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Abstract

We develop a model of informal risk-sharing in social networks, where relation-
ships between individuals can be used as social collateral to enforce insurance
payments. We characterize incentive compatible risk-sharing arrangements and
obtain two results. (1) The degree of informal insurance is governed by the ex-
pansiveness of the network, measured by the number of connections that groups
of agents have with the rest of the community, relative to group size. Two-
dimensional networks, where people have connections in multiple directions, are
su¢ ciently expansive to allow very good risk-sharing. We show that social net-
works in Peruvian villages satisfy this dimensionality property; thus, our model
can explain Townsend�s (1994) puzzling observation that village communities
often exhibit close to full insurance. (2) In second-best arrangements, agents
organize in endogenous "risk-sharing islands" in the network, where shocks are
shared fully within, but imperfectly across islands. As a result, network based
risk-sharing is local: socially closer agents insure each other more.
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In much of the developing world, people face severe income �uctuations due to weather

shocks, diseases a¤ecting crops and livestock, and other factors. These �uctuations are

costly because households are poor and lack access to formal insurance markets. Informal

risk-sharing arrangements, which help cope with this risk through transfers and gifts, are

therefore widespread. For example, Figure 1 depicts �nancial and in-kind transfers between

relatives and friends in a rural village in the Huaraz province of Peru.1

Development economists have studied both the pattern of informal transfers and their

e¤ectiveness in sharing risk. Two seemingly contradictory �ndings have been documented.

On the one hand, these arrangements often seem to be based on local obligations, as people

mainly help out close neighbors, relatives and friends (Udry 1994). On the other hand,

these local mechanisms often achieve almost full global insurance on the village level. For

example, (Townsend 1994) argues that the full insurance model provides a surprisingly good

benchmark even though it is typically rejected in the data.2

How can local obligations and transfers aggregate up to good global risk-sharing? We

build a simple model of risk-sharing in social networks that provides an explanation for this

puzzle. We �nd that full insurance is di¢ cult to obtain because it requires a high level

of connectedness that we do not observe in real social network data. However, consistent

with the evidence, we also show that close to perfect risk-sharing can be achieved for the

type of more loosely connected social networks that we do observe. Our model also allows

us to study the nature of informal risk-sharing arrangements. We show that households�

consumption will comove more strongly with that of socially closer households, a prediction

consistent with the empirical �ndings in Angelucci, Giorgi, Rangel and Rasul (2008), who

therefore provide indirect evidence for our model.

We model the social network as a set of pre-existing relationships, like friendships and

family ties. These links have utility value, which represents either the direct consumption

value of relationships, or indirect bene�ts from future transactions. We de�ne a risk-sharing

arrangement as a set of transfers between direct neighbors in the social network in every
1The data used in constructing this Figure were collected by Karlan, Mobius and Rosenblat (2007). See

Appendix B for details.
2Also see Ogaki and Zhang (2001) and Mazzocco (2007).
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Figure 1: Financial and real transactions between relatives and friends in a rural community
in Peru, represented as lines between transacting parties in the village map. Thickness of
line measures value of transaction in Peruvian New Soles.

state of the world. This arrangement is subject to moral hazard: ex post, an agent who

is expected to make a transfer to a network neighbor may prefer to deviate and withhold

payment. In our model, such deviations result in the loss of the a¤ected link. Intuitively,

network links serve as social collateral ensuring that agents live up to their obligations under

the informal risk-sharing arrangement.

Our �rst result is that an incentive-compatible risk-sharing arrangement always gives rise

to a consumption allocation that is coalition-proof in the following sense: the net transfer

from any group of agents to the rest of the community, de�ned as the di¤erence between the

group�s total endowment and consumption, cannot exceed the sum of the values of all links

between the group and the community. Intuitively, individual obligations embedded in the

value of links build up to group obligations represented by the total value of links connecting

the group with the larger community.

This equivalence between coalition-proof allocations and incentive compatible risk-sharing
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arrangements has two implications. First, it shows that decentralized insurance arrangements

can also be implemented in a centralized fashion through intermediaries such as trusted vil-

lage elders, who respect the obligations of each group (e.g., extended family) in the com-

munity. Second, the result relates the geometry of the network to its e¤ectiveness for risk-

sharing, allowing us to study how local links aggregate to social capital at the community

level.

The key property of network structure identi�ed by our equivalence result is called ex-

pansiveness, and measures the number of connections that groups of agents have with the

rest of the community relative to group size. To gain intuition about this property, consider

the three example networks in Figure 2. Among these networks, the in�nite line in Figure

2A is the least expansive, because any connected set of agents always has only two links with

the rest of the community. The in�nite �plane�network of Figure 2B is more expansive,

while the in�nite binary tree of Figure 2C is the most expansive network of all, where the

number of outgoing links for any set grows at least proportionally with its size.

Figure 2: Expansion properties of three example networks
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We show that full insurance requires highly expansive networks like the in�nite binary

tree. However, we do not �nd that real-world social networks in rural villages in Peru exhibit

this large degree of expansiveness. Instead, these social networks are more similar to planar

networks, possibly because people tend to have connections at close geographic distance. We

next show that a two-dimensional structure, such as found in our Peruvian data, is su¢ cient

to ensure very good risk-sharing in most states of the world. For an intuition, consider a

connected group of agents in the plane network. With idiosyncratic shocks, the standard

deviation of the total endowment of the group is proportional to the square root of group size.

But on the plane, the number of outgoing links from the group is also at least proportional

to the square root of size (the worst case would be when the group has a square shape).

Thus group obligations with the rest of the community �links connecting the group with

the network �are of the same order of magnitude as group shocks. Since this holds for every

group, it follows that �almost� full risk-sharing can be implemented in the network. This

argument applies not just for the regular plane network, but for any social network which

has a two-dimensional sub-structure. We call these networks geographic networks and we

show that our Peruvian village networks fall into this class. As a result, our model provides

a potential explanation for the informal insurance puzzle highlighted by Townsend.

The above results constitute a quantitative analysis of informal risk-sharing. Our second

main contribution is a qualitative analysis of constrained e¢ cient �second-best� arrange-

ments. We show that in these arrangements, the network can be partitioned into endoge-

nously organized connected groups called �risk-sharing islands�for every realization of un-

certainty. This partition has the property that shocks are completely shared within, but

only imperfectly across islands. The island structure can be understood in terms of �almost

deviating coalitions,�who are indi¤erent between staying in the network and deviating as a

group. Islands are maximal connected sets subject to the constraint that they are not divided

by any almost deviating coalition; therefore, insurance across island boundaries is limited,

but insurance within islands is complete. The size and location of these risk-pooling islands

is endogenously determined by the social structure and the realization of endowment shocks,

consistent with evidence documented by Attanasio, Barr, Cardenasy, Genicot and Meghir

(2009), and distinguishing our model from theories with exogenously speci�ed risk-sharing
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groups.

A key implication of the islands result is that an agent�s consumption will comove more

with the consumption of closely connected neighbors. This follows because islands are con-

nected subgraphs: agents who are socially closer are more likely to belong to the same island

and thus provide more insurance. This observation helps characterize informal insurance as

a function of shock size. Risk-sharing works well for relatively small shocks: sharing islands

are large, and both direct and indirect friends help out. As the size of the shock increases,

only close friends help with the additional burden; and risk-sharing completely breaks down

for large shocks. Some of these predictions are con�rmed in the empirical work of Angelucci

et al. (2008).

Our paper builds on a growing literature studying informal insurance in networks. Bloch,

Genicot and Ray (2008) develop a model with both informational and commitment con-

straints, and characterize network structures that are stable under certain exogenously spec-

i�ed risk-sharing arrangements. We conduct the opposite investigation: taking the network

as given, we study the degree and structure of informal risk-sharing. Bramoulle and Kran-

ton (2006) also study insurance arrangements in networks, but in their model there are no

enforcement constraints. Our modeling approach builds on Karlan, Mobius, Rosenblat and

Szeidl (2009), who explore informal borrowing in networks.3 Empirical work in this area

includes De Weerdt and Dercon (2006), Fafchamps and Lund (2003) and Fafchamps and

Gubert (2007), who use data on village networks, Attanasio et al. (2009) who document

the importance of social ties for risk-pooling, while Mazzocco (2007) emphasizes the role of

within-caste transfers.

More broadly, our work contributes to the growing literature on informal institutions.

Kandori (1992), Ellison (1994) and Greif (1993) develop game-theoretic models of commu-

nity enforcement, and Kranton (1996) studies the interaction between relational and formal

markets. In the context of consumption insurance, Ligon (1998), Coate and Ravaillon (1993),

Kocherlakota (1996) and Ligon, Thomas and Worrall (2002) explore related models with lim-

ited commitment, while Mace (1991) and Cochrane (1991) are in�uential empirical studies

3See also Ali and Miller (2008), who study network formation with repeated games and Dixit (2003), who
compares relational and formal governance in a circle network.
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of consumption insurance. These papers do not study the e¤ects of network structure.

The rest of this paper is organized as follows. Section 1 presents our model of informal

insurance in networks. Section 2 characterizes the limits to risk-sharing, and confronts the

theoretical results with data on social networks in Peru. Section 3 analyses constrained

e¢ cient arrangements. Section 4 explores a more general version of our model and Section

5 concludes. Proofs are delegated to Appendix A and a supplementary appendix.

1 A model of risk-sharing in the network

1.1 Model setup

In our model, agents face income uncertainty due to factors such as weather shocks and crop

diseases. In the absence of a formal insurance market, agents can agree on an informal

risk-sharing agreement that speci�es transfers between pairs of agents in each state of the

world. These transfers are secured by the social network: connections in the network have

an associated consumption value that is lost if an agent fails to make a promised transfer.

Formally, a social network G = (W;L) consists of a set W of agents (vertices) and

a set L of links, where a link is an unordered pair of distinct vertices. Unless otherwise

stated, we assume that the network is �nite; the supplementary appendix discusses how to

extend our setup to in�nite networks. Each link in the network represents a friendship or

business relationship between the two parties involved. We assume that the strength of these

relationships is determined outside the model, and that they are measured by a capacity.

De�nition 1 A capacity is a function c : W �W ! R such that c(i; j) > 0 if (i; j) 2 L and

c(i; j) = 0 otherwise.

The capacity of an (i; j) link measures the bene�t that i derives from his relationship

with j. These bene�ts can represent the direct utility that agents derive from interacting

with each other, or the utility or monetary value of economic interaction in the present or

in future periods. For ease of presentation, we assume that the strength of relationships is

symmetric, so that c(i; j) = c(j; i) for all i and j. All our results extend to the case with

asymmetric capacities.
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Agents in this economy face uncertainty in the form of endowment risk. We denote the

vector of endowment realizations by e = (ei)i2W , which is drawn from a commonly known

joint distribution. The vector of endowments is observed by all agents.

A risk-sharing arrangement speci�es a collection of bilateral transfer payments te =
�
teij
�
,

where teij is the net dollar amount transferred from agent i to agent j in state of the world e,

so that teij = �teji by de�nition. The risk-sharing arrangement te implements a consumption

allocation xe where xei = ei �
P

j t
e
ij. For simplicity, we suppress the dependence of the

transfers teij and consumption allocation x
e on e for the rest of the paper.

An agent who consumes xi enjoys utility Ui (xi; ci), where ci =
P

j c(i; j) denotes the

total value that agent i derives from all his relationships in the network, and U is strictly

increasing and concave. To simplify exposition, in the body of the paper we focus on the

analytically convenient case where consumption and friendship are perfect substitutes, so

that the utility of i is Ui (xi + ci). Section 4 develops the model with imperfect substitutes,

and shows that under weak conditions, all our qualitative conclusions extend. The agent�s

ex-ante expected payo¤ is EUi (xi + ci), where the expectation is taken over the realization

of endowment shocks.

We say that a risk-sharing arrangement is incentive compatible if every agent i prefers

to make each of his promised transfers tij rather than lose the (i; j) link and its associated

value. Because consumption and friendships are perfect substitutes, incentive compatibility

implies tij � c(i; j).

1.2 Discussion of modeling assumptions

Risk-sharing arrangement. The most literal interpretation of these arrangements, in the spirit

of Arrow and Debreu, is that agents choose an ex ante informal contract, which speci�es

payments for every conceivable realization of uncertainty. Alternatively, the consumption

allocation may also be determined ex post by a social norm that speci�es how to reallocate

goods among connected agents. For example, Fafchamps and Lund (2003) describe how

informal insurance is implemented through a collection of bilateral �quasi-loans,� where

households borrow from neighbors, who expect their kindness returned when they themselves

are hit by adverse shocks.
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Capacities and dynamic interpretation. We analyze a one-time risk-sharing arrangement

in a network where links and capacities are determined outside the model. The most direct

interpretation of this framework is that link values are generated by a number of social

activities and services besides risk-sharing. In this interpretation, the links themselves may

be created through a long term network formation process largely shaped by factors outside

our model, such kinship and geographic proximity. However, our setup can also be viewed as

a �snapshot�of a dynamic model, where the value of a network connection is determined in

part by the ability to conduct insurance transactions through the link in the future. In such

a dynamic model, link capacities would be endogenized by the expected future bene�ts from

risk-sharing. As Bloch et al. (2008) show in a similar model, this leads to restrictions on the

equilibrium network structure and link values. While our static analysis applies for any set

of capacities, our results could presumably be strengthened by imposing such restrictions

on the network. We plan to explore the implications of dynamics more explicitly in future

work.

Incentive compatibility. Our notion of incentive compatibility is motivated by Karlan et

al. (2009). In their model of informal borrowing, a link between two agents is destroyed if a

promised transfer is not made. They develop explicit micro-foundations for this assumption

where the failure to make a transfer is a signal that the agent no longer values his friend, in

which case these former friends �nd it optimal not to interact with each other in the future.4

An alternative justi�cation is that people break a link for emotional or instinctive reasons

when a promise is not kept; Fehr and Gachter (2000) provide evidence for such behavior.

Full information. Our model assumes that agents in the community can observe the vec-

tor of endowment realization so that they know what transfer payments to expect from their

neighbors and how much to send. Full information about endowments seems reasonable in

village environments, where individuals can easily observe the state of livestock or crops. For

example, Udry (1994), shows that asymmetric information between borrowers and lenders

is relatively unimportant in villages in Northern Nigeria.

4In the supplementary appendix we develop similar foundations for the present model, in which the
value of connections is earned in a �friendship game.�See Ambrus et al. (2010) (available at http://www.
socialcollateral.org/risksharing/supplementary_appendix.pdf).
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1.3 Coalition-proof allocations

We �rst show that incentive compatible risk-sharing arrangements give rise to consumption

allocations that are coalition-proof in every state of the world in the following sense. The net

transfer between any group of agents and the rest of the community, de�ned as the di¤erence

between the group�s total endowment and total consumption, cannot exceed the sum of the

values of all links connecting the group and the rest of the community. Formally, for any

group F we de�ne the perimeter c [F ] to be sum of the values of all links between the group

and the rest of the community:

c [F ] =
X

i2F , j =2F

c (i; j) (1)

Intuitively, the perimeter is the �joint obligation�of the group F to the rest of the commu-

nity. Similarly, we de�ne the joint endowment of the group as eF and the joint consumption

allocation induced by the risk-sharing arrangement with xF . Coalition-proofness then re-

quires eF � xF � c [F ] for all F , i.e., the net transfer from the group to the community

cannot exceed the group�s joint obligation c [F ].5

Surprisingly, coalition-proofness tightly characterizes all the consumption allocations that

are implementable through informal risk-sharing.

Theorem 1 A consumption allocation x that is feasible (
P
xi =

P
ei) is coalition-proof in

every state of the world if and only if it can be implemented by an incentive-compatible

informal risk-sharing arrangement.

