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Descriptive Statistics for Modern Test Score Distributions: 

Skewness, Kurtosis, Discreteness, and Ceiling Effects 

Abstract 

Many statistical analyses benefit from the assumption that unconditional or conditional distributions are 

continuous and normal.  Over fifty years ago in this journal, Lord (1955) and Cook (1959) chronicled 

departures from normality in educational tests, and Micerri (1989) similarly showed that the normality 

assumption is met rarely in educational and psychological practice.  In this paper, the authors extend these 

previous analyses to state-level educational test score distributions that are an increasingly common target 

of high-stakes analysis and interpretation.  Among 504 scale-score and raw-score distributions from state 

testing programs from recent years, non-normal distributions are common and are often associated with 

particular state programs.   The authors explain how scaling procedures from Item Response Theory lead 

to non-normal distributions as well as unusual patterns of discreteness.  The authors recommend that 

distributional descriptive statistics be calculated routinely to inform model selection for large-scale test 

score data, providing warnings in the form of sensitivity studies that compare baseline results to those 

from normalized score scales. 
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Descriptive Statistics for Modern Test Score Distributions: 

Skewness, Kurtosis, Discreteness, and Ceiling Effects 

Introduction 

Normality is a useful assumption in many modeling frameworks, including the general linear 

model, which is well known to assume normally distributed residuals, and structural equation modeling , 

where normal-theory-based maximum likelihood estimation is a common starting point (e.g., Bollen, 

1989).  There is a vast literature that describes consequences of violating normality assumptions in 

various modeling frameworks and for their associated statistical tests.  A similarly substantial literature 

has introduced alternative frameworks and tests that are robust or invariant to violations of normality 

assumptions.  A classic, constrained example of such a topic is the sensitivity of the independent-samples 

t-test to normality assumptions (e.g., Boneau, 1960), where violations of normality may motivate a robust 

or nonparametric alternative (e.g., Mann & Whitney, 1947).   

An essential assumption that underlies this kind of research is that the degree of non-normality in 

real-world distributions is sufficient to threaten the desired interpretation in which the researcher is most 

interested.  If most distributions in a particular area of application are normal, then illustrating 

consequences of non-normality and motivating alternative frameworks may be interesting theoretically 

but of limited practical importance.  To discount this possibility, researchers generally include a real-

world example of non-normal data, or they at least simulate data from non-normal distributions that share 

features with real-world data.  Nonetheless, comprehensive reviews of the non-normality of data in 

educational and psychological applications are rare.  Almost sixty years ago in this journal, Lord (1955) 

reviewed the skewness and kurtosis of 48 aptitude, admissions, and certification tests.  He found that test 

score distributions were generally negatively skewed and platykurtic.  Cook (1959) replicated Lord’s 

analysis with 50 classroom tests.  Micceri (1989) gathered 440 distributions, 176 of these from large-scale 

educational tests, and he described 29% of the 440 as moderately asymmetric and 31% of the 440 as 

extremely asymmetric.  He also observed that all 440 of his distributions were non-normal as indicated by 

repeated application of the Kolmogorov-Smirnov test (𝑝 < .01). 
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In this paper, we provide the first review that we have found of the descriptive features of state-

level educational test score distributions.  We are motivated by the increasing use of these data for both 

research and high-stakes inferences about students, teachers, administrators, schools, and policies.  These 

data are often stored in longitudinal data structures (e.g., U.S. Department of Education, 2011) that 

laudably lower the barriers to the analysis of educational test score data.  However, as we demonstrate, 

these distributions have features that can threaten conventional analyses and interpretations therefrom, 

and casual application of familiar parametric models may lead to unwarranted inferences.   

Such a statement is necessarily conditional on the model and the desired inferences.  We take the 

Micerri (1989) finding for granted in our data: these distributions are not normal.  At our state-level 

sample sizes, we can easily reject the null hypothesis that distributions are normal, but this is hardly 

surprising.  The important questions concern the magnitude of non-normality and the consequences for 

particular models and inferences.  We address the question of magnitude in depth by presenting skewness, 

kurtosis, and discreteness indices for 504 raw and scale score distributions from state testing programs.  

Skewness and kurtosis are well established descriptive statistics for distributions (Pearson, 1895) and are 

occasionally used as benchmarks for non-normality (e.g., Bulmer, 1979).  We illustrate the consequences 

of non-normality only partially.  This is deliberate.  A complete review of all possible analyses and 

consequences is impossible given space restrictions.  Thus, our primary goal is to make the basic features 

of test score distributions easily describable and widely known.  These features may guide simulation 

studies for future investigations of the consequences of violating model assumptions.  Additionally, if 

variability in these features is considerable, this motivates researchers to use an arsenal of diverse 

methods to achieve their aims, with which they might manage tradeoffs between Type I and Type II 

errors, as well as bias and efficiency. 

We have two secondary goals.  First, we provide illustrative examples of how these features can 

lead to consequential differences for model results, so that researchers fitting their own models to these 

data may better anticipate whether problems may arise.  Second, we explain the pathology of the non-

normality that we observe in the data.  We demonstrate that, when test score distributions are cast as the 
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results of particular models and scaling procedures, their non-normal features should not be surprising.  

We emphasize that non-normality is not inherently incorrect or flawed—it is the responsibility of the 

researcher to fit the model to the data, not the reverse.  However, if the resulting features are undesirable 

for the primary intended use of the test scores, then the procedures that generate the distributions should 

be reconsidered. 

To accomplish these multiple goals, we present this paper in four parts.  The first part introduces 

the pathology of non-normality by describing skewness and kurtosis of raw score distributions as natural 

properties of the binomial and beta-binomial distributions.  This analysis of raw scores serves as a 

conceptual link to the Lord (1955), Cook (1959), and Micerri (1989) analyses, which were dominantly 

raw-score-based, and sets an historical baseline from which to evaluate modern uses of test scores, which 

are scale-score-based, that is, using scores developed using a particular scaling method.  In all of the cases 

presented here, this scaling method is Item Response Theory (IRT; see Lord, 1980).  In the second part, 

we present the primary results of the paper in terms of skewness and kurtosis of both raw score and scale 

score distributions.   We continue to emphasize the pathology of non-normality by describing the 

differences between features of raw score and scale score distributions as a consequence of scaling 

methods using IRT. 

