The first mequahty follows from noting that the likelihood at time ¢, p = 1
that the auction will end at a price less than v—1 is given by W (1,t) —W(2,t)+
(n—1)(L(1,t)—L(2,t)), which is greater than —L5 times the total expected value
to the bidders at p = 1. A direct calculation show that ¢ is greater than the
final cutoff in the equilibrium without punishment and therefore the same holds
for any ¢}, such that v > 5.

It now remains only to demonstrate that bidding is maximally delayed, which
is a straightforward point. The sum of the expected continuation values of
the two bidders in an auction of length t* with arbitrary equilibrium bidding
sequence R is bounded above by that of the same auction with equilibrium
bidding sequence S. Hence, if a bidder is indifferent at time ¢ between triggering
punishment and waiting given the bidding sequence S, the bidder must weakly
prefer triggering the punishment for any other bidding sequence T'. Therefore,
the proposed strategies form the seller minimizing equilibrium.

The cutoff value t* is increasing in v, as at a higher v players can be induced
to wait longer, through trigger strategies. Numerical calculations show that ¢} is
increasing in v fast enough so that the expected number of bids and therefore the
seller’s expected revenue is decreasing in v (larger ¢* implies a smaller expected
number of arrivals during the period when players are actively bidding, and this
outweighs the effect that bidding can potentially reach higher prices if v is larger
and a lot of arrival events occur towards the end). As a result, the ratio of the
seller’s expected revenue to the bidder’s value v goes to zero as v grows large.

4 Extensions
When departing from the case of complete information and symmetric players,

incremental equilibria like the ones featured in the previous section become in-
feasible to compute analytically, and it is also difficult to prove the existence of
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a certain type of incremental equilibrium in a completely general setting. How-
ever, it is relatively easy to identify incremental equilibria in concrete examples,
and even to provide constructions yielding equilibria with incremental bidding
in large classes of games. In this section we demonstrate this for cases in which
bidders are heterogeneous in their evaluations or in their arrival rates, for time-
variant arrival rates, and for a class of incomplete information games in which
bidders’ evaluations are drawn from a binary set. These results show that the
existence of incremental equilibria is not tied to the analytically convenient case
of symmetric bidders with perfect information, but a more general feature of
continuous-time auctions with random arrivals. The analysis also reveals some
new qualitative insights of incremental equilibria when buyers’ valuations are
asymmetric.

4.1 Asymmetric Values

We first show that for two bidders, there always exists an equilibrium in which
the initial bid by a low type is incremental. In this equilibrium, low types win
with non-trivial frequency for auctions of arbitrary length. In the Appendix we
also provide an example in which both the low and high bidders make incre-
mental bids and discuss the generalization of this example.

Proposition 3: For any 2-bidder auction with bidder values vy > vy > 2,
symmetric arrival rates and |T'| sufficiently large, there exists an equilibrium
that displays incremental bidding behavior.

Proof: We construct an equilibrium characterized by three cutoff points;
th tl and 1 that satisfy ti <t < tf. The low type’s equilibrium strategy
is to bid 1, whenever p = 0 and ¢ > t* > T and to bid vy whenever p > 0. The
high type’s equilibrium strategy is to bid vy, iff p = 0 and ¢t > t& or p = 1 and
t >t

We begin by solving for the high type’s cutoffs. Given the strategies de-
scribed above, the high type’s continuation values at p = 1,2 are given by,

Wr(p,t) = vg —vp + (vg — p)e™

0
LH(l,t):/ Ae A TOWy (2, 7)dr
t

When p = 0, the high type is indifferent between making a truthful bid and
delaying at t2f. Therefore, ti! satisfies

0
W (1,tl) = /H Ae” P16 (W (2,7) + L (1,7)) dr
t

0
or til = log “L7273 Similarly, because the low type bidder does not raise

his bid Whlle holdlng the current high bid at p =1,

22



0
WH(Q,t{J) :/ Ue_)\(T_t{{)WH(Q,T)dT

ti

which yields t = A(QJL“_Hm.

