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PRACTICAL DIFFERENCES AMONG ACSMS 

Abstract 

Aggregate-Level Conditional Status Metrics (ACSMs) describe the status of a group by 

referencing current performance to expectations given past scores. This paper provides a 

framework for these metrics, classifying them by aggregation function (mean or median), 

regression approach (linear mean, nonlinear quantile), and the scale supporting interpretations 

(percentile rank, score scale), among other factors.  The study address the question, “how 

different are these ACSMs?” in three ways.  First, using simulated data, it evaluates how well 

each model recovers its respective parameters. Second, using both simulated and empirical data, 

it illustrates practical differences among ACSMs in terms of pairwise rank differences incurred 

by switching between metrics.  Third, it ranks metrics in terms of their robustness under scale 

transformations. The results consistently show that choices between mean- and median-based 

metrics lead to more substantial differences than choices between fixed- and random-effects or 

linear mean and nonlinear quantile regression. The findings set expectations for cross-metric 

comparability in realistic data scenarios. 

Keywords:  Student Growth Percentiles, Value-Added Models, group-level growth, 

conditional status  
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Practical Differences among Aggregate-Level Conditional Status Metrics:  

From Median Student Growth Percentiles to Value-Added Models 

Recent educational policies have expanded the focus of accountability measures from 

student proficiency at a single time point to student score histories over time. This paper reviews 

metrics that use these longitudinal data to describe the status of groups of students in terms of 

empirical expectations given past scores. Referencing status to expectations is intuitively 

appealing. A group of students may have low achievement but higher achievement than expected 

given their past scores. Group performance may be better interpreted and improved in light of 

these expectations. 

These methods use regression models that locate individuals and groups in empirically 

“comparable” reference groups based on their past scores. This may be described as a kind of 

norm-referencing or “difference from expectation” approach (Kolen, 2011). Following 

Castellano and Ho (2013a), at the individual level, we call these metrics “conditional status 

metrics” (CSMs), because they frame individual status in terms of conditional distributions given 

past scores. This class of metrics includes residuals from simple linear regression models (i.e., 

residual gain scores, Manning & DuBois, 1962). Another CSM is the quantile-regression-based 

Student Growth Percentile metric (SGPs; Betebenner, 2008a, 2009) that is in active or 

preliminary use in 25 states (Betebenner, 2010a).    

Individual-level CSMs can serve multiple purposes from student-level classification, 

accountability, and selection to enhancing student score reports for student, parent, and teacher 

audiences. However, many important questions of policy and practice exist at the aggregate 

level. Current educational policies require longitudinal data summaries at the level of 
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classrooms, teachers, subgroups, schools, and states (U.S. Department of Education, 2005, 2009; 

Lissitz, Doran, Schafer, & Willhoft, 2006).  

The popularity and utility of Aggregate-level CSMs (ACSMs), and particularly the 

widespread use of median SGPs (Betebenner, 2010a), motivate a critical review of ACSM 

properties. We introduce a framework for factors that differentiate among ACSMs, including the 

choice of aggregation function, nonlinear quantile vs. linear mean regression, and fixed- versus 

random-effects. To illustrate these contrasts clearly, we restrict our focus to relatively simple 

ACSMs that condition only on past scores. We begin with aggregate-level SGP metrics and 

contrast them against alternatives, including aggregate-level Percentile Ranks of Residuals 

(PRRs; Castellano & Ho, 2013a) and simple approaches to so-called “value-added” models that 

attempt to isolate the causal effect of a teacher/school/principal on student achievement.   

Within this latter class of models, our approach contrasts with those often taken in the 

large and growing body of literature on variability in value-added scores over time or across 

measures (e.g., McCaffrey, Sass, Lockwood, & Mihaly, 2009; Papay, 2011).  Instead, we aim to 

distinguish among the growing number of metrics and describe the practical differences of 

choices among them. We explicate differences among metrics in terms of 1) each model’s 

recovery of its respective parameters, 2) practical differences among group percentile ranks for 

simulated and empirical data, and 3) robustness to scale transformations. Together, these 

analyses represent an effort to better understand the theoretical and practical differences among 

commonly used ACSMs, as well as the practical variability of any single ACSM under plausible 

alternative specifications. 

Aggregate-Level Conditional Status Metrics  

We begin by distinguishing models that support individual- and aggregate-level 

conditional status interpretations from two other classes of models that use longitudinal test 
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scores. Individual growth models (Rogosa & Willett, 1985; Singer & Willett, 2003) require test 

score data that share a common scale over time. Multivariate models are multivariate in their 

response variables and include the cross-classified model of Raudenbush and Bryk (2002), the 

variable persistence model of McCaffrey, Lockwood, Koretz, Louis, and Hamilton (2004), and 

the Education Value-Added Assessment System (EVAAS) model of Sanders, Saxton, and Horn 

(1997). In contrast, CSMs do not require test score data that share a common scale over time, and 

they are univariate in their response variables.  

McCaffrey et al. (2004) usefully describe individual growth models and CSMs as special 

cases of multivariate models, and we recommend their paper as a broader statistical framework. 

Castellano and Ho (2013b) contrast these models as they are used in state policies. A full 

discussion of “growth” and “value added” inferences is beyond the scope of this paper. We take 

the position that CSMs can inform discussions of growth and value-added, but they should first 

be interpreted in terms of the conditional status interpretations that they support most directly. 

Distinguishing among Aggregate-Level Conditional Status Metrics 

As previously stated, this paper presents three perspectives on differences among 

ACSMs: recovery of respective parameters, practical differences among ACSMs for simulated 

and real data, and robustness of each ACSM to scale transformations. We motivate each of these 

comparisons in this section. 

Table 1 lists the nine ACSMs that we address in this paper and identifies distinguishing 

features along which these ACSMs differ.  The nine ACSMs are median Student Growth 

Percentiles (medSGPs), mean SGPs (meanSGPs), median Percentile Ranks of Residuals 

(medPRRs), mean PRRs (meanPRRs), mean Residuals (meanResids), median Residuals 

(medResids), Residuals from Aggregate Regression (RARs), the Fixed-Effects Metric (FEM), 
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and the Random-Effects Metric (REM). Of the three distinguishing features, the first is the 

regression approach that establishes expectations for the target vector of test scores that, given 

they are typically from a recent timepoint, we refer to as the “current” scores.  The models 

supporting ACSMs use different regression approaches: linear mean regression, including 

models that incorporate or disregard group membership (multilevel and single-level models, 

respectively), and nonlinear quantile regression. The second distinguishing feature is the 

aggregation function, where metrics support aggregate-level inferences through mean- or 

median-based operations.  The third distinguishing principle is the scale for interpretation, where 

some metrics are expressed as percentile ranks and others are expressed on the score scale of the 

current-grade test, as residuals.  

The theoretical and practical impact of these distinguishing principles has yet to be well 

described.  Although there are bodies of literature supporting individual ACSMs, theoretical and 

empirical comparisons are often focused on examining the validity of value-added inferences of 

the various ACSMs as opposed to describing the magnitude of practical differences and the 

theoretical basis for cross-metric discrepancies. In particular, studies contrasting medSGPs 

against alternative ACSMs (e.g., Ehlert, Koedel, Parsons, & Podgursky, 2012; Goldhaber, 

Walch, & Gabele, 2012; Houng, & Justman, 2013; Guarino, Reckase, Stacy, & Wooldridge, 

2014; Wright, 2010) are often critical of the use of median SGPs for value-added policies in 

comparison to other metrics.  However, they have not identified the target parameter for median 

SGPs as we do here, and they place less emphasis on the basis for and magnitude of practical 

differences.  Castellano and Ho (2013a) compare SGPs and PRRs at the individual level and find 

they are highly similar across a range of simulated and real data scenarios.  We extend their work 

to the aggregate level and broaden the scope of metrics under consideration. 
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Finally, we compare ACSMs based on their robustness to scale transformations.  This 

robustness is one of the motivations for the SGP metric (Betebenner, 2009).  If SGPs are 

calculated for a matrix of student test score data, 𝐗, it is desirable to recover similar SGPs from a 

transformed matrix 𝑇(𝐗), where 𝑇 represents a permissible monotonic transformation. Quantile 

regression is theoretically scale-invariant to monotonic transformations of at least the dependent 

variable (Koenker, 2005).  Castellano and Ho (2012) found that for both simulated multivariate 

normal test score data and empirical data, individual SGPs were markedly more invariant to 

monotonic scale transformations than individual PRRs. With conditioning on one prior-test-

score, they find that SGPs vary 1 to 2 percentile ranks of each other across the transformations, 

whereas student PRRs vary 4 to 5 percentile ranks on average.  Our scale invariance study 

extends their results to consider aggregate-level metrics from Table 1. 