The third part of the paper uses visual inspection of test score distributions to motivate additional 

descriptive statistics for scale score distributions.  In particular, we motivate statistics that describe the 

discreteness of distributions, and we show that visually obvious “ceiling effects” in some distributions are 

better identified by discreteness than by skewness.  Here, we begin to illustrate simple consequences that 

threaten common uses of test scores, including comparing student scores, selecting students into 

programs, and evaluating student growth.  Finally, in the fourth part of the paper, we describe the possible 

impact of non-normality on the results of regression-based test score analyses.  We illustrate this with 

results from predictive models for students and a “value-added”-type model for school-level scores.  For 

these sensitivity studies, we compare results estimated using observed distributions to results estimated 

using their normalized counterparts.  This answers the question, if these distributions were normal, how 
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would our interpretations differ?  Taken together, these arguments build toward a familiar if important 

principle: researchers should select models with knowledge of the process that generated the data and 

informed by data features, or else risk flawed analyses, interpretations, and decisions. 

Data 

A search of publicly available state-level test-score distributions yielded 330 scale score 

distributions and 174 raw score distributions from 14 different state testing programs in the academic 

years ending 2010 and 2011.  We constrained the time period to these two years because these state 

testing programs were fairly stable at that time and because all states had some data in both years.  One of 

the programs, the New England Common Assessment Program (NECAP), represents 4 states, Maine, 

New Hampshire, Rhode Island, and Vermont, thus the data represent 17 states in total.  As Micerri (1989) 

noted, the data appropriate for full distributional analyses are rarely publicly available, however, these 

states have considerable regional coverage across the United States.   We collected distributions from 6 

grades (3-8) and 2 subjects (Reading/English Language Arts and Mathematics), for a total of 12 possible 

scale score distributions per year.   

Raw score distributions were available from 8 of the 14 state testing programs.  We use raw 

scores largely for illustration, as a historical reference point to previous research, and as a conceptual 

reference point to emphasize the consequences of IRT scaling on skewness and kurtosis.  Since scores are 

generally reported and analyzed using scale scores, the latter half of the paper focuses on scale scores.  

Nebraska is missing Mathematics score distributions in 2010, and Oklahoma is missing raw score 

distributions in 2010. 

Table 1 shows the minimum and maximum number of examinees across the available score 

distributions in each state.  Unsurprisingly, these numbers are indicators of the relative youth populations 

of each state.  The distribution with the highest n-count is from Texas with 689938 examinees, and the 

distribution with the lowest n-count is from South Dakota with 8982 examinees.  Altogether, the 

distributions represent data from over 31 million examinees.  In the last two columns, Table 1 shows the 

minimum and maximum number of discrete score points in the scale score distributions.   Distributions 
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from Colorado are outliers in terms of their counts of discrete score points, with counts around 500 due to 

their practice of scoring based on patterns of item responses rather than summed scores (CTB-McGraw 

Hill, 2010a, 2011a).  Distributions from all other states have discrete score point counts ranging from 28 

(New York, Grade 5, English Language Arts, in 2010) to 93 (Texas, Grade 7, Reading, in 2011).   

Skewness and Kurtosis 

We use skewness and kurtosis as rough indicators of the degree of normality of distributions or 

the lack thereof.  Unlike test statistics from normality testing procedures like the Kolmogorov-Smirnov 𝐷 

or the Shapiro-Wilk 𝑊, skewness and kurrtosis are used here like an effect size, to communicate the 

degree of non-normality, rather than statistical significance under some null hypothesis of normality.  The 

use of skewness and kurtosis to describe distributions dates back to Pearson (1895) and has been reviewed 

more recently by Moors (1986), D’Agostino, Belanger, and D’Agostino (1990), and DeCarlo (1997).  

Skewness is a rough index of the asymmetry of a distribution, where positive skewness in unimodal 

distributions suggests relatively plentiful and/or extreme positive values, and negative skewness suggests 

the same for negative values.  Skewness is an estimate of the third standardized moment of the population 

distribution,  

𝑠 =
�𝑛(𝑛 − 1)
𝑛 − 2

1
𝑛∑ (𝑥𝑖 − 𝑥̅)3𝑖

�1
𝑛∑ (𝑥𝑖 − 𝑥̅)2𝑖 �

3/2. 

Skewness can range from −∞ to +∞, and symmetric distributions like the normal distribution 

have a skewness of 0.  The 𝑛-based bias correction term for the population estimate is negligible for the 

large samples that we have here, but we include it for completeness.   

Kurtosis is an estimate of the fourth standardized moment of the population distribution,  

𝑘 =
𝑛(𝑛 + 1)(𝑛 − 1)
(𝑛 − 2)(𝑛 − 3)

∑ (𝑥𝑖 − 𝑥̅)4𝑖
(∑ (𝑥𝑖 − 𝑥̅)2𝑖 )2. 

Kurtosis can range from 1 to +∞.  The kurtosis of a normal distribution is 3.  Although it is 

common to subtract 3 from 𝑘 and describe this as “excess kurtosis”—beyond that expected from a normal 

(1) 

(2) 
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distribution—we use the definition above, where 𝑘 < 3 is platykurtic (less peakedness, weaker “tails,” 

heavy “shoulders”), and 𝑘 > 3 is leptokurtic (more peakedness, heavy tails, weak shoulders).  As 

references, a uniform distribution has a kurtosis of 1.8 (platykurtic), and a logistic distribution has a 

kurtosis of 4.2 (leptokurtic). 

Part 1: Raw Score Distributions 

In this section, we begin to demonstrate that the non-normal features of test score distributions are 

the byproducts of well-established models and scaling procedures.  Lord (1955) and Cook (1959) report 

two findings: (1) raw score distributions from “easy” tests generally have negative skew, and (2) 

symmetric raw score distributions tend to be platykurtic (kurtosis < 3)1.  They both operationalized the 

“easiness” of a test as the mean raw score over the maximum possible score.  This is equivalent to the 

average of item proportions correct, 𝑝̅, where “easy” tests have 𝑝̅ > 0.5.  Figure 1 replicates their findings 

empirically.  The skewness and kurtosis of raw score distributions are plotted on a scatterplot in light gray 

and are concentrated in the lower left of the plot.  All 174 raw score distributions meet the Lord-Cook 

definition of “easy,” where the minimum 𝑝̅ across 174 distributions is 55.41% (not shown).  Figure 1 

shows that all raw score distributions, in light gray, have negative skew.  In addition, Figure 1 shows that 

the raw score distributions that are closest to 0 skew are all platykurtic, with kurtosis < 3. 

 These findings are straightforward to explain in terms of models for test score distributions that 

have become well established since the publication of the Lord (1955) and Cook (1959) reviews.  Even 

from a naïve model for test scores that assumes all item difficulties are the same (all 𝑝𝑖 = 𝑝), we can 

demonstrate that easy tests will have negatively skewed score distributions using a binomial model, which 

has a known skewness of, 

𝑠𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙 =
1 − 2𝑝

�𝑖𝑝(1 − 𝑝)
. 