If T < t*, the low type is indifferent between making a bid of 1 and waiting
until the next arrival to place a bid. We first show that t© < t{f. Consider the
low type’s decision at ¢ > tf. Because the high type’s strategy going forward
is independent of the low type’s actions, the low type must strictly prefer to
place a bid, as it strictly increases the likelihood of winning without affecting
the expected payoff from winning. The low type’s continuation value at p = 0
is given by

LL(O,t) = (UL - 1)6”

and t& satisfies

il 0
L (0,tF) :/ Ae‘A(T_tL)LL(O,T)dT + eA(tL_th)/ e_QA(T_t(If)LL(O,T)dT
tL tdt

which yields

v — 2 v — 2
=+ | log( -
A vg +vp, — 3 vg +v — 3
The above computations imply that the strategy profile prescribed above
constitutes an equilibrium. QED
There are several features of the equilibrium that are instructive to point out.

tLl

First, let » = vy /v, be the ratio of the two values and rewrite t{{ = —i:;?f}g,
tH = log % This makes it clear that &, 1 are increasing in r. The high

type is induced to wait by the potential to raise her payoff by vy, — 1 or vy, — 2.
As vy, becomes large relative to the certain payoff from bidding truthfully, i.e. r
approaches 1, the incentive becomes stronger and hence the high type is willing
to wait longer. Likewise, holding r fixed, the cutoffs are also increasing in vy.
A second feature is that even when the auction is arbitrarily long, the low
type can win the auction with nontrivial probability and achieve a substantial

payoff. To see this, consider an auction with vy =6, vy, =4 and t = —co. In
the equilibrium constructed above, cutoffs for the high type are tff = —3 and
tif =log 2 and the low type’s cutoff is at t* =log 2 — 2.

In the benchmark truthful equilibrium, the high type and low type bid 6
and 4 respectively upon their first arrival. This implies that with probability
1, the high type wins and gets a payoff of 1 or 2 (depending on which bidder
arrives first) and the seller’s revenue is at least 4. In contrast to this, in the
equilibrium constructed in Proposition 3, the low type’s expected payoff, given
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by L(0,t) = %e_% = .64. Because the low type can only win at price p = 1,
this implies that the low type has approximately 21% chance of winning the
auction. Further, the total expected payoff among both bidders is equal to 3.5
versus at most 2 in the benchmark equilibrium.

We are also interested in the likelihood that no bid will be placed in the
auction, a source of inefficiency. This is straightforward to calculate as the
likelihood that the low type does not arrive after t© and the high type does not
arrive after ¢, which is given by,

2
P:e_UI;J‘*'LiJLZ—i‘ 7UL_2
vg +v — 3

In the example above, P is approximately 6%. However, P is increasing
in vr/vg and bounded at approximately 15%. For vp,vg sufficiently large
and vy, /vg close to 1, this equilibrium resembles a sniping equilibrium in that
bidding occurs only close to the end of the auction, and the high type starts out
bidding truthfully (however, the low type starts out by bidding incrementally).

4.2 Asymmetric Arrival Rates

Incremental bidding equilibria are also supported when bidders have asymmetric
arrival rates. We return to our 2-bidder example with v = 5 and Ay = 1,
but now specify that A\p = § with 8 > 1. Equilibrium value functions and
cutoffs for incremental equilibria can be computed the same way that we used
in the symmetric bidders case. Below we focus on the most gradual incremental
equilibrium (S = {1,2,5}).

Surprisingly, the cutoff points for both bidders turn out to be equivalent.
The first cutoff,

_logp

1-5
is increasing in B. This is between —1, the corresponding cutoff in a game with
two bidders with both A = 1, and —<, the cutoff in a game with two bidders
with both A = 3. Earlier cutoffs cannot be derived analytically. The cutoff for
bidding at p = 0 is roughly —1.135. The value of the cutoff is again in between
the value that obtains in a game with both bidders having arrival rate A = 1
and in a game with both having arrival rate A = [3.

