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Abstract. The paper presents a computational model for decision-making in a 
social dilemma that takes into account the other party’s emotion displays. The 
model is based on data collected in a series of recent studies where participants 
play the iterated prisoner’s dilemma with agents that, even though following the 
same action strategy, show different emotion displays according to how the 
game unfolds. We collapse data from all these studies and fit, using maximum 
likelihood estimation, probabilistic models that predict likelihood of 
cooperation in the next round given different features. Model 1 predicts based 
on round outcome alone. Model 2 predicts based on outcome and emotion 
displays. Model 3 also predicts based on outcome and emotion but, considers 
contrast effects found in the empirical studies regarding the order with which 
participants play cooperators and non-cooperators. To evaluate the models, we 
replicate the original studies but, substitute the humans for the models. The 
results reveal that Model 3 best replicates human behavior in the original 
studies and Model 1 does the worst. The results, first, emphasize recent research 
about the importance of nonverbal cues in social dilemmas and, second, 
reinforce that people attend to contrast effects in their decision-making. 
Theoretically, the model provides further insight into how people behave in 
social dilemmas. Pragmatically, the model could be used to drive an agent that 
is engaged in a social dilemma with a human (or another agent). 
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1   Introduction 

In multi-agent systems, agents frequently have to decide whether to pursue their own 
self-interest and collect a short-term reward or trust other agents to reach mutual 
cooperation and maximize joint long-term reward [1]. Initial solutions to such 
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dilemmas were based on game-theoretic notions such as dominant strategies or Nash 
equilibria that prescribe the conditions under which it is rational to cooperate [2]. 
However, though appropriate for agent-agent encounters, these techniques are less so 
for human-agent encounters. Effectively, there is now considerable evidence that 
humans are not purely self-interested and do not always behave according to the 
predictions of game theory [3, 4]. Early research in the behavioral sciences has, in 
fact, shown many sources of cooperation in human-human interaction [5]: some 
people are simply inclined to cooperate [6]; group identity [7]; reciprocity [8]; 
monitoring and sanctioning [9]; and, verbal communication [10]. More recently, non-
verbal displays have also been argued to impact emergence of cooperation [11, 12], in 
particular, facial displays of emotion (e.g., [13]). 

In a pioneering set of studies [14-17], we have explored the interpersonal effect of 
emotion displays on emergence of cooperation between agents and humans in social 
dilemmas. In these studies participants play the iterated prisoner’s dilemma with 
agents that, even though following the same strategy to choose their actions, convey 
different facial emotion displays according to the outcome of each round. In line with 
predictions from the behavioral sciences about the impact of non-verbal displays on 
decision-making [11, 12], the results indicate that people’s decision to cooperate is 
influenced by emotion displays. For instance, people cooperate more with an agent 
which displays reflect an appreciation of cooperation (e.g., smile when both players 
cooperate) than one which displays reflect satisfaction with selfishness (e.g., smile 
when agent defects and participant cooperates). In line with the view that people 
respond emotionally to relative changes in their situations rather than the absolute 
consequences of their decisions [4], the results show that the order participants play 
the agents influences cooperation rates. For instance, people will cooperate more with 
an agent which displays reward cooperation after playing with one which displays 
reflect selfish interest, than if they were to play with the former agent first.  

In this paper we develop a computer model of decision-making in a social dilemma 
that takes into account the other party’s emotion displays and replicates findings from 
the literature on how people behave in social dilemmas. Such a model could be used 
to drive embodied agents - i.e., agents that have virtual bodies and can express 
through them like humans do [18] - when engaged in a social dilemma with humans. 
Effectively, it has been shown that people can treat embodied agents like people [19] 
and are capable of being influenced by them [20]. Moreover, since embodied agents 
can be used to learn about human-human interaction [21], such a model would allow 
us to get further insight on how people act in social dilemmas. Methodologically, we 
follow a novel approach: (1) Data from our empirical studies [14-17] is collapsed into 
a single database. Features represent aspects of the game, the outcome of the round 
and whether the participant cooperated in the next round (target); (2) Probabilistic 
models are fitted to the data using maximum likelihood estimation. Each model 
predicts likelihood of cooperation given a subset of the features (e.g., outcome and 
display in the current round). We explore models that predict based on outcome only, 
outcome and emotion, and outcome, emotion and contrast effects; (3) Regarding 
evaluation, even though we look at standard performance measures such as error rate, 
the focus is on the models’ ability to replicate previous findings about how people 
behave in social dilemmas. To accomplish this, we “play” the models with different 
agents that display emotions, under the same configurations as in the empirical 



studies. Our results show that the best model replicates many of the findings about 
how people behave in social dilemmas and, overall, reinforce findings for the 
importance of attending to nonverbal signals and contrast effects in social dilemmas.  

