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ABSTRACT 
Game-theoretic analyses of multi-agent systems typically assume 
that all agents have full knowledge of everyone’s possible moves, 
information sets and utilities for each outcome. Bayesian games 
relax this assumption by allowing agents to have different “types,” 
representing different beliefs about the game being played, and to 
have uncertainty over other agents’ types. However, applications 
of Bayesian games almost universally assume that all agents share 
a common prior distribution over everyone’s type. We argue, in 
concord with certain economists, that such games fail to accu-
rately represent many situations. However, when the common 
prior assumption is abandoned, several modeling challenges arise, 
one of which is the emergence of complex belief hierarchies. In 
these cases it is necessary to specify which parts of other agents’ 
beliefs are relevant to an agent’s decision-making (or need be 
known by that agent). We address this issue by suggesting a con-
cise way of representing Bayesian games with uncommon priors. 
Our representation centers around the concept of a block, which 
groups agents’ view of (a) the game being played and (b) their 
posterior beliefs. This allows us to construct the belief graph, a 
graphical structure that allows agents’ knowledge of other agents’ 
beliefs to be carefully specified. Furthermore, when agents’ views 
of the world are represented by extensive form games, our block 
structure places useful semantic constraints on the extensive form 
trees. We show through examples that our representation can be 
used to naturally represent games with rich belief structures and 
interesting predicted behavior. 

Categories and Subject Descriptors 
I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems 

General Terms 
Economics, Game Theory, Human Factors 

Keywords 
Bayesian games, common prior assumption, equilibrium, belief 
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1. INTRODUCTION 
Game theory has recently gained wide acceptance as an analysis 
tool for multi-agent systems. The theory allows intelligent agents 
to reason strategically about their behavior, as well as the behav-
ior of other agents in the environment. It also offers powerful 

solution concepts, like Nash equilibrium, that define and predict 
the choices of rational agents, and are therefore useful to policy-
makers who wish to steer the behavior of a population to some 
desired point. Yet game theory seems to sometimes make exces-
sive and unreasonable assumptions about what agents in a system 
might know. For instance, it usually assumes that the choices 
available to every player, the set of outcomes of the game, and 
each player’s utility for every such outcome, are all common 
knowledge. 

Many situations in multi-agent systems are not adequately de-
scribed by such a framework. Other agents’ preferences and utility 
functions cannot generally be known with any certainty, while 
sometimes even the choices available to the players, or the obser-
vations they receive, might not be fully known. To an extent, 
Bayesian games (BGs) allow uncertainty over these aspects to be 
formally captured and reasoned about. In a BG, each player has 
some private information (e.g., her utility function or available 
moves), all of which are signified by her “type;” moreover, every 
player is assumed to know her type, but might be uncertain over 
other players’ types. However, even BGs usually assume that the 
joint distribution over players’ types is common knowledge. This 
assumption is known as the common prior assumption (CPA). 

In many practical situations, the use of the CPA is unacceptable or 
misleading. Suppose, for example, that three people are playing 
poker. Also assume, for the sake of illustration, that players in 
poker are either truthful or bluffers. Alice thinks that Bob is a 
bluffer with probability 0.4. Carol, however, thinks that Bob is a 
bluffer, say, with probability only 0.1. The strategies optimally 
chosen by each player should obviously depend on their beliefs 
about how likely it is for their opponents to be truthful or bluffers. 
The question then is: should Alice reason about Carol having a 
different belief about the likelihood of Bob’s type? The answer is 
yes, but a BG with a common prior cannot capture this.1 

The CPA has been justified on both philosophical and practical 
grounds. One of the most important arguments in favor of the 
CPA is that relaxing it introduces serious modeling challenges. 
For example, in a BG with common priors, agents’ inferences are 
“compatible,” e.g., what agent i believes agent j of a particular 
type believes is exactly what agent j of that type in fact believes. 
In contrast, dropping the CPA may lead to infinitely nested beliefs 
                                                                 
1 A BG with a common prior could capture this if the priors them-

selves were drawn from a hyper-prior that is common knowl-
edge, but this is not natural, and the assumption of a common-
knowledge hyper-prior is in general not easier to justify than 
that of a common prior. 
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of the form “i believes that j believes that k believes that i be-
lieves…” that are quite hard to formally reason with. Another 
issue with relaxing the CPA is that doing so seems to lead to one 
of two undesirable possibilities. We could assume that while play-
ers’ priors differ, these different priors are common knowledge; 
this, however, is as difficult to justify as the CPA. Alternatively, 
we could make their priors private, in which case each player is 
playing a different, completely subjective game, and there is no 
interaction between them. 

This paper addresses both these challenges. First, to make BGs 
with uncommon priors easier to model, it presents a novel tech-
nique for representing such games. This technique offers several 
advantages: Defining a game is conceptually easy, as the agents’ 
private information and beliefs are conveniently grouped into 
blocks. Moreover, the beliefs across the various blocks can be 
used to construct the belief graph, a structure that describes which 
parts of other agents’ priors are relevant to the decision-making of 
a particular agent. The belief graph therefore reveals how much an 
agent needs to know about others’ belief hierarchies to compute a 
solution (equilibrium) to the game. 

