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ABSTRACT

Game theory has been a useful in analyzing the structure
and behavior of multi-agent systems. However, real world
systems exhibit complexity and uncertainty which often im-
pede the direct application of game-theoretic analyses. This
often happens because agents lack common knowledge about
the structure of the game or other agents’ beliefs. Bayesian
games have been traditionally employed to describe and an-
alyze such situations. However, solving Bayesian games is
computationally costly, and becomes even more so if the
common prior assumption (CPA) has to be abandoned, which
is sometimes necessary for a faithful representation of real-
world systems. We propose using the theory of reasoning
patterns in Bayesian games to circumvent some of these dif-
ficulties. The theory has been used successfully in common
knowledge (non-Bayesian) games, both to reduce the com-
putational cost of finding an equilibrium and to aid human
decision-makers in complex decisions. In this paper, we first
show that reasoning patterns exist for every decision of ev-
ery Bayesian game, in which the acting agent has a reason
to deliberate. This implies that reasoning patterns are a
complete characterization of the types of reasons an agent
might have for making a decision. Second, we show practical
applications of reasoning patterns in Bayesian games, which
allow us to answer questions that would otherwise not be
easy in traditional analyses, or would be extremely costly.
We thus show that the reasoning patterns can be a useful
framework in analyzing complex social interactions.
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The real world is a complex place, plagued with uncer-
tainty. Designing agents to reason, make decisions and in-
teract with others in such an environment is therefore a chal-
lenging problem. On the one hand, the number of states
(or contingencies) that the agent needs to consider is pro-
hibitively large. On the other hand, it often needs to interact
with agents who have radically different beliefs about the sit-
uation unfolding. Some of them might have private informa-
tion. Others might be employing fictitious or inaccurate be-
liefs about their opponents’ and collaborators’ utility func-
tions or strategies. Finally, some agents might be boundedly
rational or human, and therefore use heuristics, engage in
limited reasoning or make simplifying assumptions to reach
decisions faster. All the above problems are exacerbated
when the agents need to make decisions quickly, and there-
fore cannot afford long-running computations. Also, agents
need to be adaptive and perform well even if the situation
changes, hence they cannot be employed with pre-computed
optimal solutions fitting the particular narrow problem they
face.

As an example, consider the game of poker. An agent
designed to play poker with humans and computers must
quantify and reason about its uncertainty over their utility
functions (thus, for example, capturing their risk character-
istics). It must be aware of the heuristic strategies (e.g.,
bluffing 15% of the time) that they might be using. It must
understand that other players might be actively trying to
elicit information about its own hand, by observing its bet-
ting behavior. And it must learn to classify its opponents, in
order to understand who is novice and who might be more
experienced. Finally, it needs to put itself in their shoes,
and try to emulate their thought process and reasoning, e.g.,
predict the naive betting behavior of novices.

It becomes evident that our agents are required to rea-
son in a quick, adaptive, yet accurate manner in the face
of complexity and uncertainty. However, traditional game-
theoretic approaches of dealing with the problem are often
unsatisfactory. Situations in which players might disagree
about the game being played are usually represented and
analyzed as Bayesian games. In a Bayesian game, the pri-
vate information of each player, as well as her beliefs about
others’ private information, are captured by her “type.” Of-
ten, the common prior assumption (CPA) is also invoked,
which requires the joint type (the vector of types of all the
agents) to be drawn according to a probability distribution
that is common knowledge. The CPA usually serves to sim-
plify the game’s representation and can be justified in some



situations. However, the CPA is not always an appropriate
modeling choice, especially in diverse populations of agents
with different backgrounds in which agreement on a prior
through repeated exposure is not warranted (see [11]) In a
Bayesian game, agents are usually expected to adopt strate-
gies comprising a Bayes-Nash equilibrium of the game.

This approach overlooks several issues. First, equilibrium
solutions are hard to compute; there is no polynomial time
algorithm for a Nash equilibrium in general games, and it
is unlikely that one will be designed [8]. Second, a game
usually has a multitude (or even an infinity) of equilibria,
and there is no principled way to select one of them. Third,
in Bayesian games without a common prior there are tech-
nical difficulties (e.g., infinite belief hierarchies) that make
optimal solutions very expensive to compute. Also, equilib-
rium strategies might not be followed by human players, as
experiments have demonstrated [7]. And finally, equilibria
are mathematical solutions of an optimization problem, and
hence leave the actual decision-maker “out of the loop.” It
is therefore hard to explain to a human why a particular
strategy is good, or what exactly it accomplishes, beyond
the dry fact that it “maximizes utility.” In situations where
the human feels responsible, needs to justify her decisions
to others, or would like to have an intuitive understanding
of her choices, prescribing equilibrium behavior might not
suffice.