 

2   Background 

This section describes three empirical studies we previously conducted where people 
are engaged in a social dilemma with agents that display emotions through the face. 

Study 1. The first study [15, 16] follows a repeated-measures design where 
participants play 25 rounds of the iterated prisoner’s dilemma with two agents that 
play the same strategy but show different emotion displays. The prisoner’s dilemma 
game was recast as an investment game where participants can choose to invest either 
in Project Green (cooperation) or Project Blue (defection). The payoff matrix is 
shown in Table 1. The agents’ action strategy is based on tit-for-tat [8]. The 
expressively cooperative agent displays reflect an appreciation of mutual cooperation 
(e.g., when both players cooperate it smiles). In line with the definition of selfish 
orientation [6], the expressively individualistic agent’s displays reflect how valuable 
the outcome is to the agent, independently of the value to the participant (e.g., when 
the agent cooperates and the participant defects, it shows sadness). Table 2 
summarizes the displays for both agents. Agent order was counter-balanced across 
participants. Fifty-one participants were recruited for this experiment. 

Table 1.  Payoff matrix for the social dilemma game.  

 Agent
 Project Green Project Blue

Participant 

Project Green Agent:
Participant: 

5 pts
5 pts

Agent: 
Participant:

7 pts 
3 pts 

Project Blue Agent:
Participant: 

3 pts 
7 pts

Agent: 
Participant:

4 pts 
4 pts 

Table 2. Emotion displays for the agents in study 1. 

Expressively 
Cooperative  

Agent
Green Blue

Participant 
Green Joy Shame 
Blue Anger Sadness 

 

Expressively
Individualistic  

Agent 
Green Blue 

Participant
Green Neutral Joy  
Blue Sadness Sadness  

The results show that, as predicted, people’s decision making is influenced by the 
emotion displays and people cooperate significantly more with the cooperative† agent. 
Additionally, the results reveal clear contrast effects: people cooperate more with the 
cooperative agent after playing with the individualistic agent, than the other way 
around. This contrast effect is in line with the well-known black-hat/white-hat (or 
bad-cop/good-cop) effect [22] that argues people cooperate more with a cooperative 
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opponent if they’re first matched with a tough opponent. In summary, the findings in 
this study are (see cooperation rates in Table 8 under ‘Humans’):  

F1.1 (a) Participants cooperate significantly more with the cooperative than the 
individualistic agent; (b) but, this effect is mainly driven by the order where participants play 
with the individualistic agent first, followed by the cooperative agent. 

Study 2. The second study (unpublished) explores two new versions of the 
cooperative and individualistic agents that display the same type and quantity of 
emotions but, the displays are mapped differently to round outcomes. Table 3 
summarizes these new agents. In this study we also compare the emotional agents to a 
no-emotion control agent. Three experiments were run: (1) cooperative vs. 
individualistic, with 39 participants; (2) cooperative vs. control, with 20 participants; 
(3) individualistic vs. control, with 37 participants. Otherwise, the design remained 
the same as study 1. 

Table 3. Emotion displays for the agents in study 2. 

Expressively 
Cooperative  

Agent
Green Blue

Participant 
Green Joy Sadness
Blue Sadness Sadness 

 

Expressively
Individualistic  

Agent 
Green Blue 

Participant
Green Sadness Joy  
Blue Sadness Sadness  

The results show the following (see cooperation rates in Table 8 under ‘Humans’):  

F2.1 Participants tend to cooperate more with the cooperative agent than the 
individualistic agent, in all orders; 

F2.2 (a) Participants tend to cooperate more with the cooperative than the control agent; 
(b) but, this effect is driven by the order where participants play with the control agent first; 

F2.3 Participants do not cooperate differently with the individualistic and control agents. 