Second, the paper provides a middle road between the two unde-
sirable alternatives discussed above. Rather than having to choose 
between the priors being common knowledge or completely sub-
jective, our formalism allows precise control of which priors a 
player of a particular type knows (or needs to know). It is possible 
in our formalism for one type of a player to be more knowledge-
able about other players’ priors than another type. This is espe-
cially useful when some types of players are “boundedly rational,” 
and hence have limited knowledge of the game. Such a represen-
tational capability is achieved through the belief graph. 

While the basic formalism does not commit to a particular under-
lying representation for the individual games within the agents’ 
beliefs, it becomes particularly interesting when the underlying 
games are in extensive form. In such situations, it utilizes a map-
ping between information sets across the various game trees that 
is consistent with the agents’ beliefs. Constraints are placed on the 
extensive form games that allow the entire structure to be studied 
as a coherent game. We show that when the underlying games 
satisfy these constraints, the overall game defines a BG with a 
natural and compact type space. 

The structure of the paper is as follows: In Section 2 we discuss 
the advantages and disadvantages of the common prior assump-
tion, and argue that certain commonly encountered situations 
render it highly inappropriate. In Section 3 we discuss issues that 
arise when the CPA is relaxed, and present an example illustrating 
how interesting belief structures might arise. Section 4 presents 
our block formalism, and Section 5 explains how it can be used to 
construct the belief graph, which can concisely represent these 
interesting belief structures in various types of games without a 
common prior. In section 6 we give an extended example to illus-
trate how our formalism can be used in practice. Next, section 7 
shows how it fits in a particularly convenient way with the exten-
sive form. Finally, section 8 compares and contrasts our formal-
ism with prior game representations. The paper concludes with a 
short discussion and directions for future work. 

2. THE COMMON PRIOR 
The common prior assumption (CPA) has been widely accepted 
on the basis of three arguments (for three thoughtful treatises of 
the CPA, see [7], [9] and [12]): 

• Rationality implies the CPA. This argument states that ra-
tional agents having received identical information (or 
none at all) cannot publicly disagree on the likelihood of 
any event or outcome in the world—if one agent disagrees, 
then she must have made a mistake and therefore she is 
not rational. The above is flawed in three ways: First, 
probabilities of events are not directly observable in the 
world, but are instead statistical properties of complex 
mechanisms that either we do not fully understand or 
might be too hard to exhaustively model. For example, the 
fact that a fair coin lands on either side with equal likeli-
hood is a result of small forces applied to its surface, its 
weight distribution and small air currents in a “typical” 
environment where the coin is tossed; but the number 0.5 
is not directly observable or measurable on the coin itself. 
If probabilities are then derived from statistical assess-
ments, rationality objections are irrelevant.  Second, if one 
adopts the subjective view of probability (as Bayesians 
do), there is nothing implying that all agents must agree on 
the probabilities of all events—otherwise probabilities 
would not be truly subjective. Finally, rationality tells us 
how to update a prior given new observations, but in gen-
eral says nothing about how to choose a prior in the first 
place. 

• Learning will cause agents’ priors to converge to the em-
pirically observed frequencies. This argument basically 
states that, even if agents start with differing priors, they 
should, given enough data, update those to more or less 
identical posteriors, which they will then use as their new 
(almost common) priors. Of course such a claim is valid 
only if we can safely assume that agents have been given 
enough time in the environment to explore and assess the 
likelihood of every event with sufficient accuracy. In 
many multi-agent systems, however, the environment is 
too complex to even represent in state-space, let alone 
fully explore and quantitatively assess. Furthermore, 
agents often engage in localized interactions, and therefore 
their experiences may be concentrated in only a narrow 
subspace of the environment. 

• Abandoning the CPA would cause serious modeling is-
sues. This is a more serious concern. The fact that dis-
agreement between agents arises solely from different pri-
vate information, as captured in their types, leads to sim-
pler models, since the beliefs of all agents are consistent 
with their common prior. Therefore, agents’ inferences are 
“compatible,” e.g., what agent i believes agent j of a par-
ticular type believes is exactly what agent j of that type in 
fact believes. On the contrary, dropping the CPA may lead 
to infinitely nested beliefs of the form “i believes that j be-
lieves that k believes that i believes…” that are quite hard 
to formally reason with (yet not impossibly hard, e.g., see 
[8]). Furthermore, as [1] has shown, a repeated Bayesian 
game with uncommon priors may never converge to any 
equilibrium under any learning process. 

3. RELAXING THE CPA 
In many cases, forcing the agents to have common priors is an 
unnatural imposition on the model. Why would they have a com-
mon prior if they have different subjective beliefs about how the 
world works, or the space of possible strategies? In such cases, we 
can try to relax the CPA. To do so, we assign the agents different 



