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Abstract

Computer agents are required to make appropriate decisions quickly and e�-

ciently. As the environments in which they act become increasingly complex, e�-

cient decision-making becomes significantly more challenging. This thesis examines

the positive ways in which human emotions influence people’s ability to make good

decisions in complex, uncertain contexts, and develops computational analogues of

these beneficial functions, demonstrating their usefulness in agent decision-making

and communication.

For decision-making by a single agent in large-scale environments with stochas-

ticity and high uncertainty, the thesis presents GRUE (Goal Re-prioritization Using

Emotion), a decision-making technique that deploys emotion-inspired computational

operators to dynamically re-prioritize the agent’s goals. In two complex domains,

GRUE is shown to result in improved agent performance over many existing tech-

niques.

Agents working in groups benefit from communicating and sharing information

that would otherwise be unobservable. The thesis defines an a↵ective signaling mech-

anism, inspired by the beneficial communicative functions of human emotion, that

increases coordination. In two studies, agents using the mechanism are shown to
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make faster and more accurate inferences than agents that do not signal, resulting

in improved performance. Moreover, a↵ective signals confer performance increases

equivalent to those achieved by broadcasting agents’ entire private state information.

Emotions are also useful signals in agents’ interactions with people, influencing

people’s perceptions of them. A computer-human negotiation study is presented, in

which virtual agents expressed emotion. Agents whose emotion expressions matched

their negotiation strategy were perceived as more trustworthy, and they were more

likely to be selected for future interactions.

In addition, to address similar limitations in strategic environments, this thesis

uses the theory of reasoning patters in complex game-theoretic settings. An algorithm

is presented that speeds up equilibrium computation in certain classes of games. For

Bayesian games, with and without a common prior, the thesis also discusses a novel

graphical formalism that allows agents’ possibly inconsistent beliefs to be succinctly

represented, and for reasoning patterns to be defined in such games. Finally, the

thesis presents a technique for generating advice from a game’s reasoning patterns for

human decision-makers, and demonstrates empirically that such advice helps people

make better decisions in a complex game.
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Chapter 1

Introduction

Computer agents are required to make appropriate decisions in a large variety of

situations. By themselves, collaborating with other agents, or interacting with people,

agents must evaluate their options and take appropriate actions, and do so quickly

and e�ciently. Decision-making has become increasingly challenging for computer

agents, however, as the environments and situations in which they act are becom-

ing more and more complex. This complexity manifests in terms of the domain’s

increasing size, the world’s stochasticity, and the level of uncertainty the agents face.

Research in psychology has demonstrated that people’s emotions enable them to make

good decisions in such situations. Drawing upon prior work that has provided high-

fidelity computational models of human emotions, this thesis builds a↵ect-inspired

mechanisms to address the di�cult and challenging problem of decision-making by

computer agents in complex domains.

To illustrate the computational challenges of complexity, we shall contrast two

di↵erent decision-making situations for agents: In the first, an agent plays a game
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of tic-tac-toe against a human. In the second, an agent trades stocks in a financial

market. Tic-tac-toe consists of a small rectangular (3⇥ 3) board and has very simple

rules. Moreover, an agent designed to play tic-tac-toe may be uncertain about the

future actions of its opponent, but it has no uncertainty about the rules of the game

or either player’s objectives. On the other hand, financial markets present a very

complex situation. The agent must continually monitor the stochastic price move-

ments of hundreds of stocks. To achieve superior performance, it may also need to

be aware of new developments in the economy and anticipate their e↵ect on prices.

Furthermore, the actions of other traders in the market are typically not observable,

increasing the agent’s uncertainty.

A number of approaches in AI have been used to deal with the challenge of com-

plexity. Agents have been designed that operate successfully by exploiting the world’s

structure. To tackle uncertainty, machine learning has been deployed to make the en-

vironment more predictable. Richer new models have been developed that allow

agents to represent the world and reason about it in more nuanced and e�cient ways.

This thesis takes a di↵erent approach. It looks to the positive ways in which emo-

tion influences people’s decision-making and builds computational analogues of these

beneficial functions for agents to make decisions. As demonstrated by psychologists,

emotion influences decision-making in a number of beneficial ways [55, 85, 42, 26,

73, 11, 96, 40]. To illustrate some of these, consider this scenario: You are walking

through a beautiful forest in the springtime, enjoying the sight of flowers and the re-

fractions of the sun’s rays, when you suddenly notice a big angry bear rushing towards

you from at a distance. In this situation, most people would experience the emotion
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of fear, which carries helpful cognitive, communicative and physiological e↵ects. Cog-

nitively, emotions help narrow perceptual attention to what is very important in the

situation at hand; in the case of fear, attention is focused on self-preservation cues,

such as locating escape routes. Emotion may also lead to more myopic, short-term

decision-making. Although in some cases this can be harmful to decision-making, it

may also simplify a person’s reasoning under time pressure. A↵ect also has a com-

municative function; a person who becomes afraid typically broadcasts this internal

state by means of facial expressions, prosody and body movements, which can alert

others and therefore increase the survival chances of a group of people.

Prior work has constructed a number of computational models of emotion [50, 133,

118]. These computational models rely on theories of emotion from psychology, most

notably cognitive appraisal theories [73, 41] which describe emotion as the result of an

appraisal of a situation with respect to the person’s goals and desires. These models

have been designed with the aim of replicating emotion manifestation in people in a

high-fidelity manner, and have been used to test the predictions of theories, or build

virtual agents that behave in human-like ways.

This thesis builds novel computational analogues of human emotion. It does not

aim, however, to replicate the way emotions operate in people, but to assist agents

in their decision-making. In this way, the thesis addresses the big challenge of iden-

tifying those helpful functions of a↵ect and successfully incorporating them into the

design of computer agents. In a number of di↵erent settings, the thesis demonstrates

that these computational analogues of emotion can improve agents’ decision-making

performance in complex domains, and can facilitate better communication between



Chapter 1: Introduction 4

them and other agents, as well as between them and people.

In particular, for a single agent making decisions in a complex environment, a set

of emotion-inspired computational operators are designed. These operators are used

to dynamically re-prioritize the agent’s goals. In every point in time, the agent chooses

actions myopically toward achieving its higher-priority goals. This mechanism helps

in two ways: On the one hand, it addresses the problem of large scale: the fact that

the agent optimizes myopically helps avoid considering a very large number of possible

future contingencies. On the other hand, it assists with uncertainty and stochasticity:

instead of explicitly tracking the unknowns and the changing state of the world, it

relies on the emotion-inspired computational operators to adjust its priorities, and

thus adapt its behavior to changing circumstances. The usefulness of the mechanism

is demonstrated in two complex domains. The first is the restless bandits problem,

which has been shown to be intractable in the general case [101] and approximations

have only been designed for very specific cases, in which the stochasticity of the world

is known to the agent [54], but not for cases in which the agent is uncertain about

how the world changes. A foraging task domain is also used in order to illustrate

the usefulness of the mechanism in a world with several millions of states. In both

domains the emotion-inspired mechanism outperformed other techniques, including

a reactive algorithm and a learning agent.

For groups of agents collaborating or competing in an environment, an e↵ective af-

fective signaling mechanism has been designed. In particular, the mechanism focuses

on the problem of agents possessing privately known characteristics that are unob-

servable by others. The presence of such characteristics increases the uncertainty of
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agents interacting with each other, and it can impede successful coordination among

them. The mechanism continually computes a set of appraisal variables that reflect

the agent’s attitude toward what is happening. These variables are used to then gen-

erate and broadcast a signal that is analogous to human emotions like joy or sadness.

Agents receiving the signal perform Bayesian updating to infer the unobservable char-

acteristics of the sender. The usefulness of the mechanism is illustrated in a simple

repeated social dilemma, and then in a much more complex task domain. In both

cases, agents that implement the mechanism make faster and more accurate inferences

than agent who exchange no signals, which also leads to improved performance and

enhanced coordination. Interestingly, a↵ective signaling in the second domain leads

to performance increases that are not significantly di↵erent from those of commu-

nicating agents’ entire private state information. This result suggests that a↵ective

signals e�ciently convey information that is most relevant to decision-making.

A↵ective signals are also shown to be useful in computers’ interaction with people.

In particular, they can influence human perceptions of agents’ traits. A study is

presented that focuses on one of those traits, the agents’ trustworthiness. People

were asked to negotiate with a number of computer agents in order to split a set of

valuable resources. Agents di↵ered both in terms of their negotiation strategy, as

well as in terms of whether they displayed emotion expressions on a virtual agent

face. After a playing a number of games with various agents that di↵ered in their

emotion expressions, but not in their negotiation strategy, each subject was asked to

select one of them to play a “trust game.” People’s selection was used as a measure

of how trustworthy they perceived each agent to be. They preferred agents who
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expressed emotion over those who did not. More importantly, they showed significant

preference for agents whose emotion expressions matched their negotiation strategy.

For instance, among tough negotiators, those who expressed negative emotion (anger)

were seen as more trustworthy; among flexible and conciliatory negotiators, those who

smiled were preferred.

Strategic environments are another place where cognitive and computational lim-

itations are important, and for such environments it is typical to adopt a game-

theoretic analysis. The second part of my thesis considers the role of reasoning

patterns [103], or qualitative styles of reasoning, in more e�ciently representing, rea-

soning about, and solving complex games, as well as in assisting humans make better

decisions in complex environments.

The theory of reasoning patterns analyzes games by describing in succinct ways

the motivation of agents. In particular, it tracks the flow of utility and information

within a game, which enables a modeler of the game to describe why agents behave

the way they do, or to identify good strategies for them. I use the theory of reasoning

patterns in three ways:

First, I introduce a new graphical formalism for Bayesian games. This formalism

allows agents’ beliefs to be represented succinctly in a “belief graph,” even if they are

mutually inconsistent. It also helps extend the definition of reasoning patterns to a

particularly complex type of Bayesian games, those without a common prior. This

extension makes it possible to use the reasoning patterns in such games to understand

agents’ behavior and identify well-performing strategies for them.

Second, I use the reasoning patterns to simplify games for the purpose of comput-
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ing a Nash equilibrium of them. An algorithm is described that identifies a game’s

reasoning pattern in polynomial time. The algorithm discovers decisions within the

game which can be ignored in computing an equilibrium. In certain classes of games,

this results in exponential time savings.

Finally, I use the theory to assist people in complex environments. An agent is

built that generates advice for people making decisions. This advice o↵ers insights

regarding the possible e↵ects of their actions, which it does by examining the game’s

reasoning patterns. The usefulness of this advice is tested empirically by asking people

to play a complex repeated game of incomplete information. Subjects who received

the advice outperformed subjects who did not have access to it.

1.1 Emotions

Throughout history, emotions have been the topic of much debate in philosophy

and psychology [121]. Among the ancients, Plato and Aristotle take the position that

emotions are an integral part of the mind (or “soul”) and can be deployed either

wisely or unwisely. For instance, when anger is directed towards punishing the unjust

it is wisely deployed, but not so when it manifests in the desire to commit crimes.

Others, such as the stoic philosophers, advocate a silencing of the “passions” in favor

of apatheia, a calm and detached stance towards the changeability of the world.

In later centuries, Christian philosophers distinguished between virtuous emotions,

such as compassion, and sinful ones, like anger. Modern writers expressed a variety

of opinions on the emotions, some treating them as enemies of reason (Descartes),

others as assistants of rational and moral thinking (Kant) and some as superior to it
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(Nietzche). Overall, emotions were seen as secondary to reason and people’s attention

was captivated largely by instances in which they carry people astray. It was only

during the 20th century that emotions became o�cially a topic of rigorous scientific

study, and their role was better understood.

Our modern understanding of the emotions comes from cognitive psychology and

neuroscience. We now know that emotion exhibits widespread manifestation in the

brain and is not limited to a particular “emotion center.” And although psychologists

still disagree on the specifics of what emotion is, all acknowledge it as a complex cog-

nitive and physiological phenomenon with extensive influences on perception, atten-

tion, reasoning, decision-making, communication, and internal biochemical regulation

[11, 41, 40, 55].

Emotion is typically defined in either of two ways: In dimensional models, emotion

is mapped on a continuous, 2- or 3-dimensional space. The two most commonly

used axes are valence, which denotes whether the person experiences a situation as

positive or negative, and arousal, which denotes how strong his or her feelings are.

For instance, both contentment and delight are firmly on the positive side of valence,

but the latter is more intense than the former. (See Figure 1.1 for a mapping of some

emotional states along these two axes.) A third dimension with the name of power or

control is also often added in those models. Fear and anger, for instance, can both be

intense negative emotions, but they di↵er in this third dimension of control: When

angry, people are empowered and driven towards taking action, while fear promotes

fleeing or hiding.

In categorical models, emotions are not placed on a continuous space but are
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Figure 1.1: A two-dimensional mapping of some emotions

treated as discrete, separate events. Proponents of this categorical approach argue

that placing di↵erent emotions closely in a continuous space cultivates mispercep-

tions of similarity between them. They instead treat the large variety of emotions as

independent phenomena. Influential in this space has been the work of Ekman [36],

who identified five “basic” emotions that are expressed and recognized by all cultures

(happiness, sadness, anger, fear, and disgust). Other, secondary emotions, like em-

barrassment, have been argued to be culture-specific. For both kinds of emotions,

however, their expression and interpretation are largely modulated by cultural norms
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and expectations.

Most researchers use both definitions of emotion interchangeably. A popular ana-

logue is weather patterns: storms and fair weather can both be characterized by

specific measurements on luminosity, humidity and windiness, but they can also be

treated as discrete, separate phenomena. In this thesis I follow the categorical ap-

proach, without however making any express commitment to the superiority of any

particular emotion definition.

The work presented in this thesis builds upon cognitive appraisal theories of emo-

tion [6, 100, 73, 99]. These theories describe emotion as the result of an assessment

(appraisal) of how a particular stimulus or observation impacts a person’s goals. For

instance, fear is seen as the result of appraising something as threatening to an im-

portant goal. Sadness, similarly, occurs when a situation is appraised as disastrous

to a person’s goals, and the person feels incapable of acting to change this.

Appraisal-based computational theories of emotion break down the appraisal pro-

cess along a number of dimensions. Each dimension captures something about the

way in which the observed event impacts the person’s goals. Common dimensions

include: desirability, which denotes whether the event is being appraised as better or

worse than the person’s expectations; unexpectedness, which reflects how surprising

the event was to the person; praiseworthiness and blameworthiness, which denote

whether the agent can attribute the event to the willful actions of another; controlla-

bility, which captures whether the agent can undo the e↵ects of the observed event,

and others.

To illustrate these concepts, consider the theory suggested by Ortony, Clore and
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Collins (OCC, [100]), whose appraisal-based structure is shown in Figure 1.2. The

OCC model was the first theory of emotion that was designed with the expressed

purpose of turning it into an AI architecture. A person in the OCC model assesses

a stimulus along three dimensions: The first dimension is concerned with the the

desirability of the expected consequences of an event (left-side branch in Fig. 1.2).

This assessment results in an undi↵erentiated mood (i.e., the person is pleased or

displeased). Further deliberation along this line, however, may make this mood more

specific. For instance, if the person assesses that the event is undesirable for another,

but desirable for herself, the ensuing emotion is not just one of being pleased, but

one of gloating. The second dimension (middle branch in Fig. 1.2) has to do with the

role of other agents, and is a measure of their praiseworthiness or blameworthiness.

If, for example, another agent (or the self) has done something worthy of praise,

the ensuring emotion is one of admiration (or pride, respectively). Finally, the third

dimension (right branch in Fig. 1.2) concerns long-running attributes associated with

objects or people. Hence, for instance, one may feel admiration toward a colleague

for one of his accomplishments (along the praiseworthiness axis), but also generally

dislike him (along the axis of long-running attributes).

It is easy to see how the OCC model can be translated into an AI architecture. In

fact, Ortony, Clore and Collins suggest one, in which a person’s goals are hierarchi-

cally organized, such each goal may break down into sub-goals, and some goals are

inhibitory towards other goals. For instance, the goal to “get a Ph.D.” might consist

of subgoals like “be admitted to graduate school,” “do well in courses,” and “write a

dissertation,” but might be inhibitory toward the goal “accumulate work experience
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Figure 1.2: The OCC appraisal pattern

in industry early.” As long as the agent maintains such a goal structure and is able

to assess the impact of various observations on its goals, it can compute quantities

describing the desirability of an event or the praiseworthiness (or blameworthiness) of

others’ actions, and maintain long-term dispositions towards people or objects (liking

or disliking), and therefore produce the appropriate emotions.

This appraisal process also helps explain the e↵ects brought about by an emotion

once it emerges. Each emotion includes behavioral drives that aim to address the
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situation that generated it. For example, fear emerges after a situation is appraised

as threatening, and thus leads to behaviors that protect the person from the source of

the threat, like hiding, fleeing, or defending himself. Sadness, similarly, emerges when

the person feels unable to deal with a negative circumstance, so it leads to withdrawal,

disengagement from the world, and intense thinking to re-plan, shift perspectives and

change his strategy.

Cognitive appraisal theories have formed the basis of a number of computational

models of emotion [50, 133, 118]. These models serve three functions: First, they

quantify and systematize the processes that are outlined in psychological theories.

Rather than describe fear as a threat appraisal, they provide concrete definitions of

when a stimulus is seen as threatening, quantify the intensity of the ensuing fear

response, and precisely define how quickly the emotion will ebb. Second, they allow

researchers to test the correctness of the theories they are based on. In controlled

experiments, subjects’ emotion expressions in realistic situations can be recorded and

compared to what the model would predict. This comparison and contrast also allows

for amendments to the theories, or the development of new ones. Third, high-fidelity

computational models of emotion can be used as part of the design of a virtual agent,

whose emotion expressions will appear “natural” and human-like to people interacting

with it.

This thesis builds upon much of this prior work. In particular, it builds appraisal-

based computational analogues of emotion functions. These computational analogues

make use of the same appraisal variables that are widely employed by existing models.

Rather than being aimed at describing human a↵ective behavior in a high-fidelity
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manner though, those computational analogues are deployed as part of a computer

agent’s design to improve its decision-making.