That an incentive compatible allocation is coalition proof is easy to see: since each transfer

is bounded by the capacity of the link, the same inequality must also hold when transfers

are added up along the perimeter of a group. Proving the converse is more di¢ cult, and

builds on the mathematical theory of network �ows. Recall that the maximum �ow between

nodes s and t in a network is the highest amount that can �ow from s to t along the edges

respecting the capacity constraints. Finding a transfer representation for a coalition-proof

5The supplementary appendix shows that this de�nition of coalition-proofness in our context is equivalent
to de�ning coalition-proofness along the lines of Bernheim, Peleg and Whinston (1987), i.e., allowing only
for coalitional deviations that are not prone to further deviations by subcoalitions.
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allocation turns out to be equivalent to �nding a �ow in an auxiliary network with two

additional nodes s and t added. According to the theorem of Ford and Fulkerson (1956), the

maximum �ow equals the value of the minimum cut, i.e., the smallest capacity that must be

deleted so that s and t end up in di¤erent components. We prove in Appendix A that each

cut in the �ow problem corresponds to a coalition, and then the coalition-proofness condition

ensures that the cut values are high enough so that the desired �ow can be implemented.

The theorem has two main implications. First, it shows how individual obligations ag-

gregate up to social capital at the community level. Links matter not because they act as

conduits for transfer, but because they de�ne the pattern of obligations in the community.

In particular, a coalition-proof arrangement does not have to be implemented by transfers

over links: intermediaries such as village elders could also collect and distribute resources,

as long as they respect the obligations of each group of households, i.e., coalition-proofness.6

Hence our model need not predict long chains of transfers in practice: these chains are likely

to be shortened by intermediaries.

A second implication of the theorem is that it relates the geometry of the network to its

e¤ectiveness for risk-sharing. This connection forms the basis of our analysis in the following

section.

2 The limits to risk-sharing

In this section use the equivalence between incentive compatibility and coalition-proofness

to explore how much risk-sharing can be obtained in a given network. Our central �nding is

that good risk-sharing requires social networks to have good �expansion properties�; that is,

all groups of agents should have enough connections with the rest of the community, relative

to group size.

6At the extreme, a single trusted intermediary could implement the allocation by collecting a �tax� of
ei � xi from each agent i for whom this is positive, and use these funds to pay the unlucky agents for whom
ei � xi is negative.
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2.1 Limits to full risk-sharing

We �rst use Theorem 1 to establish a negative result: full risk-sharing cannot be achieved

unless the network is extremely expansive, because coalitions with a relatively low �group

obligation�c [F ] will choose to deviate in some states.

To build intuition, consider the in�nite line, plane and binary tree networks depicted in

Figure 2, where all link capacities are equal to a �xed number c.7 For these examples, we

assume that endowment shocks are independent across agents, and take values +� or ��

with equal probability. We focus on implementing equal sharing, i.e., an arrangement where

all agents consume the per capita average endowment. This allocation is Pareto-optimal

when agents have identical preferences over consumption. Since our example networks are

in�nite, the law of large numbers implies that the average endowment is zero; equal sharing

thus requires all agents to consume zero with probability one.

Consider an interval set of consecutive agents F on the line (see Figure 2A). The coali-

tional constraint for F is most likely to bind in the positive probability event where all

agents in F receive a positive shock +�. In this event, the zero consumption pro�le dictates

that members of F give jF j � � to the rest of the community; but they can only commit to

giving up c [F ] = 2c. Coalition proofness thus requires 2c � jF j � � for all F . However, for

any �xed c, this is violated for long enough intervals F . A similar negative result holds for

the more expansive plane network in Figure 2B. The perimeter of a square-shaped set F is

c [F ] = 4c
p
jF j; for a large enough square, this is smaller than jF j � �, which is how much

members of F would have to give up if they all get a positive shock +�.

However, these perimeter bounds do not rule out equal sharing for the yet more expansive

binary tree in Figure 2C. Here, the perimeter of any set F is at least � � jF j, and so for c � �,

no coalition of agents has to give up more than their group obligation in any realization.

These examples suggest that equal sharing can only be incentive compatible in networks

with good expansion properties, i.e., where the perimeter of sets grows in proportion with

set size. To measure expansiveness, we de�ne the �perimeter-area ratio�a[F ] = c [F ] = jF j,

where area stands for the number of agents in F . Intuitively, a [F ] represents the group�s

maximum obligation to the community relative to the group�s size. The next result tightens

7We consider in�nite networks here because they are useful for building intuition.
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the connection between expansiveness and insurance by characterizing full risk-sharing in

any network in terms of a [F ], under the assumptions that (1) the support of ei is the same

compact interval of length S for all agents; and (2) the support of ei given any realization

of (e�i) is the same as its unconditional support, for all i.8

Proposition 1 [Limits to full risk-sharing] Under the above assumptions, equal sharing

is supported by an incentive-compatible risk-sharing arrangement if and only if for every

subset of agents F the perimeter-area ratio satis�es a [F ] �
�
1� jF j

jW j

�
S.

The condition implies that a [F ] must be greater than the constant S=2 for any set of

size at most half the community. In particular, a [F ] must be bounded away from zero

for such sets as the network size grows without bound. The intuition builds on our earlier

examples: risk-sharing between F and the rest of the community is hardest to support when

everyone in F gets the maximum realization and everyone outside F gets the minimum. The

above inequality ensures that the group has a large enough perimeter to credibly pledge the

required resources even in such extreme realizations. The condition is violated for big groups

on the line and plane networks because a [F ] can be arbitrarily small, and only holds for

highly expansive graphs like the binary tree.9

Full insurance in real world networks. We use data from a village community in Huaraz,

Peru to show that real-world networks are unlikely to be expansive enough to allow for full

insurance.10

Figure 3A compares the expansiveness of the Huaraz network with the line, plane, and

in�nite binary tree. For all these networks, link capacities are assumed to be equal across links

and normalized so that the per household average capacity is one. To measure expansiveness,

we construct, for each household, a collection of �ball� sets which contain all households

within a �xed social distance r. We then calculate the average of the perimeter-area ratio

and set size for each r, and plot the perimeter-area ratio as a function of size for all four

networks. Comparing across our three example networks illustrates our earlier discussion:

8Bloch et al. (2008) impose the same condition on endowment shocks in their Assumption 1.
9Families of networks where the perimeter-area ratio is bounded below by a positive constant are called

�expander graphs�in the computer science literature.
10The data was collected by Dean Karlan, Markus Mobius and Tanya Rosenblat and is described in

Appendix B in more detail.
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Figure 3: Expansiveness of the social network in Huaraz, Peru
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the perimeter-area ratio goes to zero quickly for the line network, goes to zero more slowly

for the plane, and remains bounded away from zero for the binary tree.

The key curve in the Figure is the heavy line representing the social network in Huaraz.

This curve lies slightly above the plane but well below the in�nite binary tree, and approaches

zero as set sizes grow, with a slope that parallels the curve for the plane. It follows that

the Huaraz network is less expansive than the in�nite binary tree, and hence our model

predicts that full insurance is not coalition-proof. The result is the same if we look at the

two sub-network of relatives and non-relative friends, respectively, in Figure 3B: the non-

relative network is slightly more expansive, but does not approach the expansiveness of the

binary tree.

Figure 3 suggests that the expansion properties of the Huaraz network are similar to the

plane. A plausible reason is that the Huaraz network, like many social networks in practice,

is partly organized on the basis of geographic distance. For example, the average distance

between two connected agents in this network is only 42 meters, while the average distance

between two randomly selected addresses is 132 meters. This correlation between distance

and network connections can result in expansion properties similar to the plane, if agents

tend to have friends at close physical distance in multiple directions, e.g., both horizontally

and vertically on a map. This logic suggests that to understand partial insurance in real
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world networks, we should focus on plane-like networks.

2.2 Partial risk-sharing in less expansive networks

Plane networks turn out to be just su¢ ciently well-connected to generate very good risk-

sharing in most states of the world. The key insight is that with a two-dimensional structure,

outcomes where the coalitional constraint binds under equal sharing become rare. To see

the logic, consider again the regular plane with the i.i.d. +�=� � shocks. As we have seen,

equal sharing fails because households in a large n by n square F would need to give up n2 ��

resources if all of them get a positive shock, which is an order of magnitude larger than the

perimeter c [F ] � n.

The key is that for large n, such extreme realizations are unlikely, and in typical realiza-

tions the required transfers do not exceed the perimeter. With i.i.d. shocks, the standard

deviation of the group�s endowment is only n�, which is only of order n even though it is

the sum of n2 random variables � intuitively, a lot of the idiosyncratic shocks cancel out

within the group.11 Thus the �typical shock�in F has the same order of magnitude as the

maximum pledgeable amount, and hence potentially deviating coalitions are rare. The same

logic works with correlated shocks, as long as correlation declines fast enough with distance.

By way of contrast, the argument breaks down for the line, since the perimeter of even large

interval sets is only 2c, a constant.

2.3 Plane and line networks

Our intuitive analysis suggests that when shocks are not too correlated, risk-sharing on the

plane should be reasonably good, and substantially better than on the line. We �rst formalize

these ideas and then extend them to less regular networks.

Partial risk-sharing measure. We measure partial risk-sharing as the average utility loss

relative to the benchmark of equal sharing where all agents consume the average endowment

e = eW=jW j :
11The sum of n2 i.i.d. random variables has variance n2�2 and hence standard deviation n�.
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UDISP (x) = E
1

jW j
X
i2W

fUi (e)� Ui (xi)g :

This �utility-based dispersion,� is simply the di¤erence between average utility under

partial and full sharing. Here we ignore the dependence of utility on link consumption to

simplify notation.

If all agents have the same quadratic utility function over x, then we can express UDISP as

an increasing function of

SDISP (x) =

"
E
1

jW j
X
i2W
(xi � e)2

#1=2
; (2)

which is the square-root of the expected cross-sectional variance of x. For non-quadratic

utilities, SDISP (x) can be interpreted as a second order approximation of the utility based

measure. SDISP is a tractable measure that inherits the intuitive properties of UDISP :

it is zero only under equal sharing and positive otherwise, and its magnitude measures the

departure from equal sharing: e.g., if ei are +�=�� with equal probabilities, then in autarky

SDISP (e) = �. We use SDISP as our central measure in the analysis below.12

Shocks with limited correlation. While we focused on i.i.d. symmetric shocks in our

example, the formal result accommodates much more general endowment shocks. The key

requirements are that shocks do not have fat tails and are not too correlated; we formalize

these using assumptions (P1) to (P5) below. From now on we use the convention that

K, K 0 and K 00 denote positive constants, but their values at di¤erent occurrences may be

di¤erent.

We model the source of uncertainty as a collection of independent random variables yj,

j = 1; :::;1, which can represent both idiosyncratic shocks like illness and aggregate shocks

like weather. Like in a factor model, endowments are determined as linear functions of these

basic shocks: ei =
P

j �ijyj.where �ij measures the extent to which agent i is exposed to

shock j. We assume that ei and yj satisfy the following.

12Equation (2) only de�nes SDISP for �nite networks. For in�nite networks, we de�ne it to be the lim
sup of (2), taken over an increasing sequence of ball sets centered around some agent i. For the line and the
plane, the choice of i does not a¤ect this lim sup.

15



(P1) [Thin tails] yj are independent, have zero mean and unit variance, and satisfy that

there exists K > 0 such that log[E(exp [�yj])] � K�2=2 for all � > 0.

(P2) [Bounded variance] There exists K > 0 such that
P

j �
2
ij < K for all i.

(P3) [Limited correlation] Endowments satisfy �F= jF j � K � jF j�1=2 for some K > 0,

where �F is the standard deviation of eF .

(P4) [More people have more risk] For all G � F , we have �G � �F .

(P5) [Sharing with more people is always good.] For all G � F , we have �F= jF j �

�G= jGj.

Here (P1) is a uniform bound on the moment-generating function of yj, which allows us

to use the theory of large deviations to bound the tails of ei. (P1) is satis�ed for example

if yj are i.i.d. normal, or if they have a common compact support. Property (P3) requires

that shocks are not too correlated, so that aggregate uncertainty disappears at the same

rate as the square root of set size. This condition considerably relaxes the i.i.d. assumption;

for example, on the line or plane, (P3) is satis�ed if the correlation between ei decays

geometrically with network distance.

Formal results. We now state the formal result on risk-sharing on the plane and line

networks. We focus on in�nite networks because they are more convenient for stating our

asymptotic result.

Proposition 2 Under properties (P1)-(P5), there exist positive constants K, K 0 and K 00

such that

(i) On the in�nite line with capacities c and i.i.d. shocks, we have SDISP (x) � K=c

for all incentive-compatible risk-sharing arrangements.

(ii) On the in�nite plane with capacities c, we have SDISP (x) � K 0 exp
�
�K 00c2=3

�
for

some incentive-compatible risk-sharing arrangement.

This Proposition characterizes the rate of convergence to full risk-sharing as capacities

increase. The contrast between the line and plane is remarkable. Risk-sharing is relatively

poor on the line: SDISP goes to zero at a slow polynomial rate of 1=c as c goes to in�nity. In

contrast, the rate of convergence for the plane is exponentially fast, con�rming our intuition

that agents are able to share typical shocks due to the more expansive structure.
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The proof of (i) essentially builds on our earlier arguments: for long enough intervals,

much of the interval-speci�c shock must remain trapped in the set, because the perimeter is

only 2c. Even if agents perfectly smooth inside the interval, overall dispersion remains high.

The result for the plane is much more di¢ cult, and requires going beyond our previous

intuition: even though the coalitional constraint is rarely violated for any particular set F,

we need an allocation that satis�es the constraints of all sets. Equivalently, we need to

construct a transfer arrangement such that the typical �ow on every link meets the capacity

constraint. The key idea is to construct this arrangement from the ground up. First we

partition the plane into 2 by 2 squares of agents and implement equal sharing in each of

these. Then we implement fully sharing in 4 by 4 squares, then in 8 by 8 ones, and so

on. After n iterations, we obtain full sharing of endowments in 2n by 2n �super-squares�.

Because each link is used once in every round, the construction uses every link at most n

times. By our earlier intuition, each time a link is used, the required transfer is typically of

order one, resulting in a total �ow per link of order n. This is the uniform bound on the �ow

over every link that we require for exponentially good risk-sharing. Since the arrangement

does not yet account for capacity constraints, we use the theory of large deviations to bound

the exceptional event when incentive compatibility is violated, obtaining the bound in the

proposition.

Simulations. Numerical simulations suggest that the asymptotic results of the Proposi-

tion provide a good description of behavior for �nite c as well. Figure 4 shows constrained

optimal allocations for �nite line and plane networks, for a given realization of uniform shocks

with support [�1; 1].13 Figure 4A shows the endowment realizations for both the line and

the plane network: darker red (green) squares correspond to lower (higher) endowments.

We use the same vector of realizations for both networks. The SDISP of these realizations

is 0:55 in the absence of any insurance. Now consider Figure 4B, where we assume that

the average capacity per agent is 1: thus each link has value c = 0:5 in the line network

and c = 0:25 in the plane. For these capacities, the �gure depicts the optimal, SDISP

minimizing incentive compatible allocation. The contrast between the line and the plane is

13In the simulations opposing edges of the networks are connected, so the line is in fact a circle and the
plane a torus.
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Figure 4: Risk-sharing simulations on the line and the plane for increasing capacities

Panel A: initial endowments (uniform over [−1,1])
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Panel B: risk-sharing with total capacity 1 per agent
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Panel C: risk-sharing with total capacity 1.4 per agent
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Panel D: risk-sharing with total capacity 2 per agent
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remarkable: for the line, we see substantial color variation re�ecting imperfect risk-sharing

(SDISP = 24%), while the plane achieves better insurance (SDISP = 12%). As capaci-

ties increase, the contrast becomes sharper. In Figure 4C, the per capita capacity in both

networks is assumed to be 1:4, SDISP on the line is still 20%, while on the plane it falls to

3%. Finally, in Figure 4D, when the per capita capacity is 2, dispersion on the line falls to

14% while full risk-sharing is achieved on the plane (SDISP = 0). We conclude that the

asymptotic results of the Proposition provide a good characterization of insurance behavior

in �nite networks and for �nite c as well.