Expected payoffs are 0.83 and 1.89 for bidder A and B respectively and the
seller’s expected revenue is 2.11. Increasing the arrival rate of bidder B from 1 to
2 increases the seller’s expected revenue, but the relationship is not monotonic;
at § = 10 the seller’s expected revenue is only 1.485. The intuition behind this
is that while the likelihood that at least one bid is placed (the object is sold)
is increasing in 8, the number of arrivals by the low type is decreasing because
equilibrium cutoffs are increasing in .

T2
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4.3 Time-dependent arrival rates

Multiplying all arrival rates by a constant o > 0 is equivalent to rescaling time
by é In particular, if the original game has an incremental bidding strat-
egy equilibrium over bidding sentence {b1, ..., br} and cutoff sentence {t1,...,tx}
then the game where arrival rates are multiplied by « has an incremental bid-
ding strategy equilibrium over bidding sentence {b,...,b;} and cutoff sentence
{étl, ey étk}. Furthermore, expected payoffs with time horizon T in the orig-
inal game are the same as with time horizon % in the game with the rescaled
arrival rates. In particular, if T < ¢; then increasing arrival rates and keeping
the time horizon the same does not change equilibrium expected payoffs: it only
shifts all cutoffs to the right, in an inversely proportional manner. Intuitively,
if bidders get frequent opportunities to place bids, it makes them postpone bid-
ding at different price levels until later, in a way that exactly offsets the effect
of increasing the arrival rates.

We get qualitatively similar conclusions when allowing for time-varying ar-
rival rates, as long as they stay bounded. For example, it is natural to assume
that towards the end of the auction bidders pay more attention and are much
more likely to check the status of the auction than far away from the deadline.
In our model this would lead to arrival rates increasing over time, reaching high
levels immediately preceding the end of the game.'°

We return to the symmetric 2-Bidder Auction example where v = 5 and

T = —2, but now let the arrival rate be given by a strictly increasing function
A(t). Let A(t) be of the form =gz Where a,b > 0; the arrival rate at the

end of the auction, \(0), is then given by the parameter a and the parameter b
determines how steeply arrival rates increase at the end of the the auction. The
average arrival rate over the auction is given by, = f32 ﬁdt. We choose
a =10 and b = 9/2 illustrated in Figure 7, which gives an average arrival rate
of 1 as in our original example. Figure 8 shows the effect of an increasing arrival
rate on bidder value functions in the most gradual equilibrium. The structure
of the equilibrium is identical, bidding begins after an initial cutoff and bidders
wait to bid at p = 2 until after a second cutoff. However, with bidder’s arrival
rates increasing over the course of the auction, the cutoffs are much closer to
the end of the auction, which re-enforces the high frequency of late-bidding in
equilibrium. As long as arrival rates are bounded, incremental equilibria are
robust to increasing arrival rates.

4.4 Asymmetric Information

Thus far we have considered auction environments in which each bidder’s value
is common knowledge. We now consider the case when each bidder knows their
own value, but only the distribution from which the other bidder’s value is
drawn. For simplicity, we restrict attention to two bidders with iid evaluations

10Presumably endogenizing arrival rates would lead to such time patterns of arrival rates,
although we do not pursue this direction formally here, due to its analytical complexity.
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of binary support. In this environment it is possible to construct equilibria in
which a bidder can only make inferences on the other bidder’s type once the
opponent’s type is no longer relevant to her bidding decisions. This greatly
simplifies the calculation of cutoff points and incentive constraints. However,
we conjecture that the games at hand have many more complicated incremental
equilibria in which bidders draw nontrivial inferences on each others’ types along
the equilibrium path.

In what follows, assume that bidders’ valuations are drawn iid, taking value
vy, > 1 with probability ¢ € (0,1) and vy > vy with probability 1 — q. A
particularly simple equilibrium with some incremental bidding in this context is
when low valuation types bid vy —1 whenever arrive and p < vy —1, bid vy if p =
vy, — 1, and restrain from bidding otherwise. Meanwhile, high valuation bidders
bid vy, whenever they arrive and p < vy, and follow the same bidding strategy as
in an incremental equilibrium with waiting, as characterized in Subsection 3.3,
of a complete information game with two bidders with valuation vgy. The idea
behind this construction is that in equilibrium only high types would ever place
a bid above vy, hence p = v, implies that either no further bidding occurs in
the game, or both of the bidders have high evaluation, validating a continuation
equilibrium from a game in which both bidder valuations are commonly known
to be vy.

