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Abstract 

Predictive statements about future student performance can guide the selection of a performance 

standard.  These predictive statements often take the following form: “A student with a current 

score 𝑋 has a 𝑃% chance of exceeding a future score 𝑌.”  This paper uses straightforward 

regression relationships to clarify that these statements are ill-suited to support standard setting, 

as they confound the stringency of the selected cut score with the empirical relationship between 

𝑋 and 𝑌.  A distinction is drawn between a cut score that corresponds with a future cut score and 

a cut score that predicts a future cut score.  The latter is an indicator of the relationship between 

tests as much as the performance of students and is therefore subject to misinterpretation as a 

performance standard.  This finding is unsurprising once stated but has considerable practical 

implications and does not appear to have been well described in the literature.  Theoretical 

scenarios illustrate the policy-relevant consequences of this confounding, such as illusory 

stringency and leniency. 

 

 

Recent educational reform efforts have focused attention on student readiness for college 

(U.S. Department of Education, 2010).  These efforts have motivated “predictive standard 

setting”: the selection of benchmarks or cut scores that indicate a probability of future success.  

Examples of college readiness benchmarks include those of ACT, that defines its benchmarks 

where students “have approximately a 50% chance of earning a B or better and approximately a 

75% chance or better of earning a C or better in the corresponding college course or courses” 

(ACT, 2007, p. 24).  The College Board defines its benchmarks as “the SAT score associated 

with a 65 percent probability of earning a first-year GPA of 2.67 (B-) or higher” (Wyatt, Kobrin, 

Wiley, Camara, & Proestler, 2011, p. 5).  In this paper, I argue that these statements are accurate 

empirically but become misleading when used to set and describe standards for student 

performance. 

An educational test score is always interpreted as an indicator of likely student 

performance in a broader domain.  For predictive inferences about college readiness, validation 



2 
 

requires, in part, an investigation of the predictive relationship between test scores and college 

outcomes.  When relationships are strong, the validation argument is strengthened, and when 

relationships are weak, predictive inferences must be tempered.  Predictive standard setting 

seems to address this directly, by attaching empirically defensible predictive statements to 

particular regions of the test score scale. 

Performance standards combine two concepts: They are 1) levels of performance that are 

expressed on 2) a well-defined scale.  Justifying a level of performance without a well-defined 

scale is an example of the logical fallacy of “begging the question,” where a part of the 

interpretive argument (appropriate performance level) is assumed to be the whole of the 

interpretive argument (appropriate interpretation; Kane, 2006).  No matter how technically 

defensible a standard setting procedure may be, a logically necessary precondition is that the test 

score scale supports the desired inference (Haertel & Lorie, 2004).   

As I will demonstrate, predictive standard setting confuses these two concepts, 

confounding the level of performance with the predictive utility of the scale.  It is an effort to 

validate scale interpretations while simultaneously using the same evidence to determine the 

level of performance.  As a result, the selected performance level is confounded with evidence 

for or against the validity of its underlying scale.  A low standard may result in more “proficient” 

students not because performance in that region is associated with proficiency but rather because 

the test itself is a poor predictor of the outcome.  In short, a low (or in some cases, high) standard 

may be evidence that the selection of a standard is itself unwarranted. 

This confounding renders commonsense interpretations of performance levels 

impossible.  Interpretations of stringency become tangled with the predictive utility of the test.  

Two standards that seem to differ in terms of stringency may instead differ due to differential 

predictive relationships with the future outcome.  Disentangling stringency from predictive 

utility is not possible in practice, as performance level descriptors do not include the predictive 

evidence necessary to distinguish between the two concepts.  Predictive standards support “on 

track” inferences only if they include the caveat, “to the extent that the test can predict the 

outcome.”  The counterintuitive relationships presented in this paper are evidence that these 

caveats are not natural to interpretations of performance standards and thus foster 

misinterpretation and misuse. 
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Familiar mathematical relationships from regression methods reveal the direction and 

degree of this confounding.  Although the relationships require only basic statistical derivations, 

the implications for standard setting and “on track” inferences do not appear to be well described 

in the existing literature.  I conclude that predictive analyses are poorly suited for selecting cut 

scores.  As an alternative, I describe a three-pronged approach that uses an equipercentile or 

otherwise non-predictive standard setting procedure, supplementary statements about the 

predictive relationship between the two tests, and monitoring of the predictive relationship over 

time. 