Reasoning patterns have been proposed as a framework
that addresses these issues. In [12] the authors present four
reasoning patterns, which are sets of features that capture
the possible effects of an action on the acting agent’s utility.
The reasoning patterns can thus be used by the agent to
conceptualize those effects, and thus be guided towards a
“good” choice or strategy. In a sense, they capture what
the agent needs to consider or remember when formulating
her strategy. Experimentally, when humans are shown the
reasoning patterns in a complex game, they make better
decisions [3]. Moreover, if a decision of an agent does not
have a reasoning pattern associated with it, we can safely
ignore it for the purpose of computing a Nash equilibrium of
the game [2], and thus reduce solving times. Theoretically,
it has been shown that only four types of reasoning patterns
exist and that these are “complete,” in the sense that they
can fully describe the relationship between action (decision)
and effect (utility). We believe that reasoning patterns are
thus useful in building good heuristics for decision-making
in games.

However, the theory of reasoning patterns developed so
far does not apply to Bayesian games. In this paper, we ex-
tend the theory to Bayesian games, distinguishing between
games in which the CPA holds and those in which it does
not. For the former, we show that the original definitions
of the reasoning patterns are sufficient. For the latter, a
new theory is required. This is because, for games in which
there is no common prior, the different views of the agents
cannot be combined in a single, unified model of the world,
but instead reside in discrepant, inconsistent models. Hence,
the effects of an action need to be traced across the agents’
inconsistent models. Interestingly, we show that the reason-
ing patterns that might exist in such disconnected worlds
are similar to the original four. Moreover, we prove that
they are “complete,” in the sense that any relation between
an action and the agent’s utility can be captured by some
reasoning pattern. Finally, we show that these extended

reasoning patterns can be used to capture interesting social
interactions, and help answer questions that might otherwise
be less obvious or very costly.

The structure of this paper is as follows. First, we review
the reasoning patterns and past results. Next, we present
Bayesian games, with and without a common prior. Follow-
ing that, we present a structure to represent Bayesian games
(of both types) that offers certain advantages in capturing
the relationships among agents’ beliefs. We then show how
reasoning patterns can be identified in this structure, and
present interesting classes of games for the analysis of so-
cial interactions. The paper concludes with a summary and
extensions for future work.

Related Work

Our work aims at extending the ability for analyzing strate-
gic situations beyond traditional game-theoretic analyses al-
low. Many avenues have been explored in that spirit. In [6]
authors explore “cognitive hierarchies,” a theory that sug-
gests people engage in limited reasoning when analyzing a
strategic situation. This can be used to circumvent compu-
tational issues with equilibrium calculation, although it usu-
ally assumes a distribution of the various hierarchy depths
(steps of reasoning) people are expected to engage in. Team
reasoning (see [13], [14]) seeks to replace individuals as the
simplest reasoning unit with groups. The reasoning pat-
terns, similarly, relate agents whose decisions influence one
another. Finally, the field of epistemic game theory seeks to
understand the relationship between rationality, players’ be-
lief in rationality, limited reasoning or knowledge, and game-
theoretic reasoning and outcomes. The reasoning patterns
aim at modeling reasoning at a coarser level than game-
theoretic analyses, relaxing the assumptions made by tradi-
tional game-theory, yet circumventing the complexity or the
paradoxes (e.g., see [5]) that rigorous epistemic game theory
has revealed.

2. THE REASONING PATTERNS

When agents need to make a decision in a game, they
need to be aware of the effects of their decisions. A good
strategy is, essentially, a set of decisions (possibly stochastic)
whose effects yield high total utility to the agent. These
effects of decisions can be broken down into two categories:
(a) effects on the deciding agent’s utility function, and (b)
effects on the other agents’ knowledge, beliefs and actions.
The former are direct ways of influencing one’s payoff in the
game, whereas the latter constitute indirect ways to achieve
preferred outcomes.