prior distributions over the joint types. If we do that, we will be 
able to say things like “Alice thinks Bob is a bluffer with prob-
ability 0.4, but Carol only thinks he’s a bluffer with probability 
0.1.” The question that immediately arises is, “What does Alice 
think that Carol thinks about Bob?” One possible answer to this 
question is to say that while the priors are uncommon, they are 
common knowledge, so Alice knows Carol’s prior and the fact 
that she thinks Bob is a bluffer with probability 0.1. However, if 
we are not assuming that the agents have a common prior, this 
assumption is very hard to justify. If the agents have different 
subjective beliefs that lead them to have different priors, how can 
we expect them to know each others’ subjective beliefs? 
Alternatively, we can say that agents do not know other agents’ 
priors. Instead, they must have beliefs about them. One possibility 
is to say that agents believe other agents’ priors are like their own, 
so Alice believes Carol thinks Bob is a bluffer with probability 
0.4. In this approach, each agent solves a separate BG with com-
mon priors. The agents do not reason about other agents having 
different priors from their own. Each agent comes up with a dif-
ferent, completely subjective solution to the game under this as-
sumption. Agents whose beliefs about each other’s priors are en-
tirely independent might derive a completely different set of 
Bayes-Nash equilibria for the game. 
Another possibility is to say that each agent has private beliefs 
about the priors of other agents, which need not necessarily be the 
same as their own. For example, Alice might believe that Carol 
thinks Bob is a bluffer with probability 0.3, while Carol herself 
believes he is a bluffer with probability 0.1. If we follow this op-
tion, we then need to ask what Alice believes Carol believes Alice 
thinks about Bob. We thus end up with a complex hierarchy of 
beliefs that is very hard to model. Furthermore, each agent’s belief 
hierarchy has no interaction with the other agents, so each agent’s 
solution of the game is again completely subjective. 
We contend that these three approaches—common knowledge, 
believing everyone has the same prior, and completely private 
beliefs—are just three out of many structures that can arise when 
relaxing the CPA. We will shortly present a formalism that can 
represent a wide and diverse array of such structures. Before do-
ing that, however, we present an example that shows how such 
rich structures can come about. 

Suppose you are playing Rock-Paper-Scissors (RPS) with a child. 
Let us also assume that there are only two types of agents in RPS: 
maximizer and naïf. The maximizer agents have a correct model 
for the game, and utility function that gives them +1 for winning, 
–1 for losing and 0 for a draw. The naïf type, on the other hand, 
represents how children are expected to play the game: naives 
model their opponent as an automaton that always repeats its last 
move. Therefore, naives best-respond to their opponent’s last 
choice, e.g., they play ‘scissors’ after their opponent has played 
‘paper.’ For completeness, assume that naives on the first round 
choose any action with equal probability. 

Now let us assume that you are a maximizer (you know your type) 
and you believe that the child is either a maximizer (with prob-
ability p), or a naïf (with probability 1 – p). This belief is consis-
tent with many possible priors. One possibility is shown in Table 
1. 

 

Table 1 Your prior in the RPS game (p1) 
 (t1, t2) probability 

(maximizer, maximizer) p2
 

(maximizer, naïf) p(1 – p) 

(naïf, maximizer) p(1 – p) 

(naïf, naïf) (1 – p)2 
 

Table 2: The child’s prior in the RPS game (p2) 
 (t1, t2) probability 

(maximizer, maximizer) p2
 

(maximizer, naïf) 0 

(naïf, maximizer) p(1 – p) 

(naïf, naïf) 1 – p 
 

However, the child does not share your prior. This is because, if a 
child is a naïf, it would be rather unreasonable to expect it to even 
be aware of the concept of a game-theoretic maximizer. Hence, 
the child’s prior could look like Table 2. 

Clearly, no common prior can adequately capture this situation. 
Many instances in which bounded rationality is evoked, or in 
which some agents are only partially aware of the game’s struc-
ture, can be viewed as generalizations of the above scheme. The 
question that now arises is “what prior does the child believe you 
are using?” One option here would be to assume that the child 
believes that you use your actual prior, the one shown in Table 1. 
In this case, the situation is a game with uncommon, common 
knowledge priors. However, closer scrutiny would reveal that this 
turns out to be rather unnatural: the child, when its type is naïf, is 
assumed not to even be aware of the possibility of you being any-
thing but naïf, but also seems to maintain a non-zero probability 
that you might think it is not a naïf. 

A better solution here can be achieved by constructing a richer 
belief structure. In this case, we shall use three types: maximizer, 
naïf, and naïf-adult. An agent of the naïf-adult type models the 
game exactly as a naïf (the usefulness of adding this new type will 
be apparent below). Let us now look at beliefs: You, as an adult, 
will still use the prior shown in Table 1. The child, however, will 
use the prior of Table 3 (missing assignments are assumed to have 
probability zero): 
 

Table 3: The child’s updated prior in the RPS game (p3) 
 (t1, t2) probability 

(maximizer, maximizer) 0.9p2
 

(maximizer, naïf) 0 

(naïf, maximizer) 0.9p(1 – p) 

(naïf, naïf) 0 

(naïf-adult, naïf) 0.9(1 – p) 

(naïf-adult, naïf-adult) 0.1 
 



Furthermore, the child shall believe that you are using the prior 
below (Table 4): 
 

Table 4: The child’s belief about your prior (p4) 
 (t1, t2) probability 

(maximizer, maximizer) 0.7p2
 

(naïf, maximizer) 0.7p(1 – p) 

(maximizer, naïf) 0.7p(1 – p) 

(naïf, naïf) 0.7(1 – p)2 

(naïf-adult, naïf-adult) 0.3 
 

This belief structure now describes a child that, if a maximizer, 
will be aware of the possibility that you are either a maximizer or 
a naïf (Table 3, first and third rows). If a naïf though, the child 
will also assume that you are a naïf (Table 3, fifth row) and that 
you are as oblivious to the existence of any types other than itself. 
To capture that last piece, the naïf-adult type is introduced, such 
that it is wholly similar to the naïf type, except it fails to consider 
other alternative types (Table 4, last row). (The constants in Table 
4 are chosen such that the probabilities sum to one and do not 
affect the posterior distributions.) 