Briggs and Betebenner (2009) compared the scale invariance of medSGPs and aggregate-

level effects from a “layered,” multivariate value-added model (Ballou, Sanders, & Wright, 

2004). They used transformations that reflected linear or nonlinear growth, constant or increasing 

variance, and the more extreme exponential transformation. They found that conditioning on1, 2, 

and 3 prior-test-scores, medSGPs were near perfectly correlated across the transformations, 

whereas layered-model effects were less strongly correlated (r > .9), with smaller correlations 

arising from the exponential transformation (r ≈ .3 to .6). Our scale invariance study differs from 

this study most importantly in our choice of scale transformations and the broader range of 

ACSMs that we consider. 

The proliferating uses of ACSMs motivate a broad review of contrasting metrics as well 

as criteria for evaluating these metrics.  We review each ACSM in Table 1, in turn, and then 

compare them in terms of parameter recovery, practical differences, and scale invariance. 
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Median and Mean Student Growth Percentiles 

The SGP metric uses quantile regression to describe the “current” status of students in the 

context of their “prior” test performance. In practice, the “current” status is either the most recent 

set of test scores available or a time point that is of particular interest, and “prior” refers to score 

variables from one or more time points that precede the “current” time point. Castellano and Ho 

(2013a) describe the estimation of individual SGPs in detail and Betebenner (2010b) documents 

it in his “SGP” R (R Development Core Team, 2009) package. We briefly review the procedure 

here and transition to properties of two aggregate-level SGPs: median and mean SGPs.  

The quantile regression approach can be clarified by contrasting it with linear mean 

regression of current scores on prior scores. In linear mean regression, this prediction takes the 

form of a conditional mean: an average current score for students given particular prior scores. In 

contrast, quantile regression allows for the estimation of conditional quantiles, such as the 

median, 25th percentile, and 90th percentile, for students with particular prior scores. Neither 

regression approach requires current and prior scores to be on the same scale.  

The SGP estimation procedure involves estimation of 100 conditional quantile surfaces 

corresponding to quantiles from .005 to .995 in .01 increments (Betebenner, 2010b). These 

surfaces represent boundaries. Students with observed scores that fall between two adjacent 

surfaces are assigned an SGP represented by the midpoint quantile between these boundaries. 

For example, a student whose current observed score is between the .495 and .505 predicted 

quantile surfaces has an SGP of 50. 

Just as linear mean regression can generalize to nonlinear functions, the SGP quantile 

approach employs nonlinear B-spline functions in fitting conditional quantiles to accommodate 

nonlinearity and heteroscedasticity in the data (Betebenner, 2009). We follow this approach, 
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implemented in Betebenner’s (2010b) “SGP” package and thus classify SGPs as using 

“nonlinear quantile” regression. We also follow Castellano and Ho (2013a) in increasing the 

resolution of SGPs by estimating 1000 instead of 100 lines, for quantiles from .0005 to .9995 by 

.001, allowing reporting of SGPs to one decimal point instead of as integers. This prevents cross-

metric comparisons from being confounded by decisions about rounding. 

This paper contrasts two SGP-based ACSMs: medSGPs and meanSGPs. The medSGP 

and meanSGP metrics involve simple aggregation of SGPs using the median and mean functions, 

respectively. The SGP-based ACSM in operational use is the medSGP, following Betebenner’s 

(2008b) recommendation to use medians due to the ordinal nature of percentile ranks. Means, in 

contrast, are computed under the assumption that an equal-interval scale underlies the averaged 

units. Such an assumption is violated by the percentile rank scale whenever the underlying, latent 

distribution for which percentile ranks are reported is non-uniform. However, we take the view 

that equal-interval scale properties should be evaluated with respect to uses and interpretations. 

The statistical features of means may support useful inferences and properties even when scales 

do not appear to have equal-interval properties (Lord, 1956; Scholten & Borsboom, 2009). 

Further, strict equal-interval properties are rare among all test score scales (Spencer, 1983; 

Zwick, 1992), and this has not stopped the common practice of averaging test scores. We 

consider threats to interpretations of ordinal-based averages as a matter of degree. We 

demonstrate that these threats may be offset by the advantages of means. 

Percentile Ranks of Residuals 

 Castellano and Ho (2013a) contrast SGPs with an analogous approach that uses the 

percentile ranks of residuals (PRRs) from the linear mean regression of current scores on past 

scores. This approach has been used previously in a range of applications (e.g., Ellis, Abrams, & 
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Wong, 1999; Suen, 1997; Fetler, 1991). A student’s PRR and SGP are both interpretable on a 

percentile rank scale as conditional status given past scores, but PRRs require less computation 

time and are anchored in an elementary statistical framework. Castellano and Ho (2013a) show 

that SGPs and PRRs have correlations of about 0.99 for real data and root mean square 

differences of approximately 3 on the percentile rank scale. They also demonstrate that PRRs 

recover “benchmark” percentile ranks better than SGPs when linear regression assumptions hold, 

and they identify skewness levels at which SGP recovery exceeds PRR recovery. 

Like SGPs, PRRs are student-level statistics, but they are easily aggregated to meanPRRs 

and medPRRs. PRRs are computed by first regressing students’ current scores (Y) on their scores 

from J prior time points (𝑋1, 𝑋2, … ,𝑋𝐽) as follows, where i indexes student and g indexes group:  

  
𝑌𝑖𝑔 =  𝛼 + �𝛽𝑗𝑋𝑗𝑖𝑔

𝐽

𝑗=1

+ ϵ𝑖𝑔. 

 

(1) 

Here, 𝛼 is the intercept, the 𝛽𝑗 parameters are the regression coefficients for each prior test score 

included, and ϵ𝑖𝑔is the individual error term. Equation (1) does not take into account group 

membership; we will contrast it with upcoming models that do. As a linear model for the 

conditional mean, this approach also contrasts with the quantile regression model underlying 

SGPs. The operationally-used SGP quantile regressions are nonlinear, and there are typically 100 

quantile regression functions (and in our case, 1000) instead of one linear regression function. 

The mean regression framework easily accommodates nonlinear specifications of the prior 

scores (Akram, Erickson, & Meyer, 2013). For parsimony, we only include linear mean 

specifications in this paper.   

The residuals for the regression shown in Equation (1) are the simple differences between 

the observed and expected values given past scores: 𝑒𝑖𝑔 =  𝑦𝑖𝑔 − 𝑦�𝑖𝑔. The PRRs are the residuals 
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𝑒𝑖𝑔 for student i in group g,  rank ordered and transformed to percentile ranks, which we express 

as PRR𝑖𝑔  = F�𝑒ig�  × 100 , where F( ) is the empirical cumulative distribution function.  We 

round the PRRs to one decimal point for consistency with the rounding of SGPs. Although 

studentized residuals could be used, we follow Castellano and Ho (2013a) and use raw residuals 

for simplicity and because differences are trivial, particularly at the aggregate level. We 

aggregate PRRs over students within groups using the mean and median function to obtain 

meanPRRs and medPRRs respectively, for example, meanPRR𝑔 =  
∑ 𝐹�𝑒𝑖𝑔�
𝑛𝑔
𝑖=1

𝑛𝑔
, 

where ng is the number of students in group g. 

Mean and Median Residuals 

Another operationally simple approach involves the aggregation of raw residuals derived 

from Equation (1) without performing the percentile rank transformation. In contrast to 

meanPRR𝑔, meanResid𝑔 =  
∑ 𝑒𝑖𝑔
𝑛𝑔
𝑖=1
𝑛𝑔

.  Mean residuals have some precedent in the value-added 

literature as they, or “precision-weighted” mean residuals, have been used as value-added 

metrics (e.g., Kane & Staiger, 2008; Chettey, Freidman, & Rockoff, 2011; Guarino, Reckase, & 

Wooldridge, 2012). We do not include the medResid metric any further than its listing in Table 

1, because it selects the same mid-ranked student in any group as do medPRRs. Although they 

differ in a nonlinear fashion along their scales for interpretation, the two metrics will be perfectly 

rank-correlated if all groups have an odd number of students and nearly perfectly rank-correlated 

otherwise.  MeanResids have no such easily specified relationship with other metrics, thus we 

retain them for comparison. 

Residuals from Aggregate Regression 

 The SGP and PRR metrics first condition and then aggregate in two distinct steps. The 
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RAR metric, in contrast, results from fitting a regression model to aggregate values, reversing 

the order of operations to aggregating first and then conditioning. The RAR metric thus 

represents the conditional status of aggregates instead of an aggregate of conditional status. As 

the name suggests, RARs are the residuals from the regression of average current scores on their 

J prior average scores. This regression model is often referred to as a “between-groups” 

regression, as it ignores any within-group variability (e.g., Snijders & Bosker, 2011). The RAR 

metric can use the same linear mean regression as the PRR metric, but the individual scores in 

Equation 1 are replaced by their group averages, reducing the fitted data from n students to G 

groups: 

 

𝑌�.𝑔 =  𝛼(𝐵) + �𝛽𝑗
(𝐵)𝑋�𝑗.𝑔

𝐽

𝑗=1

+ ϵg (2) 

Here, 𝑌�.𝑔 is the mean current score for group g, 𝑋�𝑗.𝑔 represents the gth group’s mean scores for the 

tth prior time-point, 𝛽𝑗
(𝐵) refers to the corresponding regression coefficients from the “between-

groups” regression, 𝛼(𝐵) denotes the intercept, and ϵg is group g’s error term. The RAR is the 

difference between a group’s observed and expected current average score (𝑦�.𝑔 − 𝑦��.𝑔).   