Scenario 1: Simple Linear Regression 

Let a “predictive standard setting approach” be one that uses regression-based analyses of 

longitudinal student data to support statements such as, “a student at or above a cut score, 𝑋𝑐 , has 

a 𝑃% chance of exceeding a future cut score 𝑌𝑐.”  I describe the variables, 𝑃 and 𝑌𝑐, as associated 

with the “stringency” of 𝑋𝑐: The higher 𝑃 and 𝑌𝑐 are, the higher and more “stringent” the 

selected cut score will be.  This is intuitive and consistent with standard setting as an exercise in 

selecting a cut score on a well-defined scale. 

The source of the confounding is the variable 𝜌𝑋𝑋, the simple population correlation of 

observed scores from the two tests.  This variable is not associated with stringency 

interpretations and yet has a direct impact on 𝑋𝑐 in predictive standard setting applications.  In 

this first scenario, I ignore the probabilistic variable 𝑃 and focus on a predictive standard setting 

exercise that uses only simple linear regression. 

One approach to separating stringency from correlation is to distinguish between a 

standard that corresponds with a future standard and a standard that predicts a future standard.  

One method that operationalizes correspondence—though by no means the only approach 

(Lewis & Haug, 2005)—is an equipercentile approach whose cut score, designated 𝑋𝑐
𝑒𝑞𝑢𝑖, 

establishes the same “passing” percentages for students on both 𝑋 and 𝑌.  One approach to 

operationalizing prediction is an Ordinary Least Squares (OLS) regression approach that results 

in the cut score, 𝑋𝑐𝑂𝐿𝑆.  In comparing these two approaches, I present the equipercentile approach 

as an intuitive reference point, not an ideal.  McClarty, Murphy, Keng, Turhan, and Tong (2012) 

helpfully compared cut scores set with these and other approaches, however they did not 

describe why or how these approaches were expected to differ theoretically. 
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A simple bivariate normal framework allows for interpretation of cut scores on a familiar 

“𝑧-scale” of standard normal deviates.  Under this model, both 𝑋 and 𝑌 have standard normal 

distributions with a bivariate correlation, 𝜌𝑋𝑋.  The univariate distributions are identical, thus the 

equipercentile cut score is simply,   

 

 𝑋𝑐
𝑒𝑞𝑢𝑖 = 𝑌𝑐 . (1) 

 

Following simple linear regression relationships, the regression equation is 𝑌𝑐 =

𝜌𝑋𝑋𝑋𝑐𝑂𝐿𝑆, thus the cut score from the OLS approach arises from solving for 𝑋𝑐𝑂𝐿𝑆, 

 

 
𝑋𝑐𝑂𝐿𝑆 =

𝑌𝑐
𝜌𝑋𝑋

 

 
(2) 

The relationship between the two cut scores follows:  

 𝑋𝑐𝑂𝐿𝑆 =
𝑋𝑐
𝑒𝑞𝑢𝑖

𝜌𝑋𝑋
. (3) 

 

The difference between Equations 1 and 2 summarizes the distinction between a cut score 

determined solely by stringency (Equation 1) and a cut score that confounds stringency and 

association (Equation 2).  The second cut score is skewed away from a “stringency-only” 

baseline whenever correlations are less than unity.  Whenever future scores are negative (below 

average) on the 𝑧-scale, as they often are in practical applications (e.g., C grades or B- averages), 

Equation 3 shows that predictive standards will always be lower (more lenient) than 

equipercentile standards by a factor of 1/𝜌𝑋𝑋.   