4. THE REPRESENTATION 
The main idea behind our formalism is that modeling a game 
becomes simpler if the agents’ types and beliefs are captured in a 
conceptually appealing and graphical way. We therefore introduce 
the concept of a “block,” and define a game as a collection of 
blocks B. A block b ∈ B consists of two elements: (1) the model 
m(b) an agent has about the world, and (2) the beliefs β(b) the 
agent assumes, and believes others to assume, in that block. The 
agent’s model is a complete game in normal or extensive form, 
with everyone’s information sets, available moves and utilities 
fully specified. The beliefs in block b consist of n(n – 1) probabil-
ity distributions over B, indexed  for all i, j ∈ N, i ≠ j, where N 

is the set of agents (|N| = n). The distribution

€ 

pij
b  captures agent i’s 

beliefs over which block agent j might be using. Also, let us de-
note by

€ 

pij
b ( " b )

 
the probability assigned to block b'  by the distribu-

tion

€ 

pij
b . 

It is straightforward to map this construct onto a Bayesian game. 
For each agent i, her typeset Ti is equivalent to the set of blocks B. 
When agent i is of a particular type, say b ∈ B, then agent i’s pri-
vate information (utility, observations, etc.) are fully captured by 
the game m(b). Moreover, i’s posterior distribution over the be-
liefs of all other agents given her type, p(T–i = (tj)j≠ i | Ti = b), is 

given by the product 

€ 

pij
b (t j )

j≠ i
∏  of the distributions in β(b). 

Notice how in our formalism the modeling is performed in terms 
of the posterior distributions pi(Tj | Ti = b) ≡ 

€ 

pij
b , not the priors 

pi(T ). Given these posteriors, any prior that is consistent with 
them will be essentially expressing the same game. 

In each block b, the set of pure strategies for player i contains all 
her pure strategies in the model m(b). For the game as a whole, a 

pure strategy for i is then a choice of pure strategy for every block 
b ∈ B. Moreover, if the models m(b) are represented in extensive 
(tree) form, a pure strategy for i for the whole game is a mapping 
from all information sets of all trees m(b) to an action available to 
her in every such information set. Similarly, mixed strategies are 
probability distributions over pure strategies, and behavioral 
strategies can be defined as mappings from information sets to 
probability distributions over available actions. Finally, a strategy 
profile σ denotes, for every agent i and every type b ∈ B, a choice 
of mixed (or behavioral) strategy σi,b . 

The main solution concept for a Bayesian game is a Bayes-Nash 
equilibrium. A strategy profile σ is a Bayes-Nash equilibrium if, 
for all agents i and for all types b, the strategy σi,b maximizes i’s 
expected utility against strategies σj,b' , where each is weighted 
according to the posterior distribution 

€ 

pij
b ( " b ) . 

Observe here that the notion of a Bayes-Nash equilibrium does 
not change when the common prior assumption is dropped. For a 
strategy profile to be in equilibrium, all that is required is that 
each agent, given her beliefs (about herself and others’ beliefs), 
considers everyone to be best-responding to everybody else’s 
expected behavior. (For a deep discussion of equilibria in non-
common prior games see also [10]. For approaches towards com-
puting them see [11].) There are, however, subtle changes in the 
interpretation of equilibrium with and without a common prior, as 
well as with and without common knowledge of priors. 

If the CPA is adopted, all agents agree on the game being played 
and therefore the equilibrium represents an optimal solution to it. 
Replacing the common prior with commonly known, differing 
priors maintains the agents’ belief that this equilibrium is an opti-
mal solution, but each of them thinks that only her utility is 
maximized in expectation under the equilibrium. Others’ utilities 
are not necessarily maximized; they only think, using their erro-
neous priors, that their utilities are maximized. Hence equilibria 
are in a sense subjective solutions. On the other hand, if priors are 
also private, then it need not necessarily hold that agents even 
agree on what the equilibria of the game are. If the prior of agent i 
is very different from the prior agent j assumes for i, then clearly 
the equilibria of the game, as computed by the two agents, might 
be completely unrelated. 

5. THE BELIEF GRAPH 
One useful property of our formalism is that it allows for belief 
dependencies to be uncovered easily. In particular, it can help a 
modeler answer the question “Which of the beliefs of other agents 
are relevant to agent i’s decision-making?” This is performed by 
constructing the game’s belief graph. Alternatively, this question 
can be stated as “Which of the other agents’ beliefs need i know 
to compute her optimal decision?”  

The belief graph is constructed as follows: Its nodes are the set of 
blocks B. Then, we add an edge (b, b' ) and we label it “i.j ” if 

€ 

pij
b ( " b )  > 0. In other words, the edge (b, b' ) denotes that agent i in 

block b assumes that j might be using block b' as his model of the 
world. The destination block b' may be the same as the source b 
(self-edge). Next, we define a path π = (b1, …, bm) such that, for 
every node bk , where k ∈ [1, m – 1], there is an edge (bk, bk+1) 
and, for each consecutive edge pair {(bk , bk+1), (bk+1 , bk+2)}, 
where k ∈ [1, m – 2], the label of the first edge is “i.j ” and the 
label of the second is “j.k ” for some agents i, j and k. (A path may 
very well contain self-edges.) We say that a block-agent pair (b', j) 



is reachable from pair (b, i) if there is a path from b to b' in which 
the first agent is i and the last agent is j. The set of reachable 
blocks from (b, i) is denoted by R(b, i). 