1.2 Background: Basic decision-making models

The techniques presented in this thesis address the problem of decision-making

for a single agent, as well as in the context of a multi-agent system. Prior research

in multi-agent systems has used a variety of techniques and algorithms for agent

decision-making. These include decision theory, game theory, logic, reactive models,

and Markov Decision Processes (MDPs), among others. This thesis draws on and

contrasts its approaches to two of these, MDPs and game theory. This section sets

the background for the rest of the thesis. For a detailed exposition on game theory,

MDPs and other techniques the reader is referred to introductory textbooks such as

Myerson’s [88] and Luger & Stubblefield’s [79].

1.2.1 Markov Decision Processes

Markov Decision Processes (MDPs) and their variants are being introduced below

in some detail, as they pertain to some of the issues discussed in Chapters 2 and 3.

An MDP serves to analyze long-running decision-making problems in an uncertain,

stochastic world. At every point in time t = 1, 2, . . ., the world is in state st 2 S,

where S is the set of all possible states. A single agent chooses an action at from a

set of possible actions A in every timestep t. This results in a one-time reward that

depends on the chosen action and the state of the world ut = u(at, st). It also results

in the world possibly transitioning to state st+1 according to a probability transition
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function ⌧ t, such that ⌧ t(st, st+1, at) is the probability that st+1 will be the next state

of the world if action at is taken in state st at time t. Time-invariant MDPs are

most commonly used, in which ⌧ t = ⌧, 8t; in other words, the world’s stochasticity is

governed by the same rules across time. Another restriction typically placed on the

transition function is ergodicity. Informally, an ergodic transition function has the

property that, from every state s 2 S it is possible to directly or indirectly transition

to any other state s0 2 S in a finite number of steps. An policy ⇡ for a time-invariant

MDP prescribes an action ⇡(s) for the player to take in every state s. An optimal

policy has the property that following it gives the agent the highest expected long-

term reward over time periods 1, 2, . . ., in which future payo↵s are exponentially

discounted. Thus the optimal policy maximizes E[
P1

t=1 �
t�1u(⇡(st), st)], where � 2

(0, 1).

Variants of this simple framework are often used: In Multi-Agent MDPs (MA-

MDPs) the world transitions based on the actions of more than one agent, and the

optimal policy maximizes the sum of their utilities. In Partially Observable MDPs

(POMDPs) the agent is uncertain about the state of the world st, and maintains a

belief � as a probability distribution over what the current state and all previous states

have been. This belief is updated by gathering observations !t(st) from the world

in every time step, which are correlated with the true state of the world st. Finally,

in Decentralized POMDPs (DEC-POMDPs) the agents receive di↵erent observations

!t

i

(st), and have to reason about others’ observations. They may also choose to

explicitly communicate and share information to better coordinate their e↵orts.
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1.2.2 Game theory

Game theory is an economics-based approach. It treats decision-making as a

maximization problem. The agent’s goals and preferences are described by a utility

function, such that higher-utility outcomes are preferred over lower-utility ones. The

agent then acts by choosing the actions that maximize its utility function, by also

considering how other agents will behave.

Game theory analyzes situations as games, which are mathematical constructs

designed to describe, predict or prescribe the behavior of intelligent rational actors.

In a game, actors (people or agents) are called players. They act by selecting a strategy

that prescribes what they will do under every possible contingency that might arise

in the game.

More specifically, in its simplest form a game consists of: (a) a set of players

N = {1, 2, . . . , n}; (b) a set of pure strategies S
i

for each agent i 2 N ; and (c) utility

functions u
i

: ⇥
i

S
i

! R, one for each player, that map a choice of pure strategy for

each player to a real number, representing the utility of player i if every player were

to choose those strategies.

A simple example will illustrate this terminology: Consider the oft-mentioned

Prisoner’s Dilemma game, in which two business partners have been arrested for

embezzling money. They are interrogated in separate rooms and are both given the

same choice. If they provide evidence for their partner’s guilt, they will get lenient

treatment and walk out without any penalty, but their partner will be sentenced to

10 years in prison. Vice versa, if they keep silent and their partner betrays them,

they will get 10 years in jail and their partner will walk free. If they both speak their
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testimony has less value, so they will both get a 2-year conviction. If, however, they

both keep silent, there will be evidence to only convict them for half a year. How can

we expect them to behave in this situation?

Game theory o↵ers a systematic way to answer this question. The two players in

the game are N = {1, 2}. Each has a strategy set consisting of ‘keeping silent’ (K)

and ‘betraying’ their partner (B), so S1 = S2 = {K,B}. Their choice s
i

2 S
i

yields

utility according to the penalty structure described above. For instance, if (s1, s2)

is the vector denoting both player’s choice of strategy, player 1’s utility function has

u1(K,K) = �0.5, u1(K,D) = �10, u1(D,K) = 0 and u1(D,D) = �2.

This is called a game’s “Normal form” representation. For games with two players,

the Normal form can be conveniently represented as a table, in which the two players

assume the “row” and “column” position, respectively. The table has one row for

each pure strategy of player 1, and one column for every pure strategy of player 2,

and each cell of the table represents the utilities obtained by both players if they were

to select the strategies corresponding to that row and column. In Table 1.1 below,

the Prisoner’s Dilemma game is represented in tabular form.

Keep silent Betray
Keep silent (-0.5, -0.5) (-10, 0)
Betray (0, -10) (-2, -2)

Table 1.1: The Prisoner’s Dilemma game

Having represented the situation as a game, we can now solve it to predict what

rational intelligent agents would do. The most popular solution concept in game

theory is called a Nash equilibrium [90]. A Nash equilibrium is a “fixed point” in
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the strategy space, in the sense that, if all players chose strategies that together

form a Nash equilibrium, no player would gain by unilaterally deviating to another

strategy. The Nash equilibrium therefore enjoys the property of stability. Moreover,

it represents a choice by intelligent rational actors. In a Nash equilibrium, every

player is optimizing his or her behavior given what all other players are choosing to

do.

Going back to the Prisoner’s Dilemma example, consider player 1. If player 2

chooses K (keep silent), it is in player 1’s benefit to betray him (play B) and gain

a utility of zero, as opposed to �0.5. If player 2 chooses to betray him (B), again

it is in player 1’s benefit to also betray him, since that given him a utility of �2

as opposed to �10. The situation for player 2 is exactly symmetrical. Hence, both

players will rationally choose to betray each other, making the point (B,B) in the

strategy space a Nash equilibrium of the game. To see why, consider the stability

property: for both players, given the fact that their partner is going to betray them,

their maximum utility is obtained by also betraying him.

Game theory allows significantly more complex situations to be modeled in the

same way. Games can include more than two agents, and these agents need not

act simultaneously or take just one action each. For instance, in the popular game

of tic-tac-toe the players alternate until one of them wins or the game ends in a

tie. The players may also randomize when they choose strategies. A mixed strategy

is a probability distribution over a player’s pure strategies. For example, in the

Prisoner’s Dilemma, player 1 may play the mixed strategy that will keep silent with

70% probability and betray the other player with 30% probability. Every game is
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guaranteed to have a Nash equilibrium, but in some games this equilibrium might be

in the space of mixed strategies. Games may also have more than one equilibrium.

Multiplicity of equilibria is especially common in repeated games, in which a one-shot

game, such as the Prisoner’s Dilemma, is repeated between the same players for a

number or rounds (possibly infinite). In those cases, the strategy of a player for the

overall game dictates a choice of strategy for each repetition of the one-shot game.

In the case of multiple equilibria, certain equilibrium selection criteria exist to select

which equilibrium rational players may be expected to implement in practice, such

as Pareto e�ciency.

To identify Nash equilibria of games, many algorithms have been developed. For

certain classes of games, such as 2-player, zero-sum games (in which the payo↵s of

both players sum to zero for every choice of strategy), this can be done e�ciently in

polynomial time [22]. In the general case, the equilibrium computation is believed to

require exponential time [28]. Nisan et al.’s textbook on algorithmic game theory [97]

provides an excellent discussion on the computational challenges of Nash equilibrium.

Other representations have been used to either make the size of the representation

more manageable, to provide better insight to a human about what is happening in

the game, or to more e�ciently capture interesting situations. The extensive form

of a game is an inverted tree structure. Nodes represent decision points in which a

player must act, and edges represent actions taken. The extensive form allows the

time aspect of games to be more explicitly represented, as the tree describes which

player goes first, who follows, and what actions are available to them at each point. It

also highlights uncertainty, which is known in game theory as imperfect information.
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For instance, in the Prisoner’s Dilemma, player 2, when choosing whether to keep

silent or betray his partner, does not know player 1’s choice. In the tree, this is

explicitly denoted by grouping the two cases (player 1 kept silent, player 1 betrayed)

into a single “information set,” as shown in Figure 1.3.

2 2 

1 

‘B’ ‘K’ 

‘B’ 

‘K’ 

‘B’ 

‘K’ 

(-0.5,-0.5) (-10, 0) (0, -10) (-2, -2) 

Figure 1.3: The Prisoner’s Dilemma in extensive form

Other representations help reduce the size of a game, by exploiting its structure.

Graphical games [65] are useful in games in which the utility of some players only

depends on the actions of a subset of other players. Action-graph games [61] simplify

cases in which the utility of each player depends on the number of other players that

choose a particular action, but not on who they are. Multi-Agent Influence Diagrams,

which are extensively described in Chapter 5, allow more e�cient reasoning about

the stochasticity of the world and the players’ uncertainty.
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1.3 Structure of the thesis

Chapter 2 presents GRUE, the emotion-inspired computational operators that are

used to re-prioritize a single agent’s goal, along with empirical findings demonstrat-

ing the usefulness of the approach. The a↵ective signaling mechanism for inferring

unobservable characteristics of other agents is discussed in Chapter 3. In Chapter

4 a human-computer interaction study is presented, in which the influence of emo-

tion expressions on people’s perceptions of the agents’ trustworthiness is investigated.

Chapters 5 proceeds to discuss the game-theoretic contributions of this thesis that

build upon the theory of reasoning patterns, while Chapter 6 focuses on deploying of

the reasoning patterns toward helping human decision-makers. The thesis concludes

in Chapter 7 with a summary and extensions for future work. Bibliographic references

can be found in the end of the dissertation.



Chapter 2

Re-prioritizing Goals Using

A↵ect-Like Computational

Operators

The environments in which computer agents act are becoming increasingly com-

plex. This complexity manifests as the expanding size of the domain, the increased

stochasticity of the world, and the high levels of uncertainty the agents have to work

under. This chapter discusses the challenges complex environments pose for agents’

decision-making, and some of the tools and techniques developed to address them.

It then presents the use of a↵ect-inspired computational operators to address these

challenges.

The structure of the chapter is as follows: Section 2.1 discusses the ways in which

scale, hardness and uncertainty increase complexity, making decision-making more

di�cult for agents. Section 2.2 presents a new method, GRUE (Goal Re-prioritization

22
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Using Emotion), which was inspired by certain beneficial cognitive features of emo-

tions (see Section 1.1). GRUE uses computational operators analogous to human

emotions to re-prioritize an agent’s goals. These operators are defined in a domain-

independent manner and are triggered automatically, without the agent having to

explicitly reason about which ones it should be using at any point in time. GRUE

o↵ers a way for an agent to make decisions quickly, respond e�ciently to external

events, and to a large extent circumvent the issues associated with high complexity.

Section 2.3 presents other related work in AI around the issue of complexity, while

Section 2.4 includes a short discussion of GRUE.

2.1 Complexity in Decision-Making

Computers systems are used in a large number of settings in which decision-

making is required of them. Two examples will be used throughout this section to

illustrate various aspects of computer decision-making. These examples are drawn

from opposite extremes of the complexity spectrum. The first, representative of

relatively simple domains, is a recommender system that allows users to rate movies

they have seen, and then uses these ratings to recommend other movies that they

might also enjoy. The second, representative of more complex environments, is a

self-driving car that must navigate itself through the streets of a city quickly, safely

and lawfully.

In general, computers making decisions are expected to satisfy a number of re-

quirements. First, the decision must be of high quality. The quality of a decision

reflects the degree to which it brings about states of the world that are desirable to
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the computer agent. Second, a decision must be made in an e�cient manner. E�-

ciency relates to the resources (time, space, communication) required to compute it.

Third, the decision-making performance of the agent must be robust. It should be

expected to perform reasonably well in all situations, and avoid significant mistakes

even in rare and uncommon circumstances, or at least degrade gracefully in the face

of unexpected inputs.

2.1.1 Scale, Hardness and Uncertainty

Real-world environments present three challenges to traditional computer decision-

making techniques in Artificial Intelligence. First, there are theoretical and practical

issues stemming from the sheer scale of some domains. Second, most of the widely

used solution concepts, such as Nash equilibrium, have been shown to be computa-

tionally hard, requiring exponential time. And third, aspects of the world might be

unobservable, or the environment might be stochastically changing in ways that are

not fully known to agents, increasing their uncertainty. The term “complex envi-

ronment” shall be used to refer to any domain that is characterized by these three

features.

Scale

Agents making decisions in an environment have to acknowledge that the world

around them is constantly changing. To represent this change, the world is assumed

to be in some state at any given point in time, and transition between those states

as time flows and agents are taking actions. In a small system the number of these
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states is small and manageable. Moreover, the agent usually has a small set of actions

to choose from. Also, if the agent is uncertain about some quantities in the world

(e.g., the value of a hidden variable, the state of an unobservable part of the world

or the private information of another agent), these things are usually few in number

and a probability distribution capturing the agent’s uncertainty can be compactly

represented, maintained and updated over time. Furthermore, even in larger domains,

certain assumptions about the dynamics of the world are typically made that simplify

representing the environment. For instance, it is usually assumed that the world

operates under 1-step Markovian dynamics. This in most cases relieves the agent of

having to track an extended history of changing world states—it only needs to reason

about the world’s present state.

In many real-world domains, however, these convenient assumptions no longer

hold. The world itself becomes larger, and the number of possible states may rank

in the order of millions or billions. This fact alone complicates agent design. For

instance, to capture a single probability distribution over a billion states one needs

a floating-point vector of size one billion. Maintaining such a vector in memory and

updating it is an expensive operation in terms of both time- and space-complexity.

Furthermore, in many environments the agent might have a large action set to choose

from. Finally, if Markovian assumptions no longer hold in the world, an extensive

history of observations must be maintained to e↵ectively track the state of the world,

predict future developments and respond with appropriate actions.

The e↵ect of scale di↵ers in the two sample domains. In recommender systems

each movie can be described by just a few features: year of production, genre, director,
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acting cast, etc. On the other hand, a self-driving car might operate in a much richer

world, in which it can potentially register anything from the shape and incline of the

road, water puddles, pedestrians, tra�c lights, road signs, other cars, to the slightest

reading of any of its sensors. The sheer size of the world makes fully representing

it intractable, and severely limits the type of algorithms and solution concepts that

may be used to make decisions, as explained below.

Hardness

There are both theoretical and practical challenges linked to the computational

hardness of most popular solution concepts, such as Nash equilibrium. On the theory

side, Nash equilibria have been placed in a class of problems (PPAD#) that is widely

believed to require exponential time to solve [28].

In practice, several issues in equilibrium computation arise from the implicit as-

sumptions that equilibria carry. In particular, game-theoretic analyses typically make

demanding epistemic assumptions, such that every agent knows everyone’s utility

function, action set, and the structure of the game. Even if uncertainty exists about

some of these quantities, this uncertainty is usually modeled as a common, publicly-

known probability distribution, and the definition of Nash equilibrium is extended to

reflect the agents’ uncertainty (Bayes-Nash equilibrium). However, in many realistic

settings it would be unreasonable to assume that all agents possess identical prior

beliefs (see Morris’s discussion on the epistemic validity of the common prior [86]).

As soon as the common prior is abandoned, however, the very idea of Bayes-Nash

equilibrium is called under question. Although Bayes-Nash equilibria can be defined
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for games without a common prior, its absence makes these equilibria “private,” in

the sense that every agent computes di↵erent equilibria based on its own prior [2].

Thus, the equilibria computed by one agent are not very informative about how it

expects other agents to actually behave during the game, even if the fundamental

assumption that they will follow some Bayes-Nash equilibrium is maintained. These

non-common priors also result in a computational problem. Computing an appropri-

ate course of action without a common prior requires taking into consideration belief

hierarchies like “agent 1 believes that agent 2 believes that agent 3 believes that agent

1 believes...” that rapidly make equilibrium computation a convoluted problem, for

which no particularly good approach exists.

Our two sample domains help illustrate this point. The recommender system

faces no significant problems with strategic reasoning, because people rating movies

have no reason to lie about which movies they liked. In the self-driving car example,

on the other hand, coordination—and thus equilibrium concepts—is crucial, as cars

and pedestrians should ideally wish to best-respond to each other’s actions to avoid

collisions yet move e↵ectively through space. Given the scale of the domain and the

possibly inconsistent beliefs the di↵erent parties might have, the hardness of comput-

ing these solution concepts makes standard game-theoretic approaches intractable.

Uncertainty

Uncertainty stems from a variety of sources: One is a lack of complete knowledge

about the world, as in the cases of incomplete information and non-common priors

described above. Another is the fact that, although the world might be observable, no
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good and accurate model may be known regarding its stochastic dynamics, making

predictions about how it might change in the future hard. Probabilistic reasoning

techniques typically assign a probability distribution for every uncertain quantity.

There also exist methods for tracking the change of partially observable or unobserv-

able quantities across time. These methods work by assuming some prior knowledge

about the transition model of these quantities, and use subsequent observations to

infer about how that variable might have changed over time.

In rich environments, however, it is often impractical to represent uncertainty as

a probability distribution. One reason is that the possible states of the world are

too numerous to account for individually. Another reason is that we might have no

idea whatsoever about the likelihood of a variable’s possible values, and we might

not feel confident assigning it a uniform prior. A third reason has to do with the

computational intractability of tracking variables across time. In simple settings

with just a few variables and simple world dynamics this is fairly straightforward,

but in slightly more complex domains even approximations are sometimes provably

impossible [101].