2.4 Geographic networks

If real world networks are similar to the plane, Proposition 2 suggests that they should allow

for reasonably good risk-sharing. However, as Figure 1 illustrates, real-world social networks

have a much less regular structure. Nevertheless, these networks can often be represented in

a way that closely resembles a regular plane, because in the physical map of the community,

households tend to have social connections at close distances and in multiple directions.

Intuitively, if a su¢ ciently accurate representation of this sort does exist, then our results

on good risk-sharing are likely to carry over to real world social networks.

To formally de�ne what makes a representation �su¢ ciently accurate,�we consider (1)

a function � : W ! R2 that maps agents in a social network to locations in R2; and (2) a

two dimensional grid that divides R2 into squares of side length A. This pair constitutes an

even representation if the number of households inside each grid cell is uniformly bounded

by positive constants from below and above. The representation is local if geographically

close agents are connected through a path that is also geographically close: for any d > 0

and i and j at geographic distance d (� (i) ; � (j)) � d, there is a path connecting i and j

such that for all agents h in the path, d (� (i) ; � (h)) is bounded from above by a constant

that only depends on d. Finally, the representation exhibits no separating avenues if the

sum of capacities of links between any two neighboring squares is uniformly bounded away

from zero; this is the key condition that guarantees plane-like expansion properties.

A network is called a geographic network if it has a representation that is even, local, and
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has no separating avenues, and all link capacities are bounded away from zero.14

Corollary 1 In a geographic network, if (P1)-(P5) is satis�ed, then there exist positive con-

stants K 0 and K 00 such that SDISP (x) � K 0 exp
�
�K 00

c2=3
�
for some incentive-compatible

risk-sharing arrangement.

Thus the risk-sharing properties of geographic networks are similar to the plane. The

proof combines Proposition 2 with a renormalization argument. We take a geographic net-

work, and superimpose on its planar representation a grid with A by A squares. We then

merge all people within each square to create a new network. Because of the key no separat-

ing avenues condition, this new network is essentially a plane, and hence Proposition 2 (ii)

can be applied to yield a bound for SDISP in the new network. We then pull this bound

back to the old network using the fact that the embedding is even and local.

Geographic networks in practice. We next check whether the Huaraz village network is

a geographic network. Figure 5A shows the natural geographic map of household locations,

referred to as lots, in this village. In Figure 5B the horizontal and vertical coordinates of the

map are re-scaled to �t the community into the unit square, and a grid of 16 squares is also

depicted. As is clear from Figure 5B, this representation is unlikely to satisfy the geographic

networks condition, because there are empty squares and the distribution of agents is quite

heterogeneous. To construct a �geographic� representation of this Huaraz community, we

transform the map using a di¤usion algorithm described in detail in the supplementary

appendix. The basic idea is to stretch the network uniformly over the unit square using

a procedure in which nearby lots �repel� each other and hence lots will tend to escape to

empty spaces. Figures 5C and 5D depict the result after one and �ve rounds of iteration: the

distribution of lots becomes gradually more homogenous. After 23 iterations (Figure 5E),

the distribution of lots is almost completely uniform. Figure 5E also shows the number of

lots in each of the 16 squares, con�rming that we have an even embedding.

To evaluate the key �no separating avenues�condition, Figure 5E also shows the number

14A geographic network is by assumption in�nite; we de�ne SDISP for these networks as the lim sup of
(2) over a sequence of increasing squares in the map representation. The exact sequence does not matter for
the results.
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Figure 5: Stretching a real-world network to construct a geographic representation

Panel A: original map of Huaraz community
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Panel B: iteration 0

A.1
A.2

A.4

A.5
A.6

A.7

A.8

A.9

A.12

A.14

A.15

A.17

A.18
A.19

A.21
A.22

A.23

A.27
A.28

A.29
A.31

A.32
A.33

A.34A.35

A.36

A.38

A.39

A.40

A.42A.43
A.44

A.45

A.46

A.47

A.49

B.1

B.5
B.6

B.8
B.9

B.11
B.12

B.13

B.14

B.15

B.18

B.19

B.21

B.22

C.2
C.3

C.4
C.5

C.6

C.9
C.10

C.11
C.12

C.13
C.14

C.18

C.19

D.1
D.2

D.3

D.6

D.12

D.13D.14D.15

D.20

D.23

D.24

D.26

E.1E.4
E.5

E.6

E.9E.11E.12

E.13

E.14

E.16
E.17

E.18

E.22

E.23E.24

E.25
E.26

E.27
E.29

E.31
E.32

E.33

E.37

E.43

E.46

E.49

E.50 E.53

F.1

F.3
F.4

F.5F.7

F.10

F.12

F.14

F.15

F.18
F.20

F.21

F.22

F.24
F.25F.27F.28

F.29

F.30

F.32

G.2

G.3
G.4

G.5

G.6

G.8

G.9

G.10
G.13G.14

G.17

G.20

G.21

G.22

G.28

G.29
G.30

G.31

G.32
G.33

G.34
G.35

G.36

G.39

G.40
G.43

H.1

H.3

H.5

H.6

H.8H.10H.11H.12

H.13H.14
H.15

H.17H.18H.19

H.20H.21

I.1I.2
I.4

I.6

I.8
I.10

I.12
I.13

I.15

I.16

I.17I.18

I.20

I.21

I.22

I.23I.24
I.25

J.1
J.2J.3

J.4 J.5

J.6
J.7

J.9

J.10

J.12

J.15

X.1

X.2

X.3

X.4

X.5

X.6

X.7

X.8

X.9

Panel C: iteration 1

A.1A.2

A.4

A.5

A.6

A.7

A.8

A.9

A.12

A.14

A.15

A.17

A.18
A.19

A.21

A.22
A.23

A.27
A.28

A.29
A.31

A.32

A.33

A.34A.35

A.36

A.38

A.39

A.40

A.42
A.43

A.44

A.45

A.46

A.47

A.49

B.1
B.5

B.6

B.8
B.9

B.11
B.12

B.13

B.14

B.15

B.18

B.19

B.21

B.22

C.2
C.3

C.4
C.5

C.6

C.9
C.10

C.11
C.12

C.13
C.14

C.18

C.19

D.1

D.2

D.3

D.6

D.12

D.13
D.14

D.15

D.20

D.23

D.24

D.26

E.1E.4
E.5

E.6

E.9E.11
E.12

E.13

E.14

E.16

E.17
E.18

E.22

E.23 E.24

E.25
E.26

E.27
E.29

E.31

E.32

E.33

E.37

E.43

E.46

E.49

E.50 E.53

F.1

F.3
F.4

F.5
F.7

F.10

F.12

F.14

F.15

F.18

F.20

F.21

F.22

F.24
F.25F.27F.28

F.29

F.30

F.32

G.2
G.3

G.4

G.5

G.6

G.8

G.9

G.10

G.13G.14

G.17

G.20

G.21

G.22

G.28

G.29
G.30

G.31

G.32
G.33

G.34
G.35

G.36

G.39

G.40

G.43

H.1

H.3

H.5

H.6

H.8H.10H.11H.12

H.13
H.14

H.15

H.17H.18H.19

H.20 H.21

I.1
I.2

I.4

I.6

I.8

I.10

I.12
I.13I.15

I.16

I.17
I.18

I.20

I.21

I.22

I.23I.24
I.25

J.1
J.2J.3

J.4 J.5

J.6

J.7

J.9

J.10

J.12

J.15

X.1

X.2

X.3

X.4

X.5

X.6

X.7

X.8

X.9

Panel D: iteration 5

A.1A.2A.4

A.5

A.6

A.7

A.8

A.9

A.12

A.14

A.15

A.17

A.18

A.19

A.21

A.22

A.23
A.27

A.28

A.29

A.31

A.32

A.33

A.34
A.35

A.36

A.38A.39

A.40

A.42
A.43

A.44

A.45

A.46

A.47

A.49

B.1
B.5

B.6
B.8

B.9
B.11

B.12
B.13

B.14

B.15

B.18

B.19

B.21

B.22

C.2
C.3

C.4

C.5C.6

C.9

C.10

C.11

C.12
C.13C.14

C.18

C.19

D.1

D.2

D.3

D.6

D.12

D.13

D.14

D.15
D.20

D.23

D.24

D.26

E.1
E.4

E.5

E.6

E.9

E.11

E.12

E.13

E.14

E.16

E.17

E.18

E.22

E.23
E.24

E.25
E.26

E.27

E.29

E.31

E.32

E.33

E.37

E.43

E.46

E.49

E.50

E.53

F.1

F.3

F.4

F.5

F.7

F.10

F.12

F.14

F.15

F.18

F.20

F.21

F.22

F.24

F.25

F.27

F.28

F.29
F.30

F.32

G.2 G.3

G.4
G.5

G.6

G.8

G.9

G.10

G.13
G.14

G.17

G.20

G.21
G.22

G.28
G.29 G.30

G.31

G.32

G.33

G.34

G.35

G.36

G.39 G.40

G.43

H.1

H.3

H.5

H.6

H.8

H.10

H.11

H.12

H.13
H.14

H.15

H.17
H.18

H.19

H.20
H.21

I.1

I.2

I.4

I.6

I.8

I.10

I.12

I.13

I.15

I.16

I.17

I.18

I.20

I.21

I.22

I.23I.24

I.25

J.1
J.2

J.3

J.4

J.5

J.6

J.7

J.9

J.10

J.12

J.15

X.1

X.2

X.3

X.4

X.5

X.6

X.7

X.8

X.9

Panel E: iteration 23

284

11

1

10

17

11

281

9

17

1813

1

9

1928

8

2

71

8

8

728

22

8

2018

2

22

419

6

8

137

35

6

157

19

35

1820

8

19

44

0

3

013

20

0

115

30

20

1318

3

30

A.1A.2A.4

A.5

A.6A.7

A.8

A.9

A.12

A.14

A.15

A.17

A.18

A.19

A.21

A.22

A.23

A.27

A.28

A.29
A.31

A.32

A.33A.34

83.A63.A53.A A.39

A.40

A.42A.43

A.44

A.45

A.46

A.47

A.49

B.1

B.5

B.6

B.8

B.9 B.11

B.12 B.13

B.14

B.15

B.18

B.19

B.21

B.22

C.2

C.3

C.4

C.5

C.6

C.9

C.10

C.11

C.12

C.13

C.14

C.18

C.19

D.1

D.2

D.3

D.6

D.12

D.13

D.14

D.15

D.20

D.23

D.24
D.26

E.1

E.4

E.5

E.6

E.9

E.11

E.12

E.13

E.14

E.16

E.17

E.18

E.22

E.23

E.24

E.25

E.26

E.27

E.29

E.31

E.32

E.33

E.37

E.43

E.46

E.49

E.50

E.53

F.1

F.3
F.4

F.5

F.7

F.10

F.12

F.14

F.15

F.18

F.20

F.21

F.22

F.24
F.25

F.27

F.28

F.29
F.30

F.32

G.2

G.3

G.4

G.5

G.6

G.8

G.9

G.10

G.13

G.14

G.17

G.20

G.21

G.22

G.28

G.29 G.30

G.31 G.32
G.33

G.34

G.35G.36

G.39

G.40

G.43

H.1

H.3

H.5

H.6

H.8

H.10

H.11

H.12

H.13H.14

H.15

H.17
H.18

H.19

H.20

H.21

I.1

I.2

I.4

I.6

I.8
I.10

I.12

I.13

I.15

I.16

I.17

I.18

I.20

I.21

I.22

I.23

I.24

I.25

J.1

J.2

J.3

J.4

J.5

J.6

J.7

J.9

J.10

J.12

J.15

X.1

X.2

X.3

X.4

X.5

X.6

X.7

X.8

X.9

14

12

12

10

11

13

13

14

10

13

13

17

9

11

13

18

)

21



of links crossing the sides of each square.15 The agreement with our theoretical condition is

very good: except for one side of the square in the lower right corner, there are no separating

avenues between any two neighboring squares. To better understand what drives the success

of this embedding, note that in Figure 5E each of the 16 squares is di¤erently colored, and

the corresponding households are represented by the same colors in panels A to D as well. In

the original image (Figure 5A), households are geographically concentrated by color; hence

the reason why the Huaraz network has similar expansion properties as the plane is that

households tend to have friends in multiple directions at close distance in the original map.

Numerical simulations suggest that the Huaraz social network in fact behaves very much

like the plane network. We use simulations to calculate SDISP for uniform shocks with

support [�1; 1] and per capita capacities 1, 1:4 and 2. We obtain SDISP equal to 0:20, 0:11

and 0:02, respectively, which tracks the rapid decline of SDISP on the plane.

The �nding that the Huaraz community is a �geographic network�in part because con-

nections are correlated with physical distance suggests that village networks in developing

countries may be similarly expansive. Our results then imply that typical village networks

should facilitate high, although imperfect, levels of informal risk-sharing �a result consistent

with the empirical �ndings of Townsend (1994), Ogaki and Zhang (2001), Mazzocco (2007)

and others.

2.5 Risk-sharing ability of a group

One commonly used approach to testing full risk-sharing in the data is to regress the con-

sumption of an individual or a group on their own endowment and a community-wide shock.

A variant of this regression when there is no aggregate uncertainty is

xF = �+ � � eF + "

where consumption in F is regressed on the endowment shock of F . Equal sharing implies

� = 0; this corresponds to the test of full risk-sharing used in Cochrane (1991), Mace

15Opposing sides of the large square are assumed to be geographically next to each other, generating the
topology of a torus.
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(1991), Townsend (1994) and others. When � 6= 0, equal sharing is rejected; however, small

magnitudes of the coe¢ cient can be interpreted to mean that agents in F share their risk with

the rest of the community reasonably well. The following result supports this interpretation.

Proposition 3 We can bound the regression coe¢ cient � as

1� c [F ]
�F

� �:

This lower bound is a function of the perimeter c [F ] relative to the standard deviation

of the community-speci�c shock �F . The intuition is familiar: when the perimeter of a set

is small, much of the idiosyncratic shock is trapped inside F , resulting in higher correlation.

The Proposition is related to Townsend�s (1994) �nding that there is considerable risk-sharing

within, but only limited sharing across villages, as well as Rosenzweig and Stark (1989) who

show that Indian households try to create cross-village family links through marriage. Our

results are consistent with these facts if cross-village network ties are relatively weaker.

3 Constrained e¢ cient risk-sharing

In this section, we study constrained e¢ cient arrangements which are Pareto-optimal given

the enforcement constraints imposed by the network. Such second-best arrangements are a

natural benchmark because they achieve the highest possible level of risk-sharing in a given

network. As we show below, foundations for these arrangements include both simple rules

of thumb and dynamic coalitional bargaining.

3.1 Risk-sharing islands

Our main result is that constrained-e¢ cient insurance arrangements exhibit an �island struc-

ture.�For every realization of endowments, connected islands of agents emerge endogenously,

such that risk-sharing is perfect within each island, while links between di¤erent islands are

�blocked�in the sense that transfers equal the link capacities. This result follows from the

equivalence between constrained e¢ cient arrangements and a planner�s problem formalized

below.
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The intuition for islands can be seen by focusing on a utilitarian social planner who

maximizes average expected utility. Whenever two agents consume di¤erent amounts, this

planner can increase welfare by shifting a small amount from the agent with higher- to the

one with lower consumption. But in the optimum, such shifts must violate the enforcement

constraints. Hence linked agents either consume the same amount and belong to the same

�island�, or consume di¤erent amounts and are connected by a blocked link that does not

allow for further transfers. Panels B-D of Figure 4 depict constrained e¢ cient allocations

corresponding to such a social planner: islands within which consumption is equalized are

indicated by di¤erent colors.