The belief graph captures which distributions an agent needs to 
take into account in its decision-making. Only those posterior 
distributions 

€ 

pl
" " " b , where 

€ 

( " " " b , l) ∈ R(b,i) , are relevant to agent 
i’s decision-making, when that agent is in block b. This is be-
cause, in block b, which is deemed by agent i to be the “true 
world,” some other agent j will be modeled as if  he was using one 
of the blocks for which an edge (b, b' ) exists with label “i.j,” 
hence j’s beliefs in b' need to be considered by i in b. Further-
more, agent j in b' might be modeling k (who could be the same as 
i), as if she were using some block b'', which j needs to consider 
in order to predict their behavior and hence best-respond to it. 
Therefore i in b, who is best-responding to j, must also consider k 
in b''.  By induction, if 

€ 

( " " " b , l) ∈ R(b,i) , the game tree 

€ 

m( " " " b )  
and the posterior 

€ 

pl
" " " b are potentially relevant to i’s decision-

making problem. On the other hand, if 

€ 

( " " " b , l) ∉ R(b,i) , there is 
no path of reasoning by which agent i in b needs to take agent l in 

€ 

" " " b  into account, so 

€ 

pl
" " " b is irrelevant to i in b. 

In addition, if there is an edge from b to b' labeled “i.j,” then agent 
i in block b believes that agent j’s model of the world is m(b' ) and 
his beliefs are β(b'). Thus agent i in b knows the model and beliefs 
of j in 

€ 

" b . Likewise, if there is an edge from 

€ 

" b  to 

€ 

" " b  labeled 
“j.k,” agent j in 

€ 

" b  knows agent k’s model and beliefs in 

€ 

" " b . It 
follows that agent i in b knows agent k’s model and beliefs in 

€ 

" " b . 
Recursively, agent i in block b knows the beliefs of all agents l in 
blocks 

€ 

" " " b  such that 

€ 

( " " " b , l)  is in R(b, i). Thus the belief graph 
precisely captures what agents must know about the beliefs of 
other agents. A subtle point must be made, however. If (b', j) is 
not reachable from (b, i), the graph does not preclude the possibil-
ity that agent i in b knows the beliefs of agent j in b'. It merely 
says that i does not need to know them, so it is not necessary to 
assume that i knows them. 

The different relaxations of the CPA discussed in Section 3 form 
special cases of the belief graph. If in the graph every block-agent 
pair is reachable from every other block-agent pair, then the 
agents’ beliefs are common knowledge. The case in which priors 
are completely private is captured by a belief graph containing n 
disconnected subgraphs, one for each agent.  

In Figure 1 we present the belief graph for the Rock-Paper-
Scissors example of section 3. Figure 1(a) shows the graph for the 
case of common knowledge priors. The game, m(b1) is a standard 
description of rock-paper-scissors, while m(b2) is an alternative 
game in which the adult always repeats her last move. In b1, you 
(the adult) model the child as using b2, while in b2 the child mod-
els you as using b1. 
 

 
Figure 1: The belief graph of the RPS game 

Alternatively, in Figure 1(b) the case with the richer belief struc-
ture is considered, whereby you model the child as using b3, and 
the child models you as using b4. Notice how in this case the child 
need not be aware of your beliefs in b1 to compute his optimal 
strategy. On the other hand, you in b1 do consider the child’s be-
liefs in b3, and therefore also your own beliefs in b4. 

6. AN EXTENDED EXAMPLE 
We now present an extended example that further illustrates these 
concepts, and shows the interesting equilibrium analysis that our 
framework supports. Suppose Alice works for company X and all 
her retirement savings are tied to X’s stock, therefore she would 
benefit greatly from an increase in their value. Bob is a billionaire 
considering to buy a large number of X’s stocks, but lacks the 
expertise to make this decision. Hence, he relies on a predicting 
agency C that informs him whether the stock price will go up (in 
which case it is optimal for him to buy) or down (in which case he 
should optimally rest). Clearly, Alice would significantly prefer 
Bob buying the stock. Let us also assume that Bob believes that C, 
the predicting agency, has prior probability 0.2 to suggest ‘buy’ 
and 0.8 to suggest ‘rest.’ 
Suppose now that, in Alice’s model of the world, she can 
“threaten” the predicting agency in some frowned-upon way, 
which Alice thinks is entirely effective, i.e., a threatened C will do 
as Alice says, i.e., suggest ‘buy’ if Alices dictates it to say ‘buy,’ 
and suggest ‘rest’ if Alice dictates it to say ‘rest.’ (Assume that 
either action has zero cost for Alice.) In Bob’s model, Alice can 
choose either action, but the agency cannot be bullied by her 
threats (in this case, the scenario is equivalent to Bob being un-
aware of Alice’s presence); this means that Bob considers, in his 
model, C’s suggestion to be trustworthy and predictive of the 
stock’s future price. Alice, however, is uncertain of whether Bob 
is aware of her manipulative power—in fact, she believes that the 
probability of him being aware of her actions’ effects is 0.3. 