In the above equilibrium a high type overbids the low type upon first arrival,
implying that gradual bidding only occurs if both bidders are high types, and
that in a long auction the probability of a low type winning the auction if the
other bidder is of a high type is close to 0. Below we provide an example in
which there is an equilibrium such that a high type waits until near the end of
the auction, and therefore a low type wins the object with significant probability
even if the realized type of the other bidder is high.

For this example, let v;, = 2 and vy = 5. Consider the following strategies:
for t < t* < 0, high types bid 2 whenever p = 0, they do not make a bid at
p =1 and bid 5 whenever p > 1. For ¢t > t*, high types that do not hold the
high bid place a bid of 5 at any price and high types holding the high bid do
not place bids. Low types bid 1 if p = 0 and ¢ < t*, and bid 2 if they do not
hold the winning bid and t > ¢*.

It follows immediately that the above strategies are best responses to each
other for ¢t > t*. A high type bidder that holds the high bid does not benefit
from increasing her bid as she has outbid the low type and cannot outbid a high
type. Similarly, a low type with a high bid cannot benefit from raising their
bid.

We now solve for t* and show that strategies are optimal for t < t*. Let
v(t,q) denote the expected value of a high type who decides to make a bid at
time t and p = 1 given bidders follow the above strategy. The payoff will be 3
if the other bidder is a low type and 2 if the other type is a high type but does
not arrive again before the end of the auction.

v(t,q) = 3q + 2¢e'(1 — q)
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W (t,q) denote the expected continuation value of a high type at time ¢ and
price 1 who plans to bid upon next arrival.

0
w(t,q):/ ™ o(r, q)dr
t
0
:/ e~ TY(3q + 2¢7(1 — q))drT
t

v(t*,q) > w(t*,q) iff t > 22;;‘12 = t* and therefore for high types bidding at
p=1,t < t* is strictly worse than not placing a bid. At p = 1, low types are
indifferent between bidding decisions. At t*, holding the winning bid is strictly
preferred by both types of bidders, so both types strictly prefer to make a bid
for all ¢ < t*.

The cutoff point for jump bidding is decreasing in ¢, the likelihood that a
bidder is a low type. A high type risks less by outbidding early as the likelihood
that her opponent is a low type increases. When ¢ = 0, t* = —1 and the game
reduces to the symmetric complete information case. For long auctions, each
bidder has a likelihood of % of being the winning bidder at ¢t* and the likelihood
of the other bidder not arriving subsequently is given by e!”, hence a low type
bidder will win the auction with positive payoff with approximate likelihood of
0.5¢!". For low values of ¢, this likelihood is quite high; at ¢ = .1, a low type
wins with probability 0.15.

5 Conclusion

This paper shows that on online auctions like ebay where bidders can leave
proxy bids, if bidders get random chances to place bids then many different
equilibria arise in weakly undominated strategies. Bidders can implicitly collude
by bidding gradually or by waiting to place bids, in a self-enforcing manner,
slowing down the increase of leading price. These features of our model are
consistent with the empirical observations that both gradual bidding and sniping
are common bidder behaviors on ebay.

Our investigation suggests that given a fixed set of bidders, running an
ascending auction with a long time horizon (long enough that bidders cannot
continuously participate) has the potential to affect the revenue of the seller very
adversely, even when proxy bidding is possible, relative to running a prompt
auction. Hence, introducing a time element can only be beneficial if it takes
time for potential bidders to find out about the auction.!! It is an open question
what mechanism guarantees the highest possible revenue for the seller in such
environments. In order to prevent implicit collusive equilibria, sellers might

n a recent paper, Fuchs and Skrzypacz (2010) considers the arrival of new buyers over
time, but in a dynamic bargaining context in which the seller cannot commit to a mechanism.
Another difference compared to our setting is that in their model once a buyer arrives, she is
continuously present until the end of negotiations.
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want to set high reservation prices and/or minimum bid increments. They
might also want to allow each bidder to submit at most one bid over the course
of an auction, although in practice this might be difficult to enforce, given
that the same person can have multiple online identities. We leave the formal
investigation of these issues to future research.
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6 Appendix

6.1 Proof of claim 1

First note that a strategy that prescribes bidding b > v; at any history is weakly
dominated by a strategy that specifies bidding v; if P < v; and not placing a
bid otherwise.