For a formal analysis, let (�i) be a set of positive weights, and de�ne the planner�s problem

as

max
(t)

X
i2W

�i � EUi (xi) (3)

subject to the constraint that all transfers respect the capacity constraints of the social

network.

Proposition 4 Every constrained e¢ cient risk-sharing arrangement is the solution to a

planner�s problem with some set of weights (�i). Conversely, any solution to the planner�s

problem is constrained e¢ cient.

Wilson (1968) establishes a similar equivalence result for risk-sharing in syndicates. His

proof builds on the convexity of the set of possible payo¤vectors. Since an e¢ cient allocation

must lie on the boundary of this set, convexity implies the existence of a tangent hyperplane

with some normal vector (�i). Maximizing a planner�s problem with these �i weights will then

select the e¢ cient allocation. Adapting this argument to our model requires that the set of

coalition-proof payo¤vectors be convex. This is straightforward given the perfect substitutes

speci�cation: when two transfers satisfy a capacity constraint, their convex combination will

also satisfy it.16 The formal proof is provided in Appendix A.

Observe that maximizing the planner�s expected utility E
P
�iUi is equivalent to max-

imizing realized utility
P
�iUi independently for each state. This yields a set of intuitive

16See section 4 for extending this result to imperfect substitutes.
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�rst-order conditions for each realization. To state these conditions, recall that a link from

i to j is blocked in a given realization if tij = c (i; j), i.e., if the link is used at full capacity.

Proposition 5 An incentive-compatible arrangement (tij) is constrained e¢ cient if and only

if there exist positive weights (�i)i2W such that for every i; j 2 W one of the following

conditions hold:

1) �iU 0i(xi) = �jU
0
j(xj)

2) �iU 0i(xi) > �jU
0
j(xj) and the link from j to i is blocked

3) �iU 0i(xi) < �jU
0
j(xj) and the link from i to j is blocked.

This result generalizes our earlier intuition for arbitrary welfare weights. Su¢ ciency

and uniqueness of the �rst-order conditions follow from the strict concavity of the planner�s

objective function and the convexity of the domain. The Proposition also implies that for

any pair of agents i and j, if �iU 0i < �jU
0
j, then along every all path connecting i and j, at

least one link must be blocked. Therefore, in any realization agents can be partitioned into

connected risk-sharing islands such that within an island agents share risk perfectly, while

cross-island insurance is limited because boundary links operate at full capacity.

Proposition 6 [Risk-sharing islands] In any realization (ei) the set of agents can be parti-

tioned into connected components Wk such that �iU 0i = �jU
0
j if i; j 2 Wk, and jtijj = c (i; j)

if i 2 Wk; j =2 Wk.

Sharing islands partition the network in each realization. Using the coalitional inter-

pretation, these islands can be thought of in terms of �almost-deviating coalitions.� For

example, if all links on the boundary of an island are blocked in the outward direction,

then members of this are transferring the highest amount they can credibly pledge to the

community, and hence are indi¤erent to deviating as a coalition. More generally, it can be

shown that the island decomposition obtains by splitting the network along the boundaries

of all almost-deviating coalitions. In e¤ect, almost deviating coalitions act as �bottleneck

groups�limiting the �ow of resources in a way parallel to the bottleneck agents emphasized

in Bloch et al. (2008). The emergence of network-based risk-pooling islands is consistent
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with evidence documented by Attanasio et al. (2009) that about the importance of social

ties in the formation of insurance groups in Colombian villages.

When link capacities increase, the planner becomes less constrained and risk-sharing

islands tend to grow in size. This is illustrated by Figure 4, panels B to D. In Figure 4B,

where per capita capacity is one, insurance is fairly local: there are 30 islands on the line

and 17 on the plane. As the per capita capacity goes up to 1:4, in Figure 4C there are 17

islands on the line and only 4 on the plane; and in Figure 4D where average capacity is 2

per agent, there are 13 islands on the line and just one, fully insured island on the plane. In

these simulations, the number of islands closely tracks the degree of insurance.

As is clear from Figure 4, in the island partition the size and location of islands, and hence

the set of agents who fully share each others�shocks, is endogenous to the realization and

the network. This result di¤erentiates our model from group-based models of risk-sharing,

where insurance groups are exogenous and do not vary with the realization.

3.2 Spillover e¤ects and local sharing

The island result also helps us characterize how shocks propagate in the network as a function

of social distance. We show that shocks are shared to a greater degree with socially close

agents, and hence network-based insurance is local : the consumption of socially close agents

comoves more strongly than that of socially distant ones.

To formalize this point, we must introduce a slightly stronger de�nition of risk-sharing

islands. Fix an endowment realization (ei), and letW (i) denote the sharing island containing

i as de�ned above. We now de�ne cW (i) to be the maximal connected set of agents j such
that there exists a path between i and j along which no links are blocked in either direction.

With this de�nition, cW (i) � W (i), because Proposition 6 implies that links connecting

di¤erent islands are all blocked. Except for knife-edge cases when the transfer amount just

reaches the capacity over a link but does not �bind�yet, the two de�nitions are equivalent:cW (i) = W (i). It can be shown that these knife-edge cases have zero probability when the
distribution of shocks is absolutely continuous, and hence the two de�nitions can be treated

as equivalent for practical purposes.

We now explore the e¤ects of an idiosyncratic shock to one agent�s endowment on the
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consumption of others. Fix a constrained e¢ cient arrangement, and consider two realizations

e = (ei) and e0 = (e0i), where e
0
i < ei for some i but e

0
j = ej for all others j 6= i. E¤ectively,

agent i is experiencing an idiosyncratic negative shock in e0 relative to e (or a positive shock

like aid in e relative to e0). We can measure the impact of this negative shock on another

agent j by computing the ratio of marginal utilities of j before and after the shock. Formally,

let x and x0 denote the consumption vectors associated with e and e0, then we can de�ne

MUCj =
U 0j (x

0)

U 0j (x)

which measures the marginal utility cost of the shock for agent j. A largerMUCj corresponds

to a higher increase in marginal utility and hence a greater consumption drop.

Proposition 7 [Spillovers and local sharing] In any second best arrangement x:

(i) [Monotonicity] xj(e0) � xj(e) for all j, and if j 2 cW (i) then xj(e0) < xj(e).

(ii) [Local sharing] There exists � > 0 such that jei � e0ij < � implies MUCi = MUCj

for all j 2 cW (i), and xj (e0) = xj (e) for all j 2 WnW (i):
(iii) [More sharing with close friends] For any j 6= i, there exists a path i! j such that

for any agent l along the path, MUCl �MUCj.

Part (i) shows that spillovers are monotone: If one agent receives a negative shock,

the consumption of everybody else either decreases or remains constant. Moreover, the

agent is partially insured by all others in the same risk-sharing island, who all reduce their

consumption by a positive amount. Thus unless i is in a singleton island, he has access to at

least some insurance. Intuitively, links within cW (i) are not blocked, and hence all members

of the island can help out a little. As part (ii) shows, for small shocks, the set of agents

who insure i is exactly cW (i). All these agents share an equal burden measured in terms of

the marginal utility cost MUC. Agents outside of W (i) do not reduce their consumption

at all.17 Finally, (iii) shows how the utility cost of agents varies by social distance. Indirect

friends provide less insurance to i than direct friends: for any agent j 6= i, there exists some

direct friend of i, denoted l, who shares at least as much of the burden of the shock as j

does.
17In the knife edge case where cW (i) 6=W (i), agents in W (i) ncW (i) may or may not share.
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Figure 6: Utility cost of shocks to direct and indirect friends
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The results of Proposition 7 are summarized in Figure 6, which shows the marginal

utility cost of direct and indirect friends in response to a shock to i. The horizontal axis

is the marginal utility cost of i himself while the vertical axis measures the MUC of direct

and indirect friends. For small shocks, both direct and indirect friends in the same island

help out. As the size of the shock grows, some indirect friends hit their capacity constraints

(dotted line), but some direct friends continue to help (heavy line). After a point, all direct

friends hit their capacity constraints and additional increases in the shock are fully borne

by agent i. These implications can be used to test our model against other theories of

limited risk-sharing, which do not predict variation in the degree of insurance as a function

of network distance.

The results of Proposition 7 are consistent with the empirical �ndings in Angelucci and

De Giorgi (2009), who show that Progresa, a conditional cash transfer program in rural

Mexico, leads to an increase in the consumption of the non-treated, which they attribute

to the spillover e¤ect of aid through the social network of the village. This is the logic of

part (i) in the Proposition. Angelucci et al. (2008) also show that much of the increase in

the consumption of the non-treated is due to the consumption increase of households who

are relatives of the treated, consistent with (ii) and (iii). The agreement between our results
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and existing evidence suggests that a calibrating our model may be useful for quantifying

the welfare e¤ects of development aid taking into account network-based spillovers.

3.3 Foundations for constrained e¢ ciency

We now brie�y discuss two intuitive dynamic mechanisms that provide foundations for con-

strained e¢ ciency. The supplementary appendix contains the corresponding formal results.

First consider a decentralized procedure where agents use a simple rule of thumb in help-

ing those who are in need. In every round, agents attempt to equate weighted marginal

utilities between neighbors subject to the capacity constraints: intuitively, people help out

less fortunate friends. This procedure converges to the constrained e¢ cient allocation corre-

sponding to the welfare weights used. In particular, constrained e¢ ciency can emerge even

if in every transaction agents only use local information about the current resources of the

parties involved.18

A second mechanism is collective dynamic bargaining with renegotiation. Gomes (2000)

shows that when agents can propose renegotiable arrangements to subgroups and make side-

payments in a dynamic bargaining procedure, ultimately a Pareto-e¢ cient arrangement will

be selected.19 This result can be incorporated in our model by assuming that there is a

negotiations phase prior to the endowment realization, and would imply that agents select

a constrained e¢ cient risk-sharing arrangement.

We also note that constrained e¢ cient arrangements are particularly stable in that they

are also robust to ex ante coalitional deviations, not just ex post ones.

4 Discussion: General preferences

This section discusses how our results extend when goods and friendship are imperfect sub-

stitutes. Formal statements and proofs are presented in the supplementary appendix, here

we only summarize our �ndings.

18Bramoulle and Kranton (2006) use a similar procedure with equal welfare weights and no capacity
constraints.
19Aghion, Antras and Helpman (2007) establish a similar result in a model involving renegotiating free-

trade agreements.
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With a general utility function U (x; c), the de�nition of incentive compatibility (IC) of

a transfer arrangement is the following:

De�nition 2 A risk-sharing arrangement t is incentive compatible (IC for short) if

Ui (xi; ci) � Ui (xi + tij; ci � c (i; j)) (4)

for all i and j, for all realizations of uncertainty.

Our key tool is a pair of necessary and su¢ cient conditions for incentive compatibility

with imperfect substitutes. To derive these, de�ne the marginal rate of substitution (MRS)

between good and friendship consumption as MRSi = (@Ui=@ci) = (@Ui=@xi). We say that

the MRS is uniformly bounded if there exist positive constants m < M such that m �

MRSi �M for all i, xi and ci.

When the MRS is uniformly bounded, (i) any IC arrangement must satisfy tij � M �

c (i; j), and (ii) any arrangement that satis�es tij � m � c (i; j) must be IC. The intuition is

that the MRS measures the relative price of goods and friendship. If this relative price is

always between m andM , then a transfer exceedingMc (i; j) is always worth more than the

link and hence never IC, but a transfer below mc (i; j) is always worth less than the link and

hence is IC. With perfect substitutes MRSi = 1, so we can set m = M = 1, which yields

Theorem 1.

4.1 The limits to risk-sharing with imperfect substitutes

With imperfect substitutes, the results in section 2 extend but the upper and lower bounds

on risk-sharing are weakened by constant factors that depend on the degree of substitution.

To obtain these extensions, we assume that the marginal rate of substitution (MRS) is

uniformly bounded. We continue to �nd that the �rst-best can only be achieved in highly

expansive graphs where the perimeter-area ratio is bounded from below: we require a [F ] �

�=M . Our �ndings about partial risk-sharing are about rates of convergence and hence they

extend without modi�cation; in particular, SDISP converges exponentially for geographic

networks.
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Imperfect substitution also yields additional implications. If the MRS is increasing

in consumption, then agents with low consumption value their friends less, reducing the

maximum amount they are willing to give up. As a result, if in a society that experiences

a negative aggregate shock, the scope for insuring idiosyncratic risk is reduced. We show

that reducing the endowments of all agents results in a smaller set of incentive compatible

transfer arrangements, and hence an increase in SDISP . The aggregate negative shock

is thus a double burden: besides its direct negative e¤ect on consumption, it also induces

worse sharing of idiosyncratic risks, a �nding consistent with Kazianga and Udry (2006), who

document limited informal insurance during the severe draught of 1981-85 in rural Burkina

Faso.

4.2 Constrained e¢ cient arrangements

The key novelty with imperfect substitutes is that changing the goods consumption of an

agent a¤ects his implied link values and hence incentive compatibility. To characterize con-

strained e¢ ciency, we assume that the marginal rate of substitution MRSi de�ned above is

concave in xi. When this holds, we can generalize Proposition 4, establishing the equivalence

between constrained e¢ ciency and the planner�s problem.

To develop �rst order conditions, we next analyze the e¤ect of an additional dollar to

agent i on the planner�s objective. With imperfect substitutes, this marginal welfare gain

is no longer equal to �i times the marginal utility of i, because increased consumption also

softens enforcement constraints. The planner may wish to use these softer constraints and

transfer some of the original dollar to neighboring agents. To formalize this, we de�ne the

marginal social gain of an additional unit of transfer to i using an iterative procedure, which

takes into account the indirect e¤ect of softening constraints.

Using the concept of marginal social gain allows us to extend the characterization of

constrained e¢ cient agreements in Proposition 5. Given this result, we can also partition

the network into endogenous risk-sharing islands, such that marginal social utility is equalized

within islands, and all links connecting the island to the rest of the community are blocked.

Finally, for an agent i who is not on the boundary of his risk-sharing island and hence

has no links with binding constraints, the marginal social gain does equal �i times his
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marginal utility of consumption; hence, for such agents, the results of section 3 hold without

modi�cation. For example, weighted marginal utilities are equalized for any two such agents

in the same risk-sharing island. Thus if risk-sharing islands are �large�, then the results

from the perfect substitutes case hold without modi�cation for most agents.

5 Conclusion

This paper showed that the expansiveness of a social network determines the e¤ectiveness of

informal risk-sharing. We found that many real-life social networks are likely to be su¢ ciently

expansive to allow for good risk-sharing. We also characterized Pareto-optimal arrangements

and found that resources are shared among local groups.

In future work, we would like to develop a dynamic extension of our model, where the

value of a social link is partly derived from the present value of future insurance bene�ts

in the network. In such a model the values of social links, the network structure, and the

risk-sharing agreement would all be endogenized.

We also plan to extend our empirical analysis. Our model is su¢ ciently tractable that it

can be used to estimate the strength of di¤erent types of links from social network and con-

sumption data. Such estimates could be used for policy experiments, such as (i) measuring

the welfare e¤ects of development aid, taking into account network spillovers; or (ii) com-

paring the network structure of communities with di¤erent degrees of ethnic heterogeneity,

and exploring the implications for informal insurance.
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Appendix A: Proofs

Proof of Theorem 1

The theorem can be generalized to the case where links in the network are directed, so

that c (i; j) and c (j; i) may di¤er. In that environment, coalition proofness now requires that

eF � xF � cout [F ] (5)

where cout [F ] =
P

i2F;j =2F c(i; j) is the maximum amount that agents in F are willing to give

to the outside community. Here we present a proof of this more general result. Su¢ ciency
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follows from the discussion in the text. To prove necessity, let gi = ei � xi the amount

that i has to transfer away, and let gF =
P

i2F ei for any subset of agents F . Note that

gW = 0 by eW = xW . Let U be the set of agents for whom gi � 0 and let D = WnU .