                                                           
1 Both Lord(1955) and Cook (1959) operationalized skewness and kurtosis using percentile-based statistics (e.g., 
skewness as (𝑃90 + 𝑃10)/2 − 𝑃50).  We use the modern definitions of skewness and kurtosis specified in Equations 
1 and 2.  We also replicated results using the percentile-based definitions of skewness and kurtosis, and they do not 
change any substantive conclusions. 
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 Here, 𝑝 is the common item difficulty, and 𝑖 is the number of items on the test.  For any 𝑝 > .5, 

the skewness will be negative, consistent with the first Lord-Cook finding.   

Given that item proportions correct 𝑝𝑖  are not constant across items in practice, a more 

appropriate model for raw score distributions is the beta-binomial distribution, where the distribution of 

item proportions correct 𝑝𝑖 is modeled by a 2-parameter beta distribution.  The beta distribution for 𝑝𝑖 is 

defined by parameters 𝛼 and 𝛽, where the mean of the distribution of 𝑝𝑖 will be 𝜇𝑝 = 𝛼
𝛼+𝛽

.   

We can use the beta-binomial model to explain the second Lord-Cook finding: symmetric raw 

score distributions tend to be platykurtic.  To illustrate this, we constrain the 𝛼 and 𝛽 parameters that 

control the beta distribution of 𝑝 values to sum to 4.  This constrains 𝛼 and 𝛽 for any chosen 𝜇𝑝, for 

example, if 𝜇𝑝 = 0.75, then 𝛼 = 3 and 𝛽 = 1.  We then assume a 50-item test, consistent with a central 

number of discrete score points from Table 1. 

Next, given the known expressions for the skewness and kurtosis of the beta-binomial distribution 

(these expressions are complex and add little insight, so we defer to statistical reference texts), we can 

establish a theoretical relationship between skewness and kurtosis under these constraints.  This 

relationship is shown as a dashed line in Figure 1 for various levels of 𝜇𝑝.  As Figure 1 shows, a 

symmetric distribution (modeled as beta-binomial when 𝜇𝑝 = 0.5 and 𝛼 = 𝛽 = 2) is platykurtic with 

kurtosis < 3.  Similarly, the location of raw score distributions on and around the dashed line in Figure 1 

shows that the skewness and kurtosis of raw score distributions is well explained by a beta-binomial 

model parameterized by 𝜇𝑝.  Easier tests with higher 𝜇𝑝 will be negatively skewed.  Symmetric tests will 

be platykurtic.  And harder tests with lower 𝜇𝑝 will be positively skewed. 

Although alternative constraints (for 𝛼 and 𝛽 in terms of 𝜇𝑝) and more flexible models for test 

scores (like the 4-parameter beta-binomial model; Hanson, 1991) are available, this illustration suffices to 

demonstrate that the Lord-Cook skewness and kurtosis findings are consistent with the known behavior of 

well-established models for raw score distributions.  Raw score distributions will be non-normal to the 

degree that they are easier or harder for their respective populations.  They will also become progressively 
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more leptokurtic as the average difficulty ranges away from 50%.  If raw score distributions are the target 

of analysis and model results are known to be sensitive to skewness, for example, concerns will arise only 

if the test is quite easy or quite hard for its respective population.   

Part 2: Skewness and Kurtosis of Scale Score Distributions 

In this section, we transition our focus from indices of non-normality of raw score distributions to 

indices of non-normality of scale score distributions.  The theoretical and practical benefits of modern 

scaling methods, most notably those deriving from Item Response Theory (Lord, 1980; Yen & 

Fitzpatrick, 2006), are substantial, and raw scores are no longer the basis for most large-scale test score 

scaling and reporting.  This motivates a review of scale score distributions, which are shown in black in 

Figure 1.  Although about half of scale score distributions do not have a raw score counterpart, we can see 

that the effect of IRT scaling on skewness and kurtosis is generally a balancing of skewness and an 

increase in kurtosis.  We explain the pathology of this effect later in this section.   

Table 2, which overviews median, minimum, and maximum skewness and kurtosis of 

distributions for each state, also reflects this tendency, as states that have both raw and scale scores show 

median skewness generally balancing toward 0 from raw to scale scores, and median kurtosis generally 

increasing from raw to scale scores. Across all states, median skewness for raw scores is negative and 

median kurtosis for raw scores is less than 3, and median skewness for scale scores is negligibly positive, 

and median kurtosis for scale scores is greater than 3.  New York is separated by academic year, because, 

unlike other states, the distributions of skewness and kurtosis differed substantially across years.  Figure 2 

also shows box plots representing distributions of skewness and kurtosis by state.  Note that there is a 

very strong state effect on skewness and kurtosis indices; these distributional features are very similar 

within states—even across grades and subjects—and very different among states. 

Table 2 and Figure 2 show that Colorado and New York are outlying states in terms of skewness 

and kurtosis, with median distributions in Colorado and New York in 2011 showing considerable 

negative skew, and median distributions in New York in 2010 showing considerable positive skew.  Both 

show heavily leptokurtic distributions.  The most negatively skewed Colorado distributions happen to be 
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from the Reading tests and are more heavily skewed in lower grades.  In New York, most of the skewed 

distributions happen to be from the reading test, as well.  

Here, we continue with an effort to describe the pathology of the non-normal features of score 

distributions, in this case, scale score distributions.  State-by-state explanation of the reasons for particular 

levels of skewness and kurtosis is beyond the scope of this paper.  Such explanation would require item-

level data and/or particular knowledge of scaling practices that are not always available in public 

technical reports. As we noted earlier, there is also nothing inherently incorrect or flawed about score 

distributions with extreme levels of skewness and kurtosis, as long as they arise from a defensible scaling 

and linking procedure that supports accurate user interpretations of scores and successive differences 

between scores.  Nonetheless, we review three factors that may help to explain how these extreme values 

of skewness and kurtosis arise operationally. 

First, most operational scoring procedures produce a 1-to-1 mapping of summed “number 

correct” scores to scale scores (Yen & Fitzpatrick, 2006).  These mappings align with student and teacher 

intuition about the scoring of classroom tests but may sacrifice useful information deriving from patterns 

of item responses.  Some 1-to-1 mappings derive naturally from simple IRT models like the 1-parameter 

logistic model.  Other scoring methods, like “inverted test characteristic curve (TCC)” approaches (Yen, 

1984), operate similarly to a logit transformation of percentage-correct scores,2 such that high and low 

scores are stretched to extremes.  This naturally increases kurtosis, consistent with the differences 

between raw-score and scale-score kurtosis shown in Figure 1 and Table 2.  When there are 

disproportionate frequencies at high or low scores, these transformations may result in positive or 

negative skew, respectively.  This procedure was used in New York and represents an explanation for the 

considerable skewness and kurtosis of New York score distributions. 