Taking over the lead with B = v; — 2 is weakly dominated by increasing B
to v; — 1 at the same arrival. To see this, note that opponents can only find out
that B = v; —2 or B = v; — 1 if one of them bids at least v; — 1, in which case 7
cannot attain a positive payoff. Hence, increasing B to v; — 1 cannot hurt player
i. At the same time, it is strictly beneficial if the opponents follow a strategy
of bidding v; — 1 upon next arrival and then not bid again.

Placing a bid b < v; — 3 is the unique best response to a strategy of the
opponents which prescribe bidding b upon the next arrival if that happens at
t < € and overbidding incrementally if ¢ < &, provided that £ < 0 is close enough
to 0. Similarly, bidding b = v; —1 or b = v; are strictly better than either waiting
or bidding b < v; — 1 if the opponents bid v; — 1 upon the next arrival and then
restrains from further bidding, and they are both strictly better than bidding
p > v; if the opponents bid v; + 1 upon next arrival. Furthermore, bidding v; —1
or v; (and not placing bids above v; afterwards) yield the same payoff to i for
any strategy of the opponent, hence neither of them is weakly dominated by the
other one.

Clearly, not placing a bid when P > v; — 1 is not weakly dominated, as
placing a bid cannot increase i’s payoff for any realization of the arrival process
and any strategy followed by the others. If P < v; —1 and the strategy of others
is not placing another bid until ¢ places a new bid, but bid v; afterwards then
not placing a bid then not placing a bid is the unique optimal action for t < ¢*.
For t > t* not placing a bid is weakly dominated by incremental bidding, as for
B > v; — 1 they yield the same payoff, while for B < v; — 1 incremental bidding
yields a strictly higher expected payoff for any strategy of the other bidders.
QED

6.2 Proof of Proposition 1 (n-bidders)

To simplify notation, let m = n + 2 where n > 0. Bidder value functions are
given by,

0
W (b, t) = / Ae™(MTDAT=D (g 4+ 1) L(bggr, 7)dT + (v — by + 1)elm DA
t

0
L(bk,t):/ e~ MFDVAXT=) (W (by 1, 7) + mL(bgyr, 7)) dT

t
We construct t* as follows,
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W (bg,t) — L(bg—1,t)

0
= / e~ (mADA(T=1) ((m+ 1)L(bgy1,7) — mL(bg,7) — W(bg, 7)) dr + (v — b—1 + 1)6(”’+1)”\t

t
0
> —/ e MFDVAXT=) (1 (L(bpyr, 7) — L(bg, 7)) 4+ W (b, 7)) d7 + (0 — bj_y + 1)e(mFDA
t

(m+1)At _ _ _
_ (e 1) (m(bk;;—i_ 1bk) + (v —0br_1+1)) + (0= b1 + D)elmrA

>0

for all ¢,

log ( m(bgt1—bg)+(v—br_1+1) )
fo— m(bgy1—br)+2(v—br_1+1)+m(v—br_1+1) <1<0
k m+ 1 >

Let t* = maxyty and we have W (by,t) — L(bg—1,t) > 0 for t > ¢*. A
straightforward induction argument proves that the other incentive constraints,
L(bg_1,t) — L(bg,t) > 0 also hold for ¢ > ¢*.

6.3 Proof of Proposition 2

We construct the equilibrium cutoff points such that if we restrict bids to be
incremental, i.e. the set of available bids only includes p + 1 for p < v — 3 and
v for p > v — 3, partial incremental strategies that follow these cutoffs form an
equilibrium. We will then relax the restriction on bids and show that bidders
never prefer to overbid.