De�ne the auxiliary graph G0 which has two additional vertices, s and t, and additional

edges connecting s with all agents in U , and additional edges connecting t with all agents in

D. For any i 2 U , de�ne the capacity c (s; i) = gi and c (i; s) = 0. Similarly, for any j 2 D,

let c (j; t) = �gj and c (t; j) = 0.

The auxiliary graph is useful, because implementing the desired consumption allocation

with a transfer scheme that meets the capacity constraints is equivalent to �nding an s! t

�ow in G0 that has value gU =
P

gi�0 gi. To see why, note that in the desired allocation,

exactly gi must leave each agent i 2 U . The capacities on the new links ensure that in any

s ! t �ow, at most gi can leave agent i. Similarly, to implement the target, exactly �gj
must �ow to each agent j 2 D, and the capacity on the (j; t) link ensures that this is the

maximum that can �ow to j. As a result, any �ow with value
P

gi�0 gi must, by construction,

take exactly gi away from i and deliver exactly gj to j.

We have reduced our implementation problem to a �ow problem. To compute the max-

imum s ! t �ow, we instead compute the value of the minimum cut. Fix a minimum cut,

let S be the set of agents in W that are still connected to s after the cut, and let T = WnS.

Clearly, if we consider the restriction of the cut to the original network G, there will be no

surviving paths connecting some agent in S with some other agent in T .

Let U1 � U denote those agents whose link with s is cut in the minimum cut of G0, and

let D1 � D denote those in D whose link with t is cut. Let U2 = UnU1 and D2 = DnD1

be the sets of agents whose link with s respectively t remains; then U2 � S and D2 � T ,

because otherwise there would be surviving path in G0 connecting s and t after the cut. This

also implies that gS � gU2 + gD1, because

gS = gS\U + gS\D � gU2 + (gD � gD2) = gU2 + gD1 (6)

where we used that gi � 0 when i is in U and negative when i is in D.
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The value of the cut in G0 can be bounded as

cut value � gU1 � gD1 + cout [S]

where the �rst two terms count the total capacity of links with s and t that have been

deleted, and the �nal term is a lower bound for links deleted from the original network G.

By assumption (5), cout [S] � eS � xS = gS, and using (6) we obtain

cut value � gU1 � gD1 + gU2 + gD1 = gU1 + gU2 = gU :

It follows that the value of the maximum �ow is at least gU , as desired.

Proof of Proposition 4

We prove the following more general result.

Suppose that the MRSi = (@Ui=@ci)=(@Ui=@xi) is concave in xi for every i. Then every

constrained e¢ cient arrangement is the solution to a planner�s problem with some set of

weights (�i), and conversely, any solution to the planner�s problem is constrained e¢ cient.

Proof. Let U� � RW be the set of expected utility pro�les that can be achieved by IC

transfer arrangements: U� = f(vi)i2W j9 IC allocation x such that vi �EUi (xi; ci) 8ig. Our

goal is to show that U� is convex. By concave utility, it su¢ ces to prove that the set of IC

arrangements is convex.

To show that the convex combination of IC arrangements is IC, �x an endowment real-

ization e and let x be an IC allocation. Consider an agent i, and for r � 0 de�ne y (r; xi) to

be the consumption level that makes i indi¤erent between his current allocation and reduc-

ing friendship consumption by r units, that is, U (xi; ci) = U (y (r; xi) ; ci � r). For di¤erent

values of r, the locations (y (r; xi) ; c� r) trace out an indi¤erence curve of i. Note that

y (0; xi) = xi and that the IC constraint for the transfer between i and j can be written as

tij � y (c (i; j) ; xi)� xi (7)

since y (c (i; j) ; xi) � xi is the dollar gain that makes i accept losing the friendship with j.
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Moreover, the implicit function theorem implies that

yr (r; xi) =
Uc
Ux
(y; ci � r) (8)

which is the marginal rate of substitution MRSi. This is intuitive: MRSi measures the

dollar value of a marginal change in friendship consumption. Using the concavity of the

MRS, we will show that y (r; xi) is a concave function in xi for any r � 0. When r = c (i; j),

this implies that the convex combination of IC allocations also satis�es the IC constraint

(7), and consequently, that the set of IC pro�les is convex.

To show that y (r; xi) is concave in xi, let x1, x2 be two IC allocations, and let x3i =

�x1i + (1� �)x2i for some 0 � � � 1. De�ne y (r) = �y (r; x1i ) + (1� �) y (r; x2i ), so that

(y (r) ; ci � r) traces out the convex combination of the indi¤erence curves passing through

(x1i ; ci) and (x
2
i ; ci), and let f (r) = U (y (r) ; ci � r), the utility of agent i along this curve.

Clearly, f (0) = U (x3; ci). Moreover, using (8),

f 0 (r) = Ux (y (r) ; ci � r) �
�
�
Uc
Ux

�
y
�
r; x1i

�
; ci � r

�
+ (1� �) Uc

Ux

�
y
�
r; x2i

�
; ci � r

��
� Uc (y (r) ; ci � r)

� Ux (y (r) ; ci � r) �
Uc
Ux
(y (r) ; ci � r)� Uc (y (r) ; ci � r) = 0

where we used the assumption that Uc=Ux is concave in the �rst argument. It follows that f

is nonincreasing, and in particular f (r) � f (0) or equivalently U (y (r) ; ci � r) � U (x3i ; ci),

which implies that y (x3i ; r) � y (r) = �y (r; x1i ) + (1� �) y (r; x2i ), and hence that y (x; r) is

concave.

Finally, let P (U�) denote the Pareto-frontier of U�. Since U� is convex, the supporting

hyperplane theorem implies that for every u0 2 P (U�) there exist positive weights �i such

that u0 2 argmaxU�
P

i �iui, as desired. The converse statement in the proposition holds

for any U�.
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Appendix B: Data

Dean Karlan, Markus Mobius and Tanya Rosenblat conducted a survey in November 2006

in a rural village close to Huaraz (Peru). The heads of households and spouses (if available)

of 223 households were interviewed. The survey consisted of two components: a household

survey and a social network survey. The household survey recorded a list of all members of

the household and basic demographic characteristics including gender, education, occupation

and income.

The social network component of the survey asked the head of household and the spouse

to list up to 10 non-relatives in the community with whom the respondent spends the most

time with in an average week. Respondents were also asked separately to list their �rst and

second-degree relatives (excluding relatives related through marriage). We use this data to

construct an undirected social network where two agents have a friendship link if one of

them names the other as a friend and as a relative link if one of them lists the other as

relative. We also added intra-household links between all members of a household which are

assumed to be of unlimited strength. Individuals have, on average, 1.84 relative links and

1.95 non-relative links.

In the survey, individuals were also asked whether they borrow or lend money or object

across each link. This data was aggregated on the household level and used to construct

�gure 1.
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Supplementary Material to: �Consumption
Risk-sharing in Social Networks�1

Attila Ambrus Markus Mobius Adam Szeidl
Harvard University Harvard University and NBER UC - Berkeley

January 2010

This material supplements the paper �Consumption Risk-sharing in Social Networks�.

First of all, we provide missing proofs for results stated in the main paper. Second, we

discuss �ve extensions to the main paper. (1) We provide game theoretic micro-foundations

to justify our assumption that links �die�when a promised transfer is not made. (2) We

provide background about the mathematical theory of network �ows used in the proofs of

the paper. (3) We formalize two decentralized mechanisms leading to constrained e¢ cient

allocations. (4) We formally develop the extensions of our main results to the case where

goods and friendship consumption are imperfect substitutes. (5) We explain the numerical

methods used to simulate the model and to construct the geographic network representation

of the real world Huaraz network.

A-1 Missing Proofs for Sections 1 to 4

Proof that coalition-proof arrangements are robust to deviating subcoalitions

Our de�nition of coalition-proofness in the risk-sharing context is equivalent to Bern-

heim et al.�s (1987) stricter de�nition of coalition-proofness who only allow for coalitional

deviations that are not prone to further deviations by subcoalitions. We establish this result

without the perfect substitutes assumption, i.e., for general Ui (xi; ci) utility functions.

1E-mails: ambrus@fas.harvard.edu, mobius@fas.harvard.edu, szeidl@econ.berkeley.edu.
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Proposition 8 Requiring coalitions to be robust to further coalitional deviations does not

a¤ect the set of coalition-proof allocations.

Proof. Let F be a deviating coalition, and let F 0 � F be a deviating subcoalition. Then

F 0 is also a deviating coalition in the original set of agents W . To see why, note that the

capacities ec0 after the subcoalition F 0 deviates are exactly those associated with links within
F 0, and hence these are also the capacities that remain when F 0 deviates in W . Moreover,

the allocation ex0 of the subcoalition F 0 only uses the resources in F 0 and hence is also feasible
when F 0 deviates from W . These observations imply that the same allocation is available to

all agents in F 0 if they consider a coalitional deviation fromW . Since these agents are better

o¤ with this allocation than they were in the coalition F , where in turn they are better

o¤ than in the original allocation, it follows that F 0 is a pro�table coalitional deviation

in the original network as well. Hence minimal deviating coalitions are robust to further

coalitional deviations. Since any allocation that has a deviating coalition also has a minimal

one, requiring no deviating coalitions is equivalent to requiring no deviating coalitions that

are robust to further group deviations.

Proof of Proposition 1

We denote the supremum of the support of the endowment distribution with M and the

in�mum with m where S = M � m. To show that the perimeter-area inequality implies

equal risk-sharing in all states we focus on the worst case scenario where all agents inside

F get the maximum endowment M and all agents outside F get the minimum m.1 In this

case, under equal sharing all agents consume [jF jM + (jW j � jF j)m]= jW j. This requires

agents in set F to give up:

jF jM � jF j [jF jM + (jW j � jF j)m]= jW j

This amount has to be less or equal to the group�s obligation which equals the perimeter

c[F ]. Some algebra reduces this inequality to a [F ] �
�
1� jF j

jW j

�
S. Hence the perimeter-area

inequality implies that no group will want to deviate even in the worst case scenario. For the

1If the supremum and in�mum do not lie in the support of the endowment distribution, we can assume
realizations that are �-close to the supremum and in�mum and then take � to 0.
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same reason, coalition proofness implies the perimeter-area inequality because the coalitional

IC constraint eF � xF � c [F ] has to hold for all states of the world.

In�nite networks in subsection 2.2

Some of our results in subsection 2.2 are stated for in�nite networks. We now discuss

how to extend our model to these environments. Say that a network is locally �nite if W is

countable, each agent has a �nite number of connections, and every pair of agents is connected

through a �nite path. A risk-sharing arrangement speci�es a consumption allocation x (e)

for every realization. Let Bri denote the set of agents within network distance r from i. The

arrangement x is feasible if with probability one

lim
r!1

1

jBri j
��eBri � xBri �� = 0

for all i. This condition is a generalization of the feasibility constraint for �nite networks.

We extend the concept of coalition proofness by requiring a consumption allocation x to

be coalition-proof in every �nite subset. Formally, let H � W be a �nite set of agents, and

de�ne the auxiliary network H 0 by collapsing all agents in GnH into a single node z. In this

transformation, all links outside H disappear, all links between i 2 H and j =2 H become

links between i and z, and all links inside H are preserved. The capacities inherited from

G in H 0 are denoted cH . Fix realization e; for each i 2 H the consumption value xi is well

de�ned. For z, we let ez = 0 and de�ne xz such that eH�xH+ez�xz = 0, which guarantees

that the resource constraint in H 0 is satis�ed. We also assume that the utility function of

z is cz + xz. With these de�nitions, we have constructed a feasible allocation x0 in H 0. If

this allocation is coalition-proof for every �nite subgraph H, then we say that the original

allocation x is coalition-proof in the in�nite network G.

Extending Theorem 1. An informal risk-sharing arrangement can be de�ned in the same

way as before. We claim that in this in�nite network environment, the statement of Theorem

1 holds word by word. As in the �nite case, su¢ ciency is immediate. To prove necessity, let

H1 � H2 � ::: be an increasing sequence of sets such that [kHk = W , and �x a coalition-

proof allocation x. For each k, construct the auxiliary network H 0
k as above. We can de�ne

gi = ei � xi for all i 2 Hk as in the proof of Theorem 1, and let gz = �
P

i2Hk gi; with
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this de�nition, we have constructed a �nite implementation problem just like in the proof of

Theorem 1. Since we have a coalition-proof allocation in H 0
k, Theorem 1 yields an informal

risk-sharing arrangement tk in H 0
k. For each (i; j) link we thus obtain a sequence of transfers

tkij 2 [�c (i; j) ; c (i; j)] for the in�nite sequence of k values for which i; j 2 Hk. Because

there are only countably many links, we can select a subsequence that converges to some

t�ij pointwise for each i and j. It is immediate that this transfer arrangement implements

consumption allocation x and meets the capacity constraints.

Dispersion. Fix a coalition-proof allocation x in a locally �nite network. To de�ne

dispersion, �x an agent i, and consider the sequence of ball sets Bri around i. We de�ne the

dispersion of x as in the in�nite network as

DISP (x) = lim
r!1

supDISP r (x)

where DISP r (x) = SDISP r (x)2 is just the expected cross-sectional variance of the allo-

cation x restricted to the ball set Bri . We then de�ne SDISP (x) to be the square root of

DISP in the in�nite network. We remark that in general networks, the value of SDISP

can depend on the initial agent i used to construct the balls. However, it is easy to see that

for the line and plane networks, SDISP is the same for all initial agents.

When the average endowment in the in�nite network, e = limr!1 eBri = jB
r
i j is well-

de�ned, it is easy to see that

DISP (x) = lim
r!1

1

jBri j
X
j2Bri

(xj � e)2 :

In particular, when e = 0, as in the applications we consider, one can think about DSIP as

the limit of the average of Ex2j over increasing ball sets. We will use this observation in the

proofs below.

Proof of Proposition 2

The following Lemma is used in the proof.

Lemma 1 Let Z be a random variable such that jZj � c almost surely. Then �Z � c.
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This result appears to be standard; a proof is available upon request.

(i) Dispersion on the line equals the lim sup of SDISP over increasing intervals Il of

length l = 1, 3,... Fix an interval of length l and split it into subintervals of length k.

Throughout this argument we ignore integer constraints by assuming that l is large relative

to k. For each segment F , �F = �
p
k and c [F ] = 2c. Using Lemma 1, this implies that in

any coalition-proof arrangement x, stdev(xF ) � �
p
k�2c. Even if agents manage to smooth

xF perfectly in F , the standard deviation of per capita consumption is at least stdev(xF ) =k.

But this implies that in interval Il we have SDISP (x) �stdev(xF ) =k, i.e.,

SDISP (x) � �=
p
k � 2c=k:

To obtain the sharpest bound, let k = 16 (c=�)2, which gives SDISP � �2= (8c) as desired.

(ii) We establish a result for more general networks. We �x an initial network with

capacities c0, and explore the behavior of SDISP when capacities are given by c � c0, as

c!1. Stating the conditions that we impose on the initial network requires some additional

notation. Let G � F be two subsets of W , and de�ne the relative perimeter of G in

F , denoted c0 [G]F , as the perimeter of G in the subgraph generated by F . With this

de�nition, c0 [G]F simply sums the capacities over all links between G and FnG. In the

subsequent analysis, we continue to use the convention that K, K 0, K 00, as well as K1, K2,...

denote positive constants, and may represent di¤erent values at di¤erent occurrences. Our

assumptions about the network are the following.

(N1) The network is connected, countably in�nite, and all agents have at most K direct

friends.