We shall create two blocks to represent this situation (B = {K, L}). 
In blocks K and L the models, which are represented by extensive 
form game trees, look like in Figure 2. At first Alice decides 
whether to dictate ‘buy’ or ‘rest.’ Then Nature, labeled C, repre-
senting the agency, makes a suggestion to Bob. Finally, Bob has 
to decide whether to buy the stock or not. He has two information 
sets, one representing the history “C suggested ‘buy’,” and one 
capturing the alternative “C suggested ‘rest’.” The only difference 
between the two trees m(K) and m(L) is the fact that the probabil-
ity of C making a ‘buy’ suggestion to Bob in m(L) is 0.2 in-
depenently of Alice’s action, whereas in m(K) it is either one or 
zero, depending on Alice’s threat. 

Let us now define the beliefs β. In block K we need to have a 
distribution  = <0.3 : K, 0.7 : L> to capture the fact that Alice 
of type K thinks that Bob is likely to use K (and hence be aware of 
her threats) with probability 0.3, or use L (and therefore be oblivi-
ous to her actions) with probability 0.7. Bob in K will have what 
we call a trivial belief, i.e.,  = <1 : K>, meaning that a Bob 
who is aware of Alice’s threats also considers her to be aware of 
them, which makes sense. In block L both agents have trivial 
beliefs, such that Bob of type L is unaware of Alice. 

The belief graph for the game is presented in Figure 3. Notice 
here how Bob of type L has no edges going back to K, hence Bob 
of that type need not even consider (or be aware of what happens 



in) block K. This makes sense, as Bob in L is modeled as an agent 
who is truly oblivious of Alice’s threats. 
 

 
Figure 2: The trees for the Alice-Bob example 

 

 

 
Figure 3: The belief graph for the Alice-Bob example 

 

Identifying the game’s Bayes-Nash equilibrium could be done as 
follows: First of all, Alice has two pure strategies in either block, 
‘dictate buy’ and ‘dictate rest.’ Bob in turn has four strategies, ‘do 
what C suggests,’ ‘do the opposite of what C suggests,’ ‘always 
buy’ and ‘always rest.’ In tree m(L) it is clearly optimal for Bob to 
‘do what C suggests,’ as the agency’s suggestion is predictive of 
the stock’s performance. And of course, Alice cannot affect the 
situation, so any randomization between ‘dictate buy’ and ‘dictate 
rest’ constitutes an equilibrium strategy. In block K, however, 
things are different. First, the strategy ‘do the opposite of what C 
suggests’ is weakly dominated by ‘never buy’ for Bob; once re-
moved, then ‘dictate buy’ becomes weakly dominant for Alice, in 
which case the dominant strategy for Bob becomes ‘never buy.’ 

These would be the equilibria in each block, if that block was 
commonly held to be true by both agents—but how about the 
game as a whole, given the agents’ complex beliefs? Clearly, the 
Bayes-Nash equilibrium would have Bob of type L playing ‘do 
what C says,’ as in that case Bob is unaware that Alice might even 
be of a different type. For Bob of type K, similarly, he should 
‘never buy,’ as his beliefs in K are also trivial. As for Alice, if she 
is of type L she could do whatever, but if she is of type K, she 
needs to best-respond to a mixture consisting of Bob of type K 
(with 0.3 probability) and Bob of type L (with 0.7 probability). 
Hence, her optimal strategy overall would be to ‘dictate buy.’ 

Notice that the equilibria are interdependent but subjective. We 
have not taken a position which of these blocks, K or L, accurately 
represents the real world (if any does). The notion of “truth” is not 
employed in the analysis. If K happens to be true, then Alice’s 
threats will indeed be effective and Bob of type L will be most 
likely misled into an ill-adivsed purchase. If L happens to be true, 
there will be no effect and Bob’s decision will be profitable to 
him. If it was important to us to identify what would happen in the 
real world, we could introduce a modeler agent whose beliefs 
correspond to what we believe the truth actually is. 
 

7. SEMANTICS IN EXTENSIVE FORM 
Thus far, we have allowed each block to be any game, with no 
connection stipulated between them. However, in order for the 
belief structures to make sense, there has to be some connection 
between the strategies and information in different games. In this 
section, we make this precise for extensive form games by de-
scribing how the beliefs of agents induce a mapping of informa-
tion sets, and we give an interpretation to that mapping. First, let 
us define F : N × I → Δ(I ), where N is the set of agents, I   is 
the set of information sets (across all trees m(b)), and Δ(⋅) denotes 
the infinite set of probability distributions over the elements of a 
set. We shall constrain F such that F(i, I ), where i is an agent and 
I is an information set of agent j ≠ i in, say, tree b, is a probability 
distribution over “corresponding” information sets I' of  j in trees 
b', such that I' of tree b' is assigned probability mass equal to

. The notion of “corresponding” information sets relies on 
the assumption that, for each information set I in each tree there 
exists another information set in every other tree that is indistin-
guishable from I with respect to the set of histories leading up to 
it, as well as the set of available moves to the agent at I; this is the 
corresponding information set of I.2 In essence F describes the 
mapping among information sets implied by the beliefs β(b). 

This mapping is useful because it allows for (a) interpreting the 
beliefs in a conceptually simple and appealing way, and (b) veri-
fying equilibria easily. In a game where the CPA holds, the vari-
ous trees representing agents’ views of the worlds can be brought 
together to form a single large tree. This can be done by introduc-
ing Nature nodes in the beginning of the tree. Nature would 
choose types according to the common prior. After Nature has 
assigned types to all players, we could append replicas of the 
game tree (as many as there are possible assignment vectors), then 
connect the information sets of all agents across all trees where 
they ought not to be able to distinguish between them (due to not 
being aware of others’ actual types). 