Study 3. The third study [17] compares (a variant of) the expressively cooperative 
agent with the expressively competitive agent. In line with the usual definition of 
competitive orientation [6], the competitive agent’s displays reflect a goal of earning 
more points than the participant (e.g., when the agent defects and the participant 
cooperates, it smiles). Table 4 shows the emotion displays for these agents. In this 
study, we also compare the emotional agents to a no-emotion control agent. We ran 3 
experiments: (1) cooperative vs. competitive, with 34 participants; (2) cooperative vs. 
control, with 38 participants; (3) individualistic vs. control, with 30 participants. The 
design remains the same as study 1, except that the payoff for the player that gets 
exploited (i.e., when it cooperates and the other defects) is reduced from 3 to 2 points.  

Table 4. Emotion displays for the agents in study 3. 

Expressively 
Cooperative  

Agent
Green Blue

Participant 
Green Joy Neutral
Blue Anger Neutral

 

Expressively
Competitive  

Agent 
Green Blue 

Participant
Green Neutral Joy  
Blue Anger Neutral 

 
The results show the following (see cooperation rates in Table 8 under ‘Humans’):  



F3.1 (a) When collapsing across orders, participants tend to cooperate more with the 
cooperative agent; however: (b) in the order cooperative → competitive, participants tend to 
cooperate more with the competitive agent; (c) in the order competitive → cooperative, 
participants cooperate significantly more with the cooperative agent; 

F3.2 (a) Participants cooperate significantly more with the cooperative agent than the 
control agent; (b) but, this effect is mainly driven by the order where participants play with 
the control agent first;  

F3.3 Participants do not cooperate differently with the competitive and control agents. 

3   Models 

To develop a model for decision-making in social dilemmas, we follow a data-driven 
approach based on data collected in the aforementioned empirical studies.  

Data and Features. The data consists of examples corresponding to each round each 
participant played in each study. Data corresponding to last rounds is ignored, since 
the goal is to predict whether the participant cooperates in the next round. In total, 
there are 12,432 examples. The feature set is the following:  
(a) Outcome of the Round: whether the players cooperated or defected;  
(b) Emotion Display: the agent’s display following the outcome in that round;  
(c) First Game: whether the example corresponds to a round in the first game; 
(d) Agent is cooperator: ‘true’ if current agent is a cooperator;  
(e) Previous Agent is Cooperator: ‘true’ if (eventual) previous agent is a cooperator; 
(f) Whether Participant Cooperates in the Next Round: this is the target attribute. 

Training, Validation and Test Sets. The data is first partitioned into a training 
(75%) and a test set (25%). The training set is further partitioned into 20 subsets to 
support 20-fold cross-validation. Every subset (including the test set) are created 
while making sure they have the same proportion of positive and negative examples 
in each of the three studies as in the whole dataset. 

Models. Models consist of rules defining the probability of cooperation in the next 
round, given a subset of the features. We explore three different models, described 
below, that use different subsets of the features. Maximum likelihood estimation is 
used to fit the models to the data and estimate parameters. The training procedure 
does 20-fold cross-validation and the final model parameters correspond to the 
average over all training sets.  

Model based on Outcome. The first model predicts likelihood of cooperation based 
only on outcome of the current round. Outcome is chosen as the first attribute as it 
ranks best according to the information gain metric (or Kullback–Leibler divergence). 
Thus, the model predicts probability of cooperation in the next round, given a certain 
outcome in this round. These probabilities are obtained by calculating the frequency 
the participant cooperated after each round, for each possible outcome. Table 5 shows 
the parameters (averaged over all training sets) for this model (under ‘Model 1’).  



Model based on Outcome and Emotion Displays. The next model predicts 
likelihood of cooperation given outcome and the agent’s display. This model’s 
parameters are shown in Table 5 (under ‘Model 2’). 

Model based on Outcome, Emotion Displays and Contrasts. Finally, the third 
model also tries to predict likelihood of cooperation based on outcome and emotion 
displays but, also takes into account the black-hat/white-hat contrast effects reported 
in our studies (see ‘Background’). All the information required to represent these 
effects is in attributes (c), (d) and (e), i.e., attributes regarding whether the first and 
second agents are black-hats (non-cooperators) or white-hat (cooperators). However, 
these attributes are conceptually different than outcome and emotion displays, 
because they are non-observable. Effectively, they represent inferences participants 
make while playing the games. Nevertheless, notice these inferences are made, 
consciously or not, because otherwise there would have been no contrast effects. Still, 
for the time being, we do not attempt to model the mechanism by which participants 
make these inferences and simply assume that attributes (c), (d) and (e) are directly 
observable (but, see the ‘Discussion’ section for a way to address this in the future). 
In summary, the third model calculates, for each combination of the attributes (c), (d) 
and (e), probabilities given the outcome and agent’s displays in the previous round 
(see Table 5 under ‘Model 3’). Notice there is no prediction for the case where both 
the 1st and 2nd agents are white-hats because this was not explored in our studies. 
 