Reasoning patterns capture the above two types of effects
in a systematic way. The original paper [12] defines four
reasoning patterns, and proves that these are “complete,” in
the sense that, if a decision of an agent cannot be associated
with one of these four reasoning patterns, then the agent’s
choice of action bears no effect on her utility.

The four reasoning patterns are presented below. To give
the reader an intuitive sense of these patterns, we present
them within the context of the poker game.

1. Direct effect: This pattern captures the effect of a
decision on that agent’s utility without the interven-
tion of any other agents. For instance, ‘folding’ during
any round directly influences the payoff of a player in
poker.



2. Manipulation: When agent ¢ takes an action that will
be (directly or noisily) observable by another agent
j, then the latter might use this observation in his
decision-making. We thus say that agent ¢ has the abil-
ity to influence (manipulate) agent j’s action through
his own. For example, if j is using a heuristic strategy
of the form “continue betting when others are betting,
if you have three-of-a-kind or better,” then agent i can
influence j’s decision by choosing to bet.

3. Signaling: Private information is often crucial in games.
When parts of a decision-maker’s knowledge is private
to him (e.g., his utility function, personality type, or
resources), then he might want to convey or conceal
such information. Taking an action that will be visi-
ble to another agent j usually conveys something about
the private information of agent i. Hence betting usu-
ally signals a good set of cards, or that one is bluffing.

4. Revealing-denying: As we mentioned before, informa-
tion is crucial. Sometimes, an agent ¢ will have the
ability to control how much information will be acces-
sible to another agent j by adopting a strategy. In
poker, a player might engage in one more round of
betting to explore whether his opponent is prepared
to do so as well, thus causing his opponent to reveal
something about his cards.

Technically, reasoning patterns (RPs) correspond to graph-
ical properties of the Multi-Agent Influence Diagram (MAID)
[10] representation of the game. In particular, each reason-
ing pattern is identified by a set of paths between nodes of
certain types, satisfying certain d-separation properties. (A
detailed technical definition of these paths can be found in
the original paper.)

Notationally, we follow the standard graphical representa-
tion of MAIDs, whereby oval nodes represent probabilistic
variables, rectangle nodes represent decisions belonging to
one agent each, and diamond-shaped nodes represent utility
functions (for example, see Figure 1). Arrows incoming to
oval- or diamond-shaped nodes denote probabilistic depen-
dencies (e.g., a utility node U is defined as a function of its
parents in the graph). Arrows incoming to decision (rect-
angular) nodes represent “information.” If decision node d
belongs to agent 7, then ¢ is assumed to know the values of
all variables that are parents of d in the graph. Finally, we
make the common assumption of “perfect recall,” whereby
if decision node d’ is a descendant of decision node d in the
graph, and both of them belong to agent 4, then i in d’ is
assumed to know the values of parents of both d and d’, as
well as the value for d that he chose in the past.

Due to the fact that reasoning patterns are “complete,”
decisions without a RP can safely be ignored for the pur-
poses of computing a Nash equilibrium [2]. One can solve
a reduced game (without these decisions), and then assign
a fully-mixed uniform strategy to them, yielding an equilib-
rium for the original game. For games with certain inde-
pendence relations, this can result in exponential savings in
computation time.

Moreover, RPs have been used to aid human decision-
makers. In [3], players in a repeated, multiple-round Bayesian
game with private information who received a short descrip-
tion of the game’s reasoning patterns were able to better un-
derstand the effects of their actions and thus perform better

(score-wise), compared to players that did not have access
to such “advice.”

3. BAYESIAN GAMES

Bayesian games are used to analyze situations in which the
game being played is not common knowledge. Instead, some
players may hold a different payoff table or pure strategy set
to be true. In a Bayesian game a player’s beliefs include her
knowledge of the game description (payoffs, strategies), as
well as a probability distribution over the beliefs other agents
might have. The set of beliefs held by player i is known as
her type (t;), and this is assumed to be drawn from a typeset
T; for that player, which can either be finite (discrete types)
or infinite (a continuum of types).