Fixed-Effects Metric 

 The model supporting FEMs is sometimes described as a “covariate adjustment” model 

or, more simply, as an Analysis of Covariance (ANCOVA).  In this approach, an aggregate-level 

“fixed effect” is added to the individual-level linear mean regression of current scores on J prior 

scores. The fixed effects can be represented by the coefficients (𝛾𝑔) of dummy variables for 

groups, resulting in distinct intercepts for each group g:  

 
Yig = 𝛾𝑔 + �𝛽𝑗

(𝑊)𝑋𝑗𝑖𝑔

𝐽

𝑗=1

+ ϵig. (3) 
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Each group’s FEM is operationalized as its estimate of 𝛾𝑔 with respect to a reference group or 

subject to another constraint such as ∑ 𝛾𝑔 = 0𝑔 , which we use. This model constrains all groups 

to have the same slope estimates (�̂�𝑗
(𝑊)) estimated from what is often called a “within-groups” 

regression (e.g., Snijders & Bosker, 2011). Standard errors and other statistical properties of 

FEMs are easily calculated in a linear mean regression framework.  

 The multilevel modeling literature provides many useful links between models. As one 

illustrative contrast, when group sizes are equal and there is one prior grade predictor (X), the 

overall regression coefficient, 𝛽, is the weighted sum of the between- (𝛽(𝐵)) and within-group 

(𝛽(𝑊)) regression coefficients, 𝛽 = 𝜂𝑋2𝛽(𝐵) + (1 − 𝜂𝑋2)𝛽(𝑊), where 𝜂𝑋2  is the “correlation ratio,” 

an intraclass correlation coefficient for 𝑋 that is precision-adjusted by dividing by the reliability 

of its group mean (Snijders & Bosker, 2011, p. 31).  When this unconditional intraclass 

correlation is low, that is, when there is substantially more within-group than between-group 

variation on 𝑋, the regression coefficients that determine meanPRRs and meanResids (𝛽) will be 

similar to the coefficients that determine FEMs �𝛽(𝑊)�. 

The focus of this paper is not on regression coefficients but the contrasts between 

ACSMs. However, there is reason to expect that similarities in slopes will lead to similarities 

between ACSMs, particularly between FEMs and meanResids. The FEMs can in fact be 

expressed as a mean residual from a reference line with slope 𝛽(𝑊): FEMg =  𝑦�.𝑔 −

 ∑ 𝛽𝑗
(𝑊)�̅�𝑗.𝑔

𝐽
𝑗=1 .  Thus, when unconditional intraclass correlations are low, we can expect not only 

that 𝛽 and 𝛽(𝑊) will be similar but also that FEMs and meanResids will be highly correlated.  

Random-Effects Metric  

 The model supporting the REM is a two-level “random intercept” model or a random-

effects ANCOVA (Raudenbush & Bryk, 2002). It is similar to the model supporting FEMs, but 
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random-intercept models do not parameterize the intercepts directly; rather, they treat them as 

random variables. Given school-level random intercepts designated as 𝑢𝑔 and an overall average 

group intercept designated as 𝛾0: 

 
𝑌ig = �𝛾0 + 𝑢𝑔� + �𝛽𝑗

(𝑅)𝑋𝑗𝑖𝑔

𝐽

𝑗=1

+ ϵig,  (4) 

This random-intercepts model also constrains all groups to have the same slope estimates 

(�̂�𝑗
(𝑅)).  Rabe-Hesketh and Skrondal (2012) explain that this model implicitly assumes that 𝛽𝑗

(𝑊) 

and 𝛽𝑗
(𝐵) are equal. Under a feasible generalized least squares estimation procedure, they express 

the random effects estimate of the slope as a precision-weighted average of �̂�𝑗
(𝑊) and �̂�𝑗

(𝐵) (p. 

148). Their expression implies that �̂�𝑗
(𝐵) will be down-weighted, and the coefficients underlying 

the REM (�̂�𝑗
(𝑅)) and FEM (�̂�𝑗

(𝑊)) metrics will be similar when 1) the variance of the random 

intercepts is large with respect to the level-1 error variance and 2) within-group variances of 

predictors are large with respect to their between-group variances. These imply large conditional 

intraclass correlations for the outcome and small unconditional intraclass correlations for the 

predictors, respectively.  Notably, this latter criterion, low unconditional intraclass correlations 

for predictors, is common for educational test scores nested within schools (Hedges & Hedberg, 

2007). 

Even when slopes are similar, FEMs and REMs may differ due to the necessary 

estimation of each REM (𝑢𝑔). We follow common practice (Rabe-Hesketh & Skrondal, 2012) 

and shrink REMs to the overall mean using Empirical Bayes estimation. For any given dataset, 

there will be more shrinkage for smaller groups than larger groups. Across datasets, there will be 

more shrinkage for data with more within-group than between-group variation. In the practical 
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scenarios that we will illustrate, we found that the shrunken and unshrunken estimates were 

almost perfectly correlated and thus do not consider unshrunken estimates further. 

Visual Comparison of ACSMs 

 Figure 1 contrasts the models that support ACSMs by illustrating their fit to a scatterplot 

of real data. Light gray conditional boxplots show the empirical bivariate distribution of a 

statewide cohort’s Grade 6 scores given each score point in their prior grade. The linear mean 

regression line in dark gray has a slope �̂�1 (Equation 1).  It serves as a reference for meanResids 

and PRRs. Points above the line represent students with positive residuals and high PRRs who 

performed better in Grade 6 than expected given their Grade 5 scores. Groups with more students 

above the line will receive higher meanResids and aggregated-PRRs than groups with more 

students below the line. 

To illustrate SGP operationalization, Figure 1 also shows the median quantile spline in 

black. (It is actually the line for the .495 quantile, and scores falling between the .495 and .505 

quantile lines receive an SGP of 50.) Like PRRs, points above the line will be assigned higher 

SGPs. The jagged shape of the spline at extreme score points arises from corrections that ensure 

that quantile regression lines do not cross each other (Betebenner, 2010b; Castellano & Ho, 

2012; Dette & Volgushev, 2008).  

The dashed line denotes the regression line for the RARs with slope �̂�1
(𝐵) (Equation 2). 

The students in this dataset belong to 546 schools, and the solid, gray squares represent their 

school-level average Grade 6 scores plotted against their school-level average Grade 5 scores. 

The slope of the RAR line is steeper compared to the reference lines of the other models. 

Because RARs ignore within-group variability, and because within-group variability far exceeds 

between-group variability in educational test score data (Hedges & Hedberg, 2007), we expect 
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and ultimately find that RARs will produce the most distinct rank orderings of groups than any 

of the other ACSMs.  For parsimony, and because ignoring within-group variation with RARs is 

poorly motivated in practice, we exclude RARs from the remainder of the paper.  

The fixed effects model supporting FEMs effectively estimates a common slope for 

within-group data, �̂�1
(𝑊) (Equation 3). Figure 1 shows this dotted regression line when 𝛾𝑔 = 0, 

under the constraint that intercepts sum to 0.  All groups have parallel regression lines (not 

shown), and vertical distances between the regression line of any group and that of the dotted 

line is that group’s FEM.  The line for the REM model differs but is visually indistinguishable 

from the FEM line for these data. The REM model produces an overall regression function with 

slope �̂�1
(𝑅) (Equation 4), following which estimation of REMs (𝑢�𝑔) for each group proceeds by 

Empirical Bayes estimation.  

The total (resids, PRRs), within-group (FEMs), and between-group (RARs) regression 

lines are visually distinguishable. As the previous sections described, the total regression 

coefficient will be closer to the within-group coefficient when between-group variation on 𝑋 is 

relatively low, that is, low intraclass correlations for predictors. This holds in Figure 1, where the 

slope of the linear mean regression line is closer to the within-group line than the between-group 

line. The relative dominance of within-group variation in the predictors also explains our 

inability to distinguish between the fixed- and random-effects lines visually.  These similarities 

motivate the theoretical and empirical analyses that follow. 

ACSM Parameter Recovery  

 We first evaluate each ACSM according to how well it recovers its corresponding 

parameter or expected value.  As described in the preceding sections, each ACSM is derived 

under a different model and/or computations with different parameters or intended targets.  In 
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this section, we describe our data generating procedure (DGP), define the parameters for each 

ACSM under this DGP, and then evaluate the recovery of each ACSM using bias, Root Mean 

Square Error (RMSE), and correlations with their respective true values.  