 Figure 1 displays the difference between these two approaches for a bivariate normal 

distribution with a correlation 𝜌𝑋𝑋 = 0.6.  The equipercentile line is the diagonal (Equation 1), 

and the regression line is shown with slope 𝜌𝑋𝑋 (Equation 2).  A future cut score, 𝑌𝑐 , at the 20th 

and 80th percentiles (-.84 and +.84 respectively) leads to identical cut scores 𝑋𝑐
𝑒𝑞𝑢𝑖, but the 

regression-based cut scores 𝑋𝑐𝑂𝐿𝑆, relative to 𝑋𝑐
𝑒𝑞𝑢𝑖, diverge from the mean by the factor 1/

𝜌𝑋𝑋  ≈ 1.67. 
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This finding is elementary and straightforward from the standpoint of regression.  In the 

absence of perfect correlation, regression will predict a future score closer to the future mean, 𝑌�.  

Inverting to obtain a cut score on 𝑋 will result in a more divergent 𝑋𝑐𝑂𝐿𝑆.  As an extreme but 

illustrative example, a completely uncorrelated predictor for a below-average 𝑌𝑐 will have an 

infinitely lenient cut score, simply because the predicted future score will be 𝑌�.  Concluding 

from this that all students are “on track” is incorrect or at least incomplete.  A more defensible 

conclusion is that all students are on track, as far as the predictor variable is capable of predicting 

(in this case, not at all).  This crucial caveat turns the focus correctly back to the predictive 

relationship between the two variables and reveals the distortive influence of predictive 

association on standard setting.  The proper response to this extreme example is to assert that the 

test scores on 𝑋 do not support interpretations about future performance on 𝑌, thus no cut score 

is appropriate. 

Equation 2 also offers an illustration of the difference between cut scores for two tests 

that have different correlations with future outcomes.  In most longitudinal data, lower grades 

have lower correlations with future outcomes than higher grades.  The ratio of their cut scores on 

the 𝑧-scale is the inverse of the ratio of their correlations.  For example, if the correlation 

between a Grade 8 test and a high school exam is 0.7 and the correlation between a Grade 3 test 

and a high school exam is 0.5, then the cut score of the Grade 3 test will be 40% more lenient (or 

more stringent, if the future cut score is above the mean) than the cut score of the Grade 8 test, 

on the 𝑧-scale.   

The top half of Figure 2 shows how cut scores will vary in their impact across grades, 

assuming that correlations between early grades and future outcomes will be lower than 

correlations between higher grades and future outcomes.  The scale is expressed in terms of 

“impact data,” the percentage of students expected to exceed the cut score 𝑋𝑐𝑂𝐿𝑆.  For these 

standardized normal data, this is simply Φ(𝑋𝑐𝑂𝐿𝑆), where Φ is the standard normal cumulative 

distribution function.  The top-right of Figure 2 shows impact data for a below-average future cut 

score at the 30th percentile.  When correlations are higher, at 0.7 in Grade 10, around 77% of 

students are predicted to exceed the future cut score.   If correlations drop to 0.3 for earlier 

grades, the percentage of proficient students in those grades will rise to 96%, simply because the 

predictive relationship between the earlier-grade test and the outcome is lower.  If the future cut 

score is above the mean, as shown for a future cut score at the 70th percentile on the top-left of 



6 
 

Figure 2, earlier-grade tests will have much more stringent cut scores and lower percentages of 

proficient students. 

It is important to note that the empirical reasoning that supports predictive standard 

setting is, strictly speaking, correct.  Given the data, and to the extent that the regression equation 

matches the population regression equation for the target sample, performance at the cut score 

𝑋𝑐𝑂𝐿𝑆 really does predict a future performance of 𝑌𝑐.  The cut score 𝑋𝑐
𝑒𝑞𝑢𝑖 is inferior as a predictor 

of this future performance.  However, the proper criterion by which to evaluate any cut score 𝑋𝑐 

is not by predictive accuracy but by the accuracy of the inferences that the cut score supports.  