What is often assumed in the analysis of Bayesian games
is that the joint type (the vector comprising of every agent’s
type) is drawn according to a distribution that is common
knowledge among the agents. This is known as the common
prior assumption (CPA). The common prior assumption has
several conceptual and computational advantages, yet can-
not be indiscriminately applied to all games. One useful
feature of the CPA is that the differences among players’
beliefs can be explained away as differences in information.
In particular, players are assumed to originally agree (on the
common prior), but after each one receives some information
in private (her type) their beliefs are now divergent (i.e., as
posteriors derived by conditioning the common prior on the
player’s given type). Another useful feature of the CPA is
that it makes inferences “consistent.” Hence, if a piece of in-
formation is publicly announced, each agent will condition
the same common prior in the same fashion. In other words,
what agent ¢ will think agent j of type ¢; will believe after
having observed e is exactly what j of that type will in fact
believe.

However, invoking the CPA is inappropriate in many situ-
ations in which this original common belief is hard to justify.
If agents have not been given this prior, but need to learn
it by interacting in the environment, they may have had
inadequate or limited exposure to it by the time our game-
theoretic analysis begins. In that case, it is safer to assume
that agents have differing priors. After all, the CPA is not
a direct consequence of rationality (for a discussion of these
issues see [11]). On the other hand, it has to be noted that
the absence of a common prior significantly complicates the
representation of games, because nested beliefs develop (of-
ten of an infinite hierarchy). Various formalisms, including
I-POMDPs [9], have been developed to address the repre-
sentational and computational difficulties arising out of a
relaxation of the CPA.

4. REPRESENTING BAYESIAN GAMES

Recently a formalism has been developed for representing
Bayesian games [4]. This representation is useful for our
purposes, as it represents the views of players about the
game being played as collections of MAIDs. This is helpful,
since MAIDs capture the “story” behind a game and the
probabilistic influence of a variable on others. We briefly
review this formalism in this section.

The game is represented as a set B of blocks. A block
b € B consists of a model m(b) and beliefs 5(b). The model
m(b) is a fully-specified game in extensive form, or in MAID
form. The beliefs 3(b) consist of n(n — 1) probability distri-



butions, where n is the number of players in the game. The
distribution pfj over B refers to the belief of agent ¢ in block
b over the block agent j might be in. Hence 3(b) contains
a distribution for each player i, for each other player j # i.
We then define T;, the typeset for player i, to be the set of
blocks B, for every agent i. The interpretation is that each
player i is assigned to a block in private, which represents
her type; she knows her block (type), but other players do
not. When player i is in block b, she holds the description
of the game to be m(b), and believes other players j to be
assigned to blocks according to the n — 1 distributions pl{j.
Strategy sets, as well as Bayes-Nash equilibria, are defined
in the same fashion as in every Bayesian game.

This formalism allows us to represent the dependencies
among agents’ beliefs graphically. The blocks in B are the
nodes of this graph. Moreover, there is an edge from block
b1 to by, labeled Oi.j,’ if and only if py} (b2) > 0, that is, if
¢ in block b1 believes that 7 might be using block b2 with
positive probability. We call this graph the belief graph. In
[4] the authors show how the belief graph can be used to
discover independencies and loosely-connected components
among agents’ beliefs.

As an example, suppose Bob lives in a place where the
probability of rain every day is 20%. Bob prefers to carry an
umbrella if rain is expected, but hates to carry it around on
a sunny day. To make a decision, Bob consults the forecast
on the morning paper, which is delivered to his place and is
always very accurate in its predictions. However, Alice, his
prank-loving daughter, who always wakes up before Bob, can
replace the weather forecast section of the newspaper with
a fake one of her liking, without Bob realizing the forgery.
Alice gets tremendous pleasure from thinking of Bob getting
wet in the rain. Suppose also that this is a one-shot game;
after all, Alice cannot pull the same prank successfully every
day.

To model this game, we shall have blocks b1 and b2 (see
Figure 1). In the former, the weather ‘forecast’ is indepen-
dent of the ‘day’s weather,” and depends solely on Alice’s
action. In the latter, the ‘forecast’ accurately depicts the
‘day’s weather,” and Alice’s choice of action has no effect
whatsoever. These two blocks represent two versions of the
game. In both, Bob’s utility depends on his action (whether
he takes an umbrella), and the true weather. Also, in both
blocks Alice’s utility depends on Bob getting wet. More-
over, neither player can affect the true weather. Essentially,
if a player is assigned to block b1, he/she is aware of Al-
ice’s power to forge the newspaper section, whereas block b
captures a player who is oblivious to such trickery.