Table 5. Parameters for the probabilistic models. Values represent probability of cooperation. 

Outcome Emotion Model 1 Model 2
Model 3 

BH 
1st Game

WH 
1st Game

BH→WH
2nd Game

WH→BH 
2nd Game 

BH→BH 
2nd Game 

CC 
joy 

.67 
.72 .64 .76 

neutral .62 .53 .71 .51 
sadness .61 .61 .57 .54 

DD 
neutral 

.22 
.24 .22 .27 .30 .21 .26 

sadness .20 .21 .20 .20 .17 .25 

huCagD 

joy 

.29 

.26 .30 .27 .16 
neutral .26 .26 .15 .40 .19 .23 
sadness .34 .35 .33 
shame .36 .27 .40 

huDagC 
anger 

.28 
.27 .27 .28 .27 .37 .23 

neutral .24 .22 .34 .19 
sadness .31 .27 .30 .29 .34 .37 

CC - mutual cooperation; DD - mutual defection; huCagD - human cooperates, agent defects; 
huDagC - human defects, agent cooperates; BH - Black-Hat (or non-cooperator); WH - White-
Hat (or cooperator); 1st Game refers to probabilities in the 1st game (with a BH or WH); 2nd 
Game refers to probabilities in the second game (with a BH or WH) but, when the game was 
preceded by a specific first game (with another BH or WH) 

Model Selection. Model selection is based on minimizing error rate, i.e., the 
percentage of incorrectly classified examples (averaged over all 20 validation sets). 
Table 6 shows the error rates for each model. The results show that error rates are 
significantly different (F(2, 57)=28.207, p<.05) and, LSD post-hoc tests reveal that: 



the error rate for Model 1 is higher than for Model 2 (p=.100); and, the error rate for 
Model 2 is higher than for Model 3 (p=.000). Table 6 also reports several other 
standard measures (precision, recall, F1, etc.) and it is clear that Model 3 outperforms 
Model 2 which, in turn, outperforms Model 1. Table 7 reports the results over the test 
set. Error rate suggests, once again, that Model 3 is better than Model 2 and, in turn, 
Model 2 is better than Model 1. The remaining variables in Table 7 also generally 
support that Model 3 fares best and that Model 1 fares worst. Finally, average log 
likelihood measures the posterior probability of the (whole) dataset given the model, 
averaged over the number of examples (the closer to 0, the better). The results for the 
models are: Model 1, -0.247; Model 2, -0.246; and, Model 3, -0.245. Thus, the results 
suggest that the data was most likely to have been generated from Model 3 than any 
of the other models.  

Table 6. Performance measures over validation sets.  

Model 1 Model 2 Model 3 
Mean SD Mean SD Mean SD F Sig. 

error .382 .016 .373 .017 .345 .017 28.207 .000* 
precision .408 .024 .422 .025 .466 .025 29.842 .000* 
recall .407 .025 .423 .026 .466 .024 29.571 .000* 
F1 .408 .025 .423 .026 .466 .024 29.575 .000* 
true positives 61.332 4.935 63.717 5.298 70.134 4.958 16.147 .000* 
false positives 88.885 4.434 87.196 4.582 80.339 4.785 19.342 .000* 
true negatives 226.566 3.599 228.254 3.760 235.112 3.886 29.136 .000* 
false negatives 89.069 4.618 86.684 4.526 80.267 4.583 19.798 .000* 
* significant difference, p<.05 

Table 7. Performance measures over the test set.  

model error precision recall F1 tp fp tn fn 
Model 1 .382 .411 .421 .416 422.86 606.99 1498.01 581.14 
Model 2 .38 .414 .425 .419 426.72 605.25 1499.75 577.28 
Model 3 .378 .417 .424 .421 425.85 595.55 1509.45 578.15 

tp - true positives; fp - false positives; tn - true negatives; fn - false negatives 