Let 7y_3 = Ty_5... = —o0. We construct a sequence 0 > 7,_9 > Tpy_g > ... >
—oo such that for all k& even

<Llv—-—k-1,t) ift<7y_g.
W—key {SHETRLO AT (3
>Llv—k—-1t) ift>m7_p.
and for all 0 < p < v —k,
L(p,t) > L(p+ 1,t) ift>r1y_p (4)
Wi(p,t) > Lp—1,t) ift =7y, (5)

where L(p,t) and W (p,t) are the expected continuation values of the losing and
winning bidder respectively, conditional on bidders following partial incremental
strategies with respect to 7,, 7y—1, ...70-

L(p,t) and W(p,t) can be constructed recursively. L(v,t) = W(v,t) = 0
and for p > 0,
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0
L(p,t) = /Ae_’\(T_S)W(p—i—l,T)dT

0
W(p,t) = / A AT L(p 4+ 1,7)dr + (v — p)e™®
SO 0
L(0,t) = /Ae_Q)‘(T_s)W(l,T)dT—i—/ Ae AT L 1) dr
S S

with s = max{t, 7p+1}.

Let 7,2 = —%. From Lemma 1 it follows that 6.1-6.3 hold for k = 2. Next
we assume that for k£ even, there exists a set {7,_4, ..., Ty—i } such that 6.1-6.3
hold. Let 7,_g_2 be given by

1W(w—k—2,7p—t) — Llv—k —3,7p—_k)
A W(’U —k— 2,7’1),;9) — L(U —k— 1, Tv—k)
By assumption W(v—k—2,7,_¢) > L(v—k—3,7_1) and W(v—k—2,7,_1) >
L(v—k —1,7y—), which ensures that 7,_p_o < Ty—g. Let Ty_p_o <t < Tp_g.
By construction, W(v—k—1,t) = W(v—k—1, 7,_x) and by assumption W (v —
k—1,7_4) > L(v—k—2,7,_1) and hence W(v—k—1,t) > L(v—k —2,Ty_g).

To—k—2 = To—k —

To—k To—k
W—k-21)= </ Ae*“f)dT) Llv—Fk—1,7_%) + (1 - / AeMTS)dT) W(v—k—2,Ty_1)
t t

_ (1 _ e—)\(‘f'vfk_t)) L(U — k-1, vak) + (e—k(nfk—t)) W(U — k-2, vak)
=Lw—k—1,79_ 1) + A X" (Lo —k— 1,7y 3) = W(w—k—2,79_4))

which we can rewrite as

W (v—k=2,t)=L(v—k=1,7,4) = e (Lo =k = 1,1, 4) = W (o — k = 2,7-))
Llv—k-=3,t) —W(v—Fk—2t)
:/TH A AW (v — k= 2,7) — Lo — k — 1,7_1))dr
t
N (1 B /T“_’“ )\e—)\(‘r—s)d7—> (Liv—k —3,7p_1) —W(w—k—2,7_4))
t
_ /T“"“ e AT (e ATk =T (L(y — k — 1, 7y_p) — W (v — k — 2, 70_p)))dT
t
N (1 B /T'u*k )\6_/\(T—S)d7—> (L(U —k— 377—1)7]@) — W(U — k- 2,7’1,7}@))
t

“A(ro =) (XY (W0 = k= 2,70 ) = Lo — k= 1,74))

— (e ) (Ww — k= 2,7 4) = L(v = k= 3,70))
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Hence, L(v —k — 3,7y_—2) — W(v—k —2,7p__2) = 0 and because L(v — k —
3, To—k—2)—W(v—k—2,Ty_j_2) is strictly increasing in t, W (v—k—2, 7, _j_2) >
L(U — k- 377-'u—k:—2) iff ¢ > To—k—2-

To show that overbidding is suboptimal will require the following property
of the equilibrium value functions.
Property 1. For all integers £ > 0 and t < 3

1 1 1 1
. _ — > = —t=+.+ ==
Lv—Fk—1,t)— L(v—k,t) > . <1+ 30 + = + ..+ (k:—2)!>

1 1 1 1
—k—1.t)—W(v— <—-(14+=4+—=+.. =
W(o—k-1,1)-W( k’t)_e( TR T +(k—2)!)

where k = k if k even and k—1 otherwise, k = k if k odd and k— 1 otherwise.
Equality holds when t < ;.
Proof. Note that L(v—k—1,t) — L(v —k,t) and W(v—k —1,t) — W (v —k,t)
are equal to the likelihoods of eventually winning at any price p < v at time ¢
conditional on a bidder losing and winning at price v — k — 1 respectively. It
follows immediately that L(v — k — 1,t) — L(v — k, t) is weakly decreasing in ¢
and (W(v—k—1,t) — W(v — k,t)) is weakly increasing in ¢.