Blocks, however, also need to define the players’ beliefs.
We shall call the beliefs of i in block b “trivial” if, for all
j € N —{i}, it holds that p?j (b) = 1. In our block bo, then,
it makes sense to assume that Bob’s beliefs are trivial—
Bob is oblivious to the possibility of Alice’s switching of
the forecast. In block b1, similarly, Bob’s beliefs ought to
be trivial. As far as Alice is concerned, we can have her
beliefs in by be trivial. However, Alice may be uncertain
over whether her father is truly oblivious of her plans, in
which case it might be that p’%(b2) = 0.7. The belief graph
for this game is shown in Figure 2.

What is interesting about this game is the relationship be-
tween Alice’s and Bob’s decisions, that emerges out of both
blocks together, but is contained in neither separately. In
block b1, Bob knows that the forecast is not related to the
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Figure 1: The MAIDs of our example game
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Figure 2: The belief graph of our example game

weather, so he will rationally ignore it; hence, Alice cannot
affect Bob’s action. In b2, likewise, Bob will condition his
action on the forecast, but Alice does not affect it, hence—
again—there is no connection between the two players’ ac-
tions. However, looking at both blocks together, we can see
that Alice in by thinks it is possible that Bob will condition
on the forecast (if he uses b2, which happens with probability
0.7), therefore Alice will want to affect it. Hence, for some-
one looking at the game “from the outside,” Alice’s action
will have an effect on Bob’s. How can we systematize these
dependencies? The theory of reasoning patterns gives us a
principled way to do this, as discussed in the next section.

5.  REASONING PATTERNS ACROSS BLOCKS

As we have seen, in a Multi-Agent Influence Diagram
(MAID), the directed edges represent probabilistic depen-
dencies between variables (actions, events, utilities). We
say that agent ¢ “believes” in edge (x,y) if this edge exists
in the block she has been assigned to. Clearly, if all the
paths constituting a reasoning pattern exist wholly within
the block of agent i, then that reasoning pattern is believed
by i. However, a reasoning pattern may span several blocks.

First, we shall define a motivated decision. A decision d
of agent i in block b is motivated if, when 7 has been assigned
to block b, there is a strategy profile for all other agents
o_; such that there are two actions a1 and ao available in
d that yield a different expected utility: E[ub(ai|o—;)] #
E[u?(azlc—;)] . In simpler terms, a decision is motivated
for an agent if her action “matters” under some choice of
strategy by other agents. (On the contrary, if a decision
is not motivated, then any choice by i in that decision is
equally good, so his choice “does not matter.”)

Next, we define well-distinguishing strategies. A strat-
egy o; for player i defines, for each decision d of 7, a mapping
from value assignments to its parents Pa(d) to a probability



revealing-denying

Figure 3: Examples of reasoning patterns across
blocks

distribution over actions a; available in d. A strategy o;
is then well-distinguishing (WD) for i if, intuitively, ¢ does
not condition on a variable v € Pa(d) if that variable has
no effect on her utility (hence, “well-distinguishing”)—for a
formal definition see [12]. Hence, if configurations c¢; and
c2 of Pa(d) differ only in the value of variable v, a strategy
would be well-distinguishing if it prevented ¢ from choosing
a different probability for any action a; under ¢; and c2,
unless her expected utility was different, i.e., v “mattered.”

We then define the four reasoning patterns, examples of
which are given in Figure 3. In the definitions below we make
the following assumption: For every node c¢ in block b we
assume there is a corresponding node c in every other block
b, i.e., MAIDs in all blocks have the same set of nodes. Only
edges are allowed to differ between blocks. In the following,
we denote as U, the set of i’s utility nodes.

1. A decision d; of agent 4 in block b has direct effect if
there is a directed path wholly within m(b) from d; to
one of the utility nodes of ¢ that does not go through
any other decision node (decision-free path). Direct
effect captures the influence an agent’s action has on
her utility, without the intervention of other agents.

2. A decision d; of agent i in block b has manipulation
if there exists:

(a) a directed, decision-free path in b from d; to a
decision d’ of agent j # 1,

(b) a directed path from d’ to a node in U; in b that
contains only motivated decision nodes (effective
path), and

(¢) a directed effective path from d; to a node in Uj
(the utility nodes of j) that does not go through d’
in some block b’ for which p?;(b') > 0, i.e., which
is considered possible for j by ¢ in b.