(N2) [Partition] For every n � 1 integer there exist a collection of sets F ij , where i =

1; :::; n and j = 1; :::;1 , such that F ij , j = 1; :::;1 give a partition of W and when i = 1,

F 1j are all singletons.

(N3) [Ascending chain] For all 1 � i � n� 1 and all j; j0, we have either F ij \ F i+1j0 = ?

or F ij � F i+1j0 .

(N4) [Exponential growth.] There exist 1 <  <  constants such that whenever F ij �
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F i+1j0 , we have 
��F ij �� � ��F i+1j

�� �  ��F ij ��.
(N5) [Relative perimeter] There existsK > 0 such that for any G � F ij with jGj �

��F ij �� =2
we have c0 [G]F ij � K

0 � c0 [G].

Note that we de�ne the sets F ij separately for each n; we suppress the dependence on n

in notation for simplicity. (N2) implies that for each i, the i-level sets partition the entire

network. (N3) requires that each i + 1-level set is a disjoint union of some i-level sets, so

i-level sets partition the i + 1-level sets. (N4) requires that the size of these sets grows

exponentially; this implies in particular that the number of i-level sets in an i+1 level set is

bounded by some constant K for all n and i. (N5) requires that the partitioning sets F ij are

�representative�in the sense that the relative perimeter of sets inside F ij is the same order

of magnitude as their true perimeter in G.

A speci�c example where (N1)-(N5) are satis�ed is the plane network, where the sets

can be chosen to be squares. Speci�cally, de�ne F nj for j = 1, 2, ... to be a partition of the

plane by 2n by 2n sized squares. Split each of these squares in four 2n�1 by 2n�1 subsquares,

and index these smaller squares by F n�1j for j = 1, 2, .... Split these squares again and

again to de�ne F ij for lower values of i, until we arrive at singleton sets when i = 1. In this

construction, conditions (N1)-(N4) are satis�ed: we can set K = 4 for (N1) and  =  = 4

for (N4). It is also easy to see that (N5) is satis�ed with K 0 = 1=3; equality can be achieved

only when the side length of F ij is even, in which case G can be chosen as a rectangle-shaped

half-square such that three sides of G lie on the sides of F ij .

To obtain a result about risk-sharing, we need to connect the network structure with the

distribution of shocks. We require the following key perimeter/area condition, which can be

viewed as an extension of the conditions used in Proposition 1:

(K) There exists K > 0 such that for all G �nite, �G � K � c0 [G].

For the plane network, this condition essentially requires that for all squares F , the

standard deviation �F is at most proportional to the side length of F , which in turn is a

consequence of assumption (P3). We now state and prove the following result.

Proposition 9 Under conditions (P1)-(P5), (N1)-(N5) and (K), there exist positive con-

stants K 0 and K 00 and a coalition-proof allocation x (c) such that for every agent i, Ex2i (c) �

K 0 exp
�
�K 00 � c2=3

�
.
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Proposition 2 (ii) is an immediate consequence of this result. This is because (1) the

plane network satis�es conditions (N1)-(N5) and (K); and (2) DISP is de�ned as the limit

of averages of Ex2i (c) over increasing sets of agents, and in consequence also satis�es the

exponential bound that each Ex2i (c) satis�es.

Proof. Note that (N5) and (K) together imply that here exists K > 0 such that for all

G � F ij with jGj �
��F ij �� =2, we have �G � K � c0 [G]F ij . Since our goal is to obtain a result

about the rate of convergence, we can re-scale the initial capacity c0 by a positive constant

without loss of generality. Hence we can assume that the following condition is satis�ed:

(K�) For all G � F ij with jGj �
��F ij �� =2, we have �G � c0 [G]F ij .

Roadmap. Our proof constructs an incentive-compatible risk-sharing arrangement in sev-

eral steps. Fix n, and consider the decomposition described above. We begin by constructing

an �unconstrained�risk-sharing arrangement that implements equal sharing in each set F nj ,

j = 1; :::;1, but does not necessarily satisfy the capacity constraints. We compute the

implied typical link use of this transfer arrangement for each link, and choose n and c such

that capacity constraints are satis�ed most of the time. This arrangement results in expo-

nentially small SDISP:We then bound the contribution of non-typical shocks to SDISP

and combine these terms to obtain the result stated in the proposition.

Iterative logic. The unconstrained arrangement is constructed by �rst smoothing con-

sumption within each F 1j set; then smoothing consumption within each F
2
j set; and so on.

When i = 1, all sets are singletons, so there is no need to smooth within a set. Now consider

the step when we move from i to i + 1. As we have seen, by (N4) the number of i level

sets in F i+1j is bounded by a positive constant K. To simplify notation, denote F i+1j by F ,

and denote the i-level sets F ij0 that are subsets of F by F1,...,Fk where k � K. We know

from (N2) and (N3) that F1,...,Fk partition F . We smooth consumption in F i+1j by �rst

smoothing the total amount of resources currently present in F1 through the entire set F ;

then smoothing the total amount currently in F2 through the set F , and so on until Fk.

Note that the total consumption in F1 at this round is the same as the total endowment eF1,

because in each round i, we smooth all endowments within an i-level set. Having completely

smoothed resources in F1 in the previous round, all agents in F1 are currently allocated

eF1= jF1j units of consumption.
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Auxiliary network �ow. To smooth consumption over F , we de�ne an auxiliary network

�ow. This is a key step in the proof. For this �ow, focus on the subgraph generated by F

together with capacities c0, and assume for the moment that each agent in F1 has �F1= jF1j

units of the consumption good (so the total in F1 is exactly �F1), while each agent in FnF1
has zero. We will show that a �ow respecting capacities c0 can achieve equal sharing in

F from this endowment pro�le; and then use this �ow to construct an unconstrained �ow

implementing the desired sharing over F for arbitrary shock realizations.

To verify that equal sharing can be implemented in the above endowment pro�le, note

that equal sharing can be implemented through some IC transfer if for each set G � F the

excess demand for goods does not exceed the perimeter relative to F (this is where the key

perimeter/area condition (K) plays it�s role). What is this excess demand? Since we want

equal sharing, we should allocate �F1= jF j to every agent in G. But those agents in G who

are also in F1 each have �F1= jF1j. So the excess demand for goods in the set G is

ed (G) = jGj � �F1jF j � jG \ F1j �
�F1
jF1j

: (9)

Applying Theorem 1 to the �nite network F , there is a feasible �ow if for every G, we have

jed (g)j � c0 [G]F . To check that this holds, �rst assume that jGj = jF j � jG \ F1j = jF1j;

then the �rst term in (9) is larger, and hence jed (G)j � �F1 � jGj = jF j. From (P4) we have

�F1 � �F , implying jed (G)j � �F � jGj = jF j. Now (P5) implies �F= jF j � �G= jGj, and hence

jed (G)j � �G. Now recall the key condition (K�) that �G � c0 [G]F ; it follows that jed (G)j �

c0 [G]F as desired. We now check that (9) also holds when jGj = jF j < jG \ F1j = jF1j. In this

case, the second term in (9) dominates, and hence jed (G)j � �F1 � jG \ F1j = jF1j. Since

�F1= jF1j � �G\F1= jG \ F1j by (P3), we can bound the right hand side by �G\F1, which

satis�es �G\F1 � �G � c0 [G]F again verifying that jed (G)j � c0 [G]F . This shows that the

auxiliary �ow can be implemented.

Smoothing with auxiliary �ow. Denote the transfers associated with the auxiliary �ow by

t1. To smooth the consumption of F1 over F for arbitrary shocks, we just use the transfers

t1 � (eF1=�F1); that is, we scale up the above �ow with the actual size of the shock in F1.

This works, because t1 was constructed to smooth a shock of exactly one standard deviation
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�F1. Extending this logic, to smooth the endowment of each other Fj through the set F ,

we construct auxiliary �ows t2, ..., tk analogously, and implement the total transfer given

by t1 � eF1=�F1 + ::: + tk � eFk=�Fk . This construction results in an unconstrained �ow which

smooths consumption in the entire set F .

Note that while we used the capacities to construct the �ow (this is how we got t1,...,

tk), the actual �ow is a stochastic object that may violate some capacity constraints, both

because it is scaled by eF1=�F1 and because it is summed over all j.

Iteration. We do the above step for all i + 1-level sets F i+1j ; this concludes round i + 1

of the algorithm. Then we go on to round i + 2, and so on, until �nally we implement

equal sharing in each of the highest-level sets F nj , j = 1,...,1. Denote the unconstrained

arrangement obtained in this way by tU .

How low is SDISP in the arrangement tU? To answer, recall that (N4) implies
��F nj �� � n,

and (P3) implies �F= jF j � K � jF j�1=2, so that SDISP � K � �m=2 = K1 � exp [�K2m].

This SDISP , however, is implemented with an unconstrained �ow; and now we want to

assess how often the �ow violates capacity constraints once we choose c and m. To do this,

we need to compute the distribution of the �ow over each link in the network.

Link usage. Consider the step where we smooth the consumption of F1 over the entire

set F using the �ow t1 � eF1=�F1. Fix some (u; v) link; then the use of this link in the

�ow at this round is t1 (u; v) � eF1=�F1. This is a random variable with mean zero and

standard deviation t1 (u; v), since eF1=�F1 has unit standard deviation. Moreover, we know

that t1 (u; v) � c0 (u; v) because this is how t1 was constructed (this is why it was important

to construct t1 such that it satis�es the capacity constraints c0.) It follows from Lemma 1

that the standard deviation of link use at this step is at most c0 (u; v).

Now consider link use as we smooth the consumption of all sets F1, ..., Fk over the set

F . As we have seen, smoothing for each of these sets implies adding a �ow over the (u; v)

link that has standard deviation of at most c0 (u; v). Given that k � K for some constant,

the total standard deviation of the �ow over (u; v) in each round of the algorithm is at the

most K � c0 (u; v). Adding up these �ows over all n rounds shows that the total standard

deviation of the unconstrained arrangement over the (u; v) link is at most nK � c0 (u; v).

Constrained arrangement. We construct an arrangement which satis�es the capacity
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constraints in a simple way. We �x c and n, and for each agent u, try to implement his

in�ows and out�ows according to the unconstrained �ow we just constructed. If this is not

possible, then we just implement as much of the prescribed �ows as possible. This approach

ensures that binding capacity constraints do not propagate down the network.

Bounding exceptional event. Denote F nj = F , and consider some agent u 2 F . We

begin bounding the exceptional event by looking at those realizations where the capacity

constraint binds on exactly one of u�s links: tU (u; v) > c � c0 (u; v). We explore the e¤ect

of multiple binding constraints later. We focus on the contribution of these realizations to

Ex2u, recalling that SDISP is the square root of the average of this quantity over all agents

u. The contribution of realizations where tU (u; v) > c � c0 (u; v) but the other constraints of

u do not bind to Ex2u is at most

Z
tU (u;v)>c�c0(u;v)

[eF + t (u; v)� c (u; v)]2 dP

where eF = eF= jF j, the integral is taken over the probability space on which all random

variables are de�ned and P is the associated probability measure. Noting that (x+ y)2 �

3 (x2 + y2), we can bound this from above by

3

Z
e2F dP + 3

Z
tU (u;v)>c�c0(u;v)

[t (u; v)� c � c0 (u; v)]2 dP: (10)

Here the �rst term is proportional to the variance of the unconstrained �ow, which, as we

have seen, is exponentially small. Thus we have to bound the contribution of the second

term.

Large deviations. Let z =
P

j �jyj for some �j satisfying
P
�2j < 1. Then, for any

c > 0 and � > 0,

Pr [z > c] � E exp [� (z � c)] = e��cE exp
h
�
X

�jyj

i
= e��c

Y
j

E exp [��jyj] :

Now we can bound the last term using (P1) to obtain

Pr [z > c] � e��c
Y
j

E exp
�
K�2j�

2=2
�
= e��cE exp

h
K�2=2 �

X
�2j

i
:
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This holds for any �, in particular, for � = c=
�
K
P
�2j
�
, resulting in the bound Pr [z > c] �

exp [�c2= (2K�2z)], where we used the fact that the variance of z is �2z =
P
�2j . This shows

that the tail probabilities of z can be bounded by a term exponentially small in (c=�z)
2, just

like in the case when z is normally distributed.

Bound on remaining variance. Using the bound on the tail probability, we can estimate

the �nal term in (10). Let z = tU (u; v) which is a weighted sum of the yj shocks by

construction. Denoting the c.d.f. of z by H (z) we have

Z
tU (u;v)>c�c0(u;v)

[t (u; v)� c � c0 (u; v)]2 dP =
Z 1

z=c�c0(u;v)
(z � c � c0 (u; v))2 dH (z)

= �
Z 1

z=c�c0(u;v)
(z � c � c0 (u; v))2 d [1�H (z)] =

= �
�
(z � c � c0 (u; v))2 (1�H (z))

�1
c(u;v)

+

Z 1

z=c�c0(u;v)
2 (z � c � c0 (u; v)) [1�H (z)] dz

where we integrated by parts. The above argument with large deviations proves 1�H (z) �

exp [�z2=2K�2z ]. This implies that the �rst term is zero, and combining it with the second

term, direct integration shows that

Z
tU (u;v)>c�c0(u;v)

[t (u; v)� c � c0 (u; v)]2 dP � K 0c � c0 (u; v) exp
�
�c2 � c0 (u; v)2 =2K�2z

�
for appropriate constants K and K 0.

Since �z � nKc0 (u; v), the last term is bounded by K � exp
�
�K 0 � (c=n)2

�
, where the

values of the constants are now di¤erent.

Combine bounds. We have obtained a bound on the exceptional event where the capacity

constrained on a single link is binding. We must similarly bound the contribution to Ex2u of

binding capacity on all other single links of u; all possible pairs of links; all possible sets of

three links; and so on. Since u has a bounded number of links, doing this just increases the

bound we just obtained by a constant factor. In total, all exceptional events thus contribute

to Ex2u at most K � exp
�
�K 0 � (c=n)2

�
.

To obtain a bound on SDISP , we �rst bound DISP = SDISP 2, which is just the
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average of Ex2u over the entire network. We have seen that for each u,

Ex2u � K1 � exp [�K2n] +K3 � exp
�
�K4 � (c=n)2

�
where the �rst term is the variance of the unconstrained �ow and the second term is the

bound coming from exceptional events. Setting n = c2=3 yields Ex2u � K5 � exp
�
�K6 � c2=3

�
,

as desired.

Proof of Corollary 1

For this proof we also construct an informal risk-sharing arrangement step by step. The

logic of the proof is to �x a grid associated with the geographic embedding, show that inside

grid squares risk-sharing is good because the embedding is local and there are only a bounded

number of people, and use the result for the plane to show that insurance is good across

squares.

Fix the geographic embedding, and consider the grid with step size A for which the no

separating avenues condition holds: for this grid, there is at least capacity K > 0 between

any pair of adjacent squares under c0. Since capacities are bounded away from zero, after

re-scaling we can assume that all link capacities are at least 1; in this case all neighboring

squares have connecting �ow of at least 1 as well in c0. Index the squares in the grid by

j = 1; :::;1 and denote the set of agents in square j by Gj.

We have to accomplish good risk-sharing inside each square as well as across the squares.

We will do this by using a share of the capacity of each link for within square sharing, and the

remaining capacity for cross-square sharing. By locality of the embedding, any two agents in

a given square are connected through a path lies within a bounded distance from the square.

Assign, for each pair of agents inside a square one such path. By evenness, any link in the

network is used by at most a bounded number of such paths. Let K� be large enough such

that all links are used by no more than K� paths (K� will denote this �xed quantity for the

rest of the proof.)

Now �x c > 0, and use a share 1= (10K�) of capacities to implement between-squares

risk-sharing using Proposition 2, taking eGj as the �endowment shocks�of the squares. The

conditions of the proposition are easily seen to be satis�ed, and hence we obtain between-
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squares dispersion which is exponentially small in c2=3.