Data Generating Process 

 The ideal DGP allows control over parameters that ensure realistic relationships among 

variables while also defining parameters for evaluating ACSMs.  We considered generating data 

using the random-intercept model as given in Equation 4.  However, such a DGP would privilege 

the random-effects metric over the other ACSMs; that is, the other ACSMs do not have 

parameters readily derivable from parameters specified in Equation 4. Moreover, such an 

approach precludes specification of the between-group correlations between each respective 

predictor and the outcome.  In the context of year-to-year test scores, in which both the 

predictors and outcome are test scores, it is not realistic to have an outcome variable that has 

correlations with predictors substantially different than the correlations among the predictors 

themselves. 

We therefore use a “decomposed multivariate normal” DGP that generates data as the 

sum of between-group and within-group multivariate normal (MVN) distributions.  The 

between-group data are the group means, and the within-group data are individual deviations 

from the group means, or the group-mean-centered values.  We use four total years of test 

scores—one “current grade” and three “prior grades” —following the common practice of using 

ACSMs when there are at least three prior timepoints (e.g., Sanders, 2006).  The generating 

model is thus:  
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𝑌𝑖𝑔 = 𝑌𝑔𝐵 + 𝑌𝑖𝑔𝑊         𝑿 = 𝑿𝒈𝑩 + 𝑿𝒊𝒈𝑾 . 

Here, 𝑌𝑖𝑔 denotes the nominal current test score for student i in group g, and 𝑿 is a 𝑁 × 𝐽 matrix 

of student test scores, where 𝑁 = ∑ 𝑛𝑔𝐺
𝑔=1  and 𝐽 = 3 denotes the number of prior years. 

We define control parameters to align with the simulation specifications of Castellano 

and Ho (2013) that reflect patterns observed in real data.  The mean vector is 𝝁 =

[𝜇𝑌 𝝁𝑿]′ =[265, 260, 255, 250]′.  The covariance matrices 𝚺𝑩 and 𝚺𝑾 are expressed in terms of 

an overall, or as previously termed “total,” correlation matrix, 𝑹 (which we denote without a 

superscript), a between-group correlation matrix, 𝑹𝑩, a diagonalized matrix of standard 

deviations, 𝑫, and an intraclass correlation coefficient, 𝜔, as follows:  

𝚺 = 𝑫𝑹𝑫 

𝚺𝑩 = �√𝜔𝑫�𝑹𝑩�√𝜔𝑫� 

𝚺𝑾 = 𝚺 − 𝚺𝑩. 

Following Castellano and Ho (2013), for 𝑹, we set correlations between adjacent year 

variables (lag-1 correlations) to .78, lag-2 correlations to .76, and lag-3 correlations to .74.  

Informed by patterns in our real data, we set corresponding lagged pairwise correlations between 

group means in 𝑹𝑩 to .90, .85, and .80.  We set standard deviations in 𝑫 constant at √65.  The 

intraclass correlation, 𝜔, controls the amount of non-random sorting into groups, and we vary 

this as a factor, from .05 to .15 to .25.  These values span a range observed in practice (Hedges 

and Hedberg, 2007) and in our own empirical datasets (from .06 to .15).   
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To mimic a reasonable number of schools observed in practice, we assign students to 500 

groups with equal group sizes.  We investigate three group sizes, 𝑛𝑔 =25, 50, and 100.  Each of 

the nine crossed combinations of group sizes (25, 50, and 100) by unconditional ICC (.05, .15, 

and .25) was replicated 100 times. 

Expected Values for Each ACSM 

In this section, for each simulation condition, we derive the expected values for each 

ACSM, beginning by establishing properties of group average residuals (meanResids), 

proceeding to aggregates of transformed residuals (aggregated SGPs/PRRs), and concluding with 

FEMs.  Under random allocation of students to teachers, SGPs and PRRs are uniformly 

distributed 0 to 100 for each group, resulting in expected values of 50 for mean and median 

SGPs and PRRs.  Under nonrandom allocation of students to teachers, such as in our DGP 

controlled by nonzero ICCs, we can also derive the expected values of group residuals and 

thereby mean and median SGPs and PRRs.   

We first consider the conditional distribution of the current scores given the prior scores.  

Under our decomposed MVN DGP, this distribution has known variance 𝜎𝜖2: 

𝜎𝜖2 = 𝜎𝑌|𝑋
2 = 𝜎𝑌2 − 𝚺𝒀𝑿(𝚺𝑿𝑿)−𝟏𝚺𝒀′𝑿 , 

where 𝚺𝒀𝑿 is a column vector of covariances between 𝑌 and each prior score 𝑋1, 𝑋2, and 𝑋3, and 

𝚺𝑿𝑿 is the covariance matrix among the prior grade-level scores in 𝑿. The normality of the 

population conditional distribution allows us to derive the meanPRR and medPRR as a closed-

form expression.  First, note that under our decomposed MVN DGP, the unconditional 

distribution of residuals over all groups is:  

𝜖~𝑁(0,𝜎𝜖2). 
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We denote the residuals for students within, or given, a particular group 𝑔 using conditional 

notation, 𝜖|𝑔.  By construction, these are normally distributed:  

 𝜖|𝑔~𝑁�𝜇𝜖|𝑔,𝜎𝜖|𝑔
2 � 

𝜇𝜖|𝑔 = 𝑌𝑔𝐵 − 𝜇𝑌|𝑋 = 𝑌𝑔𝐵 − �𝜇𝑌 + 𝚺𝒀𝑿(𝚺𝐗𝐗)−𝟏 �𝑿𝒈𝑩 −  𝝁𝑿�� 

𝜎𝜖|𝑔
2 = 𝜎𝑌|𝑋

2(𝑊) = 𝜎𝑌
2(𝑊) − 𝚺𝒀𝑿𝑾 �𝚺𝑿𝑿𝑾 �−𝟏𝚺𝒀′𝑿 

𝑾 . 

(5) 

The mean of the residuals within group g, 𝜇𝜖|𝑔, represents the average expected residual over 

students in group g from the student-level (overall) regression in Equation 1.  These are thus the 

true group meanResids, meanResidgtrue.  

Due to the normality of overall residuals 𝜖, the PRRs are the normal CDF of these 

standardized residuals: 𝑃𝑅𝑅 = Φ� 𝜖
𝜎𝜖
�, where Φ denotes the standard normal CDF.  The 

percentile rank of a residual from any group is therefore: 𝑃𝑅𝑅|𝑔 = Φ�𝜖|𝑔
𝜎𝜖
�, 

with 𝜖|𝑔 distributed as specified in Equation 5. Accordingly, the expected value of 𝑃𝑅𝑅|𝑔 for a 

particular group can be expressed in closed form as a normal CDF of a normal deviate: 

meanPRR𝑔𝑡𝑟𝑢𝑒 = Φ

⎝

⎛
𝜇𝜖|𝑔

�𝜎𝜖2 + 𝜎𝜖|𝑔
2
⎠

⎞. 

Additionally, because the distribution of residuals is normal, the parameters of the 

conditional quantiles follow those of a normal distribution.  The associated conditional percentile 

ranks are the definition of SGPs and are equal to Φ� 𝜖
𝜎𝜖
�.  Thus, under our DGP, population SGPs 

are equal to population PRRs, and meanSGP𝑔𝑡𝑟𝑢𝑒 = meanPRR𝑔𝑡𝑟𝑢𝑒. 

The expected value of medPRRs and medSGPs follow from the symmetry of the 

normally distributed residuals for each group, such that the median residual equals the 
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mean: 𝜇𝜖|𝑔.  The Φ transformation is monotonic, ensuring that the median transformed value is 

the transformed median value.  The medPRR parameter is therefore: 

medPRR𝑔𝑡𝑟𝑢𝑒 = Φ�
𝜇𝜖|𝑔
𝜎𝜖

�. 

As before, the normality of the conditional distribution results in medSGP𝑔𝑡𝑟𝑢𝑒 = medPRR𝑔𝑡𝑟𝑢𝑒. 

The expected values for FEMs, like those for meanResids in Equation 5, can be 

expressed in terms of population regression coefficients implied by the DGP.  That is, 𝜷 =

𝚺𝑿𝑿−𝟏𝚺𝒀𝑿, and 𝜷𝑾 = �𝚺𝑿𝑿𝑾 �
−𝟏
𝚺𝒀𝑿𝑾 .  We then compute the groups’ expected residuals by 

subtracting the generated group means from the expected group means:   

 FEMg
true = 𝑌𝑔𝐵 − 𝜇𝑌|𝑋

𝑊 =  𝑌𝑔𝐵 − �𝜇𝑌 + 𝚺𝒀𝑿𝑾 �𝚺𝐗𝐗𝑾 �−𝟏�𝑿𝒈𝑩 −  𝝁𝑿��  

All of these terms are specified or generated as part of the DGP. The population means, 𝜇𝑌 and 

𝝁𝑿, represent subsets of the specified mean vector 𝝁 for the current and prior scores, respectively.  

This DGP does not allow for straightforward expressions of 𝜷𝑹 so we do not include 

parameter recovery for REMs.  However, given the relatively low magnitudes of the ICCs for the 

prior grade levels, there is relatively little between-group variability in the conditioning 

variables, thus 𝜷𝑹 ≈ 𝜷𝑾 (Rabe-Hesketh and Skrondal, 2012, p. 148).  Although we do not 

present REM recovery of FEM parameters, we note that the results are nearly identical to the 

presented FEM recovery of FEM parameters.  Equivalently, as we do show, REM and FEM 

metrics are nearly perfectly correlated in our simulated and empirical data examples.    

