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Abstract
In complex strategic situations decision-making agents
interact with many other agents and have access to many
pieces of information throughout their play. This usu-
ally leads to game solving being a very complex, almost
intractable procedure. Moreover, algorithms for solving
games usually fail to explain how the various equilibria
come about and how “plausible” they are. Reasoning
patterns try to capture the strategic thinking of agents
and formalize the usage of the various information or
evidence they obtain during their interactions. Identify-
ing reasoning patterns can lead to a significant refine-
ment over the full range of equilibria, as well as con-
siderable computational savings in solving the game.
Here we present a polynomial-time algorithm that sim-
plifies the original game by iteratively identifying non-
effective (ignorable) decision nodes and removing re-
dundant information edges. In some cases, this can lead
to exponential-time savings in computing an equilib-
rium, yet some –potentially efficient– equilibria may be
lost in the process.

Introduction and previous work
Analyzing the behavior of rational agents in strategic situa-
tions is usually performed by constructing a game that de-
scribes their interactions, knowledge and payoffs. More re-
cently, graphical means have been developed for represent-
ing games, in order to better capture the interaction structure,
as well as agents’ beliefs at each time through the game. One
of the most expressive and powerful such graphical schemes
is Multi-Agent Influence Diagrams (MAIDs), first presented
by (?).

Solving a game usually entails enumerating its equilibria.
However, as shown in (?), the complexity of computing a
Nash equilibrium in general, even in the simplest situation
with three agents (or two agents and non-zero-sum payoffs)
is super-polynomial. In light of this discouraging result, the
importance of being able to simplify a game and compute its
equilibria in a smaller-scale version of it becomes extremely
high.

In (?) the authors have presented an exhaustive list of
just four reasoning patterns that may hold for all agent deci-
sions in which their choice “matters.” In particular, when the
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strategy space of the game is restricted in such a way that no
agent differentiates his decision rule based on obtained in-
formation that has no effect on his/her utility, then for every
decision of every agent, if the agent’s choice has an effect on
his/her utility, then at least one of four well-defined reason-
ing patterns will always hold. Moreover, they show that such
a restriction of the strategy space preserves at least one Nash
equilibrium. And whereas identifying the full range of equi-
libria is useful, sometimes being able to compute a single
equilibrium efficiently has been preferred; see for example
(?).

The four reasoning patterns identified include: (i) di-
rect effect, whereby an agent can directly incluence his/her
own utility, without the intervention of another agent’s deci-
sion; (ii) manipulation, where an agent A cannot influence
his/her own utility directly, but through the actions of an-
other agent B, whose utility A can directly affect; (iii) sig-
naling, whereby an agent A has access to information that is
of interest to both him/her and another agent B, and that
other agent can exert influence over A’s utility; and (iv)
revealing-denying, where an agent A can control whether
another agent B gets access to information that is of in-
terest to B, and that agent can influence A’s utility. For a
detailed, formal analysis of the four reasoning patterns and
their derivations, the reader is referred to the original paper
of (?).

Computational savings emerge by reasoning as follows:
Every decision node that does not participate in any rea-
soning pattern (non-effective node) corresponds to a situa-
tion where the agent has no reason to differentiate between
his/her choices; thus, the decision node can be ignored in
a game-solving algorithm and replaced by a chance node
giving equal probability to all available actions; plus, all in-
formation arcs incoming to that node can be removed. Fur-
thermore, as (?) point out, any other information arc should
be removed under a similar reasoning process, unless it sat-
isfies a d-separation criterion. In particular, if an informa-
tional parent of a decision node has no effect to that agent’s
utility, except through the decision itself, then the informa-
tion arc connecting it to the decision node is ignorable and
should be eliminated.

Our work involves a polynomial-time algorithm that iter-
atively performs elimination of non-effective decision nodes
and ignorable information arcs, by identifying reasoning



Figure 1: MAID representing the example game

patterns in the graph and applying the d-separation crite-
rion to the remaining decision nodes’ incoming informa-
tion edges. Pseudocode for the main part of the algorithm
can be seen below. Subroutines df , man, sig, rev and
retract edges, which identify the four reasoning patterns
and remove ignorable edges, respectively, are not presented
in this restricted version of the algorithm’s pseudocode.

Algorithm 1 Pseudocode for the simplification algorithm
Require: MAID G

for d in D do
effective(d)← true

end for
repeat

retracted← false; simplified← false
for d in D do

if not (df(d) or man(d) or sig(d) or rev(d)) then
effective(d)← false; simplified← true
remove parents of d

end if
end for
if G = retract edges(G) then

retracted← true
end if

until retracted = simplified = false
return G

An example
Consider the following game, represented as a MAID in
fig.1: We have agents A, B and C. Agent A draws a card J ,
whose value can either be H , M or L. Only agents A and
C have knowledge of that card, yet A may communicate its
value to agent B, not necessarily truthfully. B gains $30 by
guessing the value of the card correctly. A gains $10, $5 or
$1 if B guesses H , M or L, respectively, no matter what the
real value of the card is. C, on the other hand, gains $30 if
his choice of H , M or L differs from that of B.

This game has an extensive game form representation
with 34 leaves. On the other hand, our algorithm can dis-
cover the following subtleties in the above scenario: Agent
C’s decision is not affected by the card value, so the infor-
mation arc (J, C) can be removed. Then, the decision node

Figure 2: Simplified MAIDs

for A is non-effective, i.e. A has no reason to act differently
upon seeing any of the card values. Knowing that, B will
ignore what A tells her and just randomize equally between
H , M and L. Thus the large game is reduced to two mini-
games of 32 leaves each (fig.2). Adding more players to the
game, one can easily show that computational savings are
exponential in the number of agents, whereas the algorithm
that breaks the game down runs in polynomial time.

Of course this process is not without loss. Removing the
redundant edges following the algorithm of (?) happens
to eliminate certain, possibly efficient, equilibria. For ex-
ample in our little scenario an equilibrium could be as fol-
lows: A always communicates H to B, B always believes
him and C randomizes equally between M and L. This is
clearly a Nash equilibrium: if B always believes him, then
A responds best to that by communicating always H to her.
Knowing that A will always communicate H and B will be-
lieve him and respond with H as well, C will choose either
M or L to win. Finally, since the card is H with proba-
bility 1

3 no matter what A tells her, B’s strategy to always
believe A is equally good as pure randomization. In this
equilibrium, the players’ expected payoffs are $(10, 10, 20),
whereas in our reduced game equlibirium all players will
randomize equally, yielding expected payoffs $( 17

3 , 10, 20).
One can see that the equilibrium that was “lost” is a Pareto-
improvement upon the one that has been retained.
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