Manipulation captures how an agent can influence her
utility through exercising influence on another person’s
utility. Agent ¢ takes an action that influences j’s util-
ity (path c). This changes j’s optimization problem,
because j stochastically knows i’s action (path a). His
(5's) optimal action under this setting can thus be in-
fluenced to increase ¢’s utility (path b).

3. A decision d; of agent ¢ in block b has signaling if
there exists:

(a) a directed, decision-free path in b from d; to a
decision d’ of agent j # i,

(b) a directed effective’ path from d’ to a node in U;
in b,

(c) an undirected effective path from a node C to a
utility in U; that is not blocked by the set W¢ =
{d'}U(Pa(d") —Desc(d)), where Desc(d) are the
descendants of node d, in some block b’ for which
p?j (b/) > 07

(d) a directed effective path from C' to d; in both b
and b’, and

(e) an undirected effective path from C' to a node in
U, in b, that is not blocked by W .

Signaling captures the situation in which agent ¢ can
influence her utility through the action of another agent
7, by conveying something about a variable in the
world (C) that she can infer (path d) and which j
cares about (path c).

4. A decision d; of agent ¢ in block b has revealing-
denying if there exists:

(a) a directed, decision-free path in b from d; to a
decision d’ of agent j # i,

(b) a directed effective path from d’ to a node in U;
in b,

(c) a directed effective path from a node F to d’ in
in some block b’ for which p?; (b') > 0,

(d) a directed effective path from d; to E in b,

(e) a directed effective path from a node C to E in b
and b, and

(f) a directed effective path from C' to a node in Uj
in b’ that is not blocked by W.

Revealing-denying captures the situation in which an
agent (i) influences her utility thought the action of
another agent () by controlling the uncertainty j has

!As explained above, a path is called “effective” if all the
decision nodes on it are motivated.



over some variable (C) that he cares about. By in-
creasing or decreasing the clarity by which j can infer
C through E (paths d, e), agent j’s optimal decision
can be changed to benefit ¢’s utility (path b).

We say that a decision node that has a reasoning pattern
is “effective.” We then prove the following theorem.

Theorem: If a decision node d of agent i in block b is moti-
vated, and all agents use WD strategies, then it is effective.

PRroor: First, we look at our restriction to WD strategies,
which implies the following for our graph structure. First,
if a parent node v of a decision d has no effect on i’s utility
(for any assignment to the MAID paremeters), then is it d-
separated from U; given the set Wi = {d} U (Pa(d) — {v}).
Then, if ¢ uses only WD strategies, she does not condition
on such a variable v, therefore we can sever the edge (v, d)
and retain an equivalent MAID graph.

Suppose then for the sake of contradiction that d is moti-
vated but not effective. Since d is not effective, there is no
directed, decision-free path from d to U; in b (by definition
of direct effect). Therefore, the only way d might affect U;
in b (in order to be motivated) is through some other agent
j # i. Suppose d’ is the decision node of agent j that facili-
tates this indirect effect. By our assumption, d must be able
to affect d’, therefore there must be a directed path from d
to d’ in block b; moreover, d’ must be able to affect a node
in U;, hence there must be a directed path from d’ to U; in
block b.

But since j uses WD strategies, the path from d to d’
can only exist if u, the parent of d’ along that path, is not
severed from d’, that is, if u is not d-separated by U; given
Wy . The only way this can be is if u is d-connected to Uj
given this set, i.e., there is an undirected path from u to U;
that is not blocked by W . This path should exist in the
MAID of a block which is deemed likely for j to use, i.e., in
a block satisfying p};(b') > 0.