Second, many scoring approaches have undefined perfect and zero scores (in the case of 

maximum likelihood estimation in IRT), and others also have undefined scores below chance (in the case 

                                                           
2 Lord (1980) showed that, for 1- and 2-parameter logistic IRT models, maximum likelihood estimates of 
proficiency parameters are in fact a linear function of logit-transformed percentage-correct scores, in the special case 
when items are functionally equivalent. 
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of inverted TCC approaches).  In these cases, a lowest and highest obtainable scale score (LOSS and 

HOSS, respectively) is determined judgmentally or by some established extrapolation procedure (e.g., 

Kolen & Brennan, 2002).  The selection and location of these scores can affect skewness and kurtosis, 

especially when large percentages of examinees obtain perfect scores or scores below chance.  In general, 

when they are extreme compared to the rest of the distribution, kurtosis will increase, and distributions 

will be relatively skewed when densities are imbalanced toward either LOSS or HOSS.  When HOSS and 

LOSS are forced to be equal over many years or across multiple grades, the linking constraints can draw 

distributions farther from HOSS and/or LOSS, and this would also affect skewness and kurtosis.  We 

return to this topic in the next section. 

Third, certain year-to-year and grade-to-grade linking approaches may affect skewness and 

kurtosis.  Linking that relies on linear transformations, such as mean-sigma linking and characteristic 

curve linking (e.g., Kolen& Brennan, 2002), will not affect skewness and kurtosis any more than the 

separate IRT calibrations upon which they are based.  However, constrained or concurrent calibration 

(e.g., Yen & Fitzpatrick, 2006), where parameters of item characteristic curves are constrained to or 

simultaneously estimated with those from previous years or different grades, may lead to distributions 

with extreme skewness and kurtosis.  This may manifest in distributions that are systematically more 

skewed across grade levels or over time.  Incidentally, this is the pattern that arises in Colorado, where 

skewness is greater toward the lower grades (not shown). 

Our intent in reviewing these procedures is to explain why some score distributions in some states 

may exhibit different or particularly extreme skewness and kurtosis values.  Again, we emphasize that 

non-normality is a feature and not necessarily a flaw.  Test designers may reconsider the use of particular 

scoring procedures if this degree of non-normality threatens intended test score uses.  For secondary 

analysts, any resulting non-normality must be handled with the usual iterative model fitting and 

diagnostic process, with the use of sensitivity studies where appropriate. 

Part 3: Discreteness and Ceiling Effects 
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The skewness of variables is used not only as an index of non-normality but also as an index for 

“ceiling effects” or “floor effects,” where positively skewed variables are assumed to have a floor effect, 

and negatively skewed variables are assumed to have a ceiling effect (e.g., Koedel & Betts, 2010).  

Ceiling and floor effects are also assumed whenever data are censored, that is, when the locations of 

scores above or below a particular ceiling/floor are not known, and they are only known to be at or 

above/below that score.  Whereas non-normality may motivate robust or nonparametric procedures, these 

censored data motivate tobit regression and other censored data models (Long, 1997; Tobin, 1958).   

We define ceiling and floor effects as insufficient measurement precision to support desired 

distinctions between examinees at the upper and lower regions of the score scale, respectively.  In this 

section, we argue that skewness is neither sufficient nor necessary for ceiling or floor effects.  We then 

present some simple descriptive statistics that highlight unusual features of modern test score distributions 

that are akin to ceiling and floor effects—features that skewness and kurtosis alone do not capture.  

Finally, we provide illustrative examples of consequences of this discreteness in common, practical uses 

of test scores. 

 We begin by demonstrating that a strongly skewed distribution may nonetheless retain 

measurement precision in score regions that seem to be compressed.  A well-established feature of 

logistic IRT scales is conditional standard errors of measurement that are smallest for central scores and 

largest at extremes.  This contrasts with conditional standard errors of measurement for raw scores, which 

are largest for central scores and smallest at extremes (Haertel, 2006).  Following Lord (1980), we 

consider an IRT-based scoring procedure that results in a symmetric distribution on some score scale 𝜃.  

Next, we consider a nonlinear monotonic transformation to an alternative score scale 𝜃∗, for example, an 

exponential transformation that results in a relative compression of low scores and a relative stretching of 

high scores.  This results in a positively skewed distribution and, arguably, a floor effect.   

As Lord (1980) demonstrates, however, information at any score point on the scale of 𝜃∗ is 

proportional to �𝑑𝜃
∗

𝑑𝜃
�
−2

, which will be relatively high where the score scale 𝜃∗ is compressed compared 
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to 𝜃.  Although the low end of a score scale may be relatively compressed under the transformation, the 

conditional standard error will decrease as a result.  This demonstrates that compression of a score scale is 

not necessarily synonymous with a loss of information in the compressed region.  In short, a skewed 

distribution is not sufficient to indicate a ceiling or floor effect. 

In Figure 3, we also demonstrate that skewed distributions are not necessary for ceiling or floor 

effects.  To construct Figure 3, we listed all distributions with skewness between ±0.1 and kurtosis 

between 2.75 and 3.75, that is, fairly symmetrical distributions with little excess kurtosis.  Of these 46 

distributions, we selected 6 illustrative discrete histograms of scale score distributions from a range of 

states, grades, and subjects.  Figure 3 shows that all 6 of these distributions show one interesting feature: 

extremely sparse score points toward the positive extremes of the score scale.  Notably, these distributions 

do not appear symmetric at a glance.  This is something of an optical illusion, where it is difficult to 

reconcile the coarseness and fineness of the spacing between adjacent score points, on the one hand, with 

the percentage of examinees at each score point on the other. 

Although this is a purposeful sample, these are not outlying distributions; many additional 

symmetric (and asymmetric) distributions also show this feature.  We use these distributions to illustrate 

that it is often discreteness at the positive ends of the score scale—in particular, a small number of score 

points distinguishing between large percentages of examinees—that can raise concerns about ceiling 

effects, even in cases where distributions are symmetric, as measured by skewness, and do not show 

excess kurtosis.  If test score users wish to distinguish among the highest 5-10% of high-scoring 

examinees in these distributions, such distinctions would be difficult or impossible to justify.   This 

demonstrates that skewness is not necessary for ceiling effects.  These features are more consistent with a 

definition of ceiling effects that relates to censored data. 