ACSM Recovery of Expected Values 

We evaluate each estimated ACSM (𝜃�) on its recovery of its respective expected value 

(𝜃) using bias, RMSE, and correlations, which we compute by averaging over groups and 

replications for a given condition:  
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𝐵𝑖𝑎𝑠(𝜃�) =
1

𝑅 × 𝐺
��(𝜃�𝑔𝑟 − 𝜃𝑔𝑟)

𝐺

𝑔=1
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𝑅
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1
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1
𝑅
�

∑ ��𝜃�𝑔𝑟 − 𝜃�̅𝑟� �𝜃𝑔𝑟 − �̅�𝑟��𝐺
𝑔=1
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2
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𝑔=1 ∑ �𝜃𝑔𝑟 − �̅�𝑟�
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𝑅

𝑟=1

. 

Here, r denotes replication with R=100 and g denotes group with G=500.  Bias and RMSE are 

expressed on the scale of the ACSM of interest and are thus not comparable across all ACSMs.  

Specifically, these values should not be compared between the residual-based metrics, FEMs and 

meanResids, and the percentile-rank-based metrics, mean/medSGPs and mean/medPRRs. To 

allow for comparison across all metrics, we also report Pearson correlations between each 

estimated ACSM and its expected value, averaged over the 100 replications for each condition.  

Table 2 gives these RMSEs and Pearson correlations.  All of the biases were essentially zero; 

thus, we do not report them in the interest of space.  Note that RMSEs are not strictly standard 

errors for an estimate of a single parameter as each group has its own expected value.  Rather, 

the RSMEs are average standard errors over the group parameters generated by the DGP. 

 First, we review the performance of the percentile-rank scaled metrics.  From Table 2, it 

is apparent that the median SGPs and PRRs underperform their mean-based counterparts in 

terms of parameter recovery.  The RMSEs for the median-based percentile rank metrics are 

consistently about 1.6 times larger than those of the corresponding mean-based metrics across all 

simulation conditions. Both meanSGPs/PRRs and medSGPs/PRRs are unbiased, but 

meanSGPs/PRRs are substantially more efficient.  Moreover, results for SGPs and PRRs are 
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almost identical, indicating that under multivariate normality of cross-year test scores, the choice 

between conditional quantile and conditional mean regression is immaterial for aggregate-level 

conditional status interpretations.   

 For the two residual scaled metrics, FEMs and meanResids, we find that their average 

efficiency is indistinguishable under these simulation conditions.  Recall that FEMs are average 

residuals from a within-group regression (with  𝜷𝑾) and meanResids are average residuals from 

an “overall” student-level regression (with 𝜷).  Thus, the nearly identical RMSEs for FEMs and 

meanResids in Table 2 are partly anticipated by the expected similarity of 𝜷 and 𝜷𝑾 when 

intraclass correlations are low, although the similarity is striking even when intraclass 

correlations are 0.25.  The consideration of group membership in the estimation of regression 

slopes and residuals for FEMs buys little precision under these simulation parameters. This 

foreshadows upcoming results as we shift from comparing efficiency of metrics to comparing 

their magnitudes and rank orderings for individual groups: there is considerable similarity across 

meanResids, FEMs, and REMs for both empirical and simulated datasets. 

  We express the RMSEs for FEMs and meanResids in Table 2 in terms of standard 

deviation units of 𝑌 (𝜎𝑌 = √65) rather than on the original Y scale to facilitate interpretability.  

The RMSEs are between 1/9 and 1/20 of a standard deviation unit on this scale, and RMSEs do 

not seem to depend greatly upon ICCs.  An alternative scale for interpreting RMSEs is the 

standard deviation of meanResidgtrue, SD(𝜇𝜖|𝑔), which for our DGP equal �𝜎𝑌
2(𝐵) + 𝜷𝚺𝑿𝑿𝑩 𝜷 −

2𝜷𝚺𝒀𝑿𝑩 �
.5

  These RMSEs are displayed in the last column of Table 2 for both FEMs and 

meanResids, given that they are almost identical. On this scale, RMSEs are over a standard 

deviation unit when 𝑛𝑔 = 25 and 𝜔 = .05.  It is only with sample sizes of 50 and ICCs of .15 or 

higher that RMSEs drop below 1/2 of a standard deviation.  The differences among RMSEs 
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across ICCs are also more pronounced for FEMs and meanResids when RMSEs are expressed on 

the scale of meanResidgtrue. These differences are consistent with the differences across ICCs in 

the correlation results at the bottom of Table 2.  Estimates are more efficient as ICCs rise, 

moderately on the 𝜎𝑌 scale and substantially on the SD(𝜇𝜖|𝑔) scale. 

Across all metrics, we observe that the two varied simulation factors—group size and 

grade-level ICC—affect recovery similarly. Each metric’s recovery of its expected value is better 

for higher unconditional ICCs and larger group sizes as observed by the lower RMSEs and 

higher Pearson correlations under these conditions.  

To clearly compare the performance across all metrics, Figure 2 illustrates the mean 

correlations for the smallest group size, 𝑛𝑔 = 25, as this level shows the largest differences 

among the metrics.  As Table 2 shows the same general pattern holds for group sizes of 50 and 

100 as well.  Figure 2 clearly shows that the median-based percentile rank metrics (medPRR, 

medSGP) demonstrate the poorest recovery, the mean-based percentile-rank metrics (meanPRR, 

meanSGP) demonstrate better recovery, and the mean-based residual metrics (meanResid, FEM) 

show the best recovery.  The meanSGP/PRR correlations are more similar to those for the 

meanResids and FEMs than to those for the medSGPs/PRRs.  In summary, the efficiency of the 

medSGPs/PRRs is noticeably poor compared to the performance of all the other ACSMs.  

Theoretical Differences between Mean and Median Percentile Rank ACSMs 

In this section, we use theoretical statistical results to explain the substantial differences 

between mean-based and median-based percentile rank metrics observed in Table 2 and Figure 2.  

As percentile ranks, SGPs and PRRs follow a theoretical uniform distribution with a 0 to 100 

range and thus have a standard deviation of 50/√3. When there are no average differences 

across groups (𝜔 = 0), the sampling distribution of medians for group sizes of 𝑛 is that for the 



PRACTICAL DIFFERENCES AMONG ACSMS  23 
 

(𝑛 + 1) 2⁄  order statistic and is known to be distributed as a beta distribution with parameters 

𝛼 = 𝛽 = (𝑛 + 1)/2 (Casella & Berger, 2001).  

The expected value of medSGPs and medPRRs under these conditions is 50, and their 

standard error is 50 √𝑛 + 2⁄ . The expected value for the meanSGPs and meanPRRs is also 50, 

but their standard error is 50 √3𝑛⁄ . Accordingly, the medSGP and medPRR have a theoretical 

standard error that is �3𝑛 (𝑛 + 2)⁄  times larger than the standard error of the meanSGP and 

meanPRR. This factor approaches √3  ≈  1.73 for large n.  The square of this factor, 3, is the 

Asymptotic Relative Efficiency (ARE) of means over medians.  Under random assignment, a 

median PRR or SGP will require three times the sample size to achieve the same efficiency as a 

mean PRR or SGP. 

When there are average group differences, the sampling variability of mean and median 

percentile ranks, like the expected value, depend upon the variance of the unconditional 

residuals, 𝜎𝜖2, and  the conditional mean and variance of group residuals 𝜇𝜖|𝑔and 𝜎𝜖|𝑔
2 , 

respectively. In Figure 3, we use Monte Carlo simulations to display the standard errors of 

median (dashed lines) versus mean (solid lines) PRRs and SGPs under the decomposed MVN 

DGP for 𝑛𝑔 = 25 (black lines) and 𝑛𝑔 = 100 (grey lines) when 𝜔 = .15.  By plotting the 

standard errors (Figure 3a) and relative efficiencies (Figure 3b) for metrics on the location of 

meanResidgtrue in terms of their standard deviation, SD(𝜇𝜖|𝑔), Figure 3 shows that these statistics are 

lower for groups on either extreme of the distribution.  Estimates are more precise and means 

and medians are more similar in efficiency when true group mean residuals are extreme.  On 

average, however, the relative efficiency of means over medians is considerable across a range of 

realistic group mean values.  Figure 3b shows that, on average (at ±1 SD, given the underlying 

standard normal density), medians require at least 2.5 times the sample size of means to achieve 
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the same efficiency.  The magnitude of these differences in sampling variability represents a 

strong argument for using mean-based SGPs or PRRs over their median counterparts.  