Such a path might go through d or not. If it goes through
d, there can be two cases: it either contains a sequence of
nodes < z,d,y > where y is a child of d, or y is a parent
of d (by definition z must be a child of d). If y is a child
of d, then the definition of manipulation holds, as there is
now a subpath from d to U, that does not go through d’ by
its blocking restrictions. If y is a parent of d, then signal-
ing holds. This is because there is now a path from C, an
ancestor of d (and y), to a node in U;. Moreover, since the
edge from C to d is retained and not severed, there must
be a path from C to some utility U;, which completes the
definition for signaling. The only remaining case is if the
path does not go through d at all. Then, there must be an
edge E along that path that is a descendant of d, and a
sequence of nodes along the path < z, E,y >, where y is a
parent of E' but not on the path from d to E. In that case,
there must be a path from y to U; that satisfies the blocking
properties. But this is the definition for revealing-denying.
As a final note, if any decision nodes exist along any of these
undirected paths, the edges incoming to them must not be
severed, therefore similar restrictions exist, i.e., the nodes
must be effective. This is the reason why the definitions of
the reasoning patterns use “effective paths.” In conclusion,
it cannot hold that a node is motivated but not effective,
Q.E.D. O

The theorem is significant because it renders the four rea-

soning patterns “complete.” If a decision of an agent has no
reasoning pattern, the theorem states that the decision will
not be motivated, and thus the agent will have no reason to
prefer one decision over another. Therefore, by examining
the reasoning patterns we can capture all the reasons why
an agent might choose an action.

Notice that if the CPA holds in a Bayesian game, we do
not need to represent the game using multiple blocks. In this
case, the joint type T can be a variable in a MAID, and in-
dividual types T; can be deterministic children of T. Then,
we can draw an edge (73, d) for all decisions d of agent i, and
our representation is complete. Since Bayesian games with a
common prior are then representable in a single MAID, the
original definition for the reasoning patterns can be used un-
changed. However, as soon as the CPA is abandoned, it is no
longer possible to use a single graph to represent the entire
Bayesian game, and the new definitions need to be used in-
stead. Of course, one can always represent a common-prior
game in the block formalism, by making all agents’ beliefs
in every block the same (i.e., p?j = pl{; for all b, ¥’ and all
i, 7). In that case, the new definitions yield the same set of
reasoning patterns.

6. USING REASONING PATTERNS TO AN-
ALYZE SOCIAL INTERACTIONS

We illustrate the usefulness of reasoning patterns in the
analysis of Bayesian games by means of an example. Imag-
ine there is an intelligence agency consisting of N agents.
These agents collect information in the world, then sum-
marize and interpret it, passing it on to their superiors, who
then aggregate all the information and make decisions. Such
a domain can be represented by a MAID. Rectangles are the
actions taken by the agents, and oval nodes are information
collected in the world or passed between agents. If all agents
are cooperative, then all can be assumed to share a utility
function U, which is represented as a single diamond node
in the graph.

However, some of the agents might be “confederates.” Such
agents are trying to subvert the operation of the agency, and
therefore can be assumed to have a different utility function
U’, which gives them a high value when the agency fails (i.e.,
when U is low). The agency is aware of the possibility of
confederates among its members.

To take a simple case, suppose N = 4, named 1, 2, 3 and 4
respectively. Each agent ¢ might be a confederate (c(i) = 1)
or not (c(i) = 0). If agent ¢ is a confederate, we also assume
he knows all other agents that are confederates. Finally, we
make the assumption that there are either zero or exactly
two confederates in the agency.

In a Bayesian game, each agent would have a type t;,
drawn from a set T;. Each type would have to indicate (a)
whether the agent is a confederate, and (b) if the agent is
indeed a confederate, the identity of the other confederate.
Hence T; = {(c¢,j) : ¢ € {0,1},7 € N U {0} — {i}}, with
the restriction that, if ¢ = 0 then j = @, and if ¢ = 1 then
j # 0. The joint type vector T = x;T; might be drawn
from a common distribution p(T), or not. The latter case,
in which the common prior assumption does not hold, might
be necessary to describe cases in which some agents trust
the various members of the agency more than others, e.g.,
if the prior of 1 for the possibility of 3 being a confederate
is different than the prior held by 2 for the same event.



Figure 4: Agency example

Imagine now that the graph looks as in Figure 4. Agents
1 and 2 get information from the world (C, D and E) and
compile reports (F and G). Agent 3 then makes a decision
which is being communicated to agent 4, who makes a final
decision. The utility node U is influenced by the decisions
of agents 3 and 4, but is being shared by all agents. Agents
in this game have reasoning patterns: Agent 4 has direct
effect. Agent 3 has both direct effect (edge (ds,U)) and
manipulation (through 4). Agents 1 and 2 have signaling
(as they signal the values of C, D and E) to agent 3.