Consider the two sample domains: The unobservable hidden quantity in a rec-

ommender system is primarily the genre preferences of the di↵erent viewers. This

quantity is not changing very rapidly—if at all—and can be inferred given adequate

user input. On the contrary, the algorithm in the self-driving car must continually

monitor the changing the state of the world as it moves along the road, as well as any

(more or less) unexpected events that might have to be taken into consideration. The

algorithm must maintain likelihoods for any of a huge number of possible events, such
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as pedestrians crossing the street, bumps on the road, sudden moves by other cars,

etc. Furthermore, many of these unknown quantities are not discrete but continuous,

making maintaining belief distributions and performing inferences harder.

2.1.2 Deliberative and Reactive Methods

Researchers in AI have addressed the problems arising out of complexity in various

ways, a brief overview of which is presented in Section 2.3. Some of these approaches

try to take advantage of the structure of the world, by leveraging independence as-

sumptions (e.g., Bayesian networks), using more e�cient data structures (e.g., hierar-

chical models), or processing information in better ways. Most of these methods aim

at speeding up decision-making, but wish to preserve the optimality of the solution

they return. On the other hand, some other approaches are willing to sacrifice some

optimality guarantees in order to reduce computation load and execution time (e.g.,

heuristics and abstractions). As the scale and the uncertainty in a domain increase,

however, optimality is increasingly di�cult to achieve, and even approximations have

been in some cases formally shown to be intractable to derive [101].

In light of this, one should consider both deliberative and reactive techniques to

deal with complexity. All decision-making methods can be placed in a continuum

between those two extremes. For example, algorithms that identify Nash equilibria

are fully deliberative methods, as they consider everything that is known about the

world and other agents, and reason about all possible action plans of the agent, all

contingencies that might occur in the world, and all the ways other agents might

behave. On the other hand, other approaches have a strong reactive flavor. A myopic
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chess-playing algorithm is reactive, as it essentially reacts to the actions of its oppo-

nent, by using a local scoring function to evaluate the current-step “goodness” of all

its own candidate actions, but without reasoning about their long-term consequences.

The distinction between reactive and deliberative approaches is compelling and

useful because it reveals which part of the continuum might contain the algorithm that

will work well in a particular domain as a function of that domain’s complexity. At

one extreme, consisting of simple, small-scale, largely deterministic environments, one

may use a fully deliberative approach. At the other extreme, if little is known about

the domain, and the world behaves very stochastically, a heuristic that uses local

criteria to select an action might perform better. And between those two extremes

there is a progressive change of focus. As scale and stochasticity increase, not only

do fully deliberative algorithms scale poorly, but they face two more issues. First, in

trying to learn how the world works, algorithms in complex domains might lack the

volumes of data required to learn a good model of the world. Second, if the world is

very stochastic, by the time an algorithm has deliberated to compute an optimal (or

near-optimal) solution, this might no longer be optimal (or even satisfactory) given

the changes in the world that have ensued in the meantime. Hence, in those settings

it might be of critical importance to be able to adapt reactively and successfully to

what is happening in the environment, rather than compute the optimal solution a

priori.
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2.2 GRUE: An Emotion-Inspired Method for Decision-

Making

The challenge of complexity in decision-making is being approached in this thesis

by considering specific facets of the way people’s emotions contribute positively to

their decision-making. Intuitively, one can think of the method as a “smart” reactive

algorithm, or as a general-purpose, domain-independent class of heuristics. The agent

in GRUE does not attempt to track the complete state of the world or compute an

expected utility function over time. It thus avoids the problems outlined for fully

deliberative algorithms. Instead, at every time step, the method makes a decision by

maximizing a valuation function myopically, ignoring the long-term consequences of

the action to be taken. The “smart” part comes from emotion-inspired computational

operators, defined below, which serve to update the weights in that valuation function

by looking at the end-result (payo↵ obtained) of past decisions made. Changing

the weights alters that valuation function to reflect changing circumstances in the

environment. The method is thus called ‘GRUE,’ short for ‘Goal Re-prioritization

Using Emotion.’ Schematically GRUE is depicted in Figure 2.1.

Evolutionary psychologists have argued that people’s emotions have evolved to

take advantage of statistical and structural regularities in the world, o↵ering broad

good responses to largely similar situations. For instance, most situations in which an

important goal of a person is threatened serve to elicit ‘fear’ in people. The presence

of fear in turn leads to responses that are generally successful against danger, such as

withdrawing, fleeing, seeking shelter, or asking for help. As such, the emotion of fear
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weights in a valuation function, that the 
agent then optimizes myopically (see Figure 
2). In domains characterized by high uncer-
tainty and stochasticity, it is very difficult to 
predict, over the long run, how successful a 
particular course of action will be, and thus 
identify the optimal such plan. On the other 
hand, if the agent is myopic and does not 
possess foresight, its decision-making will be 
ineffective and inflexible. My approach 

avoids both these extremes in that it does not require the agent to reason explicitly in real time about 
the long-term effects of its actions (which is impossible). It instead factors in its myopic maximization 
problem “something” about those actions’ long-term consequences. For instance, if a certain goal is 
perceived to be under threat, the “fear-inspired” operator will boost its weight, so the agent will take 
actions to protect it. In doing so, the agent implicitly understands that abandoning the goal does not 
just have a short-term effect (a one-time negative reward), but also a much longer-term consequence 
(the fact that the goal is lost forever). This process has been evaluated in [3] in two complex domains: 
restless bandits, a provably intractable extension of multi-armed bandits, and a foraging domain rep-
resented as a Partially-Observable Markov Decision Process (POMDP). 
 
 
COMPLEXITY AND EMOTION – THE TEAMWORK CASE 
 
Aside from a cognitive role, emotions also have a communicative component. The musculature of the 
human face allows for intricate and subtle expressions of emotion, while the whole body (with its pos-
ture, gaze, tone of voice, and head movement) assists in conveying one’s emotional state to people 
around them. It has been argued in evolutionary psychology that communicating emotions brings 
population-level benefits to the species that have evolved this rich signaling capacity. For example, 
expressing fear at the sight of danger can warn nearby tribe members of a threat’s presence. Likewise, 
smiling—at least when difficult to fabricate accurately and consistently—may help inform others of 
one’s good intentions, foster trust, and reduce transaction risks in a community, enabling the undertak-
ing of collaborative projects. Similar effects have been suggested for the communicative aspect of 
virtually every emotion. 
 
To capture some of these beneficial functions of emotion expressions, my thesis has addressed the 
issues of inference and coordination in highly uncertain environments. In a population that is com-
prised of agents of several types, two interacting agents will optimally attempt to infer each other’s 
type, since this will make their partners’ beliefs and intentions clearer and their future actions easier to 
predict. In situations like these, it is typically assumed that the number of types is small, and that all 
agents possess a publicly-known and accurate prior belief over how types are distributed in the popu-
lation. Hence it becomes easy to infer another agent’s type by conditioning this prior on its observed 
actions. However, this method becomes inefficient when the number of types is large, and when 
agents have neither common nor accurate prior beliefs. In such cases, my thesis has shown that, by 
allowing agents to communicate emotion-inspired responses to others, inferences can become more 
accurate and others’ types can be recognized quicker, even when prior beliefs among agents are con-
siderably divergent or inaccurate. Furthermore, my work has shown that the same principle can be 
employed to assist agents in collaborative planning tasks, when parties might have private unobserv-
able states. In such settings communicating emotion-like signals can help agents infer the hidden state 
of others in the environment, and adjust their plans accordingly, while also keeping the cost of com-
munication small. This idea has been evaluated in [1] in two environments: a population of agents 
engaging in pair-wise social dilemmas (a richer version of the prisoner’s dilemma), and two agents 
with hidden unobservable states operating in a mixed-motive stochastic planning environment (that 
includes opportunities for both cooperation and competition). 
 
 

Figure 2: Making decisions using emotion-inspired compu-
tational operators 

Figure 2.1: The GRUE method for decision-making

is then a heuristic that behaviorally groups a large number of di↵erent circumstances

using a simple criterion (is it dangerous or not?) and o↵ers a set of adaptive responses

that have a high likelihood of addressing the problem. In doing so, emotions implicitly

recognize important independencies and regularities in the domain. For instance, fear

and its associated behavioral repertoire recognize that danger is a cue towards ignoring

a large part of the state and action space, and instead focusing one’s computational

resources to percepts, facts, beliefs and actions that will help the person flee or evade

that danger.

In summary, GRUE assumes that agents have goals they are trying to accomplish.

Goals represent what the agent is designed to perform in the environment. For

instance, a robot exploring the surface of Mars has to locate interesting-looking rocks,

collect samples, avoid falling, and return to base, and these are its goals. It must be

noted here that the term “goal” has been used in the literature to refer to many

di↵erent concepts. In psychological theories, goals reflect the biological and social

needs of people, such as obtaining food, mating, or protecting oneself. In AI, goals



Chapter 2: Re-prioritizing Goals Using A↵ect-Like Computational Operators 33

have been used in logic-based frameworks to refer to attributes or states of the world

that the agent is trying to bring about. In this chapter the term “goals” is used in

a strictly technical sense to refer to the sources of an agent’s utility. The goals of

the Mars-exploring robot, which are to locate and collect rocks, stay standing, and

return safely to base, are the events that yield positive rewards for it.

The existence of goals allows one to meaningfully represent emotions. Psychologi-

cal theories of cognitive appraisal assume that emotions are generated by interpreting

the impact of observations on someone’s goals. For example, fear at the sight of a

dangerous animal is generated by interpreting the animal’s presence as a threat to

the one’s survival. Moreover, goals o↵er a principled way to represent the agent’s

preferences. In economic-based approaches a utility function is typically used to do

this and the agent maximizes its expected utility over time. In GRUE, the agent is

not maximizing expected utility, as that might be too di�cult to compute. Instead,

it myopically maximizes a weighted valuation function in every time step. Because

the maximization is myopic, the agent can make decisions very quickly. GRUE’s core

contribution, however, is that the weights in that valuation function allow the agent

to adapt to changing circumstances. In particular, computational operators that re-

semble aspects of human emotions are constantly and automatically monitoring what

happens in the environment. When an operator like that “fires,” it alters the weights

in the agent’s valuation function. As a result, the agent is not maximizing the same

quantity in every time step, but essentially “switches focus” among its goals. Specifi-

cally, when a goal’s weight increases, the output of the myopic maximization is likely

an action that promotes and caters to that goal. Hence the agent can be thought
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as reactively adapting its decision-making focus to developments in the world. The

emotion-like operators carry important insights from the way people have evolved to

switch focus into the design of computer agents.

Goals and valuation

An agent is designed to perform certain functions in a particular environment.

These functions of an agent can be thought of as its goals (G). In GRUE, each goal

g
i

2 G is associated with three numbers:

First, each goal has a value v
i

2 R+, denoting its relative importance. This value

is considered domain knowledge and is not changing across time. For example, the

value of collecting a sample in the case of a Mars robot might be less than the value

of maintaining good system status and communication.

Second, every goal has a priority rt
i

2 N+ in every time step t � 0. Goals of higher

priority (larger rt
i

) are considered more significant in the current time step, whereas

goals of lesser priority are considered less significant. While the value v
i

of a goal

does not change over time, its priority might di↵er between time steps.

Third, each goal has a degree of achievement dt
i

2 [0, 1]. This is a measure of

the agent’s subjective expectation that the goal will be achieved at some point in the

future. A goal with dt
i

= 0 is forever lost (and hence dt
i

= 0 implies d�
i

= 0, 8� � t.

A goal with dt
i

= 1, similarly, is considered accomplished. Goals with intermediate

values in their degree of achievement are more or less closer to being achieved. In a

sense, the quantity dt
i

is a simple measure of how well the agent is doing with respect

to goal g
i

.
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These three figures (value, priority and degree of achievement) combine to give a

valuation function

ût =
X

gi2G

dt
i

· q(v
i

, rt
i

)

As can be seen in the above formula, the valuation at time t is proportional to the

degree of achievement of all the agent’s goals. In other words, if the agent is taking

actions to maximize its valuation function, it is essentially acting to increase the

degree of achievement of its goals. However, the degree of achievement of each goal is

weighted by that goal’s value and current-step priority, in a quantity denoted by the

q(·, ·) function. In the experiments that were run it was stipulated that 1  rt
i

 r
max

and q(v
i

, rt
i

) = v
i

· (rt
i

/r
max

) was used as the q-function, although arguably other ways

to weigh value and priority against each other are possible (for instance one could

have defined q to be equal to (1 + v
i

)r
t
i ).

Since goals are weighted by their priorities, by su�ciently increasing the priority

of a goal the agent will be geared towards taking actions to accomplish it rather than

lesser-priority goals. Changing the vector rt = (rt1, . . . , r
t

|G|) provides a way to change

an agent’s valuation function across time. This change induces adaptive behavior,

by essentially switching the agent’s focus between its various goals. Notationally,

û(rt,dt) will be used to denote function û parametrized by priority and degree of

achievement vectors rt and dt, respectively.

The hat operator ( ˆ ) serves as a reminder that this is not the agent’s actual utility.

This other function (u(at, st)) denotes the reward the agent will obtain by taking

action at in state st of the world. It therefore captures the agent’s true preferences

and is not changing from time step to time step. However, computing the long-
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term expected utility
P

s

t
,s

t+1
,...

u(at, st) might be too complex to even represent, as

it needs to incorporate every action taken and every event to occur across the agent’s

lifetime, interactions between events, costs and probabilistic dependencies, among

other factors, all of which influence state transitions. Moreover, it requires that the

agent explicitly reasons about the state of the world, which might not fully observable,

or whose transitions might be governed by dynamics unknown to it. As a result, such

a function might therefore be too complex or impossible to even write down. In

contrast, ût comes merely from the functional specifications (desired behavior) of the

agent at every point in time. Agents in subsequenly-described simulations will make

decisions by maximizing ût, but their performance in the end of the simulation will

be evaluated with respect to their actual utility function u.

Optimizing the valuation function and state-keeping

To maximize the valuation function û(rt,dt) at time t the agent must possess

some domain knowledge. First, it needs to be aware of the action set A available

to it. Second, for every action set a 2 A, it must have some notion of how that

action will a↵ect the degree of achievement of its various goals. For instance, the

Mars-exploring robot in our example might have actions such as ‘pickup item,’ ‘walk

forward,’ ‘turn right,’ etc. It should also know that if there is a chasm ahead, ‘walk

forward’ will probably result in the degree of achievement of goal ‘stay healthy’ to

drop significantly.

We thus o↵er our agent another function, f(dt, a). This function receives as

arguments the degree of achievement vector dt = (dt1, . . . , d
t

|G|) and a candidate action



Chapter 2: Re-prioritizing Goals Using A↵ect-Like Computational Operators 37

a 2 A, and returns the expected degree of achievement vector after the action has

been taken. To accomplish this, the function f must incorporate domain knowledge.

This domain knowledge is assumed to be rudimentary, and not necessarily accurate

or fully quantified. In other words, as dt
i

is only an estimate of how well the agent

is doing with respect to goal g
i

, thus the quantity f(dt, a) is only an estimate of the

impact of action a. All that matters is that f vaguely captures the direction (positive

or negative) and relative magnitude of a’s impact on the agent’s goals.

The function f , as defined above, is stateless. This is however not very useful

in practice. For example, ‘walk forward’ at the edge of a chasm is negative to the

agent’s well-being, but otherwise it might be positive. To discriminate between such

situations the agent might maintain a state �t 2 ⌃ for the current time step t, and

then condition the impact of an action on that state (f(dt, a|�t)). Again, �t does

not necessarily reflect or correspond to the full state of the world at time t, which is

denoted by st, as that might be unobservable and very di�cult to accurately track.

The state-space ⌃ is simply part of the agent’s design and only serves to discriminate

between situations in which an action might elicit very di↵erent e↵ects. The agent

also makes no attempt to track or predict the future transition of �t (or of st).

Given this function f , we have a way of selecting an action in every time step:

the agent simply chooses action

a⇤
t

2 argmax
a2Aû(r

t, f(dt, a|�t))

In other words, the agent selects the action with the highest expected increase in the

degree of achievement of its goals, each weighted by its value and current priority. In

maximizing its valuation function, the agent is treating goal priorities as constants,
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i.e., it does not reason about how these might change in the future because of its

actions.1

The agent is, however, also able to observe things in the environment. Things

like the presence of a threat or a reward ought to change its beliefs regarding the

degrees of achievement of its goals. To incorporate this functionality, we add the

observation function b(dt, e), where e 2 E is an observation obtained and E is the set

of all possible observations. The function returns—much like f—an updated degree of

achievement vector. For instance, if a system error is suddenly detected, the function

b will return a degree vector in which the d
i

of goal “maintain system health” is

decreased. At every time step t an observation et is received and

dt+1  b(dt, et)

Also, the observation et also serves to update the agent’s state

�t+1   (�t, et)

The function  is a simple state-update function. In the simulations, it merely as-

sumes that �t+1 is the same as �t insofar as the observation et does not contradict it.

If any elements of et are incompatible with �t, those elements alone in the next-step

state �t+1 are amended to reflect this. For instance, if �t denotes the presence of a

chasm ahead, and et reports no chasm, the state �t+1 will also not report a chasm.

Any domain-specific knowledge the agent possesses is contained only within the

values of goals v
i

and within the functions f , b and  . Furthermore, these are directly

1This is an important way in which GRUE di↵ers from established techniques, such as MDPs.
In an MDP, for example, actions are selected by maximizing the Q-value of a state-action pair. This
Q-value, however, has already been computed to capture information about the long-running e↵ects
of this choice under the policy followed by the agent. In GRUE, future e↵ects of an action are only
captured by goal priorities, which are computed and adjusted reactively.



Chapter 2: Re-prioritizing Goals Using A↵ect-Like Computational Operators 39

derived from the functional specifications of the agent design and are unavoidable

in every agent architecture. For instance, a typical game-theoretic decision-making

algorithm (say, a POMDP) would still need to somehow define a utility function for

the agent, and reason about the predicted e↵ects of actions and the interpretation of

observations. The fact that domain knowledge is limited to the v
i

’s and the functions

f , b and  allows the emotion-like operators, presented below, to be defined in a

domain-independent manner.