Figure 4 provides descriptive statistics that further illustrate the sparseness of discrete score 

points at the positive end of the score scale.  The top tile of the figure shows the actual count of discrete 

score points that distinguish among the top 10% of examinees.  For example, if more than 10% of 

examinees are located in the single top score point, then this count is 1.  If 5% are in the top score point 
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and 6% are in the second highest score point, then this count is 2.  Figure 4 shows that many states have 

only a few score points distinguishing among the top 10% of examinees.  Some distributions in New 

York and Texas have only 1 score point distinguishing among the top 10% (that is, there is no distinction 

at all), and the Texas, New York (in 2000), and Idaho median number of distinguishing score points is 2, 

3, and 4, respectively. 

The middle tile of Figure 4 shows the percentage of total discrete score points that distinguish 

among the top 10% of examinees.  Although it may seem that a small percentage of score points that 

distinguish in this range is reasonable, it is worth referencing this to what is expected for discrete 

unimodal distributions.  If we define a discrete standard normal distribution as one that divides the range 

[−𝑐, 𝑐] into evenly spaced bins undergirding a normal distribution, then the expected percentage of 

discrete score points that distinguish among the bottom or top proportion 𝑞 of examinees is given by: 

Φ−1(𝑞)+𝑐
2𝑐

, where Φ−1 is the inverse normal cumulative distribution function.  This percentage is 28.64% 

when the discrete score bins range from -3 to +3 and desired distinctions are among the top 10% (𝑐 = 3 

and 𝑞 = .1).  As Figure 4 shows, the proportion of discrete score bins distinguishing the top 10% is far 

less than expected under this discrete normal model.  On the other side of these distributions, the 

proportions of discrete score bins distinguishing the bottom 10% are far greater than expected in almost 

all states (not shown). 

 The top two tiles of Figure 4 are specific instantiations of a general question: What percentage of 

examinees is distinguished by what number (or percentage) of discrete scores? Although we chose the top 

10%, any other percentage leads to the same conclusion: the higher ends of modern scale score 

distributions have larger percentages of examinees than those at the lower ends.  We consider this to be a 

kind of asymmetry that derives from the discrete binning of scores.  This asymmetry can arise even when 

score distributions are not skewed, as Figure 3 demonstrates. 

A useful way to conceptualize this is to recognize that, if the scale score points were equally 

spaced, the distributions would be negatively skewed.  For 1-to-1 score mappings, this equally spaced 



DESCRIPTIVE STATISTICS FOR MODERN SCORE DISTRIBUTIONS 16 
 

scale is equivalent to the raw score scale.  This therefore represents a restatement of the Lord-Cook 

finding from a Part 1: tests are generally “easy” (𝑝̅ > 0.5), thus distributions are negatively skewed.  The 

fact that many distributions are nevertheless “symmetric” as determined by skewness reflects that there 

are two features of these distributions that are in balance.  The first is the disproportionate density of 

examinees in higher score points.  The second is the relative stretching of the higher region of the score 

scale.  For the symmetric distributions that we show in Figure 3, these two features offset. 

 The third tile in Figure 4 highlights this second feature more dramatically, by describing the 

isolation of the highest score point in terms of standard deviation units.  This last tile is akin to answering 

the question, what is the difference between getting the second highest score and the highest score, in 

standard deviation units?  As Figure 3 already illustrates, the highest score point can often be very 

isolated.  Figure 4 shows that the highest score point is often more than a full standard deviation unit from 

the second highest score.   

 As we have stated earlier, our purpose is primarily to describe the features of score distributions 

and secondarily to illustrate the consequences across the space of possible analyses.  Figures 3 and 4 

highlight features of score distributions that we do not believe are well appreciated.  Whereas score points 

for raw score distributions are evenly spaced and bounded, scale score distributions are far sparser at their 

upper ends and occasionally have outlying positive extremes due either to HOSS decisions or chosen IRT 

scoring procedures.  Raw score distributions are generally well summarized by skewness and kurtosis 

given their evenly spaced score points.  In contrast, the symmetry of scale score distributions is a 

confounded interplay between disproportionate density and uneven spacing between discrete score points.  

We have provided illustrations and simple descriptive statistics that begin to capture these peculiar 

features.   

 We now turn toward the secondary goal of illustrating the consequences of this discreteness, in 

order to provide cues for others to recognize when their research question or procedure may be threatened 

by common features of scale score distributions.  Three examples of simple, practical consequences 

follow directly from Figure 3.  The first example arises in the context of individual score reporting.  The 
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bottom tile of Figure 3 shows that the scale score difference between two students, one with a perfect 

score and one who answers a single item incorrect, can be greater than 1 standard deviation in 8 states, 

and greater than 2 standard deviations in 3 states.  For students, parents, and teachers, the idea that getting 

one more item correct would result in the equivalent of, say, 100 to 200 SAT score points, would be at 

least confusing and very likely controversial. 

 The second example concerns a common secondary use of educational test scores: selection into 

special programs.  As one example, gifted programs commonly use a percentile-rank-based cutoff as a 

partial or sole criterion for eligibility, sometimes the 90th percentile, and sometimes the 95th or 96th (e.g., 

McGinley, Herring, & Zacherl, 2013).  If the norm group for these percentiles were the empirical 

distribution, there are distributions in New York and Texas where these three percentiles would be 

literally indistinguishable—they would refer to the exact same score, because the highest score point in 

some of these distributions contains more than 10% of students.  If the norm group for these percentiles is 

a national norm group or any other reference group, then the percentile-rank-based inference may be 

correct on average, but there would likely be dramatic practical consequences depending upon whether 

the heavily loaded top score point happened to be located above or below the cutoff. 

 The third example is an extension of the first that highlights the increasingly common use of 

educational score scales to support interpretations about student growth.  If we interpret the scale 

underlying the distributions in Figure 3 as a vertical scale capable of supporting repeated measures on the 

same students, raw score gains in the lower regions of the score scale are dramatically underemphasized 

on the IRT score scale, and raw score gains in the upper regions are dramatically overemphasized.  The 

fact that different raw score differences map to different scale score differences is hardly noteworthy.  

However, the degree shown in Figures 3 and 4 is striking and threatens superficial “face” validity.  There 

may be statistical warrant for a 1-raw-score-point gain at the top of the scale equaling a 10-raw-score-

point gain at the bottom, but rarely is modern test score usage accountable to statistical criteria alone. 