Second, we have to smooth the incoming and outgoing transfers for each square. Use a

share 4=10 of capacities to smooth all incoming and outgoing transfers of each square. To

do this, we need to use the paths connecting agents. Since the perimeter of each square

used for incoming and outgoing transfers is 4c= (10K�), and each link is used for at most K�

connecting paths, a total capacity of 4c= (10K�) �K� = 4c=10 will be su¢ cient to completely

share the incoming and outgoing transfers among agents inside each square.

Third, we also have to smooth the total endowment shock realized in each square. To do

this, �rst note that for any network of bounded size where capacities are bounded below and

endowment shocks satisfy (P1) and (P2), the large deviations argument of the previous proof

imply that SDISP can be bounded by K exp [K 0 � c2=2]. Since the number of agents in a

square are bounded and shocks satisfy (P1) and (P2), and all pairs of agents are connected

by (potentially external) paths of remaining capacity 5c= (10K�) or more, it follows that we

can achieve within-square dispersion on the order of exp [�K 0 � c2=2] This is of smaller order

than the main exp
�
�K 00c2=3

�
term; hence the proof is complete.

Proof of Proposition 3

By de�nition

� =
cov [xF ; eF ]
var [eF ]

=
cov [eF � tF ; eF ]

var [eF ]
= 1� cov [tF ; eF ]

var [eF ]

where tF denotes the total transfer leaving F . Moreover, jcov [tF ; eF ]j = � (tF ) � � (eF ) �

jcorr [tF ; eF ]j � c [F ] � � (eF ), using Lemma 1, and the claim of the Proposition follows.

Proof of Proposition 5

Fix realization e, and let t denote the vector of transfers over all links in a given IC

arrangement. Denote the planner�s objective with a given set of weights �i by V (t) =P
i �iUi

�
ei �

P
j tij; ci

�
. Then the planner�s maximization problem can be written asmaxt V (t)

subject to tij � c (i; j) and tij = �tji for all i and j. It is easy to see that Karush-Kuhn-

Tucker �rst order conditions associated with this problem are those given in the Proposition.

Since we have a concave maximization problem where the inequality constraints are linear,
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the Karush-Kuhn-Tucker conditions are both necessary and su¢ cient for characterizing a

global maximum. For uniqueness, rewrite the planner�s objective as a function of the con-

sumption pro�le x, V (x) = V (t). This function is strictly concave in x and maximized over

a convex domain, and hence the maximizing consumption allocation is unique, although the

transfer pro�le supporting it need not be.

Proof of Proposition 6

For each i and j, say that i and j are in the same equivalence class if there is an i ! j

path such that for all agents l on this path, including j, we have �iU 0i = �lU
0
l . The partition

generated by these equivalence classes is the set of risk-sharing islands Wk. If i 2 Wk and

j =2 Wk, then either c (i; j) = 0, in which case tij = c (i; j) by de�nition, or c (i; j) > 0, which

implies that �iU 0i 6= �lU 0l by construction of the equivalence classes. But then Proposition 5

implies that jtijj = c (i; j), as desired.

Proof of Proposition 7

In this proof we focus on transfer arrangements that are acyclical, i.e., have the property

that after any endowment realization there is no path of linked agents i1 ! ik such that

i1 = ik, and til il+1 > 0 8 l 2 f1; :::; k � 1g. This is without loss of generality, as it is easy to

show that for any IC arrangement there is an outcome equivalent acyclical IC arrangement

that achieves the same consumption vector after any endowment realization.

(i): We begin with the weak inequalities of the claim (xj(e0) � xj(e) 8 j), which we

establish in a slightly more general setup. Say that a transfer arrangement is monotone over

all sets if for any F � W and any two endowment realizations (e) and (e0) such that e0i � ei
for all i 2 F and t0ji � tji for all i 2 F and j =2 F , we have x0i � xi for all i 2 F . Monotonicity

over all sets means that for any set of agents F , reducing their endowments and/or their

incoming transfers weakly reduces everybody�s consumption. Note that this property indeed

implies monotonicity in the sense of the Proposition, by taking F = W .

Fix a constrained e¢ cient arrangement, and suppose it is not monotone over all sets.

Let F be a set where this property fails, and �x a connected component of the subgraph

spanned by F that contains an agent i such that x0i > xi. Let S be the set of agents for

whom x0i � xi, and T be the set of agents for whom x0i > xi in this component. S is
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non-empty, because the total endowment available in any connected component of F has

decreased, and T is non-empty by assumption. In addition, there exist s 2 S and t 2 T

such that t0st > tst, because consumption in T is higher under e
0 than under e. But t0st > tst

implies c (s; t) > tst and c (t; s) > t0ts, and hence, by Proposition 5, �sU
0
s(xs) � �tU

0
t(xt)

in e, and also �sU 0s(x
0
s) � �tU

0
t(x

0
t) in e

0. Since x0t > xt by assumption, strict concavity

implies �tU 0t(x
0
t) < �tU

0
t(xt), which, combined with the previous two inequalities, yields

�sU
0
s(x

0
s) < �sU

0
s(xs). But this implies xs < x

0
s, which is a contradiction.

Finally, the claim that x0j < xj for all j 2 cW (i) follows directly from this monotonicity

condition combined with (ii) which is proved below.

(ii): Let bLi denote the set of links connecting agents in cW (i). Let Li denote the set of
links connecting agents in W (i). Let t be a transfer arrangement respecting the capacity

constraints and achieving x(e) at endowment realization e, such that tkl < c(k; l) 8 (k; l) 2 bLi.
In words, in transfer arrangement t, the capacity constraints for all links in bLi are slack. Such
a t exists by the de�nition of cW (i). Let b be the minimum amount of slackness on a link inbLi: b = min(k;l)2bLi(c(k; l)� jtklj).
Let L0i denote the set of links connecting agents in W (i) with agents in WnW (i). For

every (k; l) 2 L0i; let t0kl be such that �kU 0k(xk(e) � t0kl) = �lU 0l (xl(e) + t0kl). In words, t0kl is

the amount of transfer between k and l that would equate the weighted marginal utilities of

k and l. By Proposition 5 and by the de�nition of W (i), t0kl 6= 0 8 (k; l) 2 L0i. Let b0 be the

minimum amount of transfer that would equate the weighted marginal utilities of an agent

in W (i) and a neighboring agent outside W (i) : b0 = min(k;l)2L0i jt
0
klj.

We claim that the result holds for � = min(b; b0), that is whenever jei � e0ij < min(b; b0),

we have �jU 0j(xj(e
0)) = �iU

0
i(xi(e

0)) 8 j 2 cW (i); and Uj(xj(e0)) = Ui(xi(e)) 8 j =2 W (i).

To see this, consider the restricted set of agents W (i); and endowments xi(e) + e0i � ei
for agent i, and xj(e) for j 2 W (i)=fig (where xi(e) still refers to the constrained e¢ -

cient allocation given set of agents W and endowment realization e). Let xe;e
0
denote this

endowment vector on W (i). Consider now the consumption arrangement over W (i) that

maximizes
P

j2W (i) �jUj(xj) subject to x being achievable from xe;e
0
by transfer scheme t0

(over W (i)) for which jtjj0 + t0jj0j � c(j; j0) 8 j; j0 2 W (i). Let this arrangement be denoted

by xW (i). Because �jU 0j(xj) is decreasing in xj for all j, jxW (i) � xi(e)j � jei � e0ij. Then
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there is a transfer scheme t0 over W (i) that achieves xW (i) from endowments xe;e
0
, for which

jt0jj0j � jei � e0ij < �. Since � < b, all the capacity constraints in bLi are still slack. By
Proposition 5 this means that �jU 0j(x

W (i)
j ) = �iU

0
i(x

W (i)
i ). Moreover, since � < b0, all the

capacity constraints in L0i are still binding, in the same direction. Extend now x
W (i) to W

such that xW (i)
j = xj(e) for j 2 WnW (i). Similarly, extend transfer scheme t0 to W such

that t0jj0 = 0 whenever at least one of j an j
0 are not in W (i). Note that t + t0 is a direct

transfer arrangement on W which meets the capacity constraints, and that xW (i) satis�es

the conditions of Proposition 5. Hence xW (i) is the constrained e¢ cient allocation given

endowment realization e0, and as shown above, satis�es the claims in (ii).

(iii): Let t0 be an acyclical transfer arrangement achieving x(e0) after endowment real-

ization e0. Then we can decompose t0 as the sum of acyclical transfer arrangements t and t00

such that t achieves x(e) after endowment realization e. By part (i) above, xj0(e0) � xj0(e)

8 j0 2 W , implying that MUCj0 � 1 8 j0 2 W . Therefore if xj(e0) = xj(e), hence

MUCj = 1, then the statement in the claim holds. Assume now that xj(e0) < xj(e).

Since xj0(e0) � xj0(e) 8 j0 2 W by part (i), for any j0 2 Wnfig it must hold that the sum

of transfers received by j0 in transfer arrangement t00 is non-positive:
P

l2Wnfj0g t
00
lj0 � 0.

Hence, only i can be a net recipient in the transfer arrangement t00. This, together with

xj(e
0) < xj(e) implies that there is a j ! i path such that t00imim+1 > 0 along the path.

Hence, in transfer scheme t no link (im; im+1) along the above j ! i path is blocked, im-

plying �im+1U
0
im+1

(xim+1 (e)) � �imU 0im(xim (e)), and that no link (im+1; im) along the reverse

i ! j path is blocked, implying �im+1U
0
im+1

(xim+1 (e
0)) � �imU

0
im(xim (e

0)). Dividing these

inequalities yields the result.

A-2 Microfoundations for link-level punishment

Consider the following multi-stage game.

Stage 1. An endowment vector e is drawn from a commonly known prior distribution.

Stage 2. Each agent i makes a transfer teij to every neighbor j. Transfer t
e
ij is only

observed by players i and j.

Stage 3. Agents play friendship games over links. The game over the (i; j) link is
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C D

C c (i; j) c (i; j) �1 c (i; j) =2

D c (i; j) =2 �1 0 0

which is a coordination game with two pure strategy equilibria, (C;C) and (D;D). De-

note the payo¤ of i from the game with j by c0 (i; j).

Stage 4. The realized utility of agent i is Ui (x0i; c
0
i).

Proposition 10 An allocation x (e) is the outcome of a pure-strategy subgame-perfect equi-

librium of this game if and only if it can implemented through an incentive-compatible infor-

mal risk-sharing arrangement.

Proof. Fix an incentive-compatible informal risk-sharing arrangement and consider the

following strategy pro�le �. In Stage 2, each agent is supposed to make the transfer according

to the above arrangement. In Stage 3, the neighbors across links where transfers were made

as prescribed coordinate on the high equilibrium (C;C) and otherwise they coordinate on

the low equilibrium (D;D). It is easy to see that making the promised transfers is an SPE.

Conversely, consider a pure strategy SPE, and the corresponding risk-sharing arrangement

it induces. Note that in any such pro�le, in stage 3 any two neighbors should either play

(D;D), resulting in a payo¤ of (0; 0), or play (C;C), resulting in a payo¤ of (c(i; j); c(i; j)).

But then all transfers in Stage 2 have to satisfy the IC constraints because the actual transfer

from i to j can only in�uence the continuation strategy of j, not agents in W=fi; jg (since

they do not observe the actual transfer). Therefore the actual transfer from i to j can

only in�uence the payo¤ i gets from the friendship game with j, not the payo¤ from other

friendship games he is involved at in Stage 3. Hence the maximum loss in Stage 3 payo¤s in

a pure SPE when not delivering a promised transfer teij is c(i; j), the di¤erence between the

best Nash equilibrium payo¤s of the friendship game (c(i; j)) and the payo¤ that a player

can guarantee in the friendship game (0). This implies that the transfer scheme has to be

IC.
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A-3 Background on the theory of network �ows

The following concepts from the theory of network �ows are useful for many of the proofs in

the paper. Cormen, Leiserson, Rivest and Stein (2001) provides a more careful treatment.

Fix a �nite graph G two nodes s and t (for �source�and �target�) and a capacity c.

De�nition 3 An s ! t �ow with respect to capacity c is a function f : G � G ! R which

satis�es

(i) Skew symmetry: f(u; v) = �f(v; u).

(ii) Capacity constraints: f(u; v) � c(u; v).

(iii) Flow conservation:
P

w f(u;w) = 0 unless u = s or u = t.

A useful physical analogue is to think about a �ow as some liquid �owing through the

network from s to t, which must respect the capacity constraints on all links. The value

of a �ow is the amount that leaves s, given by jf j =
P

w f(s; w): The maximum �ow is

the highest feasible �ow value in G. Flows are particularly useful in our setting, because

the capacity constraints associated with our direct transfer representation are exactly the

constraints (ii) in the above de�nition. In particular, a direct transfer representation that

meets the capacity constraints is called a circulation in the computer science literature.

De�nition 4 A cut in G is a disjoint partition of the nodes into two sets G = S [ T such

that s 2 S and t 2 T . The value of the cut is the sum of c (u; v) for all links such that u 2 S

and v 2 T .

It is easy to see that the maximum �ow is always less than or equal to the minimum cut

value. The following well-known result establishes that these two quantities are equal.

Theorem 2 [Ford and Fulkerson, 1958] The maximum �ow value equals the minimum cut

value.

We rely both on the concept of network �ows and the maximum �ow - minimum cut

theorem in the proofs of the paper.
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A-4 Formal results for subsection 3.3 of the paper

A decentralized exchange implementing any constrained e¢ cient arrangement.

We show that for any constrained e¢ cient allocation, there exists a simple iterative procedure

that only uses local information in each round of the iteration, and converges to the allocation

as the number of iterations grow. A simpler version of this procedure, with equal welfare

weights and no capacity constraints, was proposed by Bramoulle and Kranton (2006). The

basic idea is to equalize, subject to the capacity constraints, the marginal utility of every

pair of connected agents at each round of iteration. This procedure can be interpreted as a

set of rules of thumb for behavior that implements constrained e¢ ciency in a decentralized

way.

Fix an endowment realization e, and denote the e¢ cient allocation corresponding to

welfare weights �i by x�. Fix an order of all links in the network: l1,...,lL, and let ik and

jk denote the agents connected by lk. To initialize the procedure, set xi = ei and tij = 0

for all i and j. Then, in every round m = 1; 2; :::, go through the links l1; :::; lL in this

order, and for every lk, given the current values xik , xjk , and tikjk , de�ne the new values x
0
ik

and x0jk and t
0
ikjk

= tikjk + x
0
jk
� xjk such that they satisfy the following two properties: (1)

x0ik + x
0
jk
= xik + xjk . (2) Either �ikU

0
ik
(x0ik) = �jkU

0(x0jk), or �ikU
0
ik
(x0ik) > �jkU

0
jk
(x0jk) and

t0ikjk = �c (i; j), or �ikU
0
ik
(x0ik) < �jkU

0
jk
(x0jk) and t

0
ikjk

= c (i; j). This amounts to the agent

with lower marginal utility helping out his friend up to the point where either their marginal

utility is equalized, or the capacity constraint starts to bind. Once this step is completed

for link k, we set x = x0 and t = t0 before moving on to link k + 1. For m = 1; 2; ::: let xmi

denote the value of xi, and let tmij denote the value of tij, at the end of round m. Note that

xm meets the capacity constraints by design for every m.

Proposition 11 If consumption and friendship are perfect substitutes, then xm ! x� as

m!1.

Proof. Let V (x) denote the value of the planner�s objective in allocation x. The above

procedure weakly increases V (x) in every round and for every link lk. Hence V (x1) �

V (x2) � ::, and since V (x) � V (x�) for all x that are IC, we have limm!1 V (xm) = V �

V (x�). Since the set of IC allocations is compact, and xm is IC for every m, there exists a
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convergent subsequence of xm, with limit x and associated transfers t. Clearly, V (x) = V .