Emotion-inspired operators

The function of the emotion-inspired computational operators is to update the

priority vector rt. These computational operators are inspired by the beneficial func-

tions of human emotions, but they are not meant to fully replicate these emotions as

they manifest in people. The functional characteristics of the operators are therefore

“similar” to those of people’s emotions, but they do not serve as definitions of emo-

tions in the psychological sense. Operators are of two types: Goal-specific operators

are elicited in connection to, and update the priority of a particular goal. For ex-

ample, fear is elicited when a particular goal is threatened and impacts the relative

priority of that goal. Goal-independent operators are elicited without a particular

goal in mind and may change the entire priority vector. For instance, the operator of

boredom is elicited when nothing out of the ordinary happens for a while, but is not

associated with any particular goal.

Each emotion operator m 2M is associated with two functions. On the one hand,

there is the activation function �
m

, which contains the elicitation condition for the
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emotion and returns true if that condition is met. On the other hand, there is the

consequence function 
m

, which describes how the priority vector is to be changed

when the emotion is present, i.e., when �
m

becomes true. Below the functional form

for some emotions is presented:

• Hope and fear are reactions to changes in the expectation of the future accom-

plishment of a goal, positive or negative (hence, hope and fear are goal-specific

emotions). Both hope and fear in people are emotional reactions to a perceived

change in expectation. Hope is evoked, essentially, by realizing that something

desirable is more likely to occur than originally believed. Fear, similarly, is

evoked by becoming aware that something has just come under threat. Both

these realizations lead to a shift in focus and motivation. Fear leads individuals

towards protective and defensive actions like seeking shelter or hiding. Hope,

on the other hand, tends to establish the success of currently-followed behav-

iors with respect to the goals being hoped for. Hence, fear causes the person’s

focus to shift to the goal being feared for, in order to protect it, while hope

has the opposite e↵ect, since the goal that is faring better than expected needs

no urgent intervention. Since these two emotions have similar characteristics,

similar functional definitions are being provided for both of them. We define

�
m

for fear to be true i↵ dt�1
i

�dt
i

� ✓1, where ✓1 is an externally set threshold.

For hope, this condition becomes true i↵ dt
i

� dt�1
i

� ✓1. In essence, fear and

hope are elicited when there is a significant change in the expectation that a

particular goal g
i

will be accomplished. For instance, if an system error shows

up, function b will cause a decrease in the d
i

for goal “avoid enemy” and this
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will elicit fear (if larger than ✓1). We also define 
m

to increase (or decrease)

the rt
i

of the threatened (or hoped-for) goal by a constant c. This change, if

su�cient, will direct the agent’s e↵orts into protective actions, such as running

away, or allow it to tend to the needs of other goals.

• Boredom, a goal-independent emotion, is elicited when the û experienced by

a number of rounds has not changed significantly. In particular, �
m

is true

i↵ the standard deviation of payo↵s {ût� , . . . , ût�1} does not exceed a cer-

tain threshold ✓2 (in the simulation  , the length of history considered for the

elicitation of boredom, has been set to 10). When activated, the emotion of

boredom perturbs the priority vector rt at random. The intuition behind this

definition is that boredom detects situations in which the agent is “stuck at a

local maximum,” i.e., situations in which its behavior has historically lead to

good payo↵s, but which might prevent it from exploring even better alternatives

in the behavioral space.

• Anger is an emotion that gets elicited when blameworthiness can be attributed

to another party for some negative-impact event according to the OCC model

of emotions [100]. As such, its elicitation �
m

must consider whether an observed

change in the environment has been caused by some other agents, and whether

they had an alternative course of action or they specifically intended to cause

it, as opposed to it being a side-e↵ect of their plans (to establish blamewor-

thiness). Anger results in the raising of priorities among goals geared toward

harming the supposed perpetrators or negating the e↵ect of their actions. As

such, it accomplishes the basic functions attributed to the emotion of anger in



Chapter 2: Re-prioritizing Goals Using A↵ect-Like Computational Operators 42

people, which are (a) to identify others who have acted maliciously or broken

accepted social norms, and (b) to o↵er a punishment mechanism that deters

such behaviors and promotes cooperation.

• Sadness is an emotion that is elicited from repeated or significant failure. In

humans it elicits withdrawal from activity and rigorous thinking, aimed at re-

planning one’s course of action. (In some cases this emotion might be employed

maladaptively, causing chronic withdrawal, i.e., depression.) Consistent with

this function of sadness, �
m

was set to be true when a series of valuations

{ût� , . . . , ût�1} all lie below a certain fraction � 2 (0, 1) of the historically

average or expected valuation, where ût =
P

gi2G dt
i

· q(v
i

, rt
i

) was the valua-

tion function value at time t. The result of sadness is to suppress the priority of

higher-priority goals, and increase that of low-priority goals, essentially “switch-

ing focus” to a potentially more promising set of actions.

The above emotion-like operators are defined in a general-purpose and not domain-

specific manner. In the definition of each operator there is no specific features of the

particular domain are mentioned. Instead, the operators’ functional specifications

make use of only cross-domain concepts such as dt, rt and ût. These quantities serve

as abstractions, as they may have a di↵erent interpretation in each domain, yet they

allow the definition of the emotion-like operators to remain the same across domains.

As shown in the evaluation, also, the performance of GRUE is very robust with

respect to the threshold values chosen for the various operators.

To keep things simple, in the evaluation of GRUE only the emotion-like operators

of hope/fear and boredom were implemented. Furthermore, the same threshold ✓1
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for hope and fear was used in each case.

2.2.1 Evaluation of GRUE

Two domains were selected to evaluate GRUE that are characterized by high

uncertainty and complex stochastic change: restless bandits and a foraging domain.

The restless bandits are an extension of the problem ofmulti-armed bandits, which has

been used extensively in AI as a prototypical example for the exploration/exploitation

tradeo↵. In the foraging domain, the agent exists in a “blocks world” and moves about

to locate food. Friends and enemies also exist in the environment that will potentially

benefit or hurt the agent, and there is no easy way of telling whether another entity

is a friend or an enemy. Both domains have many desirable features that are common

among complex environments, such as large scale, uncertainty, and provable hardness

of computing traditional solution concepts.

In both domains, also, the same mechanism and the same emotion-like operators

were used without change or adaptation, and only the functions f , b and  were

specifically designed for each domain. This safeguards that the mechanism is not

fine-tuned to the specifics of a particular environment. It also strengthens the argu-

ment that the particular emotion-like operators used might have potentially broader

applicability to a variety of other domains.

Restless bandits

Restless bandits are an extension of stochastic multi-armed bandits (MABs). In a

typical setting, the bandit consists of a number (k) of arms, each of whom delivers a
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reward when selected. In the simple MABs case, the reward r
i

of each arm i is drawn

from a probability distribution that depends on the arm’s state (s
i

). In each time step,

the agent may choose only one arm and obtain the reward from it; after this, the arm

that was selected transitions stochastically to another state according to a transition

matrixT
i

. The restless bandits case extends the above framework by allowing all arms

to undergo a transition in each round, even those not selected. In particular, each arm

i transitions to a di↵erent state in each round according to matrix T
i

(if selected) or

matrix T̃
i

(if not selected). The goal in both cases is to maximize average reward. But

whereas MABs admit an optimal solution, termed the “Gittins index” [48], restless

bandits have been shown to be a hard problem. According to Papadimitriou et al.

[101] even with deterministic transitions the problem is intractable in the general case.

Recently, work has been done to be able to compute solutions for subclasses of the

problem (e.g., Slivkins & Upfal [120]), most of which follow the “Whittle index.” (For

a good review and an approximation algorithm see Guha et al. [54].) Such solutions,

however, su↵er from assuming that too much is known: payo↵ distributions and

transitions matrices, as well as the initial state of each arm, are usually considered

known, and the problem is cast as being able to reap high rewards despite the state

of all arms changing over time. However, this does not directly apply in situations

where neither the stochasticity in payo↵s nor in transitions is known, as in the setting

here examined.

In the simulations reported below there were k = 5 arms, each of which could be

in one of three states: “good,” “medium” and “bad.” In each state s of arm i, payo↵s

were given by a Gaussian with mean µs

i

and standard deviation �s

i

. Naturally, good
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states had higher means than medium ones, which had higher means than bad ones.2

An agent was allowed to make choices for a number R of steps (the value of which

varied among 30, 100, 500 and 1500). In ever case the average payo↵ of the agent

(as well as its variance) were recorded. For every agent tested, the experiment was

repeated 100 times.

The emotion-based agent was given five goals, one for each arm, of the form g
i

=

“obtain high reward from arm i.” All goals had the same value v
i

= v. The agent did

not track the states of the various arms across time. It merely assumed that the state

of every arm remained unchanged since the last time it was selected.3 When the agent

selected an arm, it compared the payo↵ received with historical payo↵s from the same

arm, and made a crude estimate whether its state was good, medium or bad. Given

its assessment of the arms’ states, action “select arm i” was expected (in function f)

to increase the degree of achievement of goal g
i

if arm i was believed to be in the

good state, decrease it if i was believed to be in the bad state, and leave it unchanged

otherwise. This is basic domain knowledge, merely stating that selecting good-state

arms is better than selecting bad-state ones. After a reward was obtained, the degree

of achievement of the corresponding goal would be adjusted accordingly (function

b), increasing upon high rewards and decreasing upon low rewards (dt+1
i

 payo↵

received at t / max payo↵). The agent employed the three aforementioned emotion

2This particular instance of the restless bandit problem belongs to the special cases that are

tractable, in the sense that a Whittle index could be computed for them. Again, however, this
would only be possible if the transition probability distribution were known; if not known, as in the
experiments conducted, the optimal policy is, of course, impossible to compute.

3Since the state-space S in the restless bandit simulation was small (five arms in three possible
states each, for a total of 15 states), the internal state-space representation for the agent, ⌃, was
taken to be the same as the actual state-space of the game, S.
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operators of hope, fear and boredom to update the priorities of its goals, which were all

initialized to 5 and were allowed to range between 1 and r
max

= 10. Di↵erent values

for the emotion thresholds were tried (✓1 2 {0, 0.1, 0.3} and ✓2 2 {0, 1}). Hence

a total of six variants of the emotion-based agent were tested in order to examine

the robustness of GRUE with respect to the choice of thresholds. The approach’s

performance was taken to be the average among the six variants examined in order

to prevent any observed performance benefits being obtained by a fine-tuning of the

threshold values.

The emotion-based agent was compared to six agents: (i) a random agent, which

selected arms with uniform probability in every time step; (ii) a reactive agent, which

selected an arm until a significant decrease (greater than 30%) in payo↵s was ob-

served, then switched to a di↵erent arm at random; (iii) a learning agent, which

made assessments (based on past data) about the mean and variance of each state,

but did not track the change in states across time; (iv) an “all-seeing” agent, who

would (somehow) know the payo↵ means of all the states, as well as the current state

of each arm; (v) a “half-seeing” agent, who would know the payo↵s means of all the

states but would not know their exact current state; and (vi) a collection of indexing

agents. These indexing agents are guaranteed according to Guha et al. [54] to contain

the optimal policy, and work as described below.

For every indexing agent, an integer value t
i

(the index) is associated with each

arm i. The agent then acts as follows: Initially, it selects a few arms at random to

assess the mean of good and bad states across the five arms. Then, it chooses its

next action by looking at the reward obtained by its last choice. If the arm selected
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in the last round is evaluated as being in the good state, the agent selects it again;

otherwise, it chooses at random from the subset of arms i that have not been selected

for at least t
i

time steps, where t
i

is the index for that arm. In other words, the index

of an arm denotes how long an agent must wait, after the arm is detected in the bad

state, until it starts considering it again.

The testbed simulated 515 such index policies (t
i

2 [1, 15], 8i).4 Results from the

simulation are presented in Table 2.1. (All di↵erences are significant at the 1% level

according to pairwise non-parametric Wilcoxon tests.) Naturally, policies (iv)–(vi-i)

are not candidates for direct comparison, because they “cheat” by having access to

knowledge the remaining agents do not; nonetheless, they are good indicators for the

performance of the GRUE agents.

Agent R = 30 100 500 1500
Average Emotion 3.64 3.26 3.07 3.17

i. Random 1.91 2.03 1.94 2.37
ii. Reactive 1.29 2.98 2.83 2.45
iii. Learner 3.15 2.93 2.32 2.22
iv. All-seeing 8.75 8.73 8.83 8.72
v. Half-seeing 3.99 3.70 3.62 2.92
vi-i. Best-index 5.64 4.46 4.13 4.16
vi-ii. Avg-index 2.44 2.47 2.46 2.43

Table 2.1: Average payo↵ of agents in restless bandit domain: Agents (i)-(iii) have
the same knowledge of the world as the emotion-based agent; agents (iv)-(vi-i) know
the state transition function and/or the actual state of all arms, while agent (vi-ii)
represents a randomly chosen policy from the space of (exponentially many) optimal
policies. The performance of the emotion-based agent is the average across the di↵er-
ent choices of thresholds for the computational operators. It consistently outperforms
other techniques that have the same knowledge as itself.

4This brute force approach was chosen due to the fact that the optimal index policy cannot
be computed without having knowledge of the means of all states and the transition probabilities
between them, which the emotion-based agents did not know.
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As can be seen in the table, the emotion-based agent consistently outperforms the

random, learning, and reactive heuristics. It also comes close to the optimal index

policy (which, is, however, not computable without a priori knowledge of the parame-

ters of the bandit arms). Choosing a policy at random from within the exponentially

large space of index policies (‘Avg-index’ in Table 2.1) performed poorly. This is

because the set of index policies may contain a large number of obviously bad or

nonsensical policies. The randomly-chosen policy’s performance indicates, however,

that the requirement for optimality is strong when it comes to index policies. In other

words, it is not su�cient to deploy an agent with some index policy and hope that

it will perform well—good index policies are very rare. In fact, only about 50 of the

515 index policies outperformed the emotion-based agent for every choice of R.

Note also how the domain impacts the performance of some of these other agents.

The learner agent in particular appears to achieve diminishing payo↵s as the running

time of the simulation (R) grows. This is counter-intuitive, as one would expect more

payo↵ samples to lead to better performance. I hypothesize that the reason that the

learner agent experiences diminishing returns is that the information it assumes to

have learned is more likely to become outdated as time passes. For example, if it

receives payo↵ 5 from arm 2 at time 1, it is reasonably safe to assume that arm 2

will o↵er it something around 5 at time 2. However, as time goes on, the probability

that arm 2 has transitioned to another state grows. As this happens with all k arms,

the learner algorithm’s beliefs are even harder to maintain accurately. On the other

hand, the performance of the emotion-based agent seems robust with respect to the

time R allotted for learning and experimentation.
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Next, the robustness of emotion-based agents with respect to the choice of thresh-

olds ✓1 and ✓2 was tested. Across all choices of R, the variance in the payo↵ obtained

among the six variants of the emotion-based agents (with di↵erent choices of ✓1 and

✓2) never exceeded 0.3. Table 2.2 shows the performance of six variants for R = 1500.

As can be seen, all but one variant (6) still outperform the other heuristics (last

column of Table 2.1).

Variant 1 2 3 4 5 6
Avg. payo↵ 3.51 3.79 3.01 3.76 3.23 2.36

Table 2.2: Average payo↵ of emotion variants for R = 1500: The variation in per-
formance across the various choices of thresholds for the computational operators is
very small.

Foraging

GRUE was next evaluated in a foraging domain consisting of a 10 ⇥ 10 square

field. Random units of food are placed on squares of the board, such that their total

number does not exceed 15. A single agent starts in location (0, 0) and is allowed,

in every time step, to either (a) walk in one of the four directions, spending 5 HP,

(b) run, covering twice as much space, but spending 20 HP, (c) pick up food, if it

stands on it, or (d) eat food, if it carries some. An agent may carry up to one unit of

food at each time, and picking up a unit of food causes one more to randomly appear

somewhere, such that the total remains 15. The field is also populated by a number

of enemies (8) and a number of friends (8), which are indistinguishable to the agent.

Standing on the same square as an enemy in the end of a round causes the agent to

su↵er damage of �100, while a friend provides 100 units of benefit. Both friends and
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enemies will move in every round toward the agent, if it finds itself next to them.

Eating food also gives the agent 200 HP. There are two seasons (winter and summer)

in this environment, and the season changes stochastically with probability 0.02 after

every round. The season modulates which parts of the grind food is more likely to

appear in. The location of friends, enemies, and food is not uniform; they are all

clustered in parts of the field based on the current season (e.g., in the winter there

are more enemies in the top-left corner). Agents are assumed to perceive the area that

is one step away from their current location, counting diagonal steps (i.e., the 3⇥ 3

square surrounding them). However, agents do not observe the season, do not know

the transition probability for its change, and have no knowledge of the movement

patterns of friends or enemies. (For this reason, the emotion-based agent’s internal

state-space representation, ⌃, only distinguishes between the presence of food, as well

as the presence of a friendly or hostile agent in the vicinity of the agent.)

The emotion-based agent had two goals: g1 =“avoid danger” and g2 =“replenish

HP.” The presence of food and the acts of picking it up and eating it were set to

increase the degree of achievement of g2, while the presence of another creature (friend

or enemy) was initially expected to decrease the degree of g1. However, after an

interaction, and depending on its outcome (experiencing damage or benefit), the

degree of achievement of g1 would go down or up. Hope would ensue after a positive

interaction and decrease the priority of g1, while fear, caused upon su↵ering damage,

would increase it. The net e↵ect of hope and fear was, therefore, a tendency to avoid

creatures right after being damaged by one (since now g1 had a high priority), and

not avoid them after being benefited (since now g1 had a low priority).
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This emotion-based agent was compared against a random policy, and three

scripted heuristic policies of the form: “walk about at random, pick up and eat

food when you see it, and move in the opposite direction of other creatures.” The

three heuristic policies di↵ered in whether the agent would walk or run away from

enemies, and whether it would consider interacting with a creature to see if it is a

friend or not. The agents were allowed 500 moves on the field and then their HP was

recorded; for all agents the experiment was repeated 100 times.