Empirical Data 

To provide a real-data perspective on these findings, we use the same two statewide data 

files as those from the real-data analyses of Castellano and Ho (2013), allowing for a common 

data reference point between these papers. There are a total of four distinct four-year longitudinal 

datasets:  two states with data in each of two subjects. The states, referred to as “State A” and 

“State B,” contrast usefully in size and scaling procedures. The State A dataset contains records 

for a single cohort of about 25,000 students with reading and mathematics scores from grade 3 to 

grade 6 on a vertical scale with increasing variance over time. The State B dataset has 

mathematics and reading scores for a cohort of about 75,000 students from grade 3 to grade 6 on 

within-grade-scaled tests.  

The State A dataset allows for district-level analyses, whereas the State B dataset allows 

for school-level analyses. Both datasets include four years of data from a single cohort 

representing sixth graders in the “current” year.  For the purposes of these illustrative analyses, 

students with missing data are excluded.  For convenience, we describe district- and school-level 

grade cohorts as “groups.”  To adhere to standard reporting rules, we follow Colorado’s cutoff 

for reporting medSGPs (CDE, 2012) and exclude results for groups with fewer than 20 students. 

For aggregate-level SGPs and PRRs, we follow Colorado’s practice of including all students in 

individual-level computations but excluding students from small groups from aggregate-level 

analyses. In contrast, FEMs and REMs use aggregate-level information early in estimation; thus, 

for these metrics, we exclude students from small groups prior to any calculations.  
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This decision rule excludes about 18 percent of districts (2.8 percent of students) in State 

A and about 20 percent of schools (1 percent of students) in State B. In State A, there are 272 

districts for Reading and 273 for Math. The median and mean group sizes for each subject are 46 

and 90 respectively, with a maximum size of 1700. In State B, there are 546 schools in the 

Reading dataset and 542 in the Math dataset.  The median and mean group sizes are 133 and 139 

respectively, with a maximum size of 380.  

Cross-Metric Comparability  

In the previous section, we compared ACSM’s in the recovery of their own respective 

parameters, whereas in this section, we compare metrics to each other directly for both simulated 

and empirical data. We use rank-based methods to compare the consequences of switching 

among metrics because of the nonlinear relationship between the residual scale and the percentile 

rank scale.  Ranks are also a useful scale to communicate practical differences. Table 3 displays 

Spearman rank correlations for simulated and empirical data, and Figure 4 shows empirical 

distributions of percentile rank differences for groups.   

Correlations among ACSMs 

 The top third of Table 3 gives average correlations over replications for simulated data 

when ng = 25 and ICCs=0.05 (above the diagonal) and ng = 25 and ICCs=0.25 (below the 

diagonal).  We chose the smallest group size condition, as it shows the starkest contrast among 

the metrics and reflects typical class sizes.  Thus, these correlations represent possible 

correlations between ACSMs at the teacher level.  The bottom two thirds of Table 3 show 

correlations for the empirical data in States A and B, in reading and mathematics. We divide the 

ACSMs into mean-based residual metrics, mean-based percentile rank metrics, and median-

based percentile rank metrics with a 3x3 “tic-tac-toe” grid in each matrix.  
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We note three primary observations from the simulated and empirical results in Table 3. 

First, from the upper left of these 3x3 grids, we see that REMs, FEMs, and meanResids are 

nearly perfectly correlated with each other. This holds even for the simulated data with relatively 

small group sizes of 25.  Second, meanSGPs and meanPRRs are also nearly perfectly correlated 

with each other and, to a slightly lesser degree, to the mean-based residual metrics. Third, 

medSGPs and medPRRs are highly correlated with each other but are much less correlated with 

the other metrics.  

 The high correlations between REMs, FEMs, and meanResids are predictable from 

Figure 1, where the three coefficients �̂�𝑗, �̂�𝑗
(𝑅), and �̂�𝑗

(𝑊), are almost impossible to distinguish 

visually. The low unconditional ICCs, both in the simulations and in the real data, allow within-

group information to dominate and bring �̂�𝑗 and  �̂�𝑗
(𝑅) closer to �̂�𝑗

(𝑊).  The results show that this 

similarity between coefficients propagates to their aggregate-level residuals.  The magnitudes 

may differ slightly, particularly when shrunken REM estimates are used.  However, our results 

show that the rank ordering of the groups will not change considerably, due in part to the more or 

less balanced group sizes. This study shows that for education data, for which there generally is 

much more within-group variation than between-group variation, the choice between fixed- and 

random-effects may be immaterial, at least when only regressing on prior scores.     

 The strong similarities between meanSGPs and meanPRRs are aggregate-level extensions 

of the findings of Castellano and Ho (2013). Table 3 further shows that these two metrics are 

highly correlated with the mean-based residual metrics. In the empirical data, the correlations 

between mean-based residual and percentile rank metrics are highest for State B math. 

Comparing these correlations for the simulated data, above the diagonal (ICC of .05) and below 

the diagonal (ICC of .25), we can see that these correlations will be higher when unconditional 
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ICCs are higher. Indeed, the State B math data had the highest unconditional ICCs of the four 

empirical datasets.  Additionally, State B has larger group sizes than State A.  This is consistent 

with simulated results that show higher and more similar correlations among metrics when group 

sizes are larger. 

 The median-based metrics are the most different from the other metrics. Correlations 

between the medSGPs and medPRRs with the FEMs, REMs, and meanResids are much lower 

than those between the meanSGPs and meanPRRs. If aggregate-level SGPs and PRRs are 

intended to be ad hoc approximations to the more comprehensive statistical framework of 

multilevel models, it is clear that mean-based metrics result in closer approximations than 

median-based metrics. Notably, Table 3 shows that correlations between SGP-based metrics and 

PRR-based metrics are much higher than correlations between mean-based and median-based 

metrics.  The relative impact of the choice of aggregation function is far greater than the relative 

impact of the choice of regression model.   

Absolute Differences in Group Percentile Rank 

Correlations provide a limited perspective on differences among metrics, as coefficients 

are generally high but difficult to interpret on a practical scale. Alternatively, we can compare 

two metrics using absolute differences in the percentile ranks of schools. If a school drops from 

the 99th percentile on one metric to the 1st percentile on another, the absolute difference in 

percentile ranks is 98. Large absolute differences indicate dissimilarity between metrics on an 

interpretable scale. These differences in percentile ranks should not be confused with differences 

in aggregated SGPs and PRRs that are themselves on the percentile rank scale. As an example, 

the medSGP of one group is 32, which is greater than or equal to the medSGPs of 36% of all the 

groups. This group is thus at the 36th percentile on the medSGP metric. The same group has a 
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meanSGP of 40, which corresponds to the 26th percentile on the meanSGP metric. For this 

group, switching metrics leads to an absolute difference in percentile ranks of |36 –  26|  =  10. 

Figure 4 uses boxplots to show the distributions of absolute percentile rank differences 

between ACSMs and two “reference metrics,” (a) medSGPs because they are widely used in 

practice, and (b) FEMs because they have the best recovery of their expected values (see Figure 

2). Simulated results are on the left, and empirical results are on the right. Boxplots in each panel 

are ordered in descending order of similarity to their reference metric, as measured by the 

magnitude of the correlations in Table 3. The simulated results on the left use a single randomly 

selected replication with group sizes of 100 and grade-level ICCs of .05. These correspond most 

closely with the group sizes and ICCs of the State B reading data on the right. Any of the other 

empirical datasets could have been used to illustrate the same findings.   

Like Table 3, Figure 4 shows that comparisons of the metrics for the simulated and 

empirical data are very similar, suggesting that our simulation modeled the real data well for 

ACSM purposes. The rank differences between medSGPs and mean-based metrics is large in 

both simulated and empirical data (Figure 4a).  The rank differences between FEMs and other 

mean-based metrics are lower for simulated than for empirical data (Figure 4b).  Consistent with 

the results in Table 3, in Figure 4, the ACSMs fall into three distinct categories for both the 

simulated and empirical data: mean-based residual metrics (REM, FEM, meanResid), mean-

based percentile rank metrics (meanSGP, meanPRR), and median-based percentile rank metrics 

(medSGP, medPRR). 

Figure 4 supplements Table 3 with a finer grain picture of the comparability of the 

ACSMs.  The small number to the left of each boxplot refers to the median absolute difference 

(MADs) in group percentile ranks. This can be loosely interpreted as the typical difference that 
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switching between metrics would make in terms of percentile ranks. For example, the right panel 

of Figure 4a shows that switching between medSGPs and meanSGPs would change a typical 

group ranking by 4 percentile ranks using State B Reading data. The maximum data point in this 

boxplot also shows that, at worst in this dataset, switching between medSGPs and meanSGPs 

changes a group ranking by about 30 percentile ranks. In contrast, Figure 4b shows that for both 

simulated and empirical data, switching between FEMs and medPRRs or medSGPs results in a 

typical group ranking change of 6 percentile ranks with an interquartile range of about 2 to 11 

percentile ranks and maximum change of about 40 percentile ranks.  For example, for the State B 

reading data, one group’s FEM is at or above about 82 percent of all the groups, making it appear 

as exceptional, whereas its medSGP places it at the 49th percentile of all the groups, a more 

mediocre ranking.  Such schools could receive substantially different accolades or sanctions 

depending on which metric was used.  