These interpretations, following performance level descriptors, primarily involve a level of 

student performance and does not include a conditional inference about the predictive utility of 

the test.  By confounding this performance level with predictive utility, predictive standard 

setting ends up answering two questions, about stringency and prediction, with one answer, and 

ultimately answers neither question accurately.  

Scenario 2: Probabilistic Regression 

Direct prediction of a future score can be extended to probabilistic prediction of a future 

score.  In practice, this probabilistic interpretation is often supported by logistic regression 

models (ACT, 2007; Allen &  Sconing, 2005; Wyatt, Kobrin, Wiley, Camara, & Proestler, 

2011), where the outcome variable is dichotomized by the future cut score, 𝑌𝑐, and a linear model 

is used for the log-odds of exceeding the cut score.  A close cousin to the logistic model is the 

probit model, which results in effectively similar estimates but requires more complex estimation 

procedures.  An attractive alternative to both of these is quantile regression (Koenker, 2005), 

which may be theoretically preferable to avoid the loss of information, power, and efficiency that 

comes with dichotomization of the outcome variable (Cox, 1957; Fedorov, Mannino, & Zhang; 

2009; Ragland, 1992).   

 For notational convenience, I derive probabilistic predictive standard setting relationships 

for the probit model under bivariate normality.  This generalizes directly to the quantile 

regression model under bivariate normality, and it is a close approximation to the logistic model 

to the extent that the logit function can approximate the probit function.  The derivation follows 

from regression relationships that are well understood across disciplines and can even be found 

in justifications for the normal ogive model in Item Response Theory (e.g., Lord, 1980). 
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The conditional probability, 𝑃, of exceeding a future target or threshold 𝑌𝑐, given an 

initial score 𝑋 that takes the value 𝑋 = 𝑥, can be modeled with a normal ogive, Φ, with a “slope” 

parameter of 𝛽1 and an “intercept” parameter of 𝛽0.   

 

P(Y > Yc|𝑋 = 𝑥) = Φ(𝛽0 + 𝛽1𝑥) 

 

When 𝑋 and 𝑌 are distributed as a bivariate normal distribution, the slope and intercept can be 

expressed in terms of the target cut score, 𝑌𝑐, and the correlation, 𝜌𝑋𝑋: 

 

𝛽1 =
𝜌𝑋𝑋

�1 − 𝜌𝑋𝑋2
 

 

𝛽0 =
−𝑌𝑐

�1 − 𝜌𝑋𝑋2
 

 

Substituting and solving for 𝑋𝑐 = 𝑥 gives the target expression, 

 

 𝑋𝑐
𝑝𝑟𝑜𝑏 =

Φ−1(𝑃)�1 − 𝜌𝑋𝑋2 + 𝑌𝑐
𝜌𝑋𝑋

. (4) 

 

Approximation of slopes and intercepts from a logistic regression model could be 

obtained by simply multiplying them by 1.702 (Camilli, 1994).  However, the differential fit 

between a logistic model and a probit model to bivariate normal data is negligible and makes 

little difference to this presentation.  The key terms are again the stringency-related variables, 𝑃 

and 𝑌𝑐, which together have intuitive and predictable effects on the probabilistic cut score 𝑋𝑐
𝑝𝑟𝑜𝑏.  

It is the correlation, 𝜌𝑋𝑋, that again represents a confounding factor that confuses stringency with 

predictive utility.  Note that when the probability, 𝑃, is 50%, Equation 4 reduces to Equation 2, 

as expected. 