Part 4: Consequences of skewness on regression-based analyses. 
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 This section continues the illustration of consequences by describing the magnitude of the impact 

of non-normality on common regression-based uses of test scores.  The first use considered is simple 

linear prediction, and the second is the estimation of so-called “value added” effects (McCaffrey, 

Lockwood, Koretz, Louis, & Hamilton, 2004).  To establish a reference for comparison, we normalize 

score distributions, reducing their skewness and excess kurtosis.  By comparing target statistics estimated 

from observed and normalized data, we obtain the starkest answer to the question: if these data were 

normal, what difference would it make for this particular analysis and interpretations therefrom? 

For this real data example, we use a longitudinal, student-level dataset from a large eastern state.  

Five grade cohorts have available data across two consecutive years, resulting in five examples of two-

timepoint analyses.  Note that this analysis requires student-level linkages facilitating longitudinal 

analysis—these are not publicly available data.  The target statistics that signal possible substantive 

consequences is twofold: the difference between grade-to-grade correlations from observed vs. 

normalized data, and the correlation between school effects estimated from observed vs. normalized data.  

School effects are school-level averages of student-level residuals (e.g., Chetty, Friedman, & Rockoff, in 

press) from a simple linear regression model.  We also obtain shrinkage estimates from a model with 

school random effects (e.g., Rabe-Hesketh & Skrondal, 2012), but the practical difference in terms of our 

outcomes of interest are inconsequential, and we opt for the simpler metric for its transparency and its 

straightforward replicability. 

 Given 2010 (𝑥) and 2011 (𝑦) scores from student 𝑖 and school 𝑗, we estimate separately for each 

grade: 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥𝑖𝑗 + 𝜖𝑖𝑗 

𝜖𝑖𝑗~𝑁(0,𝜎𝜖2) 

 Without loss of generality, we assume 𝑦𝑖𝑗 and 𝑥𝑖𝑗 are already standardized, thus 𝛽1 = 𝜌𝑥𝑦, the 

grade-to-grade correlation of interest, and 𝛽̂2 = 𝑟𝑥𝑦2 = 𝑅2, the proportion of variance in 𝑦 accounted for 

by 𝑥.  For school effects, we take student-level residuals,  𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝑦�𝑖𝑗 , and average them at the school 



DESCRIPTIVE STATISTICS FOR MODERN SCORE DISTRIBUTIONS 19 
 

level, by school membership in 2011.  The 𝑒̅𝑗 are the school-level statistics of interest for each grade 

cohort (studentization of residuals is also inconsequential given these sample sizes).  Table 3 shows 

sample sizes for students and schools, for schools with grade cohort sizes of 30 or more (around 90% of 

schools and 98% of students).  The observed skewness and kurtosis of the 2010 and 2011 score 

distributions are also shown.   

To normalize score distributions, we assign each score the normal deviate corresponding to the 

percentile rank of the score.  Let 𝑟𝑥 be the rank of score 𝑥, where tied values are all assigned their average 

rank.  The normalized score is Φ−1 �𝑟𝑥−0.5
𝑛𝑖

�, where the Hazen correction is used to avoid untransformable 

percentile ranks of 0 or 100 (Barnett, 1975).  Table 3 also shows the skewness and kurtosis of normalized 

distributions.  Distributions will not be perfectly symmetrical or mesokurtic due to their discreteness. 

 The first outcome of interest is the difference between 𝑟𝑥𝑦 from observed vs. normalized data.  As 

expected, the correlation is higher when score distributions are normalized.  The practical significance of 

this from an interpretive standpoint is interpretable in terms of this statistic alone: one standard deviation 

unit difference in 𝑥 predicts a .64 standard deviation unit difference in 𝑦 under observed scores but a .75 

standard deviation unit difference under normalized scores.  Non-normality generally degrades 

correlations and predictions (in terms of 𝑅2, easily calculated from Table 3).  As longitudinal analyses 

increasingly have consequences for individual reporting, including the prediction of future attainment 

using growth models (e.g., Castellano & Ho, 2013a), conventional predictive models will underperform 

on predictive performance unless they accommodate the non-normality of these data. 

The second outcome of interest is the correlation between the 𝑒̅𝑗 for normalized and observed 

scale scores, 𝑟𝑒̅𝑗𝑛𝑜𝑟𝑚,𝑒̅𝑗
𝑜𝑏𝑠 .  In addition, for illustration, we report percentiles from the distribution of 

absolute differences in school percentile rank.  Each absolute difference in percentile rank answers the 

question, how many percentile ranks, in the distribution of school 𝑒̅𝑗, would a school change, if we 

switched from observed scores to normalized scores?  Table 3 shows that the correlations range from .96 

to .99 across different grade cohorts. 
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Although these correlations seem high, correlations between metrics that use identical baseline 

data should be expected to be high.  Deviance metrics like absolute differences tend to describe practical 

differences more clearly.  Here, Table 3 notes that the median difference in absolute percentile rank 

ranges from 1.5 to 4.4.  The last column shows the 90th percentile of the absolute difference in the 

percentile rank of schools.  For these top 10% of schools, as ranked by the absolute difference in 

percentile ranks between using observed and normalized scores, the absolute difference in percentile rank 

is greater than 4.2 for the grade 5-6 cohort (a 50th percentile school could become a 54th percentile school 

or greater) and greater than 13.6 for the grade 3-4 cohort (a 50th percentile school could become a 63rd 

percentile school or greater).   

 These comparisons are best considered illustrative rather than inferential.  They purposefully 

represent the “blind” application of a simple analysis to data without initial exploratory analysis of data 

features.  Given the skewness and the nonlinearity of the relationship between the score distributions in 

certain grade cohorts, alternative model specifications will likely be warranted.  These options are well 

known to any student of regression and are therefore not reviewed in depth here, but they include 

transformations, nonlinear functional forms, robust regression, quantile regression, and nonparametric 

methods.  Among these approaches, statistical approaches like Box-Cox transformations (Box & Cox, 

1964) are preferable over straight normalization given the tendency of the normalizing transformation to 

overfit the sample data. 

Discussion 

 We have reviewed the features of state test score distributions in terms of skewness, kurtosis, and 

discreteness, and we have also described the raw-score-to-IRT-scale-score pathology that leads so 

frequently to non-normal, irregularly discretized distributions.  We have also illustrated the kinds of 

practical consequences that can arise in selected contexts.  Here, we conclude with three general 

comments reflecting on these results and demonstrations. 