An alternative approach to describing metric dissimilarity is to describe the proportion of 

groups that are in the same quartile or decile by each pair of metrics, or the proportion of groups 

that change one or more quartiles. These metrics are intuitive and practical but depend on the 

number and location of cut scores. For example, a group with a cross-metric change of 20 

percentile ranks may or may not cross a quartile boundary. Figure 4 is a more robust 

representation that describes the magnitudes of typical and extreme changes in group percentile 

ranks. 

Scale Invariance  

To evaluate scale invariance, we use a family of four piecewise transformations as given  

in Castellano and Ho (2013). We apply these transformations directly to each of the standardized 

test score variables in a way that increases or decreases skewness S(z) and kurtosis 𝐾(𝑧):  
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𝑆(𝑧) =

⎩
⎨

⎧
(𝑧/𝑘) + (1− 𝑘)/[𝑘 × (𝑘 + 1)]; 𝑧 < −1

(2 × 𝑧)/(𝑘 + 1); −1 ≤ 𝑧 <  0
[(𝑘 + 1) × 𝑧]/2; 0 ≤ 𝑧 < 1

(𝑘 × 𝑧) + (1 − 𝑘)/2; 𝑧 ≥ 1 ⎭
⎬

⎫
 

𝐾(𝑧) = �

(𝑧 × 𝑘)  +  𝑘 −  (1/𝑘); 𝑧 < −1
𝑧/𝑘; −1 ≤ 𝑧 <  0
𝑧/𝑘; 0 ≤ 𝑧 < 1

(𝑧 × 𝑘) + (1/𝑘)  −  𝑘; 𝑧 ≥ 1

� 

(6) 

The constant k in these equations controls changes to the skewness and kurtosis of 

variables. Following Castellano and Ho (2012), we use k = 1.2 for the positive skewness and 

kurtosis transformations and k = 1/1.2 for the negative skewness and kurtosis transformations. 

These choices mimic realistic values of skewness and kurtosis observed in practice, and these 

piecewise transformations follow those sometimes used by state testing programs (e.g. MDESE, 

2009). The variable z represents the standardized grade-level test scores, where the scores are 

standardized by first subtracting the respective grade-level mean and then dividing by the pooled 

SD across all the grade-levels of interest. This preserves the relative grade-to-grade variability in 

the empirical datasets. We use 𝐽 = 3 prior years for this analysis to reflect a common number of 

prior years used in practice. 

The 8 ACSMs are estimated for all transformed datasets. For a given dataset, each group 

has five values for each ACSM—one each from the original (identity), positive skew, negative 

skew, positive kurtosis, and negative kurtosis transformations. Each group is then rank ordered 

by each ACSM for each transformation, resulting in each group receiving five percentile ranks—

one per transformation—for each ACSM.  The range of these values indicates the extent that a 

group’s percentile rank would change under this family of plausible transformations. We avoid 

correlations because they are limited to pairwise comparisons of transformations, and we are 

interested in a single metric describing the relevant variability of ranks under many plausible 
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transformations. Thus, we quantify the amount of transformation-induced variability by using 

mean ranges on a common scale of percentile ranks.        

Figure 5 displays the average range of percentile ranks for each ACSM under the five 

transformations for each of the four empirical datasets. The most scale-invariant metric is the 

meanSGP metric. The medSGPs are comparable to the other metrics. This may seem 

counterintuitive, particularly because medians are generally recognized as being more stable 

under transformations. In this analysis of PRRs and SGPs, the transformations are applied to the 

test score scale, not to the percentile rank scale of SGPs and PRRs, which will and should remain 

roughly uniformly distributed between 0 and 100. As transformations change individual SGPs 

and PRRs, the mean leads to more stability across these changes than the median. This is akin to 

sampling variability, except there is no resampling. It is variance due to transformations, where 

rescaling leads to variance that looks similar to what we might expect from resampling.  

Although it may seem contradictory, at the aggregate level, the scale-dependent mean will 

maximize the scale-independent tendencies of SGPs. 

Figure 5 also shows that meanPRRs are more robust to transformations than the mean-

based residual metrics (FEM, REM, meanResid). This is due to the percentile rank 

transformation. When increases to skewness and kurtosis lead to extreme residuals, the PRR 

transformation will constrain the transformed residual within .1 and 99.9 no matter how large the 

residual is.  Thus, averages of percentile ranks of residuals will be more stable under 

transformations than averages of residuals themselves. The medPRR metric performs relatively 

poorly for the same reason that medSGPs underperform meanSGPs. Note that the scale 

invariance of meanResids, FEMs, and REMs are as indistinguishable as the metrics themselves.  

With regard to comparisons across states, State A has larger mean ranges than State B, due in 
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part to having fewer groups (and thereby larger changes in percentile ranks) and increasing 

variance across grades.  

Concluding Remarks 

 Although the literature on growth and value-added models is rich, focused comparisons 

on a clearly defined subset of models are rare. As we have argued, empirical differences among 

gain-based models, multivariate models, and models supporting ACSMs are expected, as each 

addresses different questions. We restricted our focus to ACSMs because their models can 

support inferences about the status of a group by referencing current performance to expectations 

given prior scores. Empirical differences can thus be explained in terms of the approaches that 

different ACSMs take to support conditional status interpretations. 

Our analyses support three empirically distinguishable categories of ACSMs. These 

categories are (1) the mean-based residual metrics (FEMs, REMs, and meanResids), (2) the 

mean-based percentile rank metrics (meanSGPs and meanPRRs), and (3) the median-based 

percentile rank metrics (medSGPs and medPRRs). The categories are listed in order of 

decreasing recovery of expected values (Figure 2).  If we had included the medResid metric, it 

would belong in the third category due to its systematic similarity with medPRRs.  If we had 

included the RAR metric, it would be in its own, fourth category, due to its predictable deviation 

from all other metrics in a context where within-group variability is substantial. All analyses 

reveal considerable similarities among ACSMs within each of the categories that we have 

identified and considerable dissimilarities between categories, particularly the category of 

median-based percentile rank metrics. 

This paper is constrained in at least two important ways: it only considers prior test score 

variables as covariates and it only considers linear, homoscedastic mean regression models First, 

we restricted our focus to prior scores as covariates, to be in line with the operational estimation 
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of SGPs. However, the inclusion of other covariates such as student demographic covariates 

would change expected current status and may change the extent that our ACSMs of interest 

produce comparable results.  Moreover, we use error-contaminated prior scores with no 

adjustment for measurement error in either the prior or current scores.  This may bias each 

ACSM differentially and is an active area of current research (e.g., Akram, Erickson, & Meyer, 

2013; Lockwood & McCaffrey, 2014).   

Second, as Castellano and Ho (2013a) show, the relationship between SGPs and linear, 

mean-based ACSMs will decline as the assumptions of the latter are violated. If no 

accommodations to the model are made, SGPs will provide more accurate conditional status 

inferences. Although this paper demonstrates robustness of findings across different states with 

different scaling procedures, a useful extension involves identification of pivot points where 

aggregated SGP metrics become markedly and systematically different from other ACSMs. As 

Castellano and Ho (2013a) note, however, such studies do not universally promote one metric 

over others as much as emphasize the importance of selecting a model that fits the data. 

Similarly, extending these analyses to incorporate student- and group-level covariates would be 

theoretically useful, even if many current state and federal policies discourage the resulting 

dependence of expectations upon covariates. 

A consistent finding is that the aggregation function is a more consequential decision 

than the regression function or the choice between fixed and random intercepts.  There are 

marked differences between mean- and median- SGPs and PRRs. Although medians support 

interpretations of “typical values” and are theoretically more appropriate for a non-interval scale, 

this paper presents three findings that suggest considerable advantages of means over medians. 

The first is the relative efficiency of the mean over the median (Figure 3). The second is the 



PRACTICAL DIFFERENCES AMONG ACSMS  34 
 

greater alignment between meanSGPs/meanPRRs and their respective expected values (Figure 2) 

as well as their greater comparability with the FEM, REM, and meanResid metrics (Table 3 and 

Figure 4). The third is that meanSGPs and meanPRRs are more robust to scale transformations 

than their median-based counterparts (Figure 5).  

In light of these findings, the widespread use of the medSGP statistic should be 

reconsidered. If concerns about the ordinal scale of percentile ranks remain, we recommend a 

simple alternative that assumes that a normal distribution underlies the percentile rank function: 

meanSGP� =  Φ�∑Φ−1 �SGP𝑖
100

� 𝑛⁄ �, where Φ is the standard normal cumulative distribution 

function and 𝑛 is the number of students within a group. This aggregation function takes 

advantage of the benefits of means over medians while diminishing concerns about taking 

averages on rank scales. We implemented this alternative with SGPs and PRRs, but it is so 

highly correlated with simple meanSGPs and meanPRRs that it made no difference to our 

substantive conclusions, and we have adhered to the simpler specification. 