4   Evaluation 

The results in the previous section suggest Model 3 was best and Model 1 worst at 
predicting how humans behave in these dilemma situations. However, in this section 
we explicitly test this by replicating our empirical studies [15-17] but, substituting 
humans for our probabilistic models. Aside from verifying the results from the 
previous section, this experiment allowed us to get insight into the mechanisms that 
explain why some models do better than others. To accomplish this, we ran each 
model 1000 times (500 times per order) for each experiment in our studies, and 
measured which findings (F1.1 to F3.3, see “Background”) the models replicate. The 
cooperation rates and standard deviations for the original human data and the models 
are shown in Table 8. Two columns are shaded in this table, for each model: (1) the 
left column summarizes whether cooperation rates were significantly different (p<.05) 



and represent an effect size above a minimum threshold‡, which we set to 1.5 
(corresponding to, at least, a small effect size). For instance, a ‘>’ means the model 
cooperated significantly more with the agent on the left than the agent on the right and 
the effect size passed the threshold; (2) the right column shows a tick if the model 
successfully replicated the findings in the human data. Therefore, the more ticks a 
model has, the better it is at replicating findings. Overall, the percentage of findings 
each model replicated was: Model 1, 42.9% (9 out of a maximum of 21 ticks); Model 
2, 81.0% (17 out of 21 ticks); and, Model 3, 95.2% (20 out of 21 ticks).  

5   Discussion 

In this paper we propose a data-driven probabilistic model for decision-making in a 
social dilemma when the other party displays emotion. The evaluation reveals that the 
model is better at replicating findings about how humans behave in social dilemmas 
if, instead of considering round outcome alone, it also considers emotion displays. 
This result is in line with predictions in the behavioral sciences about the impact of 
non-verbal displays on decision-making [11, 12]. The results also show that 
considering (black-hat/white-hat) contrast effects further improves the ability to 
predict human behavior. This is in line with the view that people respond emotionally 
to relative changes in their situations rather than the absolute consequences of their 
decisions [4]. Theoretically, the model complements the findings in our original 
studies [14-17] by quantizing (through probabilities) the effect of emotion displays on 
decision-making in a social dilemma. For instance, Model 2 (see Table 5) suggests 
that, after the human is exploited by the agent (i.e., when the human cooperates and 
the agent defects), the human’s likelihood of cooperating goes up from 26% to 36% if 
the agent displays shame as opposed to joy. Finally, pragmatically, the model can be 
used to drive an agent that is engaged in a social dilemma with another human (or 
agent) that shows emotion.  

There is, naturally, much future work ahead: (1) error rates (Table 6 and 7) are still 
relatively high and this might reflect that important features that characterize how 
people decide in social dilemmas are being neglected. For instance, it is assumed that 
examples are independent and identically-distributed (i.i.d.), but this is not strictly 
accurate (e.g., people tend to defect towards the end independently of the agent 
they’re playing with); (2) model 3 assumes it is known whether the other party is a 
black- or white-hat but, in fact, this information should be inferred. One way to 
address this is to use a Bayesian learning mechanism that increases the likelihood of 
the opponent being a black-hat according to the displays it shows for each outcome; 
(3) there are combinations of outcome and displays for which there are no examples 
in the database. To address this we need to run new experiments where participants 
face agents with the missing combinations of outcome and display; finally, (4) to 
further test the generalizability of the model, a new sample should be gathered with 
human participants and the results compared to the model’s predictions.  

                                                            
‡ Because it’s possible to get significance even for small differences if the sample size is large 

enough, it is important to require the effect size to be above a minimum threshold. 



Table 8. Evaluation of the probabilistic models. Cooperation rates (standard deviations) are shown for the original empirical data (under ‘Humans’) 
and when running the models under each of the experimental configurations. The left-most shaded column summarizes the comparison between 
cooperation rates between the two agents in that configuration. The right-most shaded column is interpreted as follows:  means the model replicates 
the findings in the human data;  means the model doesn’t replicate the human data. 

  Humans Model 1 Model 2 Model 3 
Study 1  Order Cooperative Individual.     Cooperative Individual.     Cooperative Individual.     Cooperative Individual.     

Coop  
Vs.  

Indiv 

both .37 (.28) .27 (.23) > F1.1a .33 (.14) .33 (.14) ≈  .36 (.16) .31 (.13) >  .35 (.16) .31 (.14) > 
coop→indiv .35 (.26) .31 (.26) ≈ F1.1b .32 (.14) .33 (.14) ≈  .37 (.17) .30 (.12) >  .31 (.14) .32 (.15) ≈ 
indiv→coop .39 (.30) .23 (.19) > F1.1b .33 (.14) .33 (.14) ≈  .35 (.16) .31 (.13) >  .39 (.17) .30 (.12) > 

Study 2   Cooperative Individual.     Cooperative Individual.     Cooperative Individual.     Cooperative Individual.     
Coop  
Vs.  