However, when the CPA is dropped, compiling a single tree is in 
general not possible. This is essentially because agents disagree-
ing on priors will disagree on the probabilities of Nature’s moves 
when she assigns their types. Hence, we need a collection of trees. 
However, these trees should not be independent, and this is what 
our function F rectifies. Essentially, when F(i, I ) maps informa-
tion set I to different information sets, agent i expects agent  j, the 
one choosing at I, to behave as a mixture of agents optimally 
choosing at the information sets defined by the distribution F(i, I ). 

Let us revisit our example to make this clearer. Let us denote as 
K.A the information set of agent A in tree K, as K.B1 the leftmost 
information set of agent B in K (the one corresponding to the his-
tory “C suggests buy”) and as K.B2 the rightmost information set 
of B in K. Then: 

F(B, K.A) = < 1 : K.A > 

F(A, K.B1) = < 0.3 : K.B1, 0.7 : L.B1 > 

F(A, K.B2) = < 0.3 : K.B2, 0.7 : L.B2 > 

F(B, L.A) = < 1 : L.A > 

                                                                 
2 In essence this restricts the various game trees to differ only in 

the utility values at their leaf nodes and the probabilities of Na-
ture’s moves. 



F(A, L.B1) = < 1 : L.B1 > 

F(A, L.B2) = < 1 : L.B2 > 

where < {ci : Xi} > represents a probability distribution where 
each Xi has probability mass ci. 

This is to be interpreted as follows. In the game represented by 
tree m(K), which is the game that agent A of type K believes, 
agent B is expected to behave as if  the game was represented by 
the mapping of F. That is, although A believes that m(K) is the 
true game, she also believes with probability 0.3 that B agrees, 
and with probability 0.7 that B thinks the game is actually m(L). 

When trees are linked this way, the typespace of the underlying 
BG is kept simple. This is because, at any point throughout the 
game tree m(b), each player i believes another player j to be acting 
as if the actual world is given by a block drawn using the same 
distribution . Hence, it is straightforward to define b as a type 

for i, and denote its posterior p(Tj | Ti = b) = . Therefore, the 
typespace T ≡ ×i Ti is equivalent to Bn. If, on the other hand, each 
information set of j in m(b) was mapped using a different distribu-
tion, then defining typesets ceases to be as straightforward and the 
resulting typespace might be quite large. 

There is an important semantic distinction here. It is different to 
say “Alice believes that Bob thinks m(K) is true with probability 
0.3 and m(L) is true with probability 0.7,” and to say “Alice be-
lieves with probability 0.3 that Bob thinks m(K) is true and with 
probability 0.7 that Bob thinks m(L) is true.” The former state-
ment represents the case where Alice believes Bob to be himself 
uncertain of the true state of the world, hence his optimal strategy 
will take this uncertainty into consideration. This is not allowed 
by our formalism, in which agents are assumed to know their type 
(and hence their block). The second statement is what our struc-
ture captures. Here the uncertainty is not in Bob’s mind, but in 
Alice’s. Bob either uses m(K) and behaves optimally with respect 
to that, or uses m(L). It is Alice that doesn’t know which block he 
uses and has uncertainty over this information. 

Although the above distinction may seem like a technicality, it 
does profoundly affect the definition of equilibrium. If the former 
interpretation were true, Bob might reason that it is too risky to 
follow C ’s suggestion, as with 30% probability this is dictated by 
Alice. Hence, Alice of type K would have no reason to prefer 
either of her strategies over the other. As we have seen, following 
the second interpretation, we deduce that it is a dominant strategy 
for Alice of type K to ‘dictate buy,’ and for Bob of type L to fol-
low his agency’s suggestion—two vastly opposing results. 

8. RELATED WORK 
Other representations for games have been proposed as a solution 
to representational and conceptual aspects of game-theoretic 
analysis. In this section we review the literature and discuss how 
our formalism differs from existing approaches. 

8.1 Relation to games of awareness 
In [4] the authors extend game trees to represent situations where 
the available actions in each information set are not common 
knowledge to all players. In particular, player i might not know 
the available actions of player j, and he might be aware of this fact 
or not. In their formalism, a game consists of a collection of trees, 
each representing different levels of awareness, plus a function 