 First, we selected skewness and kurtosis as convenient indices of the degree of departure from 

normality because they are well established and generally interpretable.  However, these metrics are not 
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universally embraced, and expressions of the magnitude of non-normality are still not as commonly 

understood as, for example, expressions of the magnitude of effects in meta-analysis (Cohen, 1988; 

Hedges & Olkin, 1985).  It is just as difficult and necessarily contextual to determine whether a .5 

standard deviation unit effect is small, medium, or large as it is to determine whether a skewness of .5 is 

mildly skewed, moderately skewed, or heavily skewed, but there is far more effort toward the former and 

far less effort toward the latter.  We look forward to greater understanding around metrics that attempt to 

describe the magnitude of non-normality and associated consequences in particular contexts. 

 Second, nonetheless, skewness and kurtosis seem useful as indices to facilitate study of violating 

assumptions in many cases.  Formally, Yuan, Bentler, and Zhang (2005) provide a nice primer on the 

known effects of skewness and kurtosis upon inference for the mean and variance in the univariate case, 

and they generalize from there to discuss implications for multivariate covariance structure analysis.  

Practically, Castellano & Ho (2013b) compare quantile-regression-based Student Growth Percentiles 

(SGPs; Betebenner, 2009) to more parametric alternatives across varying levels of skewness and find that 

SGPs begin to dominate at particular levels of skewness.  Theoretically, distributions like the skew-

normal (Azzalini & Capitanio, 1999) allow for simulations to study the consequences of violating normal 

assumptions in terms of skewness in controlled conditions.  The concept of skewness and, to a lesser 

degree, kurtosis, is likely to remain useful in indexing non-normality. 

Third, we used Figure 3 to motivate the consideration of discreteness, particularly the common 

pattern whereby intervals between score points are sparser at high ends of distributions.  We observed that 

these features can be explained as the result of easy tests that generate a negatively skewed raw score 

distribution, along with a scaling and scoring model that resembles a logistic transformation in its 

practical consequences.  Notably, the rise of the Common Core State Standards in state and federal policy 

in the United States (Porter, McMaken, Hwang, & Yang, 2011) is likely to increase the “rigor” of state 

tests in the near term.  This purported rigor will largely arise from changes to content standards, as well as 

changes to the judgmentally determined cut scores that determine “proficiency.” However, to the extent 

that rigor manifests in more central average item percentages correct, 𝑝̅𝑖 ≈ 0.5, our analysis suggests that 
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more apparently symmetric discrete distributions will result, with smaller percentages at high score points 

and less spacing between these points.  This may have the unintended benefit of ameliorating the 

problems of individual score reporting, selection into programs, and interpretation of gains that we 

described in Part 3.  More generally, we hope that irregular discreteness, whether or not it is described as 

a ceiling effect, continues to receive attention as a byproduct of the practical application of IRT scaling 

methods and as a possible threat to particular uses of test scores. 
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Figure 1. Skewness and kurtosis of raw score (gray, n=174) and scale score (black, n=330) distributions 

from 14 state testing programs, grades 3-8, reading and mathematics, 2010 and 2011. 

 

Notes: Distributions with kurtosis > 5 are labeled with their state abbreviations: CO=Colorado; 

NY0=New York, 2010; NY1=New York, 2011; OK=Oklahoma; PA=Pennsylvania; WA=Washington.  

The theoretical lower bound of skewness and kurtosis is shown as a solid curve.  The skewness and 

kurtosis of beta-binomial distributions are shown as a dashed line as a function of the average item 

proportion correct, 𝜇𝑝, under the constraint that the test comprises 50 dichotomously scored items with 

item difficulties distributed as a beta distribution with parameters 𝛼 and 𝛽 that sum to 4. 
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Figure 2: Skewness and kurtosis of scale score distributions from 14 state testing programs, grades 3-8, 

reading and mathematics, 2010 and 2011, shown as boxplots by state abbreviations. 

 

Notes: States are abbreviated: AK=Alaska; AZ=Arizona; CO=Colorado; ID=Idaho; NE=Nebraska; 

4S=New England Common Assessment Program (Maine, New Hampshire, Rhode Island, Vermont); 

NJ=New Jersey; NY0=New York, 2010; NY1=New York, 2011; NC=North Carolina; OK=Oklahoma; 

PA=Pennsylvania; SD=South Dakota; TX=Texas; WA=Washington. 
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Figure 3. Six discrete histograms of scale scores selected from a pool of 46 symmetric, mesokurtic 

distributions with skewness between ±0.1 and kurtosis between 2.75 and 3.75.  Distributions chosen to 

illustrate characteristic stretched, high density upper tails in spite of near-zero skewness. 

 

Notes: All distributions are from 2011.  s=Skewness; k=Kurtosis. 
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Figure 4. Upper-tail features of scale score distributions from 14 state testing programs, grades 3-8, 

reading and mathematics, 2010 and 2011. 

 

Notes: Top tile: Count of discrete score points distinguishing among the top 10% of examinees.  Middle 

tile: Percentage of total discrete score points distinguishing among the top 10% of examinees.  Bottom 

tile: Distance from the second highest score point to the highest score point in standard deviation units.  

States are abbreviated: AK=Alaska; AZ=Arizona; CO=Colorado; ID=Idaho; NE=Nebraska; 4S=New 
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England Common Assessment Program (Maine, New Hampshire, Rhode Island, Vermont); NJ=New 

Jersey; NY0=New York, 2010; NY1=New York, 2011; NC=North Carolina; OK=Oklahoma; 

PA=Pennsylvania; SD=South Dakota; TX=Texas; WA=Washington. 
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Table 1. Descriptive statistics for scale score and raw score distributions from 14 state testing programs.   

State Test Name  
Number of 

Distributions  
Number of 
Students  

Number of Discrete 
Scale Score Points 

  Scale Raw   Min Max   Min Max 

Alaska 
Alaska Standards Based 
Assessment (SBA)  

24 24 

 

9237 9737 
 

55 62 

Arizona 
Arizona Instrument to Measure 
Standards (AIMS)  

24 24 

 

78216 83106 
 

49 64 

Colorado 
Colorado Student Assessment 
Program (CSAP)  

24 --- 

 

57130 62868 
 

466 563 

Idaho 
Idaho Standards Achievement 
Tests (ISAT)  

24 24 

 

20356 21635 
 

38 44 

Nebraska 
Nebraska State Accountability 
(NeSA) Assessment  

18 18 

 

20401 21921 
 

36 52 

New England 
New England Common 
Assessment Program (NECAP)  

24 --- 

 

33180 47716 
 

41 54 

New Jersey 
New Jersey Assessment of Skills 
and Knowledge (ASK)  

24 24 

 

100385 103382 
 

42 64 

New York 
New York State Testing Program 
(NYSTP)  

24 --- 

 

196425 206346 
 

28 67 

North Carolina 
North Carolina End of Grade 
Test (EOG)  

24 --- 

 

104369 115611 
 

48 60 

Oklahoma 
Oklahoma Core Curriculum Test 
(OCCT)  

24 12 

 

40214 44618 
 

37 43 

Pennsylvania 
Pennsylvania System of School 
Assessment (PSSA)  

24 24 

 

124535 132906 
 

38 69 

South Dakota 
South Dakota State Test of 
Educational Progress (STEP)  

24 24 

 

8982 9245 
 

50 80 

Texas 
Texas Assessment of Knowledge 
and Skills (TAKS)  

24 --- 

 

314832 689938 
 

36 93 

Washington 
Measurements of Student 
Progress (MSP)  

24 --- 

 

74726 77324 
 

34 61 
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Table 2. Median, minimum, and maximum skewness and kurtosis, by scale score and raw score, and by state. 