The optimal policy in this problem would be the solution to a very complex

POMDP with over 8 million states. To get a better sense of the performance of the

system, however, features of the problem were abstracted and the number of states

was reduced by assuming certain independencies. Thus, only the location of nearby

creatures (up, down, left, right, center, none), the location of food, whether food

is being carried and whether the very last interaction was with a friend or enemy

were accounted for, resulting in an MDP with a total number of 144 states. (The

abstracted problem is an MDP since unobserved variables, like the location of unseen

creatures, are assumed not to matter.) In Figure 2.2 the performance of the various

agents is presented. (Di↵erences are significant at the 1% level.)

As can be seen the emotion-based agent outperforms the most obvious heuristics

and comes very close to the MDP which was formulated on the reduced (abstracted)

problem. Yet although the emotion-based agent underperforms the MDP, the lat-

ter requires more computational resources, and also requires some knowledge about

things that the emotion-based agent does not have. For example, the MDP needs

to know the transition probabilities between states, which in turn requires making
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Figure 2.2: Average 500-round HP in foraging environment: The emotion-based agent
performs close to the optimal policy for the simplified MDP representation of the
domain, yet it requires much less computation and no human insight.
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assumptions of the behavior of friends and enemies in the environment. Furthermore,

abstracting away the original problem down to a more manageable MDP makes use

human intuition and e↵ort, which the emotion-based agent do not require.

2.3 Related Work

In this section, three types of approaches to complexity in AI are presented. One

type aims to address issues of scale, for instance by reducing the number of states

an algorithm might have to consider. A second sacrifices optimality guarantees. And

a third type exploits independencies in the domain. The unifying theme of all three

approaches is to exploit structure to reduce the size of a representation or the com-

putational requirements of an algorithm.

Abstractions and Discretization

As AI tackled problems of increasing size, it became obvious that the domain

could not be fully represented, and that it is impossible to reason through every

aspect of it or every contingency that might occur. Sometimes this happens because

of the sheer scale of the domain. For instance, to provide an optimal algorithm for

the rather simple game of Texas Hold’em Poker one would have to consider all the

possible combinations of cards on the table and in other players’ hands. Other times

the state space is continuous, and states cannot be considered individually. In the

game of billiards, for instance, the state space (i.e., the location of the spheres) is

continuous. The action space, represented as the position, angle and velocity of a

strike, is also continuous.
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One insight necessary for handling problems of scale is that not every state or

every detail probably matters a lot by itself. A large number of states or actions

might be “equivalent” for the purposes of making a decision and might a↵ord similar

patterns of thought. For example, in poker one might plausibly assume that all

hands not containing a high value or an interesting combination (“weak hands”) can

be played similarly. Also, for player i it might not matter a lot if opponent j or

opponent k have a particular hand for the purposes of deciding whether to call or

fold, as long as one of them has it. Essentially the original game of poker might be

su↵ering from large scale, but the decision-making algorithm operates on a reduced

version of it [45, 117]. Similarly in billiards an algorithm might be more e�cient by

assuming that several symmetrical positions on the table are equivalent [5]. Such

useful simplifications abstract away from the specific details of the problem and allow

an algorithm to work on a higher level, presumably in a much reduced state and

action space.

Heuristics

Heuristics are another set of techniques to deal with complexity, closely related to

abstractions. Algorithms that use a “quick and dirty” approach to decision-making

and problem-solving can be typically thought of as making use of a heuristic. These

heuristics avoid extensively deliberating about a choice in order to identify the optimal

decision, and use simpler, local metrics to decide. For instance, greedy heuristics make

a myopic decision based on what seems best “right now,” overlooking that fact that

such a local decision might not necessarily lead to the best possible solution over
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time. Other heuristics might use randomization (e.g., take an action uniformly at

random) or make a choice that is contingent upon what is happening in the world (e.g.,

‘copy what your opponent did last round’). Sometimes heuristics are part of bigger

algorithms and—assuming that the heuristic satisfies certain desirable properties,

such as admissibility—these algorithms may in fact guarantee optimality (such as A*

citeastar) or provide guarantees as to how far away from optimal its performance will

be.

Independence and Graphical Structures

Another way of exploiting structure to simplify the representation of an environ-

ment (and therefore reduce its complexity) is to take advantage of possible indepen-

dencies in the state space. Imagine, for example, an algorithm that monitors the

operation of a car manufacturing facility. Several errors might occur along the pro-

duction line (such as misplaced or misshaped parts), in the warehouse, or the electrical

and ventilation systems, among others. The system utilizes a number of sensors to

identify errors, diagnose their source and, if possible, correct them. In this setting, al-

most every part of the system is interconnected, such that, for instance, a local power

failure might lead to a robot malfunctioning in the production line, and thus a broken

car needing to be loaded o↵ the truck later on. Yet the algorithm can be greatly sim-

plified by acknowledging that most interactions are localized. In other words, each

sensor reading is significantly correlated with only a small number of direct causes.

Other than these explicit correlations, other quantities are said to be independent.

Such independencies make reasoning and decision-making easier: observing a partic-
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ular sensor reading the algorithm only needs to reason about the quantities that are

correlated with it, and hence with the set of actions relevant to these diagnoses. In

our car manufacturing example, for instance, misshaped car parts are independent of

the warehouse loading/unloading schedules. Therefore, when such parts are observed

in a car, the algorithm should only probe the state of the manufacturing robots or

the quality of the basic material involved.

Independencies like that are captured predominantly using graphical data struc-

tures. Such structures were introduced in the late 1980s and became known as

Bayesian Networks (BNs [102]). Bayesian Networks encode joint probability distri-

butions in e�cient ways that take advantage of independence relationships. Bayesian

Networks and their extensions (Influence Diagrams or IDs, and Multi-Agent Influence

Diagrams or MAIDs) are useful in decision-making. In particular, MAIDs have been

used to simplify Nash equilibrium computation in certain domains [71], sometimes

resulting in exponential time savings. Other extensions of Bayesian Networks have

also been used for decision-making, among them object-oriented Bayesian Networks

[69] and relational Bayesian Networks [59], Hidden Markov Models (HMMs, [105])

and Hierarchical Markov Models [39].

Other graphical representations aim at reducing complexity by taking advantage

of independencies in the strategy space. Graphical games [65] represent players in a

game as nodes on a graph, and add a directed arc between two nodes i and j when

the actions of player i can influence the payo↵ of player j. This representation seeks

to exploit cases in which the payo↵s of most players only depend on the strategies of a

few other players, and therefore are independent of a large part of the strategy space.
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Another representation is that of action-graph games [61], which capture another sort

of useful independence. In particular, in many games the payo↵ of a player depends

on whether a particular action has been taken by somebody, but not necessarily

on who took that action. In both formalisms it has been formally shown that the

representation is greatly reduced when these independencies abound in the structure

of the game.

Additional Approaches

Several other techniques have been used to solve for good decisions and iden-

tify well-performing strategies, that do not neatly fit in any of the above categories.

With respect to game-theoretic approaches, the field of algorithmic game theory has

attempted to develop techniques that simplify equilibrium computation. The algo-

rithms developed typically perform well on particular representations (e.g., the con-

tinuation method on MAIDs and graphical games [14], or the sequencing method in

sequence-form games [70]), or they might assume particular classes of games.

Decision-making also often involves reasoning about unobservable or partially-

observable quantities. For instance, games of awareness [107] try to explicitly reason

about situations in which agents might not be fully aware of the options other possess

(their strategy space). When certain Markovian assumptions hold in the domain, as

in the case of MDPs and POMDPs (see Section 1.2), tools and algorithms such as

Interactive Partially Observable Markov Decision Processes (iPOMDPs [49]) attempt

to relax the assumptions of common knowledge and explicitly represent nested belief

hierarchies, refining equilibrium solutions to reflect this uncertainty.
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Other emotion-based analogues for decision-making

Prior work has also considered the use of computational analogues of emotion in

agent decision-making. In that space, we can distinguish between two types of ap-

proaches. In the first type, computational analogues of emotion are incorporated into

agent design to give them human-like traits. This is especially useful in designing vir-

tual agents that will interact with people. For example, a virtual agent that converses

with a person may appear more natural if it can compute and exhibit appropriate

emotion expressions, or if its language can be meaningfully influenced by the a↵ec-

tive content of the conversation. Such computational analogues of emotion have been

used to create sophisticated virtual agents. Some of these agents are accurate enough

to be used for the training of psychotherapists, since they can exhibit emotional re-

sponses similar to those of actual patients [66]. Others interact with people in an

a↵ect-modulated way to built “rapport,” making the interaction seem more natural

and thereby influencing people’s perceptions and behavior [51, 29, 30].

The second type of work has incorporated computational analogues of emotion into

agents with the aim of increasing their performance, not of producing more natural

human-computer interaction [111, 110, 112]. GRUE di↵ers from these models in

that it uses computational analogues of emotion that are consistent with established

and well-studied appraisal-based psychological theories. Scheutz [111], for example,

proposes a reactive decision-making algorithm that maintains a “mood” quantity

for each action the agent can take. When the agent considers its various candidate

actions, this mood measure is used to skew their expected utilities. Hence, if negative

mood is associated with an action, the expected utility of that action is perceived
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to be smaller. Although such techniques lead to performance increases in certain

domains, they cannot be characterized as properly “a↵ective,” since their heuristic

notions of a↵ect are not generated by a consistent account of the emotions. Due to

this, they su↵er from two issues in practice: First, undi↵erentiated notions of a↵ect

like that are inherently limited in the way they may assist an agent. Fear and anger,

for example, are both negative emotions but have important di↵erences and assist a

person in very di↵erent situations and in very di↵erent ways. Treating them both

flatly as a “negative mood” misunderstands and misapplies them. Second, unless

a theory of emotion is used (e.g., cognitive appraisal), the process of maintaining

and updating the emotional state of the agent must rely on heuristics, and these

are typically highly domain-specific and di�cult to generalize. By being grounded

on established theories of emotion, GRUE is able to better distinguish between the

various emotions and has a domain-independent appraisal-based method to update

the agent’s emotional state.

2.4 Discussion

GRUE uses quantitative notions of certain human emotions to make decisions in

complex environments. In two complex domains, in which the optimal solution is

either very hard or intractable to compute, it was shown that agents following GRUE

performed well and required very limited computational resources. Furthermore, the

emotion-like operators in GRUE were formalized as domain-independent operators.

As such, they hold the potential to be useful in a variety of other novel environments.

This method is complementary to other decision-making approaches presented
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earlier in this chapter, and shares many similarities with them. As already argued,

the emotion-like operators can be thought of as reactive heuristics, fine-tuned by

evolution to respond to a broad range of similar situations [128]. In this way, emotions

also behave as a form of abstraction, since they explicitly overlook the vast richness

and subtlety of the world to make a decision based on only a small number of features

(e.g., in the case of fear, only based on whether a source of danger has been detected).

Emotions also detect independencies, focusing people’s thinking and reasoning on

what is important “right now” [55, 25] and treating everything else as not directly

relevant. Similarly, the operators used by GRUE respond to stimuli by changing

the priorities of the agents’ goals, thus focusing the agent’s decision-making toward

achieving goals that currently have a high priority. Hence emotion-like operators

form a particular class of heuristics that intelligently bundle aspects of abstraction

techniques and independence-exploiting tools. The advantage of these bundles stems

from the fact that they have been fine-tuned over millions of years of evolution to

perform well in practice in frequently encountered situations throughout the course

of evolution. As a result, to the extent that agents operate within environments

that share many structural similarities with those ancestral environments, we would

expect these emotion-like operators to be helpful in guiding them to good decisions.

The use of the word “emotion” in GRUE must be understood as detached from the

biological and psychological complexities of emotions in people and living organisms in

general. Although cognitive appraisal theories in psychology [100, 73, 99] have taken

an information-processing approach to analyzing emotions, the biological substrate

and the psychological influences of emotions are far too complex to account for in a
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simple model. Moreover, certain functions of a↵ect and insights were brought into

agent design over to the extent that they confer a performance advantage or reduce

computational cost. In that spirit, the goal in this thesis has not been to replicate

human emotional reactions with high fidelity, but to adapt basic notions of emotion-

based decision-making to the practical needs of AI agents.

In that sense, the emotion-based computational operators bring those behavioral

responses, crafted and refined by evolution, into agent design, to produce a flexible

agent architecture. In this architecture, the various emotions represent appropriate

responses to certain classes of situations. For example, the operator of boredom is a

good response in environments where great learning potential exists and the agent

risks spending too much time and e↵ort in one particular subspace of the domain.

Boredom causes a perturbation of the goal priorities to move the agent out of a sta-

ble (but potentially suboptimal) situation and induce a higher degree of exploration.

Other emotions are useful in other kinds of situations and bring about di↵erent adap-

tations. As a whole, the method is similar to other portfolio approaches like IBM’s

Watson [38] or the Netflix prize winner [12], in that emotions can be seen as modules

in an architecture, with each module working well in a particular situation and for a

specific problem, and all of them (as a whole) exhibiting high performance.

It must also be noted that the simulations described to evaluate GRUE served to

examine very complex domains, for which optimal solutions are either not tractable

or very hard to compute. On the one hand, this illustrates the potential value of

emotion-based decision-making operators. On the other hand, the absence of more

sophisticated algorithms necessitated comparisons between the emotion-based agents
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and relatively simple heuristics, as no better domain-independent solution approaches

exist that can be used without extensive periods of learning.

Future Work

Despite being justified in using simple heuristics to compare GRUE against, the

simulations say little about domains for which optimal solutions are currently within

our reach. In those cases, the agent designer might have to select between using

an emotion-inspired approach or an explicit optimization tool. The former would

allow building the agent faster, but it would not be able to provide any optimality

guarantees. In those cases I would recommend experimenting with emotion-inspired

agents (perhaps in simulation) and establishing how good their performance is in

practice, before full deploying them.

Possible future extensions of GRUE include exploring how this methodology lends

itself to generic domains and how it compares with currently optimal solutions. One

of the avenues worth exploring is to compare emotion-based agents with “anytime”

algorithms, and therefore assess the computational cost (in time and resources) for

these algorithms to catch up with an emotion-based decision-maker which operates

“out of the box.” Quantifying in this way the limits of this emotion-inspired approach,

one will have a better sense of when an emotion-based methodology is appropriate or

not.

Another possible extension is to relax the assumption of myopic choice. Clearly,

people do not simply rely on short-term, instinctive or emotional assessments to reach

good decisions, they frequently deliberate about the future. Most of the time they
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follow a combination of short- and long-term decision-making approaches. It is an

open question whether and how deliberative algorithms can be extended to use short-

term or myopic assessments as submodules, and whether myopic approaches can be

extended to take into account limited lookahead or perform computations that will

make them more deliberative, accurate and precise.



Chapter 3

Decisions in Groups: A↵ective

signaling

Complex environments rarely involve a single agent reasoning and acting alone.

Others—humans or computers—are part of the world, and their actions are critical

for the agent’s decision-making. The presence of other agents raises two new issues.

First, for an agent to respond successfully to what others might be planning, it needs

to predict their actions as accurately as possible. In collaborative domains, in which

the goals of everyone are aligned, having a good predictive model of others can help

minimize mis-coordination and improve e�ciency; and in competitive domains, in

which agents are self-interested, knowing how others will act allows one to best-

respond to their potentially adversarial plans. Second, an agent must be able to

interpret others’ actions after they occur, as doing so helps the agent better identify

the strategies others are following, their preferences (utility function) or goals, and

any other unobservable characteristics information they might possess.

64
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This chapter presents an a↵ective mechanism for these two problems of predic-

tion and inference in multi-agent settings with high uncertainty. The central idea

behind this mechanism is that observing other agents’ actions is not su�cient for

disambiguating and interpreting their behavior. There might be a multitude of inter-

pretations consistent with the same action of an agent. To reduce ambiguity, agents

are designed to produce and transmit an emotion-like signal that reflects their “re-

action” to what is happening in the environment. For instance, if they perceive that

something undesirable has just happened to them, they emit a “distress” signal. This

signal is ambiguous on its own as well (distressed about what?), but in conjunction

with the observed action and the context in which both are observed it serves to

reduce ambiguity.

Agents following the mechanism produce this signal unintentionally, in the sense

that it is not strategically and explicitly computed—its production and transmission

is happening automatically and without the agent having to reason about the e↵ect

of the signal on others’ inferences, perceptions and future actions.

Think about an example from natural language, and consider a parallel. The

words in a sentence are like explicit direct actions, and intonation is akin to a sup-

plementary signal. Imagine then reading the phrase “She did a good job.” This

phrase can have multiple interpretations depending on intonation. One may utter

this sentence as a statement of fact. One may also emphasize the person who per-

formed well (“She did a good job.”). Furthermore, one may add surprise, derision or

commendation. Finally, one might place emphasis on how good her performance was

(“She did a good job!”). Words alone are not enough to disambiguate, and intonation
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without words carries little information, but both of them together help make the

signal explicit.1

Section 3.1 begins with a brief overview of inference and communication in multi-

agent systems from a game-theoretic standpoint. I discuss issues pertaining to un-

observable characteristics of agents, private information, Bayesian games, individual

private priors, and the di�culty of making inferences when the assumption of a fully-

known small world is relaxed. Previous approaches to communication and inference

are also presented. Section 3.2 moves the discussion from game theory to prevail-

ing views in evolutionary psychology and cognitive science about the communicative

functions of the emotions. In these accounts a↵ect is seen as a concise yet powerful

communication tool, revealing a person’s state but also providing useful information

for groups to coordinate their activities.

According to several models of human emotion, a↵ect is generated by means of a

set of appraisal variables. These variables capture how the agent reacts to events in the

world. “Desirability” is one such variable, measuring how conducive an observation

is to the person’s goals. Another appraisal variable is “blameworthiness,” which

captures the extent to which another person is to be held responsible for his actions (it

was intended and premeditated). The mechanism uses three such appraisal variables

by which agents can send emotion-like signals to others around them. Moreover,

these variables are easy to compute, making the signal generation practically costless.