Indiv 

both .39 (.24) .33 (.24) > F2.1 .33 (.14) .33 (.14) ≈  .35 (.16) .30 (.13) >  .35 (.16) .30 (.13) > 
coop→indiv .39 (.23) .33 (.24) > F2.1 .33 (.14) .32 (.14) ≈  .35 (.15) .31 (.14) >  .33 (.14) .29 (.13) > 
indiv→coop .38 (.26) .33 (.24) > F2.1 .33 (.15) .33 (.13) ≈  .35 (.16) .30 (.13) >  .38 (.18) .31 (.13) > 

    Cooperative Control   Cooperative Control   Cooperative Control   Cooperative Control     
Coop  
Vs. 
Ctrl 

both .30 (.22) .26 (.22) > F2.2a .33 (.14) .34 (.14) ≈  .36 (.16) .31 (.12) >  .35 (.16) .30 (.13) > 
coop→ctrl .30 (.20) .31 (.23) ≈ F2.2b .32 (.14) .33 (.14) ≈  .36 (.15) .30 (.12) >  .34 (.14) .33 (.15) ≈ 
ctrl→coop .31 (.27) .13 (.15) > F2.2b .34 (.15) .35 (.15) ≈  .37 (.16) .31 (.12) >  .37 (.17) .27 (.11) > 

    Individual. Control   Individual. Control   Individual. Control   Individual. Control     

Indiv 
Vs. 
Ctrl 

both .33 (.15) .30 (.19) ≈ F2.3 .33 (.14) .33 (.14) ≈  .32 (.13) .31 (.13) ≈  .30 (.12) .28 (.11) ≈ 
indiv→ctrl .35 (.15) .31 (.19) ≈ F2.3 .32 (.14) .34 (.14) ≈  .31 (.13) .30 (.13) ≈  .30 (.13) .29 (.11) ≈ 
ctrl→indiv .31 (.15) .29 (.20) ≈ F2.3 .33 (.15) .33 (.14) ≈  .32 (.13) .32 (.14) ≈  .31 (.11) .28 (.11) > 

Study 3   Cooperative Competitive     Cooperative Competitive     Cooperative Competitive     Cooperative Competitive     
Coop 
Vs. 
Ctrl 

both .41 (.23) .39 (.21) ≈ F3.1a .34 (.15) .34 (.15) ≈  .36 (.15) .33 (.13) >  .39 (.16) .35 (.15) > 
coop→comp .37 (.18) .49 (.19) < F3.1b .35 (.15) .33 (.14) ≈  .36 (.15) .32 (.14) >  .33 (.13) .38 (.16) < 
comp→coop .44 (.25) .32 (.20) > F3.1c .34 (.14) .34 (.15) ≈  .37 (.16) .33 (.13) >  .46 (.17) .31 (.12) > 

    Cooperative Control   Cooperative Control   Cooperative Control   Cooperative Control     
Coop 
Vs. 
Ctrl 

both .34 (.17) .24 (.14) > F3.2a .34 (.14) .34 (.15) ≈  .36 (.14) .31 (.13) >  .38 (.16) .31 (.14) > 
coop→ctrl .24 (.09) .21 (.12) ≈ F3.2b .34 (.14) .34 (.14) ≈  .35 (.14) .32 (.13) >  .32 (.12) .34 (.16) ≈ 
ctrl→coop .39 (.19) .26 (.15) > F3.2b .33 (.14) .33 (.15) ≈  .36 (.14) .31 (.13) >  .44 (.17) .29 (.12) > 

    Competitive Control   Competitive Control   Competitive Control   Competitive Control     

Comp 
Vs. 
Ctrl 

both .23 (.11) .23 (.17) ≈ F3.3 .35 (.15) .34 (.14) ≈  .33 (.13) .31 (.13) ≈  .29 (.11) .29 (.11) ≈ 
comp→ctrl .22 (.10) .25 (.18) ≈ F3.3 .35 (.15) .35 (.14) ≈  .33 (.12) .31 (.12) ≈  .30 (.11) .29 (.10) ≈ 
ctrl→comp .25 (.13) .20 (.16) ≈ F3.3 .35 (.14) .34 (.14) ≈  .32 (.13) .32 (.13) ≈  .27 (.10) .29 (.11) ≈ 
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