that maps each information set I of agent i in a tree T to an infor-
mation set I' of i in another tree T', with the interpretation that i in 
T believes that the game actually being played is the one repre-
sented by T' (and hence the awareness of himself and all other 
players is given by the structure of T' ). 
Our formalism is similar to these games in two ways: First, we 
also define our game to be a collection of blocks, and we map 
information sets in one tree m(b) to information sets in other trees 
m(b'), m(b''), etc. Second, our Bayes-Nash equilibrium coincides 
with the equilibrium defined for games of awareness, for all 
games that can be represented in both formalisms. However, there 
are a number of fundamental differences between games of 
awareness and our work. First, games of awareness deal with 
ordinary extensive form games rather than Bayesian games. Sec-
ond, despite the lack of agreement and common knowledge about 
the structure of the game being played, a game of awareness can 
be converted to a single (possibly large) extensive form game. In 
contrast, as we have seen, a BG with uncommon priors cannot 
easily be represented as a single extensive form game. Third, 
while games of awareness allow for situations in which the agents 
do not have common knowledge about the game being played, in 
such cases [4] appears to view the game as being entirely subjec-
tive, rather than considering a rich belief structure as we do. 
Fourth, in some ways games of awareness are more expressive 
than our formalism. This is because we do not explicitly model 
awareness of available actions, as we assume that between every 
two trees there is a mapping of information sets that are indistin-
guishable with respect to available actions; hence, action sets are 
common knowledge. However, our lack of expressiveness in this 
regard is also a feature. We constrain the mapping function to 
express the beliefs β(b) associated with each tree m(b); therefore, 
if b is the block used by agent i, we do not allow two information 
sets of agent j in m(b) to be mapped to information sets of other 
trees drawn with differing distributions; both need to be drawn 
according to the same distribution . This restriction allows us 
to define the typeset of the underlying Bayesian game in a 
straightforward, concise and natural way, something that we sus-
pect is much harder in games of awareness. This is because, if the 
information sets of player j in b are mapped to information sets of 
other trees with differing distributions, we can no longer use the 
set of blocks B as the typeset Ti. Instead, we need to construct a 
typeset that is rich enough (and hence, large enough) to take into 
account all the compound probabilistic mappings implied by the 
underlying game of awareness. 

8.2 Relation to NIDs 
Networks of Influence Diagrams (NIDs, [3]) are a formalism 
much in the same spirit as our own. Like us, the authors use a 
collection of blocks to represent a game. Each block is a Multi-
Agent Influence Diagram [6], with the addition of the so-called 
“mod nodes.” For each decision node (rectangle) d in the MAID 
and each agent i, there is a mod node M[d,i] indicating which 
block (or distribution of blocks) i believes the owner of d to be 
using when making her decision. NIDs come with an algorithm 
that transforms the NID into a MAID, which is then solved for an 
equilibrium. A powerful notion in solving NIDs is the distinction 
between the “optimal strategy,” which is the best strategy for all 
players in a block, given the beliefs represented by the mod nodes, 
and the “actually-played strategy,” the strategy the player will 
actually draw her actions from. These two might be different, 



because the player under discussion may be “irrationally” consid-
ering another block for her own decision-making purposes. 
NIDs are different from our formalism in several ways: First, 
NIDs are reducible to MAIDs, which are further reducible to ex-
tensive form trees; hence, as we explained in the previous section, 
they cannot represent Bayesian games with non-common priors. 
Second, because each decision in a block has its own mod node, 
like games of awareness, deriving the corresponding typeset for 
the underlying Bayesian game is extremely unintuitive and it 
might be unnaturally large. Third, our formalism does not allow 
players to be unaware of (or uncertain about) their own type 
(block), while NIDs allow for these kinds of irrationalities. Fi-
nally, NIDs have a notion of “truth,” namely, one of the blocks 
(called the top-level block) is how the real world is believed to be 
by an outside modeler agent. Our formalism has no explicit notion 
of a “true world”, but a modeler agent can be added if desired. 

8.3 Relation to other subjective games 
Purely subjective Nash equilibria have been considered elsewhere. 
However, the subjectivity of equilibrium has received various 
interpretations. For example, in [5], equilibria are subjective be-
cause they arise through a dynamic process of learning and adap-
tation, and not through a full consideration of the game parame-
ters. Also, in [2], an equilibrium is “self-confirming” in the sub-
jective sense when the agents’ actions in equilibrium (in a re-
peated setting) are consistent with (i.e., do not contradict) their 
subjective beliefs and observations. In our model the notion of 
subjectivity stems solely from the difference in the agents’ prior 
distributions and is not related to any learning process. Further-
more, our framework provides a bridge from purely subjective, 
completely independent equilibria, through subjective but interde-
pendent equilibria, to objective equilibria. 

9. CONCLUSION 
In this paper we have argued in favor of abandoning the common 
prior assumption in constructing Bayesian games when the situa-
tion being modeled makes it appropriate. We aimed to expose the 
representational complexities arising from abandoning the com-
mon prior, as well as the nuanced differences in how the equilibria 
of Bayesian games are to be interpreted in every case. We have 
also presented a formalism that makes representing games without 
a common prior more natural and conceptually appealing. The 
formalism is simple to use and helps expose features of the game 
that are otherwise difficult to consider, such the dependencies 
between agents’ beliefs. 
One issue has been, however, downplayed in our exposition. In 
particular, we have not addressed the issue of learning. Do agents 
update their beliefs over others' types as the game unfolds and 
how do they do it? This is a difficult issue that comes with addi-
tional challenges in our domain. For example, if i believes that 
agent j is using either block b or b', and he knows that j’s optimal 
action is X if she is using b, or Y if she is using b', what should i 
believe after j has chosen X ? It is not obvious that he should be 
certain that j is of type b, as this might create an easy way for j to 
manipulate i’s beliefs in her favor and mask her true type. Moreo-
ver, if j actually plays Z, which is her optimal action in a block b'' 
deemed to have zero probability by i, what should i now believe? 

Furthermore, if j’s optimal action in b is not unique, but there are 
two equilibria with optimal actions X and Y, respectively, what is 
the “rational” likelihood of j choosing X, given she is in fact using 
b? This last question cannot be answered without an equilibrium 
selection theory, but has profound implications for learning (spe-
cifically, Bayesian updating) in this model. Again, these learning 
difficulties are not so surprising considering the theoretical results 
in [1]. 
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