Agents receiving the signal use Bayes’ rule to infer the unobservable characteristics of

1Of course, emotions such as surprise and derision are partly unintentionally communicated, but
sometimes intentionally. In this work I assume a strictly unintentional signal, deferring the handling
of strategic signaling to future work.
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the sender, by conditioning a prior over such characteristics on any actions the have

observed and any signals they have received.

Section 3.3 evaluates the mechanism in two domains: an iterative “social dilemma”

(an extension of the finitely repeated prisoner’s dilemma) and a task domain modeled

as a DEC-POMDP with private utilities and private state information. The first do-

main takes a population of agents playing a very simple game and adds just a single

unobservable characteristic. In particular, both cooperative and self-interested types

of agents are allowed to exist in the population. This is su�cient to increase the

complexity of the game, raising problems which the proposed signaling mechanism

addresses. In particular, agents are randomly paired to play a game, during which

measurements of how quickly and accurately they are able to infer their partner’s type

are obtained. It is demonstrated that when agents transmit a↵ective signals during

their interactions, they can infer their partner’s type more quickly and more accu-

rately, which results in improved performance. The second domain considers agents

in an environment in which there are opportunities for collaboration, and measure

whether a↵ective signals are an e�cient way of transmitting relevant information.

The simulation compares between populations of agents who emit no signals, agents

who communicate their full internal state, and agents that send this “low-bandwidth”

a↵ective signal the mechanism generates. The results illustrate that a↵ective signals

lead to similar improvements in agent coordination as full-state transmission, but

with much less costly communication.

Throughout these three sections, signals are assumed to be truthful. Agents do

not fabricate them to strategically mislead others. Section 3.4 argues that this is a rea-
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sonable assumption. It presents a computational conjecture that in complex domains

manipulability of a signal might be computationally hard, particularly for repeated

interactions. The chapter concludes with a discussion and possible extensions of this

work.

3.1 Inference and Communication in Multi-Agent

Systems

In the language of game theory we can distinguish between games of perfect,

imperfect and incomplete information. In perfect information games everything about

the game is assumed to be common knowledge, such as every agent’s payo↵ function,

the actions available to it, and the structure of the game (i.e., which agent goes first,

who moves after every action sequence, etc.). Moreover, at every point during a game

of perfect information, all agents know exactly the actions everybody else has taken

so far. When perfect information games are represented in the extensive form (see

Section 1.2.2) all information sets are singular nodes and the optimal strategy (Nash

equilibrium) can be identified simply by using backwards induction: start at the leaf

nodes of the tree and go upwards, selecting at every node the action that maximizes

the utility of the agent whose turn it is there, until the root of the tree is reached; the

strategy profile consisting of the decisions selected at every node is a Nash equilibrium

for the game as a whole.

In imperfect information games some agents may have information sets consisting

of two or more nodes, because either the world is stochastic (in which case an addi-



Chapter 3: Decisions in Groups: A↵ective signaling 69

tional player, “Nature,” is assumed to be making probabilistic choices at its nodes

along the tree), or because these agents do not observe an action taken before their

turn (including perhaps some of their own past actions, if the game does not possess

the property of “perfect recall”). Nash equilibria in games of imperfect information

cannot in general be identified by backward induction, and more complex algorithms

are needed.

In the final category of games (incomplete information), the unobservable informa-

tion is structural. Players might be uncertain of each other’s payo↵ functions, or even

the actions/strategies available to them. Furthermore, players need to reason about

the beliefs of others. Suppose, for example, that player i believes player j’s utility

function is u
j

or u0
j

with equal probability 0.5. However, player i might acknowledge

the fact that j knows with certainty which function her true utility is. Player i might

even believe that player k 6= j disagrees on the probabilities assigned to u
j

and u0
j

.

To model situations like that the concept of a “type” is typically invoked. The type

of an agent encapsulates its utility, its action set, its beliefs about the structure of the

game, and its beliefs about other agents’ payo↵s, action sets, etc. In a sense, the type

of an agent fully characterizes that agent’s entire knowledge and beliefs, and remains

fixed during the course of a game.

Games of incomplete information are further distinguished into games with a

common prior and games with individual priors. In the former, there is a commonly-

known probability distribution that assigns types to players at the beginning of the

game. Games of incomplete information with a common prior can be represented as

games of imperfect information, by having Nature assign types to players in the be-
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ginning of the game, such that each player i is only aware of her own type assignment.

Games of incomplete information with individual priors cannot be represented as a

single game of imperfect information, as the agents would disagree on the probabilities

that Nature would use to assign types at the beginning of the game.

When uncertainty exists, agents are assumed to take actions that maximize their

expected utility. In a multi-agent setting, however, computing expected utilities is

significantly harder, because agents’ payo↵s depend on each other’s actions, and are

cannot be sure what strategies others are following. In other words, there exists

strategic uncertainty. Strategic uncertainty has several sources. In games of perfect

or imperfect information all agents will agree on the set of Nash equilibria of the game,

but this set might be large. Therefore agents cannot be sure that everyone will choose

the same equilibrium in this set to implement. As a result, the strategies followed

by all the agents in practice might not be in equilibrium. In games of incomplete

information this problem is exacerbated by not knowing others’ types (e.g., utility

functions). In those settings, the equilibrium solution concept must be amended to

reflect this. In a Bayes-Nash equilibrium, agents best-respond to the strategies of all

other agents of all types, each weighed by the probability of that type, according to

the common prior (if that prior is assumed to exist) or that agent’s individual prior.2

3.1.1 Inference and Implicit Signaling

To perform well in the world agents may benefit from taking steps to reduce their

uncertainty. In collaborative domains, they might wish to reduce not just their own,

2In games with individual priors agents will fundamentally disagree on the set of Bayes-Nash
equilibria of the game, making the problem of strategic uncertainty even harder.
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but also others’ uncertainty in order to improve coordination. In competitive domains,

on the other hand, they might wish to increase others’ uncertainty to confuse and

mislead them. An agent can reduce its uncertainty in various ways: First, it can

passively observe other agents’ actions as the game unfolds and thus infer their type.

In games of imperfect information this is somewhat similar to forward induction, by

which agent i uses its observations of agent j’s actions to infer j’s future behavior

down the game tree, i.e., the equilibrium strategy j is implementing [44]. Second,

the agent can actively take actions (exploration) to reveal more about other agents’

type or private information. For instance, in the game of poker, a player can infer

whether her opponent has a good hand by observing her bidding behavior, or he can

adjust his own bidding behavior (blu�ng) to actively test whether she has a good

hand or not. Note that in the second case the agent is “speaking by doing,” i.e., the

communication act is also a game action that is part of the agent’s strategy—a blu↵

in poker is also a betting action.

Inferences in game-theoretic agent designs are typically made using Bayes’ rule.

Imagine a game with two players. Player 1 knows its own type (t1 2 T1) but its

beliefs over player 2’s type are given by a distribution, in which each tj2 2 T2 has

probability p
j

(with
P|T2|

j=1 pj = 1), where T
i

denotes the typeset for player i. Imagine

also that both players implement a single Bayes-Nash equilibrium �, and action a of

player 2 has probability ⇡
j

to be taken by type tj2 of player 2, for all tj2 2 T2. After

observing a, player 1 will update his belief over 2’s type by conditioning his prior on

that observation. Hence, player 2 will be of type tj2 with probability proportional to

p
j

⇥ ⇡
j

. In general, after seeing action stream (vector) a
j

by player j, player i will
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update his prior Pr[t
j

] over j’s type according to:

Pr[t
j

|a
j

] =
Pr[t

j

]⇥ Pr[a
j

|t
j

]

Pr[a
j

]
=

Pr[t
j

]⇥ Pr[a
j

|t
j

]P
t

0
j
Pr[a

j

|t0
j

]

In games with more than two players the above quantities easily generalize: after

observing actions a�i

by all other players, agent i updates his belief about their types

t�i

by using Bayes’ rule:

Pr[t�i

|a�i

] =
Pr[t�i

]⇥ Pr[a
j

|t�i

]

Pr[a�i

]
=

Pr[t�i

]⇥ Pr[a�i

|t�i

]P
t

0
�i
Pr[a�i

|t0�i

]

How hard are these these inferences? In simple settings they are often computa-

tionally trivial, but in complex environments inferences become significantly harder.

This is evident in the above formula. In complex domains three factors make inference

hard: First, the typeset T�i

might be very large. When that happens, representing

the distribution might be onerous, and computing the denominator sum (over all

t�i

2 T�i

) becomes computationally expensive. Second, actions might not be very

informative. This is because action stream a�i

might be indicative of many types in

T�i

, that is, Pr[a�i

|t�i

] is similar for many t�i

2 T�i

. As a result, observing a�i

does

little to disambiguate between all those di↵erent types. In poker, for instance, ‘raise’

might be the action associated with hundreds of di↵erent hands the opponent might

have.

If other agents in a game are performing inferences like that, an agent is essentially

signaling its type (or any private information) through its actions, either passively

or actively. In passive signaling the agent is merely choosing a strategy to maximize

its expected utility and by doing so it essentially reveals (partly or fully) its type to

other agents. An example of such signaling is the famous separating equilibrium [84].
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In games with a separating equilibrium, agents of di↵erent types in equilibrium take

di↵erent actions, essentially revealing their type. In the most well-known example

of this type of equilibrium there are two players, a ‘worker’ and an ‘employer.’ The

worker may belong to one of two types: ‘smart’ or ‘not smart,’ but employers cannot

observe a worker’s true type. In the beginning of the game the worker can choose

to ‘receive education’ or ‘skip education;’ after that, the employer chooses to ‘hire’

or ‘not hire’ the worker. Under the appropriate values for their payo↵ functions,

smart workers will optimally choose to receive education (because for them it is easy

and thus of low cost) and non-smart workers will choose to skip education (because

for them it would be hard and thus costly). After that, employers will simply hire

workers who have chosen to receive an education. In this way the workers’ actions

act as a signal that separates the two types in equilibrium.

Not all cases are that easy, however. In many games there is no separating equilib-

rium, so the uncertainty about others’ types remains after their actions are observed.

Also, agents often wish to actively mask their type, throwing red herrings to confuse

others. This is exacerbated in the case of long-running interactions with multiple

(or infinite) rounds. Take the simple example of an online seller who can be either

‘benevolent’ or ‘malevolent.’ Benevolent sellers always ship the goods to their cus-

tomers after receiving payments—their utility function includes a strongly negative

“guilt component” if they walk out on their agreements. Malevolent sellers, on the

other hand, have no such component and wish to maximize their net monetary gain.

In this setting it might be advantageous for malevolent sellers to act in the same way

as benevolent ones, building themselves a reputation for buyers to trust them. After
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some time they might choose to “milk their reputation” and defect on a buyer, but

until then inferring their type by observing their behavior is virtually impossible.

3.1.2 Explicit Signaling

In the discussion above we considered implicit signaling, in which the actions

taken by an agent also serve as the communication to other agents. But agents may

also signal information to others explicitly, using communicative acts. These actions

may be part of the agent’s strategy, but they do not directly influence its payo↵.

In the online sellers example, a benevolent seller may include “previous customer

testimonials” to persuade buyers to trust him. This communicative action does not

influence his payo↵ upon a purchase. It is essentially “doing by speaking.” In the

field of linguistics, one of the most comprehensive theories of communicative acts is

the speech act theory [113], according to which communicative acts can be analyzed

on three levels: a locutionary act, the performance of an utterance; an illocutionary

act, its real, intended meaning; and in certain cases a further perlocutionary act,

its actual e↵ect, such as persuading, convincing, scaring, enlightening, inspiring, or

otherwise getting someone to do or realize something, whether intended or not.

Explicit signaling is a helpful way to deal with the Bayesian inference problems

described in the previous subsection. When an agent’s actions are not very discrim-

inative of its type, an explicit communicative act might direct other towards the

correct type inference. In games with multiple equilibria, also, such communicative

acts may help guide agents towards a “focal point,” essentially adding coordination in

the equilibrium selection problem. For example, in the famous “battle of the sexes”
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game, there are two Nash equilibria in pure strategies that are symmetric and their

only di↵erence is that player 1 prefers the first equilibrium while player 2 prefers the

second. Both players are better o↵ coordinating but they disagree on which equi-

librium they should implement. Player 1 in that instance may use a communicative

utterance such as “I will always play the strategy corresponding to my preferred equi-

librium.” Such an utterance is strictly non-rational: if player 2 selects the strategy

corresponding to her preferred equilibrium, player 1 will be strictly better o↵ ignoring

his public proclamation. However, if player 2 believes he will “stick to his word,” she

will rationally help him implement his desired equilibrium, which has now become

the focal point.

As another example of explicit communicative acts, “signaling games” [23] are a

particular class of 2-player games, in which an agent is trying to infer its partner’s

unobservable type by interpreting message it is sending. In POMDPs, also, com-

munication has been used for both planning [108] and learning [126]. In the former

case, communication is used to share information within a group of agents to improve

coordination. In the latter, a group of agents is trying to explore the state-action

space of a POMDP in order to learn the optimal policy, and communication among

the agents allows them to decentralize and speed up the learning process.

Explicit signals can, however, only be trusted in collaborative games, in which

all agents share the same utility function, so there is no incentive for anyone to lie

about their type or any private information they possess. In contrast, because such

explicit signals do not impact the signaling agent’s utility, in competitive domains the

agent might costlessly lie, and the signal is therefore undependable (“cheap talk”).
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The field of mechanism design addresses these situations. A mechanism is essentially

a game whose very structure and payo↵s aim at guiding agents’ behavior towards

desirable goals, such as e�ciency (the outcome maximizes the sum of everyone’s

utilities) or truthfulness (the agents do not have an incentive to lie in signaling their

types). Mechanisms have a variety of forms (e.g., auctions) and typically achieve the

truthfulness property by aligning agents’ incentives and causing agents to internalize

the e↵ect of their signals. In particular, agents are asked to pay a cost when they

participate in the mechanism. This cost may depend on the signals communicated by

every agent, as well as the outcome selected by the mechanism. Its functional form

guarantees that no agent will improve its utility by being untruthful (see Ausubel et

al. [7], as well as Jackson [58], and references therein).

Truthfulness is not the only issue with communicative acts. Communicating in-

formation may be costly, both in terms of how often agents communicate and the

size of the messages exchanged. Communication protocols therefore need to reason

about what to communicate and when, as transmitting all possible information con-

stantly may be costly enough to o↵set the benefits of communication. Probabilistic

Recipe Trees (PRTs) [64] have addressed this problem by using a decision-theoretic

approach. In particular, PRTs reason whether the expected benefit of a communica-

tive act outweigh its cost given the context and the beliefs of the agent.

3.2 A↵ective Signaling

To address the challenges of inferring others’ unobservable characteristics, an af-

fective signaling mechanism, inspired by the communicative functions of human emo-
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tions, is deployed. People possess the ability to communicate, using facial expressions

and other non-verbal cues (prosody, head movements, posture), a variety of attitudes

toward what is happening in the world during their interactions with each other. For

example, people may convey their satisfaction with a smile, or their regret with an

expression of shame. In this work, a signaling mechanism is designed that has three

important properties: (a) it is generic, not domain-dependent; (b) it is automatic, in

the sense that generating the signal is not part of the agent’s strategy; and (c) it is

shown to improve the performance of agents, by enabling more accurate inferences

earlier in the game.

The signaling mechanism is evaluated in two domains. In the first, populations

of agents of varying types engage in multiple-round social dilemmas. Agents di↵er

in whether their payo↵ structure promotes cooperation or defection, and also in the

strategies they follow during the game. The generic, a↵ective signaling mechanism

presented here enables agents to better distinguish between potential cooperators or

defectors, and the population of cooperators becomes more robust. These e↵ects

persist even if agents do not have accurate or common beliefs about the distribution

of types in the environment. In the second domain, the case of two agents acting

together in a stochastic environment represented as a DEC-POMDP is examined. If

agents communicate their private state, they can significantly avoid conflicts and they

can successfully assist each other when needed. More importantly, it is demonstrated

that merely communicating with a↵ective signals is equally e↵ective as communi-

cating one’s entire private state information, despite the fact that a↵ective signals

carry significantly less information. This suggests that a↵ective signals are capable
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of conveying what is essential to good decision-making in collaborative domains.

These results carry significant implications for the design of agents in uncertain,

complex environments. The findings suggest that the communication of simple a↵ect-

like attitudes about what is happening during an interaction carries the potential to

make inferences quicker and improve performance. Furthermore, they indicate that

the communicative aspect of human emotions, refined by millions of years of evolution

of decision-making animals living in a complex real world, might provide a robust

guideline about what to communicate and when.

Finally, throughout this chapter it has implicitly been assumed that these a↵ec-

tive signals are always truthful. Yet agents might lie about their attitudes, in much

the same way people sometimes fabricate their emotion expressions. A computa-

tional argument is presented in Section 3.4 on why such fabrication might be di�cult

in practice in general domains, and hence why being truthful by default might be

beneficial.

3.2.1 A↵ective Generic Signals

Research by psychologists has shown that emotions serve two beneficial functions:

a cognitive one, whereby emotions influence one’s thinking and information process-

ing, and a communicative one, which modulates what one’s expressions communicate

to others [4, 11, 128, 55, 25, 98]. Prior work has leveraged the cognitive functions of

emotions to guide agents decision-making in complex environments [3].

This chapter focuses on the communicative functions of emotions. People usu-

ally convey emotions by facial expressions, prosody, language, gaze, posture, and
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head position. Evolutionary psychologists have studied the usefulness of expressing

one’s emotions, and have been argued, for example, that expressing fear alerts others

quickly to the presence of danger and that smiling is a relationship-building signal

[109, 86, 123, 96].

Several computational models of emotion have been proposed in prior work to

account for the emotions generated by humans in di↵erent situations [50, 133, 118].

Most of these models build on cognitive appraisal theories in psychology [73, 41].

These theories describe emotions as the result of an appraisal of a situation with

respect to the person’s goals and desires. For instance, fear is associated with an

appraisal of a stimulus as a threat to an important goal, such as survival.