If V = V � then x = x� since the optimum is unique. If V < V �, then x is not optimal,

and hence does not satisfy the �rst order condition over all links. Let lk be the �rst link in

the above order for which the �rst order condition fails in x and t. Then there is a transfer

meeting the capacity constraints at x that increases the planner�s objective by a strictly

positive amount �. But this means that for every xm far along the convergent subsequence,

the planner�s objective increases by at least �=2 at that round, which implies that V (xm)

is divergent, a contradiction. Hence limxm = x� along all convergent subsequences, which

implies that xm itself converges to x�.

Ex ante coalition-proofness of constrained e¢ ciency. If we require stability with

respect to both ex ante and ex post coalitional deviations we obtain a subset of the con-

strained e¢ cient agreements. In the case of perfect substitutes this subset is exactly the

set of constrained e¢ cient agreements. We say that a coalition-proof agreement x admits

no ex ante coalitional deviations if there is no coalition S and coalition-proof risk-sharing

agreement x0S within S such that all agents in S weakly prefer losing all their links to agents

in W=S and having agreement x0S to keeping all their links and having agreement x, and at

least one agent in S strictly prefer the former. Intuitively, an ex ante coalitional deviation

implies that the agents of the deviating coalition leave the community (cut their ties with

the rest of the community) and agree upon a new risk-sharing agreement among each other

(using only their own resources).

Proposition 12 A coalition-proof agreement that admits no pro�table ex ante coalitional

deviations is constrained e¢ cient. If goods and friendship are perfect substitutes then the set

of coalition-proof agreements that admit no pro�table ex ante deviations is equal to the set

of constrained e¢ cient agreements.

Proof. Consider �rst a coalition-proof agreement x that is not constrained e¢ cient.

Then there is another coalition-proof agreement x0 that ex ante Pareto-dominates x. But

then x0 is a pro�table ex ante coalitional deviation for coalition W . This concludes the �rst

part of the statement.
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Assume now that goods and friendship are perfect substitutes and consider a coalition-

proof agreement x that is constrained e¢ cient. Suppose there is coalition S and a pro�table

ex ante deviation x0S by S. Theorem 1 implies that x can be achieved by a direct-transfer

agreement t that respects all capacity constraints. Similarly, x0S can be achieved by a direct

transfer agreement t0S within S that respects all capacity constraints (within S). Consider

now a combined direct transfer agreement (t0S; t�S) that is equal to t
0
S for links within S, and

it is equal to t otherwise. Since both t and t0S respect capacity constraints, so does (t
0
S; t�S),

hence the resulting consumption pro�le x00 is coalition-proof. By construction x is equivalent

to x00 for agents inWnS. Agents in S are at least weakly better o¤with consumption pro�le

x00 and not losing any of their links than with consumption pro�le x0S and losing their links

with agents inWnS, since x00 is coalition-proof. But this, combined with x0S being a pro�table

ex ante coalitional deviation, implies that coalition-proof agreement x00 Pareto-dominates x,

which contradicts that x is constrained e¢ cient.

A-5 Analysis with imperfect substitutes

A-5.1 Formal results for subsection 4.1 of the paper

The extension of the results in Section 2 follows directly from the discussion in subsection

4.1. We now also show that with an increasing MRS, the set of IC arrangements contracts

after a negative aggregate shock.

Proposition 13 Assume that MRSi is increasing in xi for all i. Then for any pair of

endowment realizations e and e such that ei � ei for all i, an incentive compatible set of

transfers in e is also incentive compatible given e.

Proof. Let V (yi; ci; si) = Ui (yi + si; ci), then (Vx=Vc) (yi; ci; si) = (Ux=Uc) (yi + si; ci),

and hence the condition that MRSi = (Ux=Uc) (xi; ci) is increasing in xi implies that

(Vx=Vc) (yi; ci; s) is increasing in s for any �xed (yi; ci), i.e., that V (yi; ci; s) satis�es the

Spence-Mirrlees single-crossing condition. Since Ui is continuously di¤erentiable and Ux,

Uc > 0, Theorem 3 in Milgrom and Shannon (1994) implies that V has the single crossing

property. In particular, V (yi; ci; 0) � V (y0i; c0i; 0) implies V (yi; ci; si) � V (y0i; c0i; si) for any
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si � 0, or equivalently, Ui (xi; ci) � Ui (x
0
i; c

0
i) implies Ui (xi + si; ci) � Ui (x

0
i + si; c

0
i). It

follows that for any si � 0, the compensating variation satis�es

CVi (xi; ci; c
0
i) � CVi (xi + s; ci; c0i)

and hence for any set F , we have cx [F ] � cx+s [F ]. Now denote e � e = s � 0; it follows

immediately that any IC transfer scheme given e is IC given e as well.

A-5.2 Formal results for subsection 4.2 of the paper

The equivalence between the planner�s problem and constrained e¢ ciency with general pref-

erences and a concave MRS was established in Appendix A to the paper. To present our

characterization result building on this equivalence, �rst we de�ne a measure of marginal

social welfare gain of transfers to agents. Fix an IC arrangement x, and recalling the de�-

nition of acyclical transfer arrangements from the proof of Corollary 7, let t be an acyclical

implementation of x in endowment realization e. Consider the following iterative construc-

tion. We say that the IC constraint from i to j binds if Ui(xi; ci) = Ui(xi + tij;bci;j). Let
W 1 � W denote the set of agents i for whom (i) there is no j such that c(i; j) > 0; and (ii)

the IC constraint from i to j binds. Since t is acyclical, W 1 is nonempty. For any i 2 W 1,

let �i = �iUi;x(xi; ci) be the marginal bene�t of an additional dollar to i. This is both the

private and social marginal welfare gain, because no IC constraint binds for transfers from

i.

Suppose now that we have de�ned the sets W 1; :::;W k�1 and the corresponding �i for

any i 2 [l�k�1W l. Let W k denote the set of agents i such that i =2 [l�k�1W l but whenever

c(i; j) > 0 and the IC constraint from i to j binds, j 2 [l�k�1W l. To de�ne �i, �rst denote,

for every j such that the IC constraint from i to j binds, bxi;j = xi+ tij, and bci;j = ci� c(i; j),
and let

�ij = �iUi;x(xi; ci) �
Ui;x(bxi;j;bci;j)
Ui;x(xi; ci)

+ �j �
�
1� Ui;x(bxi;j;bci;j)

Ui;x(xi; ci)

�
:

As we will show below, �ij measures the marginal social gain of an additional dollar to i, under

the assumption that i optimally transfers some of the dollar to j. Intuitively, to transfer
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to j, i has to increase his own consumption somewhat to maintain incentive compatibility.

More formally, we show below that a share Ui;x(bxi;j;bci;j)=Ui;x(xi; ci) of the marginal dollar
must be kept by i, and only the remaining share can be transferred to j, where it has a

welfare impact of �j. Denote �ii = �iUi;x(xi; ci), and to account for the softening of the IC

constraint over all links, let

�i = max f�ij j j : the IC constraint from i to j binds or j = ig :

With this recursive de�nition, the marginal social welfare of an additional dollar takes into

account both the marginal increase in i�s consumption, and the softening of the IC constraints

which allow transfers of resources through a chain of agents.

Proposition 14 [Constrained e¢ ciency with imperfect substitutes] Assume that MRSi is

concave in xi for every i. A transfer arrangement t is constrained e¢ cient i¤ there exist

positive (�i)i2W such that for every i; j 2 W one of the following conditions holds:

1) �j = �i

2) �j > �i and the IC constraint binds for tij

3) �j < �i and the IC constraint binds for tji:

Proof. We begin with some preliminary observations. Suppose that the IC constraint

from i to j binds, and i receives an additional dollar. Suppose that i keeps a share � of the

dollar and transfers the remaining 1�� such that the IC constraint continues to bind. Then

it must be that �Ui;x (xi; ci) = Ui;x (bxi;j;bci;j), or equivalently, � = Ui;x(xi; ci)=Ui;x(bxi;j;bci;j).
To maintain incentive compatibility, this share of the dollar has to be consumed by i, and

only the remainder can be transferred to j.

Now we establish the necessity part of the proposition. Fix a constrained e¢ cient arrange-

ment, and let �i be the associated planner weights. Consider realization e. We �rst show

that the marginal value to the planner of an additional dollar to an agent i is �i. Let

i 2 W 1, then the marginal value to the planner of endowing i with an additional dollar

is at least �i. It cannot be larger, since that would imply that transferring a dollar away
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from i increases social welfare in the original allocation, contradicting constrained e¢ ciency.

Hence, the marginal social value of a dollar to i is exactly �i. Suppose we established for

all j 2 [l�k�1W l that the marginal social value of a dollar to j is �j. Let i 2 W k. For any

j such that the IC constraint from i to j is binding, �j is at least as large as the marginal

social value of an additional dollar to i, because otherwise optimality requires reducing tij.

Hence the marginal social value of a dollar to i is obtained when i transfers as much of the

dollar as possible under incentive compatibility to some agent j. Given our above argument,

i can transfer at most 1 � Ui;x(xi; ci)=Ui;x(bxi;j;bci;j) to j, hence the marginal welfare gain if
he chooses to transfer to j will be �ij. Since i will choose to transfer the dollar to the agent

where it is most productive, the marginal social gain will be the maximum of �ij over j,

which is �i.

It follows easily that if �j > �i for some i; j, then the IC constraint for tij has to bind:

otherwise social welfare could be improved by marginally increasing tij. This establishes that

in a constrained e¢ cient allocation, for any endowment realization and any pair of agents

one of conditions (1)-(3) from the theorem have to hold.

For su¢ ciency, let now x denote the unique welfare maximizing consumption, let t be

an IC transfer scheme achieving this allocation, and let b�i = �i(x; t), for every i 2 W .

Assume now that there exists another consumption vector x0 6= x achieved by IC transfer

scheme t0 such that (x0; t0) satisfy conditions (1)-(3), and let �0
i = �i(x

0; t0), for every i 2 N .

Then there exists an acyclical nonzero transfer scheme td that achieves x from x0, and which

is such that t0 + td is IC. By de�nition of x, td from x0 improves social welfare. Let now

W d = fi 2 W j9 j such that tdij 6= 0g, and partition W d into sets W d
0 ; :::;W

d
K the following

way. Let W d
0 = fi 2 W dj � 9 j 2 W d st. tdij > 0g. Given W d

0 ; :::;W
d
k for some k � 0, let

W d
k+1 = fi 2 W dn( [

l=0;:::;k
W d
l )j � 9 j 2 W dn( [

l=0;:::;k
W d
l ) st. t

d
ij > 0g. Note that x0i > xi 8

i 2 W d
0 , which together with there being no agent j such that t

d
i j > 0 implies that �

0
i <

b�i.

Now we iteratively establish that �0
i <

b�i 8 i 2 W d. Suppose that �0
i <

b�i 8 i 2 [
l=0;:::;k

W d
l

for some k � 0. Let i 2 W d
k+1. Note that by de�nition there is j 2 [

l=0;:::;k
W d
l such that

tdi j > 0, and there is no j0 2 W dn( [
l=0;:::;k

W d
l ) such that t

d
i j0 > 0. Suppose �0

i � b�i. This

can only be compatible with tdi j > 0, �0
j <

b�j, and (1)-(3) holding for both (x0; t0) and

(x; t0+ td) if xi > x0i. But xi > x
0
i, and �

0
i0 <

b�i0 8 i0 2 W such that tdii0 > 0 implies �
0
i < b�i,
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a contradiction. Hence �0
i <

b�i 8 i 2 W d
k+1, and then by induction �

0
i <

b�i 8 i 2 W d. But

note that for any i 2 W d
K it holds that xi < x

0
i and there is no j 2 W such that tdji > 0, and

hence �0
i > b�i. This contradicts �0

i < b�i 8 i 2 W d, hence there cannot be (x0; t0) satisfying

(1)-(3) such that t0 is IC and x0 6= x. �

Corollary 7 can also be extended to the imperfect substitutes case. Fix a constrained

e¢ cient arrangement, and let e and e0 be two endowment realizations such that ei > e0i for

some i 2 W , and ej = e0j 8 j 2 Wnfig. Let x�(e) be the consumption in the constrained

e¢ cient allocation after e. Analogously to the perfect substitutes case, let cW (i) the largest

set of connected agents containing i such that all IC constraints within the set are slack

given some transfer arrangement achieving the constrained e¢ cient allocation after ei. For

any endowment realization e, let �j(e) be �j, as de�ned above, given any transfer scheme

with the maximal number of links on which the IC constraints are slack, among the ones

that attain the constrained e¢ cient allocation. It is straightforward to show that there is

a transfer scheme with a maximal number of links on which the IC constraints are slack,

among the ones achieving the constrained e¢ cient allocation, and that for all such transfer

arrangements �j is the same.

Corollary 2 [Spillovers with imperfect substitutes] Assume that MRSi is concave, then

(i) [Monotonicity] �j(e
0) � �j(e) for all j, and if j 2 cW (i) then �j(e

0) > �j(e).

(ii) [Local sharing] There exists � > 0 such that jei � e0ij < � implies �i(e
0) = �j(e

0) for

all j 2 cW (i):
(iii) [More sharing with close friends] For any j 6= i, there exists a path i! j such that

for any agent l along the path, �l(e
0) � �j(e

0).

The proof of this result is analogous to the perfect substitutes case and hence omitted.

Note that (ii) is weaker than in Corollary 7, because even small shocks can spill over the

boundaries of the risk-sharing islands of agent hit by the shocks. Also note that since

�i = �iUi;x for any agent not on the boundary of an island, (i) implies that consumption is

monotonic in the endowment realization for such agents.
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A-6 Numerical methods

Risk-sharing simulations. We use the following numerical approach for the simulations

underlying Figure 4. We assume throughout that endowment shocks are uniformly dis-

tributed with support [�1; 1]. We build on Theorem 1 and express a SDISP-minimizing

incentive-compatible risk-sharing arrangement as a cost-minimizing �ow as follows. (1) Cre-

ate two arti�cial nodes s and t as in the proof of Theorem 1. (2) Divide the shock support

into K equal intervals. For each agent i, denote the subinterval into which i�s endowment

falls by ki (treating [�1;�1+2=K] as the �rst interval and [1�2=K; 1] as the Kth interval).

Create ki links between s and i such that each link has capacity 2=K in the direction from

s to i and zero in reverse direction. De�ne the �cost�of a �ow going from s to i across any

of these links to be j for the jth link of out ki links. Similarly, create K � ki links between t

and i. such that each link has capacity 2=K in the direction from i to t and zero in reverse

direction. De�ne the cost of a �ow going from i to t across any of these links to be j for the

jth link of out ki links. (3) Use Edmonds and Karp�s (1972) algorithm to calculate a cost-

minimizing �ow in this augmented network. This solution induces an incentive-compatible

risk-sharing arrangement that maximizes a piecewise linear approximation to the quadratic

utility function assumed in the de�nition of SDISP , where the marginal utility of consump-

tion for any agent is constant within each of the K intervals. Simulations (not reported)

show that this approximation generates highly accurate predictions for K = 20. For the

results presented in the text we set K = 100.

Geographic network representation. The algorithm used in the geographic repre-

sentation constructed in Figure 5 is the following. For each household i, we �rst construct

vectors vj to every other households j in the unit square using households�initial (re-scaled)

geographic coordinates. We also calculate the length di of each of these vectors. Note, that

the maximum distance between two households is
p
2. We then calculate a shift vector as

the weighted sum �
P
(
p
2 � di)vj= kvjk and move each household in the direction of this

shift vector. Shifts are larger if a household is closely surrounded by other households and

the shift will push the household away from its neighbors. This procedure is repeated 23

times to obtain the representation in Figure 5E.
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