 Descriptions of ACSMs often incorporate the terms “growth” and “value added.”  These 

terms are ambiguous, and we recommend reviews such as those by Castellano and Ho for 

“growth” (2013b) and Reardon and Raudenbush for “value added” (2009) that specify 

assumptions and articulate the necessary data and model features to address specific questions. 

We stress the importance of describing ACSMs in terms of what they literally do: summarize the 

performance of a group by referencing current status to expectations given past scores.  

Under this definition, dependencies are better anticipated. By understanding aggregate-level 

conditional status, it is less surprising that the aggregation function is consequential. As stakes 

rise for accountability and evaluation decisions for teachers, schools, subgroups, and districts, 
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clear descriptions of ACSMs and the practical magnitudes of their dependencies become 

essential.   
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Table 1 

Table of Aggregate-Level Conditional Status Metrics   

Abbreviation Metric Regression 
Approach 

Aggregation 
Function Scale for Interpretation 

medSGP Median Student 
Growth Percentile Nonlinear Quantile Median Percentile Rank 

meanSGP Mean Student 
Growth Percentile Nonlinear Quantile Mean Percentile Rank 

medPRR Median Percentile 
Rank of a Residual Linear Mean Median Percentile Rank 

meanPRR Mean Percentile 
Rank of a Residual Linear Mean Mean Percentile Rank 

meanResid Mean Residual Linear Mean Mean “Current” Score Scale 
(Residual) 

medResid Median Residual Linear Mean Median “Current” Score Scale 
(Residual) 

RAR 
Residuals from 

Aggregate 
Regression 

Linear Mean Mean “Current” Score Scale 
(Residual) 

FEM Fixed Effects 
Metric 

Linear Mean 
(incorporates group 

membership) 
Mean “Current” Score Scale 

(Residual) 

REM Random Effects 
Metric 

Linear Mean 
(incorporates group 

membership) 
Mean “Current” Score Scale 

(Residual) 

Note:  In this paper, for all regression approaches, current status, or the current grade-level score, is the response 
variable and prior grade-level scores are the predictors.  
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Table 2  

Summary of the Recovery of each Aggregate-Level Conditional Status Metric’s Parameter as 

measured by Root Mean Square Error (RMSE) and Pearson Correlations. 

   Percentile-Rank Metrics Residual-based Metrics 

Out-
come 𝑁𝑔 ICC Med-

SGP 
Med-
PRR 

Mean-
SGP 

Mean
-PRR 

MeanResid 
(in 𝜎𝑌 units) 

FEM  
(in 𝜎𝑌 units) 

FEM and 
meanResid (in 

SD(𝜇𝜖|𝑔) 
units) 

R
M

SE
 

25 
0.05 9.36 9.36 5.68 5.69 0.111 0.111 1.10 
0.15 8.83 8.82 5.50 5.50 0.107 0.107 0.61 
0.25 8.28 8.27 5.31 5.31 0.103 0.103 0.46 

50 
0.05 6.66 6.67 4.02 4.02 0.078 0.078 0.78 
0.15 6.28 6.28 3.91 3.91 0.076 0.076 0.44 
0.25 5.95 5.95 3.81 3.8 0.074 0.074 0.33 

100 
0.05 4.76 4.76 2.83 2.83 0.055 0.055 0.55 
0.15 4.52 4.52 2.78 2.78 0.054 0.054 0.31 
0.25 4.29 4.29 2.71 2.71 0.053 0.053 0.23 

C
or

re
la

tio
n 

25 
0.05 0.59 0.59 0.66 0.66 0.67 0.67  
0.15 0.79 0.79 0.85 0.85 0.85 0.86  
0.25 0.87 0.87 0.91 0.91 0.91 0.91  

50 
0.05 0.72 0.72 0.78 0.78 0.79 0.79  
0.15 0.88 0.88 0.91 0.91 0.92 0.92  
0.25 0.93 0.93 0.95 0.95 0.95 0.95  

100 
0.05 0.83 0.83 0.87 0.87 0.88 0.88  
0.15 0.93 0.93 0.95 0.95 0.96 0.96  
0.25 0.96 0.96 0.97 0.97 0.97 0.98  

Note. All of the metrics were unbiased; that is, their bias was not significantly different from 0.  
The RMSEs for mean and median SGP and PRRs are on the percentile rank scale.  The RMSEs 
for meanResids and FEMs are expressed in terms of standard deviation units of individual 
scores, 𝜎𝑌, or meanResidgtrue, SD(𝜇𝜖|𝑔), as indicated.  
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Table 3  

Spearman Rank Correlations between each Pair of Aggregate-Level Conditional Status Metrics 

Metric REM FEM Mean 
Resid 

Mean 
PRR 

Mean 
SGP 

Med 
PRR 

Med 
SGP 

Simulated MVN Data – Group Sizes = 25 (ICC=.05 above/ICC=.25 below) 

REM  1.000 1.000 0.986 0.985 0.868 0.868 
FEM 1.000  1.000 0.986 0.985 0.868 0.867 
meanResid 0.999 0.998  0.986 0.985 0.868 0.868 
meanPRR 0.994 0.994 0.996  0.999 0.909 0.908 
meanSGP 0.994 0.993 0.995 0.999  0.908 0.908 
medPRR 0.950 0.949 0.951 0.964 0.963  0.991 
medSGP 0.949 0.949 0.951 0.963 0.964 0.996  

State A Data (Reading above/Mathematics below) 

REM  0.993 0.993 0.980 0.977 0.892 0.900 
FEM 0.996  1.000 0.988 0.986 0.896 0.903 
meanResid 0.996 1.000  0.988 0.986 0.897 0.903 
meanPRR 0.988 0.992 0.992  0.997 0.935 0.938 
meanSGP 0.987 0.991 0.991 0.999  0.932 0.941 
medPRR 0.944 0.948 0.948 0.965 0.965  0.975 
medSGP 0.943 0.948 0.947 0.964 0.965 0.994  

State B Data (Reading above/Mathematics below) 

REM  0.995 0.995 0.985 0.985 0.923 0.930 
FEM 0.999  0.999 0.989 0.989 0.926 0.933 
meanResid 0.998 0.999  0.991 0.989 0.928 0.934 
meanPRR 0.995 0.995 0.997  0.997 0.954 0.956 
meanSGP 0.992 0.993 0.995 0.998  0.953 0.959 
medPRR 0.975 0.975 0.977 0.984 0.981  0.989 
medSGP 0.976 0.976 0.978 0.984 0.986 0.990  

Note.  meanSGP = mean Student Growth Percentile; medSGP = median Student Growth Percentile; meanPRR = 
mean Percentile Rank of Residual; medPRR = median Percentile Rank of Residual; meanResid= Group-mean 
Residuals from linear mean regression; medResid = Group-median residuals from linear mean regression; FEM = 
Fixed-Effect Metric; REM = Random-Effect Metric.  
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Figure 1.  Contrasting the models used in deriving aggregate-level conditional status metrics for 

a J = 1 prior-grade empirical test score dataset.  The student scores are expressed as conditional 

boxplots of current score on initial status, and the school mean scores are overlaid as solid grey 

squares.  PRRs are Percentile Ranks of Residuals; SGPs are Student Growth Percentiles; FEMs 

are Fixed-Effect Metrics; REMs are Random-Effect Metrics, RARs are Residuals from 

Aggregate Regression.    
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Figure 2. Pearson correlations between each Aggregate-Level Conditional Status Metric and its respective parameter value, averaged 

over 100 replications of simulated multivariate normal data with 500 groups of sizes 25, 50, and 100 and unconditional intraclass 

correlations (ICCs) of 𝜔 =.05, .15, and .25.  
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Figure 3. Standard error (a) and relative efficiency (b) of mean vs. median percentile ranks of 

residuals when residual group means are relatively low or high in terms of standard deviation 

units of the distribution of meanResidgtrue, SD(𝜇𝜖|𝑔). Intraclass correlation (ICC) of 𝜔 = .15.  

Asymptotic relative efficiency is 3 when 𝜔 = 0 and is shown for reference.  
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Figure 4.  Comparing each metric with (a) the median Student Growth Percentile (medSGP) 

metric and (b) the fixed effect metric (FEM) in terms of absolute differences in the percentile 

ranks of groups.  Findings for simulated data are on the left (for a single replication of simulated 

multivariate normal data, ICC=.05, 500 groups of size 100), and findings for State B Reading 

data are on the right. medPRR=median Percentile Rank of Residuals; meanSGP=mean Student 

Growth Percentile; meanPRR=mean Percentile Rank of Residuals; REM=Random-Effects 

Metric; meanResid=mean residuals.  
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Figure 5.  The range of percentile ranks for an average group, under a family of plausible 

transformations that change skewness and kurtosis.  From left, meanSGP = mean Student 

Growth Percentile, meanPRR = mean Percentile Rank of Residual, medSGP = median Student 

Growth Percentile, meanResid = mean Residuals, FEM = Fixed-Effects Metric, REM = 

Random-Effects Metric, and medPRR = median Percentile Rank of Residuals.  
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