Suppose now we were interested in answering the follow-
ing question, set forth by agent 4, who is not a confederate:
“Which pairs of agents should be more feared to be confed-
erates?” and “Which pairs of agents are more likely to be
the confederates, given that misreported information have
been observed in node G7” In a traditional analysis, we
would have to know, given t4 = (0, ), what the distribution
of (t1,t2,t3) is and, given this distribution, what the Bayes-
Nash equilibria of the game are. Then, we would answer the
first question by trying to compare the expected behavior
of the players under the various Bayes-Nash equilibria with
the observed behavior, as indicated by the misinformation
received by player 4.

The problems with this analysis are that (a) there might
be a multitude (or infinity) of equilibria, making the com-
parison hard, (b) equilibria are not easy to compute to begin
with,? and (c) players might not agree on which equilibrium
is to be played, or they might not be rational equilibrium
players at all. Furthermore, this analysis requires that we
know the probability distributions of all variables C, D, E,
F and G, as well as the exact formula in U.

On the contrary, reasoning patterns allow us to do the
following: First, we can represent this game in blocks B =
{b1 =(0,0),b2 = (1,2),b3 = (1, 3),...}. Each player i is as-
signed to one of the blocks B — {(1,%)}, because there must
be exactly two confederates if he happens to be one himself.
Edges between the blocks are drawn accordingly. Next, we

2In this graph computation would be trivial, but in larger
graphs it would be significantly more challenging.

can run the (polynomial) algorithm for the detection of rea-
soning patterns described in [1] and get a list of them.

We may then claim that the agents that have reason-
ing patterns such as manipulation, signaling and revealing-
denying are more susceptible to being confederates than
other agents. This requires some explaining. In signal-
ing, the value being signaled must not be observable by
other agents (otherwise the blocking conditions for path ¢
in the definition do not hold). Hence, if an agent has a
signaling reasoning pattern, that means he has the ability
to misrepresent information without that being directly de-
tectable. Similarly, through a revealing-denying reasoning
pattern he controls access to information other agents have.
Agents with this pattern can greatly enhance or impede the
decision-making ability of their superiors. Likewise, manip-
ulation reasoning patterns involve fabricating information
that is input to some other agent’s problem.

But the reasoning patterns do not just tell us that there
might be an effect. They tell us “what the effect is,” e.g.,
which variable is being signaled, or which variable will con-
tain fabricated information. For instance, in the manipu-
lation reasoning pattern, the confederate (i) will alter the
value of the nodes on the path from d; to d;, where j is one
of his superiors and no intermediates exist between i and j.
Hence, if we receive evidence that one of these reports are
fabricated, we can immediately cast suspicion upon agent 3.

Also notice that the reasoning patterns analysis does not
require knowledge of the exact utility function, or all the
probabilistic dependencies. But if such knowledge is avail-
able, we may quantify the reasoning patterns, and calculate
the expected utility of misrepresenting a variable by a con-
federate. Still, reasoning patterns would enable us to limit
this search within the variables that the alleged confeder-
ate would have a reason to maliciously influence through his
reasoning patterns.

7. CONCLUSION & FUTURE WORK

This paper addresses the issue of agent design for environ-
ments of high uncertainty and complexity, in which tradi-
tional game-theoretic solutions are inefficient or inadequate.
We need agents to be quick and adaptive, and sometimes
even explain and justify their decisions to humans. An al-
ternative approach to equilibrium computation is offered by
the theory of reasoning patterns, which was developed for
non-Bayesian games in [12]. The reasoning patterns capture
the possible reasons why an agent might take an action, by
projecting the effects of her action on her utility. Our pa-
per extends the definitions of the four reasoning patterns to
Bayesian games, with and without a common prior. Un-
der the common prior assumption (CPA), the fact that the
game is representable in a single graph makes the original
definition applicable. When the CPA is relaxed, however,
new definitions are required. We prove that, just as in the
common prior case, the reasoning patterns created by our
definitions are complete, in that they capture all situations
in which an agent is motivated to make a decision. We also
show how reasoning patterns can be used to analyze inter-
esting strategic interactions, even in situations where agents
disagree about the definition of the game being played or fo-
cus on different aspects of it. For the future, we plan to (a)
experimentally verify that reasoning patterns across blocks
are practically useful for human decision-making, and (b)



develop a more precise, formal definition of particular social
interactions that the reasoning patterns can capture.

8.
1]
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