W(U — k- 1,t1) — W(U — k‘,tl)

0 0
= ey )\e_A(T_tl)(—T)\e”‘)dT + / )\e_A(T_tl)(—T?’/\BeTa)‘S)dT + ...
ty

ty

EEERYAUERIAN
e 2 \e 24 \e) 7

(]

Consider the auction at time ¢, T < ¢ < 0 with current price (and high bid)
p < v — k where k is the even integer satisfying tp41o < t < t. If opponent
strategies are given by candidate equilibrium, then a bidder strictly prefers hav-
ing a winning bid of ¢ to ¢ for any ¢, ¢ that satisfy p < ¢ < ¢ <.

Case l: p+1<qg<q <v—(k+2)
Given that the opponent plays according to the candidate strategies, the
expected continuation value of bidding ¢ and ¢ are

0
/ A MLy — g, 7)dr + (v —p — 1)eM

t
and

0
/ Ae ANy — q, TYdT 4+ (v —p —1)eM
¢
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respectively. It follows from Claim 1 that ¢ < q/ implies that the difference

0
/ e AT (L(v—gq,7) — L(v — q/,T))dT >0
¢

is strictly positive.

Case 2: p+1<q<q =v—(k+1)

We consider the trade-offs at time ¢;. If the losing bidder does not arrive
between t and t;, any subsequent arrival by the losing bidder will result in
the winning bidder being outbid. Hence the difference in expected continuation
values is reflected in the different prices at which a winning bidder might become
the losing bidder- with a higher bid resulting in a higher price. We can write
the expected cost of ‘overbidding’ as follows:

0
Ca / Ae MT)(L(g,7) — L(v — k — 1,7))dr
123

If the other bidder does arrive between ¢ and ¢, then bidding v — k — 1 does
not affect the current price, only the identity of the winning bidder at t;. Hence
the expected benefit of overbidding can be written as

(1= A=) (W — k= 1,t) — L(v — k — 1,1))
It is clear that the benefit is maximized and the cost minimized at t = t51o

and when ¢ = v — k, so it is sufficient to show that:

0
e Mter2—tk) / )\e_)‘(T_t’“)(L(v —k—1,7)— Llv—k,7))dr (6)

ty
> (1 — M2t (W(v— k= 1,t) — L(v — k — 1, )
iff
Mt —tr) [W(v —k—=2tg) —W(w—k—1,t) — eAtk]
> (1 — M2 =t)Y (W(v — k= 1,t) — L(v — k — 1,))
iff
eMtera—te) (W(v—k—2t) —W(w—k—1,t) — e>‘t’“]
> (1 — M2t (W (v — k —1,t) — W(v -k, t))
which we re-arrange and get,
M2 =) (W (y — k — 2,t3) — W (v — k, tg,)] — eMr+2
>Ww—k—1,tg) — W(v—k,tx)

We note that for real valued z, 1 + z < €%, hence it suffices to show that
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(14 Mtpso — ) [W(v — k — 2,t3) — W(v — k, tg)] — eMr+2
> W(’U—k— 1,tk>—W(’U—]€,tk)
iff

W(v—k=2,7) =W (v—k—1,t3) > eM* 24 XNty —tpro) W (v — k — 2,t) — W(v — k, t3)]
and from above

W(U—k—27tk)—L(’U—/€—37tk)

AMtg —tp_2) =
(b = th—2) Ww—k—2t,) — W(v—k,tg)
therefore,
W(U—k—2,tk) —W(U—k— 1,tk) >
PHtevs y WOk = 2.0) — L~k —3,t) (W (v —k —2,ty) — W(v—k,ty)]