Figure 3 displays some of the implications of Equation 4.  The height of the bars 

represent the stringency of cut scores on the 𝑧-scale.  The left-most black bar in each grouping 

represents the intuitive reference point of the equipercentile cut score, indicating a “stringency-
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only” baseline.  To mimic operational uses, the target score, 𝑌𝑐, is restricted to below-average  

scores and expressed as a percentile, and 𝑃 is greater than 50% (e.g., a 65% chance of a B- 

average).  The top half of Figure 2 shows cut scores when 𝜌𝑋𝑋 = 0.45, and the bottom half of 

Figure 2 shows cut scores when 𝜌𝑋𝑋 = 0.7.  This range of correlations covers many intergrade 

correlations seen in practice (e.g., Claessens, Duncan, & Engel, 2009) and sometimes exceeds 

correlations between achievement tests and postsecondary outcomes (Kobrin, Patterson, Shaw, 

Mattern, & Barbuti, 2008; Noble & Sawyer, 1987). 

The “50% chance” bars are the cut scores set by the median regression line.  The median 

line is equal to the OLS regression line under bivariate normality, thus the results follow from 

Equation 3, where the cut score is always more lenient until the future cut score reaches the 

mean.  As expected, the lower correlation in the top figure leads to a greater discrepancy between 

the equipercentile cut score, 𝑋𝑐
𝑒𝑞𝑢𝑖 (in black), and the OLS-based cut score, 𝑋𝑐𝑂𝐿𝑆, that is equal to 

the median regression-based cut score in dark gray.  Within each figure, increasing 𝑃 raises the 

stringency of cut scores (each successive bar is more positive), and increasing the future cut 

score raises the stringency of cut scores (each successive set of bars is more positive).  These 

relationships are, I argue, intuitive reflections of standards-based interpretations.  The 

dependence on the correlation, that is, the difference between the top and bottom figures, is not. 

Returning to Figure 2, the bottom half of the figure shows the implications of Equation 4 

for a 2/3 ≈ 67% chance of reaching a future outcome at the 70th or 30th percentiles.  The higher 

probability of reaching a high future standard, in the bottom left of the figure, results in 

extremely low percentages of students exceeding the cut score, as expected from the combination 

of stringency, low association, and an above-average future cut score.   

The bottom right of Figure 2 shows that, for this particular combination of 𝑃 = 67% and 

𝑌𝑐 = Φ−1(30%), the cut score 𝑋𝑐
𝑝𝑟𝑜𝑏is quite similar over correlations between 0.3 and 0.7.  This 

follows directly from the multidimensional surface that Equation 4 describes, where the marginal 

slope of 𝑋𝑐
𝑝𝑟𝑜𝑏 on 𝜌𝑋𝑋is shallow for general statements of the form, “moderately high 

probabilities of reaching moderately low cut scores.”  This finding may be practically reassuring 

but does not weaken any of the theoretical arguments in this paper.  First, the dependence of 

𝑋𝑐
𝑝𝑟𝑜𝑏on  𝜌𝑋𝑋 is still nonzero, and Equation 4 can be used to show the exact difference in 

correlations that predict a consequential difference in impact data, however “consequential” is 
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defined.  Second, more importantly, it is just as easy to describe this result as one that 

demonstrates that prediction does not matter for predictive standard setting.  This defeats the 

whole purpose of the exercise.  If the motivation is to select a probabilistic statement that 

minimizes the impact of prediction, then describing the procedure as one driven by prediction is 

inaccurate.  The next scenario expands on this argument. 

Scenario 3: When Probabilistic Regression Leads to Equipercentile Cut Scores 

There is always a combination of 𝑃, 𝑌𝑐, and 𝜌𝑋𝑋 where 𝑋𝑐
𝑝𝑟𝑜𝑏 = 𝑋𝑐

𝑒𝑞𝑢𝑖.  For example, as 

Figure 2 shows, the two are close when 𝜌𝑋𝑋 = 0.45 and the cut score is defined by a 70% chance 

of reaching the 20th percentile.  If an equipercentile cut score represents a stringency-based 

inference, uncontaminated by predictive statements, then this observation allows for the layering 

of predictive statements onto stringency-driven cut scores.  This can be formalized by solving for 

the probabilistic statements that result in equipercentile cut scores.  To obtain a cut score 

equivalent to an equipercentile cut score, 𝑋𝑐
𝑒𝑞𝑢𝑖 , for any given correlation, 𝜌𝑋𝑋, simply define a 

probability, 𝑃𝑒𝑞𝑢𝑖, of reaching a future score 𝑌𝑐
𝑒𝑞𝑢𝑖 , as follows,  

 