State 
 Number of 

Distributions  
Skewness 

 
Kurtosis 

 
 

Median 
 

Minimum 
 

Maximum 
 

Median 
 

Minimum 
 

Maximum 
  Scale Raw   Scale Raw   Scale Raw   Scale Raw   Scale Raw   Scale Raw   Scale Raw 

Alaska 
 

24 24 
 

0.132 -0.464 
 

-0.110 -0.679 
 

0.393 -0.342 
 

2.751 2.192 
 

2.476 1.958 
 

3.166 2.560 
Arizona 

 
24 24 

 
0.134 -0.659 

 
-0.292 -0.956 

 
0.532 -0.181 

 
3.021 2.591 

 
2.547 2.168 

 
3.990 3.346 

Colorado 
 

24 --- 
 

-0.642 --- 
 

-1.986 --- 
 

-0.111 --- 
 

4.635 --- 
 

3.069 --- 
 

12.491 --- 
Idaho 

 
24 24 

 
0.219 -0.847 

 
0.080 -1.074 

 
0.572 -0.483 

 
3.328 3.114 

 
2.931 2.476 

 
3.594 3.601 

Nebraska 
 

18 18 
 

0.129 -0.683 
 

-0.072 -0.904 
 

0.340 -0.523 
 

2.783 2.686 
 

2.639 2.409 
 

3.049 3.301 
New England 

 
24 --- 

 
-0.310 --- 

 
-0.639 --- 

 
-0.080 --- 

 
3.620 --- 

 
3.103 --- 

 
4.634 --- 

New Jersey 
 

24 24 
 

-0.061 -0.481 
 

-0.241 -0.710 
 

0.178 -0.089 
 

2.757 2.503 
 

2.347 2.018 
 

3.407 3.229 
New York 2010 

 
12 --- 

 
0.664 --- 

 
-0.578 --- 

 
2.234 --- 

 
7.362 --- 

 
4.971 --- 

 
15.693 --- 

New York 2011 
 

12 --- 
 

-0.870 --- 
 

-1.806 --- 
 

-0.265 --- 
 

13.129 --- 
 

4.216 --- 
 

19.487 --- 
North Carolina 

 
24 --- 

 
-0.202 --- 

 
-0.291 --- 

 
-0.032 --- 

 
2.669 --- 

 
2.571 --- 

 
2.881 --- 

Oklahoma 
 

24 12 
 

-0.127 -0.583 
 

-0.541 -0.948 
 

0.170 -0.286 
 

4.134 2.703 
 

3.606 2.280 
 

5.020 3.593 
Pennsylvania 

 
24 24 

 
0.055 -0.673 

 
-0.286 -1.668 

 
0.322 -0.421 

 
3.181 2.666 

 
2.908 2.339 

 
3.525 6.112 

South Dakota 
 

24 24 
 

0.194 -0.425 
 

-0.088 -0.780 
 

0.479 -0.175 
 

3.265 2.349 
 

2.865 2.100 
 

3.758 2.847 
Texas 

 
24 --- 

 
0.160 --- 

 
-0.102 --- 

 
0.579 --- 

 
2.748 --- 

 
2.491 --- 

 
3.333 --- 

Washington 
 

24 --- 
 

0.146 --- 
 

-0.395 --- 
 

0.722 --- 
 

3.451 --- 
 

2.936 --- 
 

5.750 --- 
Med(med), min(min), max(max) 0.129 -0.621   -1.986 -1.668   2.234 -0.089   3.265 2.628   2.347 1.958   19.487 6.112 
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Table 3. The impact of observed vs. normalized scores on skewness, kurtosis, grade-to-grade correlation, and school percentile rank on a “value 
added” metric.  

Grade 
Pair 

Number 
of 

Students 

 Skewness 
 

Kurtosis 
 

Correlation 
(2010,2011)  

Number 
of 

Schools 

𝑟𝑒̅𝑗𝑛𝑜𝑟𝑚,𝑒̅𝑗
𝑜𝑏𝑠   

Absolute Difference in 
School Percentile Rank 

 2010 
 

2011 
 

2010 
 

2011 
     Obs. Norm.   Obs. Norm.   Obs. Norm.   Obs. Norm.   Obs. Norm.     Median 90th Pctile 

3-4 181847 
 

1.17 -0.22 
 

-0.17 -0.01 
 

4.94 2.64 
 

4.02 2.95 
 

0.64 0.75 
 

2177 0.956 
 

4.41 13.62 

4-5 185131 
 

0.45 -0.06 
 

-0.58 -0.01 
 

4.88 2.85 
 

6.04 2.94 
 

0.78 0.81 
 

2129 0.982 
 

2.60 7.70 

5-6 181912 
 

0.04 -0.06 
 

-0.32 -0.02 
 

5.13 2.85 
 

5.59 2.91 
 

0.75 0.79 
 

1465 0.994 
 

1.47 4.22 

6-7 183514 
 

-0.40 -0.03 
 

-0.46 -0.01 
 

6.64 2.86 
 

6.82 2.93 
 

0.78 0.82 
 

1250 0.989 
 

1.95 5.56 

7-8 184698 
 

-0.29 -0.02 
 

-1.62 0.00 
 

7.08 2.91 
 

11.86 2.92 
 

0.76 0.83 
 

1233 0.962 
 

3.51 9.74 
 
 

Notes. Skewness and kurtosis of observed (Obs.) and normalized (Norm.) scores are shown.  Normalization does not result in skewness=0 or 
kurtosis=3 due to the discreteness of the score distributions. The Correlation(2010,2011) values show the grade-to-grade correlation for observed 
and normalized scores.  The 𝑟𝑒̅𝑗𝑛𝑜𝑟𝑚,𝑒̅𝑗

𝑜𝑏𝑠  correlation is that between the school value added on the observed scale and the school value added on the 

normalized scale. 