Ww—Fk—2,t,) — W(v—k,tg)
iff
W(v—k—2,t) —W(w—k—1,t) > eM+2 L W(v—k—2,t,) — L(v—k —3,t})
iff
Lv—k—=3ty) = W(v—Fk—1,t) > e r+2

iff
(L(v—k=3,tp) —L(v—k—1,t))— (W(w—k—1,t;) — L(v—k —1,t)) > e *+2
iff
(L(v—k=3,t3)—L(v—k—=2,t3))+(L(v—k—2,tp)—L(v—k—1,t:))—(W (v—k—1,t3) =W (v—k, t1,)) > e r+2

Property 1 implies that it is sufficient that

2 11 1 1 11 1 N
(gt gttt et gy ) > O

3l 5l k-2 e TR & —2)!
o 1 2 1 2
12 102 Albpa—t1)
=gt atgt->a
I 3 5 Atipz—tr)
1—§—§—ﬁ>6 kt2 1
And,

Mbrrz=h) o Alta=t) =03  Jjy ] — l — i — E — k-1

hoso 31 Bl 7T (k+ 1)
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Finally, it can be verified directly that (6) holds for k& = 2.

Case 3: v—k<g<q

Let r be the smallest odd integer such that r > v — ¢ . With either a bid of
q/ or q' — 1, the bidder will be the winning bidder at time ¢,.. However, by the
arguments made above the bidder would prefer to have a winning bid of q/ -1
to a winning bid of q/.
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2-Bidder Auction with Vu=8V1.=0
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Figure 9: Expected Continuation Payoffs for the High Type Bidder

6.4 Asymmetric Values Example 2

We return to the 2-bidder case whose values are given by vy > vy, and construct
an equilibrium in which both types place incremental bids. To illustrate why
it is difficult to characterize these auctions more generally, we investigate an
equilibrium with minimal incremental bidding by both types and demonstrate
that the structure of this equilibrium depends on the values of vy and vy, and
that this dependency is difficult to analytically characterize.

In order for the high type to place an initial incremental bid of 1 in equilib-
rium, it must be the case that at p = 1, the low type’s strategy calls for placing
a bid of 2 beginning at some time ¢ prior to the high type’s final cutoff for p = 1.
Low type’s bidding behavior at p = 0 is pinned down by the high type’s bidding
behavior. We allow all bidding at p > 2 to be truthful. Working backwards
from these assumptions, we construct the following example for vy = 8 and
v = 6.

Equilibrium bidding strategies are as follows; At p = 0, low types bid 1 for
all ¢ and high types bid 1 for ¢t < 7 = —1.13 and vy otherwise. At p = 1,
low types bid 2 for t > 7 = —1.4505 and delays otherwise. High types place
a bid vy after 7{7 and delay otherwise. At p > 2 both types bid their true
value. Figures 9 and 10 plot the bidder’s expected payoffs. In a sufficiently long
auction, the high type bidder has an expected payoff of 2.65 and the low type
bidder has an expected payoff of 1.03. The low type wins with probability 0.23
and the seller’s expected revenue is only 3.86.
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2-Bidder Auction with Vi=8,V1.=6
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Figure 10: Expected Continuation Payoffs for the Low Type Bidder

2-Bidder Auction with Vua=16V1=12 [
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Figure 11: Expected Continuation Payoffs for the Low Type Bidder
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Numerical investigations suggest to us that an equilibrium of this type, when
initially both types bid incrementally, exists when vy — vy, is not too large,
relative to vy, but the condition on vy and vy guaranteeing existence of the
equilibrium above is complicated. For example, when this ratio is increased
such that vy = 16 and vy = 8, incremental bidding by the high type is not
sustainable; in equilibrium the high type prefers a bid of vy whenever she prefers
bidding to delaying. However, holding the ratio fixed is not sufficient. Figure
11 illustrates the low types expected payoffs when both values from the original
example are doubled to vy = 16 and vy = 12, which reveal that equilibrium
strategies now involve the low type delaying at p = 0.
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