 
𝑌𝑐
𝑒𝑞𝑢𝑖 = −Φ−1�𝑃𝑒𝑞𝑢𝑖��

1 + 𝜌𝑋𝑋
1 − 𝜌𝑋𝑋

. 

 

(5) 

Graphing these for correlations of 0.45 and 0.7 gives the curves shown in Figure 4.  This 

reveals that, for any given correlation, a range of predictive statements support an equipercentile 

standard.  When the correlation is 0.45, an equipercentile standard could be described as an 85% 

chance of reaching the 5th percentile or a 70% chance of reaching the 20th percentile (as noted in 

the previous paragraph).  If the correlation is 0.7, an equipercentile standard could be justified by 

a 70% chance of reaching the 10th percentile.  One could always justify with probabilistic 

statements what has been determined by equipercentile or other methods.  This paper argues that 

probabilistic statements should not justify standards alone, as standards are interpreted primarily 

in terms of stringency.  Predictive statements may enhance, but neither guide nor determine, 

selected cut scores.   

Recommendations 
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Following Haertel and Lorie (2004), the necessarily primary goal should be gathering 

sufficient evidence that any cut score on 𝑋 can support inferences about 𝑌.  Predictive analyses 

should provide some of this evidence.  Providing that sufficient evidence exists, a standard 

setting exercise should be conducted that does not include regression-determined guidance.  This 

may be supported in part by equipercentile benchmarks but need not be restricted to 

equipercentile approaches.  Finally, the chosen cut score may be enhanced with predictive 

statements, although I recommend extreme caution in this regard.  These predictive statements 

threaten to skew interpretations back to a confounding of stringency and prediction that may lead 

to future confusion. 

As an example, consider a standard setting endeavor that, following the above 

recommendations, results in a cut score that is essentially equipercentile in nature.  If the 

relationship is bivariate normal and the correlation is 0.45, we might attach a probabilistic 

statement to this cut score following Figure 3: that performance at a cut score at the 20th 

percentile predicts a 70% chance of exceeding the 20th percentile in the future.  Let us then 

assume that the same equipercentile approach is applied to a test from a more proximal grade 

with a correlation of 0.7.  As Figure 4 shows, the probability of reaching the 20th percentile is 

now 63%, because the higher correlation increases the likelihood that a 20th percentile student 

remains distal from the mean instead of “regressing” towards it.   

The difference between these the 63% and the 70% chances is explained by regression 

but is counterintuitive and at odds with the primary inference of stringency on the scale.  The 

“70% chance” reflects a weaker argument for the selection of any cut score, not evidence that the 

cut score should be higher or lower.  The best use of regression methods is therefore prior 

assessment of the predictive utility of the scale, before standards are set, rather than post-hoc 

rationalization of standards with predictive statements.  If correlations are too low, then no 

standard warrants an indication of future performance.  If they are sufficiently high, then a 

standard should be set that reflects stringency, without confounding the cut score with the very 

correlational evidence that supported the standard setting procedure. 
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Figure 1. Contrasting equipercentile and regression-based standard setting procedures for high 

and low future cut scores when 𝜌𝑋𝑋 = 0.6. 
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Figure 2. Across-grade impact data in terms of percentage of proficient students, assuming lower 

grades have lower correlations with future outcomes as shown. 
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Figure 3. Contrasting equipercentile cut scores and probit regression cut scores for correlations 
of 0.45 and 0.7. 
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Figure 4. Predictive statements associated with equipercentile cut scores for correlations of 0.45 
and 0.7. 
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