A signaling mechanism has been designed for communication within groups of

agents by borrowing features from these computational models of emotion. Appraisal

is mediated by a set of appraisal variables which define and quantify the impact of

an observation of the state of the world on an person’s goals. Three such appraisal

variables are being used: desirability denotes how good the outcome is in comparison

to the agent’s expectations; control captures the ability of the agent to unilaterally

secure itself a good outcome in the future irrespective of what others might do; and

self-blame reflects the agent’s regret about the outcome of an interaction. Of these

variables, ‘control’ and ‘self-blame’ are assumed to be binary, and ‘desirability’ might

be positive, neutral, or negative.

It is important to emphasize that although the a↵ective signaling mechanism

makes use of these appraisal variables, agents that implement it do not manifest

emotion expressions identical to those of people. In other words, although useful
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concepts from the communicative functions of human emotions are borrowed, the

mechanism does not aim to be a high-fidelity imitation or model of how people behave.

High Control Low Control
+ Desirability Joy
0 Desirability Sadness
– Desirability Anger Sadness

(w/o Self-Blame)
– Desirability Shame
(w/Self-Blame)

Table 3.1: Signals expressed based on levels of desirability, control, and self-blame

The signal that an agent communicates depends on the three appraisal variables

as shown in Table 3.1. The signal predominantly conveys the ‘desirability’ of an

observed event. The other two variables, ‘self-blame’ and ‘control,’ only influence the

agent’s communicated signal in the case of a negatively-appraised event. In particular,

if the agent obtains a higher-than-expected outcome, given its current beliefs, it

communicates joy. If it obtains more or less what it expected, it communicates a

neutral emotion. And if it obtains less than expected, it communicates anger if it

has a safe option (high control), sadness if it does not have such a safe option (low

control), and shame if it considers itself the cause of its low payo↵ and regrets the

action it has taken. It is assumed that the signal is generated automatically and non-

strategically through these appraisal variables and is therefore truthful. If agents have

the ability to reason strategically about their signal, they might have an incentive to

fabricate it. Additional future work will be required for the analysis and handling of

such instances.
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Recipients of these signals use them to infer unobservable characteristics of the

sender. Some of these unobservable characteristics are fixed over time, while others

might change during the course of an interaction. Agents’ utility functions and the

actions available to them are, for example, typically fixed. In the language of game

theory, such information is often referred to as the agent’s ‘type,’ a term that is

adopted here. Unobservable quantities that change over time might include the value

of internal variables, whether an agent has taken a particular action in the past, or

has obtained a certain observation. The term ‘private state information’ will be used

to refer to such changeable quantities.

The process of inferring the unobservable characteristics of agents is modeled us-

ing Bayes’ rule. To infer others’ type, for example, each agent possesses a prior

that captures its beliefs about the distribution of types in the population. Agents

might have the same common prior or distinct individual priors. An agent con-

ditions its prior on observations of the other agent’s actions. For example, after

observing actions a�i

by all other agents, agent i infers the likelihood of their types

t�i

by computing Pr[t�i

|a�i

] / Pr[a�i

|t�i

]p
i

(t�i

), where p
i

denotes agent i’s prior.

Signals are treated in a similar fashion, with each agent conditioning its prior on

both the actions of its partner and the signals it has broadcast, hence computing

Pr[t�i

|a�i

, s�i

] / Pr[a�i

, s�i

|t�i

]p
i

(t�i

), where s�i

denotes the signals communicated

by the other agents.

Inferring others’ private state information works in a similar fashion, by condi-

tioning a prior on observed actions and communicated signals. As state changes over

time, however, it is usually more challenging to infer state than to infer type. If agents
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possess knowledge of how others’ private state information changes stochastically over

time, for instance, they can use this knowledge to more accurately track its evolution

across time.

To compute the value of the three appraisal variables, an agent compares its

expectations, given its beliefs, with the actual outcome it has obtained. In particular,

slotted time t = 1, 2, . . . is assumed, and that in every time step every agent chooses

action at
i

and obtains payo↵ ⇡t

i

that depends on its action at
i

and the actions of other

agents at

�i

. After round t agent i compares ⇡t

i

with the payo↵ it expected to obtain

by taking action at
i

, which is given by

⇡̄t

i

(at
i

) =
X

t�i,at
�i

Pr[t�i

|a1
�i

, ..., at�1
�i

, s1�i

, ..., st�1
�i

]⇥

⇥p
i

(t�i

)⇥ Pr[at

�i

|t�i

]⇥ ⇡
i

(at
i

, at

�i

)

This quantity represents the payo↵ i expected to make before round tmaterialized,

by summing over its beliefs over its partners’ types and expected actions. Hence the

desirability of outcome (at
i

, at

�i

) is

⇡t

i

� ⇡̄t

i

(at
i

)

The appraisal variable of control represents whether the agent can achieve high

outcomes independently of what other agents do. An agent’s “safest” plan is none

other than the strategy that will give it the highest value under the worst (adversarial)

choice of strategy by the other agents. In the language of game theory, this is often

referred to as the “maxmin” strategy, defined as maxmint

i

= max
a

t
i
minat

�i
⇡
i

(at
i

, at

�i

).

An agent is then said to have ‘control’ in playing at
i

if
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maxmint

i

� ⇡̄
i

(at
i

)

As an example in a two-player game, consider an agent having two actions, L and

R, with L giving it a payo↵ of 20 no matter what its partner does, and R giving it

40 if its partner also plays R, but zero if its partner chooses L instead. In this game,

choosing R constitutes a risky choice, because it might provide the agent with a high

payo↵ of 40, but might also result in a low payo↵ of zero. If the agent believes with

probability greater than 0.5 that its partner will play R then it will take the risk

in expectation; otherwise it will stick to the safe maxmin strategy for a guaranteed

payo↵ of 20. In playing R then, and assuming Pr[a�i

= R] � 0.5, the agent has ‘low

control’ because its alternative payo↵ (20) is less than the expected payo↵ under R,

and ‘high control’ if Pr[a�i

= R] < 0.5, since in that case the agent might as well

switch to its maxmin strategy.

Finally, self-blame models ex-post regret. Having played at
i

, agent i compares the

payo↵ it obtained with the payo↵ it would have obtained having chosen an alternative

action a0t
i

. If

⇡
i

(a0t
i

, at

�i

) > ⇡
i

(at
i

, at

�i

)

for some a0t
i

the agent experiences regret and blames itself. If ⇡
i

(a0t
i

, at

�i

) � ⇡
i

(at
i

, at

�i

)

for all a0t
i

, then the agent does not experience self-blame.

Finally, the above definitions can be modified for agent implementations that do

not use utility to encode preferences. For instance, a BDI-type agent might express

‘desirability’ by comparing its expectations of the state of the world with what has

actually happened, ‘control’ by considering its “safe plan” or worst-possible outcome,
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and ‘self-blame’ by computing appropriate measures of regret.

3.3 Evaluation

To evaluate the a↵ective signaling mechanism, the performance of signaling and

non-signaling agents was compared in two domains: a two-agent repeated social

dilemma game, and a task domain with collaborative agents, which was modeled

as a DEC-POMDP with private utility functions and private state information. In

each case, the signaling agents generated and communicated a↵ective signals in every

time step, after actions were taken.

In the first domain, agents that exchange a↵ective signals were compared with

agents who did not communicate at all. In the second domain, the comparison was

extended to include agents that communicated their entire private state information,

i.e., all their unobservables. In that domain, the a↵ective signaling mechanism per-

formed as well as full-state communication. But since full-state communication poses

an upper bound to the performance benefits that signaling can confer [108], a↵ective

signaling should perform as well as (or even outperform) other signaling techniques

that communicate less than everything. Therefore, comparisons with other existing

signaling techniques have not been part of the empirical investigation.

3.3.1 Simple iterated social dilemma

In the prisoner’s dilemma (PD) two agents simultaneously make a decision to

cooperate or defect. If both cooperate, both enjoy a high payo↵. It is always a

dominant strategy, however, for both of them to defect, leaving mutual defection as
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the only Nash equilibrium. In the repeated version of this game, the optimal strategy

depends on whether the game lasts for a finite number of rounds or an infinite number,

with discounting of future payo↵s. In the former case, mutual defection in every round

remains the only Nash equilibrium, but simple conditions for sustainable cooperation

can be derived for the latter case.

In terms of its complexity, the prisoner’s dilemma is a game with no uncertainty

and is thus of limited interest for signaling. To demonstrate how unobservable char-

acteristics can complicate even in the simplest of games, one small change was made

to PD. The payo↵ structure of some agents in the population was allowed to be dif-

ferent. In particular, some agents were “cooperative” and did not experience a payo↵

boost from unilaterally deviating (see Table 3.3), while some were “self-interested”

and had the traditional payo↵ structure (Table 3.2). Cooperative agents had a payo↵

structure that is characteristic of the ‘Stag Hunt’ game, in which mutual cooperation

and mutual defection are the two equilibria of the one-shot case.

In this experiment agents maintained individual, and potentially inaccurate, prior

beliefs over the distribution of those types in the population. The number of rounds

the game would be repeated was finite and sampled uniformly in random from the

range [2, r] in the beginning of each game. That number, as well as the value of r,

were unknown to the agents. Because agents’ payo↵s di↵er, it no longer holds that

in a finite-round game mutual defection in every round is the only equilibrium.

Because computing optimal strategies or equilibria in this game is hard in the

absence of accurate prior beliefs, agents were allowed to adopt any of a number
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of varied strategies. Cooperative agents, who would optimally want to cooperate

against cooperators and defect against defectors, could condition their response to

whether they believed their partner was also cooperative with probability greater

than a threshold ✓, the values of which varied across agents (✓ 2 {0.4, 0.6, 0.8}).

Self-interested agents could also engage in strategic manipulation, cooperating for a

number of rounds � (the value of which varied from agent to agent (� 2 {0, 1, 2})

before they defected. Each of these strategies performs well against some distribution

of other strategies, but with the true constitution of the population being unknown

none of them can be called truly “optimal.”

In the simulations, 1000 agents were paired in random and played k ⇠ U(2, r)

rounds until a total of 20 games were played. The value of r was set to either 3 or

6 for short- and long-running games, respectively. The distribution of agent types,

denoting their payo↵ structure and strategy, was drawn from a hyper-prior to make

the initial fraction of cooperative agents more likely to be small (around 25%), large

(around 75%) or equal to that of self-interested ones (around 50%). The simulation

in every case was repeated 20 times to ensure statistical significance of the results.

Cooperate Defect
Cooperate (20, 20) (0, 30)
Defect (30, 0) (15, 15)

Table 3.2: Payo↵s for the Prisoner’s Dilemma

Cooperate Defect
Cooperate (30, 30) (0, 20)
Defect (20, 0) (15, 15)

Table 3.3: Payo↵s for the cooperative agent type
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In each repetition, the various types of agents were represented in the population in

di↵erent percentages, but drawn from the same hyper-prior.

Results

The metrics used to assess the usefulness of the signaling mechanism, shown in

Table 3.4, capture the accuracy of agents’ inferences as well as their performance.

The average belief divergence of the agents was measured after the first move in each

game (�m), defined for agent i as 1 � p
i

(t
j

|a1
j

, s1
j

), where t
j

is the true type of his

partner (in the absence of signaling s1
j

is nil). The average belief divergence at the

end of a complete game of k rounds (�g) was also measured and defined in a similar

fashion. For both metrics, smaller belief divergence implies more accurate inference

of the type of one’s partner. To assess agents’ performance, their average payo↵

(⇡) was recorded at the end of a game. These metrics were assessed separately for

cooperative and self-interested agents. Moreover, the trajectory of the population

in an evolutionary framework was assessed using the replicator dynamic [46], by

computing the gradient of increase � of cooperative agents in the population. This

measure reveals whether the “good guys” or the “bad guys” will tend to dominate

the population in an evolutionary context, and how fast that will come about.

�m(t), �g(t) Avg. belief divergence over partner’s type
⇡(t) Average payo↵ obtained
� Gradient (cooper.) w/replicator dynamic

Table 3.4: Metrics used for the Social Dilemma [subscript (t) denotes measure is
broken by agent type]
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The results were robust with respect to r (maximum number of rounds in a single

social dilemma game) and the choice of hyper-prior (i.e., the average fraction of

cooperative agents). For some typical cases (r = 3 and p(cooperative) between 0.25

and 0.75), Figures 1 – 4 present the results. Error bars indicate 95% confidence

intervals.
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Figure 3.1: Belief divergence (�m) after the first move (note that �m = 0 corresponds
to perfect knowledge of the true state of the world)

In most cases, signaling enables cooperative agents to distinguish between a coop-

erative and a self-interested partner earlier and more e↵ectively (smaller �m and �g),

which translates to improved payo↵s (higher ⇡) and increased selective fitness (higher

�). In fact, cooperative agents, when they are not the majority in the population,
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Figure 3.2: Belief divergence (�g) at the end of a game (note that �g = 0 corresponds
to perfect knowledge of the true state of the world)

will tend to shrink away without signaling and disappear (� < 0) but with signaling

they dominate the population (� > 0), as shown in Fig. 4.

3.3.2 Task Domain

The Bank Deposits Task

In the Bank Deposit Task (BDT), two agents, 1 and 2, start from opposite corners

in the lower end of a grid world (Fig. 5). Their goal is to collect money, which appears

randomly in the upper part of the grid, and deliver it to the bank, at the lowest row of
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Figure 3.3: Accumulated payo↵ (⇡) at the end of a game

the grid. Depositing money in the bank is the only way positive payo↵s can be made.

To make deposits, agents must avoid bumping into each other (collisions), and avoid

enemies that appear and disappear randomly in the narrow corridors connecting the

upper and lower parts of the grid. Agents maintain a private state which consists of

three binary variables: broken, carrying-money and gas-low. If an agent is broken

it can no longer dependably carry out its decisions, i.e., with 30% chance it might

move randomly to any position instead of carrying out the action it has decided to

do. Both agents may assist each other when they are close (distance  2) and thus

undo the other’s brokenness. Agents that are low on gas need to go immediately to
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Figure 3.4: Replicator gradient for cooper. agents (�) (note that a positive � means
that the fraction of cooperative agents will tend to increase over time, while a negative
� denotes that the cooperative type will shrink away)

the gas station (top-right corner) to refill before they continue; they are not allowed

to deliver money to the bank while being low on gas. Agents receive a payo↵ of +100

for a successful deposit, and �5 for every round in which they are broken. Agents

are assumed to observe only the space around them (distance  2).

Modeling BDT with a DEC-POMDP

BDT presents a much richer and more realistic domain than the social dilemma.

Agents do not interact in a very “orderly” manner and may take actions that are
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Figure 3.5: DEC-POMDP domain: 1 and 2 represent the initial locations of the two
agents, B and G are the bank and gas station, and $ represents the location of money;
red and green shaded areas are the possible locations in which enemies and money
might appear, respectively; grey-shaded areas represent walls.

not visible by their partner in every step of the game. Stochasticity is introduced

with respect to the e↵ects of actions and world state transitions. Moreover, agents

now possess unobservable private state information that does not remain fixed but

changes across time.

BDT is modeled as a DEC-POMDP. In typical DEC-POMDP formulations, a set

of agents N with common utility function u acts in a world which is originally in

state s1. In every time step agents can take actions at. After actions are taken, all

agents obtain reward u(st, at) and the world transitions to state st+1 according to

probability distribution ⌧(st, at, st+1). Agents maintain a common-knowledge prior

over s1, and are assumed to know their common utility function u and the transition

function ⌧ . At every time step, each agent i also receives observation !
i

(st) ⇠ ⌦
i

(st)

which it can use to update its posterior belief over st+1. The goal of agents in this

environment is to maximize a discounted sum of rewards
P1

t=1 �
tu(st, at), in which
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� 2 (0, 1) is a discount factor. Solving a DEC-POMDP means computing an optimal

policy ⇡⇤ that maps beliefs over states to actions that maximize the above discounted

cumulative reward.

The BDT domain di↵ers from this standard formulation in that each agent i has

individual utility u
i

(·), as its wishes to maximize its own payo↵, not the total sum.

The fact that agents no longer wish to maximize the same quantity introduces game-

theoretic considerations in solving the DEC-POMDP. Second, each agent is allowed to

maintain a private state �t

i

2 ⌃
i

that transitions according to the agent’s own actions

by a function ⌧
i

(�t

i

, at
i

, �t+1
i

) that is common knowledge. This state modulates the

agent’s own utility function, hence u
i

= u
i

(st, at, �t

i

), but it is private because other

agents’ observations cannot depend on it. Technically, we require that, if �t =<

�t

1, ..., �
t

|N | >, then 8�t, �0t, 8st, 8t, 8i 2 N : ⌦
i

(st|�t

i

, �t

�i

) = ⌦
i

(st|�t

i

, �0t
�i

). Other than

that, it shall be assumed that transition functions ⌧, (⌧
i

)
i2N , utility functions (u

i

)
i2N

and agents’ prior over s1, �1 are common-knowledge.

Even for this relatively small domain, the POMDP is prohibitively large. Even

with just two agents, the number of possible states exceeds 4 billion. This not only

creates problems for pre-computing the optimal policy, but it also makes online belief

maintenance and updating onerous. (A proper belief would be a 4-billion-valued

vector.) Furthermore, because only bank deposits generate a positive value, payo↵s

are delayed. Thus, such simple heuristics as 3- or 4-step lookahead do not work well

either. Finally, the existence of private state information makes things even harder.

To avoid collisions, an agent should know the direction a nearby agent is expected to

move. But this depends on whether that agent is broken, carrying money or low on
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gas, all of which are part of its unobservable state.

To counter the above limitations an intrinsic reward was added that gave the

agent a “fictitious” small reward for moving in the likely direction of money when

neither already carrying money nor low on gas, in the direction of the bank when

carrying money and not low on gas, and in the direction of the gas station when low

on gas. Furthermore, both agents assumed that the other party is using a simplistic

three-step-lookahead heuristic to make decisions, and then best-responded to that.

Simulation Conditions

The simulations ran in three conditions: (a) agents observed only each others’

actions, without any communication or signaling, (b) agents communicated their

entire state to neighboring agents at every time step (a “state dump”)3, and (c)

agents communicated a↵ective signals. In all cases, simulations ran 30 times, with

each run lasting 40 timesteps.

Results

As before, the measured average belief divergence was measured, defined as � =

E
t,i

(1� pt
i

(st)), where st is the real state of the world at time t and pt
i

(·) represents

i’s beliefs at that timestep. Performance-related quantities were also measured, like

the average number of rounds an agent was broken, the average payo↵ at the end of

a game, the average number of money units delivered, the average number of times

3When an agent received a message containing another agent’s beliefs, it tried to merge them.
To keep matters simple, a liberal approach was adopted: each state in the merged belief set was
weighed by its probability in the two original sets.
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attacked by an enemy, the average number of times an agent chose to assist the other,

and the average time of collisions between agents.

As shown in Table 3.5, once again a↵ective signaling improves performance com-

pared to not signaling. The most interesting result of this experiment, however, is that

a↵ective signals improve payo↵s essentially as well as communication of full state in-

formation, despite being much less informative than a “state dump” and even though

agents’ belief divergence is as great for agents using a↵ective signaling as for agents

that do not communicate. The main source of this promising result is that a↵ective

signals e�ciently indicate a key unobservable, namely whether an agent is broken

or not. Earlier detection of brokenness allows agents to assist each other sooner

and thus improve their payo↵s. Brokenness is a low-probability event and merely

observing a nearby agent’s actions does not provide su�cient evidence to boost its

posterior probability. A↵ective signaling thus decreases belief divergence for a crucial

variable, communicating e↵ectively information that is highly relevant to successful

task performance.

A↵ective signals are not helping agents infer just whether the other agent is bro-

ken. They also communicate other information valuable to their decision-making.

As shown in Table 3.5, a↵ective signals are successful in signaling the presence of a

nearby enemy. Inferring the location of enemies before they are encountered signifi-

cantly improves an agent’s payo↵, as it reduces the number of times it gets attacked.

On the other hand, other aspects of the state, such as whether the agent is carrying

money or is low on gas, do not elicit unambiguous a↵ective signals, hence they are not

as quickly inferred by the other agent when a↵ective signals are being used, compared
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to full-state communication. Quickly and accurately inferring these two unobservable

characteristics would make the other agent’s movement more predictable. (For ex-

ample, an agent who is low on gas can be safely predicted to move towards the gas

station in the next round.) As shown in Table 3.5, agents exchanging a↵ective signals

are three times more likely to engage in a collision with each other, compared to

agents communicating their entire private state information.

No-comm Full-state A↵ect
� 0.629± 0.03 0.37± 0.08 0.603± 0.03

Payo↵ �180± 34.2 �79± 29.1 �55.5± 94.2
Broken 38± 0.0 8.8± 4.96 12.1± 6.57
Dropo↵s 1.9± 0.22 0.25± 0.23 2± 0.2
Collisions 0.55± 0.22 0.3± 0.13 0.9± 0.13
Attacks 0.45± 0.13 0.9± 0.64 0.05± 0.09
Assists 0.0± 0.0 1.7± 0.26 1.9± 0.19

Table 3.5: Results for POMDP simulation (ranges reflect 95% confidence intervals)

3.4 Signal Truthfulness and Manipulability

One concern about signaling is whether it is truthful. The results have presumed

that agents are always truthful, and would not hold otherwise. This is because the

signal generation is unintentional and automatic, and hence not the subject of de-

liberation and strategizing. However, even if agents could deliberate, computational

arguments might support the assumption of signal truthfulness in many complex

domains.

To get an intuitive sense, imagine the space of strategies S an agent may adopt for

a particular game. For most realistic, non-trivial games, identifying the optimal strat-
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egy in S is thought to be a problem requiring exponential time, and as a result agent

designers usually have to settle for approximations or—more typically—heuristics

that are shown to perform well in practice. In such settings, adding signaling would

increase the strategy space to S⇥M , where M is the set of signaling strategies (what

to signal in every contingency in the game). If then computing the optimal strategy is

di�cult in S, it will be just as hard—if not harder—in S⇥M . Hence, although agents

could lie about their sentiments, it might be too hard to know how to lie. Similar

arguments about the hardness of lying have been invoked in the field of mechanism

design [104, 127]. On the other hand, for agents to be truthful, they just have to

compute simple quantities as mentioned in Section 3.2.1, which is computationally

trivial.

The above argument rests crucially on the assumption that one needs a successful

fabrication of the communicated signal to do well, and this fabrication is hard to

find. If communicating something in random is successful enough most of the time,

then identifying the optimal fabrication, no matter how hard, might be unnecessary

in practice. That said, the argument carries extra strength in the face of uncertainty.

Lying about your attitudes in a certain way might be e↵ective against some other

types of agents, but will likely not be e↵ective against populations of any compo-

sition. Moreover, a “consistency check” might help identify and marginalize liars.

As suggested by Scharlemann et al. [109], lying about one’s emotions is not hard in

one-shot, short-term interactions. The di�culty emerges in long-running interactions,

in which the liar needs to be consistent with his lies and with his actions. If then

truthful agents in the population adopt a punishment strategy that avoids interac-
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tions with any agents that have been “inconsistent” even once in the past, the liars’

ability to thrive will be curtailed. I acknowledge that the above argument is largely

a conjecture that will be the object of future study to more formally (or empirically)

demonstrate its truth. I do argue, however, that it su�ces for my truthful-signaling

assumption to be defensible in practice, even if agents could deliberate about what

to communicate.

3.5 Discussion and Extensions

The work presented in this chapter touches on many strands of work in computer

science and psychology. To generate the signal, cognitive appraisal theories [73, 41]

have been leveraged. These theories treat emotions as a cognitive and physiologi-

cal phenomenon that rests predominantly on information processing. In particular,

emotions arise when the person evaluates a stimulus (event in the world, or thought)

with respect to her goals. The di↵erent evaluations (appraisals) correspond to dif-

ferent emotions. For instance, ‘fear’ is generated when a stimulus is evaluated to be

treating to an an important goal, and the person is not situated well to address that

threat (low power). If the person is situates well to address the threat, ‘anger’ might

emerge instead toward the source of the threat.

Such cognitive appraisal theories led to the development of computational models

of emotion [50, 118, 133]. These models adopt the information-processing view of the

underlying psychological model, but aim to precisely define and quantify the notions

that psychologists often avoid specifying exactly [81]. The a↵ective signaling mech-

anism presented here is not a fully-developed computational model of emotion, as it
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does not prescribe what emotion the agent will experience under every circumstance.

Moreover, computational models of emotion are evaluated as to how well they repli-

cate, explain or represent typical human emotional responses to stimuli. The signaling

mechanism is on the other hand exclusively designed for use by artificial agents and

makes no e↵ort to emulate people’s rich emotional repertoire.

The role of emotions and their expression in decision-making has been studied in

game theory [18, 98], in psychology [27] in AI [3], human-computer interaction and in

the design of virtual agents, as well as studies of negotiation [1] and social dilemmas

[30]. In particular, the prisoner’s dilemma has been used in countless studies as a

paradigm for cooperation or the tradeo↵ between individual and group benefits [72],

as well as in evolutionary settings to establish the emergence of cooperators [8].

Signaling has been investigated as a facilitator of cooperation in psychology [40,

15]. In computer science, signaling has been studied in the subfields of planning

[135] and especially in POMDP-type settings [122, 134, 108, 126]. Using emotions

to improve agent coordination has been suggested by Gage et al. [43]. In it, robots

acquire resources and express their attitudes in order to avoid conflicts, which is

similar in motivation to this thesis’ contribution. The emotion generation in their

work is not based systematic appraisal mechanisms, and thus not general-purpose, i.e.,

it is not clear how the same mechanism could be used in a di↵erent domain. A↵ective

signals have also been used for computer-human interaction [112], and humans have

been shown to distrust agents that do not signal [136].

A very important di↵erence between the model presented in this thesis and other

signaling models is that signals are generated non-intentionally. In other words, the
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agents do not just “speak by doing,” nor do they just “do by speaking,” since they

never reason strategically about their communicative acts. Rather, their signals are

being produced by means of a reflective, appraisal-based, automatic and unintentional

subsidiary system. Despite the signals being unintentional, however, they are useful

in getting good performance out of the agents using them.

The notions presented in this chapter could be further developed. First, one may

choose to enrich the signaling model in order to capture emotional expressions com-

mon in humans but absent in the mechanism currently, such as boredom, arousal,

surprise, and fear. It is an open question which types of emotional communicative

acts will be useful in practice, and which domains might they might o↵er an advantage

in. Second one may investigate whether agents that compute and communicate these

particular a↵ective signals can be more successful in their interaction with humans.

The argument here is that emotion-like communicative acts carry a lot of meaning for

humans, and are intimately associated with perceptual and cognitive interpretations

people frequently use. For instance, an angry face of a random person on the street

instantly evokes tacit and and explicit knowledge regarding that person’s background,

desires and intentions. Hence, using communicative signals in human-computer in-

teraction might have the potential to alter human perceptions and influence their

behavior. This is the topic of the next chapter.



Chapter 4

Interacting with Computers:

Emotion Expressions

The two previous chapters have demonstrated the benefit that comes from incorpo-

rating concepts typically associated with human emotions into the design of computer

agents. Agents using a↵ect-like computational operators perform have been shown

to perform well in complex domains. Automatic unintentional a↵ective signals, on

the other hand, can facilitate quicker and more accurate inferences and improved

coordination within population of collaborating agents.

So far the systems that have been examined consisted exclusively of computer

agents. When humans are also active in the world, however, several important aspects

of the system are significantly altered: First, people make decisions in ways that are

not completely under the control of the system designer. Human decisions have

also been shown in the literature to not strictly adhere to any normative theory

(utility theory, game theory) and to be influenced by a variety of cognitive biases and

101
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heuristics, as well as psychological cues, social norms, their mood, as well as their

physiological state (hungry, cold, etc.).

These aspects of human decision-making must be considered for designing suc-

cessful computer agents. The operational e�ciency and ultimate success of a mixed

system (consisting of both human and computer actors) depends crucially on the

way people in it will behave. As a result, it becomes critical that computers engage

and interact with humans in ways that promote good and e�cient behaviors. To

achieve this, computers often need to reason about the ways people make decisions

and perhaps communicate with them using cues that people intuitively understand

and respond to.

This chapter presents one study demonstrating that emotion expressions, when

used appropriately by computer agents, may influence how people perceive these

agents. In particular, a computer agent in this study is negotiating with a person

on how to split a set of resources. During the negotiation the agent is expressing

emotions on a virtual face, namely anger or joy. After the game is over perceptions of

the agent’s trustworthiness by its human partner are measured by means of a separate

“trust game.” The study’s main finding is a consistency e↵ect. People seem to trust

(and prefer to interact again with) agents whose emotion expressions reflect the same

attitudes as their actions in the negotiation game. For example, among “tough”

negotiators those who express anger are preferred for future interactions over those

who smile, whereas among flexible and cooperative negotiators those who smile are

preferred. A possible explanation of this finding is that emotions expressions that are

consistent with actions make agents more predictable and easier to understand, hence
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“safer” as future partners. On the other hand, agents whose behavior does not “make

sense,” in the sense that their expressions and their are reflecting contradictory goals,

are being perceived as “wildcards” and are thus avoided.

This study builds on the principle that computers are perceived as social actors.

Section 4.1 thus presents empirical findings that support the idea that people treat

computers as if they had goals, intentions, emotions and social skills similar to hu-

mans’. Section 4.2 describes the study and presents its results. Finally, Section 4.3

discusses why emotion expressions are a powerful tool in computer-human interaction

and outlines possible future uses for them in a variety of domains.

4.1 Computers as Social Actors

Cli↵ord Nass et al. [94] were the first to discover how people interact with com-

puters in fundamentally social ways. Their main finding was that people’s social

responses to computers are not the result of a conscious belief that computers are

human (or human-like). Furthermore, people’s behavior is not a consequence of their

ignorance or any psychological or social dysfunction, nor do they think they are in-

directly interacting with the programmer of the system.

There are numerous studies in which people have been demonstrated to treat

computers as social actors. When users are asked to grade the performance of a

computer program, they are significantly more lenient when they submit their report

to the same physical machine on which the program ran, and more objective when

they submit their report to a di↵erent machine. In this way they mimic the broadly

acceptable social behavior of being more objective when writing a recommendation
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letter for someone, as opposed to o↵ering them a face-to-face evaluation. Similarly,

when computers were programmed to praise another software program, if the praising

computer was running on a di↵erent machine than the program being praised, people

considered this praise as more significant. In this way they mimic the social rule that

being praised by others is more genuine and more significant than someone praising

themselves.

Gender stereotyping is another way in which people anthropomorphize comput-

ers. Social psychology indicates that people generally find praise from males more

convincing than praise from females, and that males who praise are more likable than

females who do so [94]. In a study in which computers were given a male or female

voice to suggest a notion of gender [74], people reported liking the computer with the

male voice more when it praised them, and they also founds its praise to be more

significant. Moreover, computers that talked about technology were found to be more

knowledgeable when they spoke in a male voice, whereas those that talked about love

and relationships were perceived more knowledgeable when they spoke in a female

voice, another instance of gender stereotyping.

A number of other studies have demonstrated similar e↵ects. When a system was

installed in cars that monitored the drivers’ behavior and warned them of dangerous

actions, they became annoyed and drove even more carelessly [52], often citing that

the computer in their car had become a “backseat driver.”

Many of the studies have revealed that the quality of the interaction correlates

with the degree in which the computer’s behavior matches that of humans. In inter-

actions between humans, for instance, people respond more favorably to other who
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are like them. In one experiment [95] people were shown items on sale on the eBay

auction site and were asked how much they would pay for the goods. Both sellers and

buyers were given personality tests to determine whether they are introverts or ex-

troverts. It was then shown that introverts would agree to pay higher prices for items

whose description had also been written by an introvert, and likewise for extroverts.

In computer-human interaction a similar e↵ect was shown. In the “Desert Survival

Situation” (DSS) task1, which has gained popularity among social scientists, people

are given feedback about their choices from a computer in a way that reflects a “sub-

missive” or “dominant” personality. People found the computer whose personality

traits matched theirs to be more intelligent and more insightful in its feedback.

In another study [93] that illustrates the importance of matching, drivers were

primed to experience joy or sadness before asked to complete a driving run. The

cars they used were equipped with a voice-generation system that gave them instruc-

tions, and its voice was manipulated to sound happy or sad. Subjects whose emotion

matched the one their car’s voice exhibited not only reported higher satisfaction levels

but also performed better as drivers (fewer accidents).

Matching in this case not only refers to an alignment in the mood or personality

between the human and the agent. It might also refer to congruency between he agent

and the content. In one experiment [92] subjects had an agent tell them a story. The

story was either happy (a cure for cancer) or sad (a spate of dead gray whales), and

the agent reporting it sounded either joyful or morose. People rated the happy story

as more joyful when it was delivered in a joyful manner, and the sad story as more

1In this task participants are told they are stranded in the desert and they must pick a small
number out of several items (a knife, batteries, a lighter, etc.) to ensure their survival.



Chapter 4: Interacting with Computers: Emotion Expressions 106

saddening when delivered in sad voice. On the other hand, when the mood of the

story and the tone of voice of the agent were misaligned, subjects found the emotional

content and the relative significance of the story to be both less pronounced. In other

words, an a↵ective match or mismatch between mood and content influences how

that content is perceived.

The surprising thing about all these studies is that people do not perceive the

human characteristics (such as gender) of the person “behind the computer.” As a

matter of fact, in another study [115], a confederate was present during the computer-

human interaction and referred to the computer as ‘the computer’ or ‘the program-

mer,’ while the computer referred to itself as either ‘the computer’ or ‘I.’ There was

no significant di↵erence in the way in which people behaved in each condition, which

implies that social attributions are made directly to the computer, not the person

(designer, programmer) that is indirectly responsible for the computer’s behavior.

People’s behavior toward computers exhibits even stronger social characteristics

if the computer is represented as a virtual agent. Virtual agents are typically 3D-

rendered human-like characters with a face and sometimes a body. They are usually

capable of directing their gaze, expressing emotion through their face and posture,

synthesizing speech, and in some cases even having conversations with people, by

parsing human speech and utilizing a knowledge base containing facts, beliefs and

social norms. Several studies have demonstrated the power behind virtual agents.

People are more likely to reveal private information about themselves when paired

with a virtual agent that builds trust between itself and its human partner [51].

People attribute intentions and personality traits to virtual agents in the context
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of a prisoner’s dilemma game [32] or a negotiation [31]. Cultural concepts such as

religion or moral values are invoked by the apparent ethnicity or social background of

the virtual agent [33]. Virtual agents have also been used to gauge human behavior

in critical but otherwise unlikely circumstances (such as an emergency evacuation),

which was later used to design better evacuation policies that are aware of people’s

responses under extreme stress [68]. Many interesting psychological interventions

have been made possible by the use of virtual agents as well. In one experiment

it was shown that veterans su↵ering from Post-Traumatic Stress Disorder (PTSD)

experience reduced negative symptoms when given the chance to interact frequently

with virtual agents that “understand them” [67]. Such agents have also played the

role of the patient, helping young therapists gain experience before they apply their

skills and practice to real people [66].

In the study described in this chapter people interacted with a virtual agent who

could display emotions on his face.2 People negotiated with the agent over how to

split a set of items, and the agent would in some cases express joy or anger at the

person’s actions. After several such games were played with di↵erent agents that

used the same negotiation strategy but expressed di↵erent emotions, subjects had

to select one of these agents to play a ‘trust game.’ People’s selection of a partner

for the trust game was used as a metric of that agent’s perceived trustworthiness.

The main finding of the study was consistent with prior matching insights discussed

above. In particular, among agents that employed a “tough” negotiation strategy,

people preferred angry agents over smiling ones. On the contrary, among agents who

2To simplify the design, all the virtual agents were male, caucasian (hispanic or non-hispanic)
and in their twenties.
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were flexible and concessionary negotiators, subjects preferred smiling over angry

partners. When thus the agent’s emotions expressions matched its actions, the agent

was perceived to be more trustworthy.

4.2 Perceptions of Trustworthiness

The term trustworthiness usually carries a double meaning: it may refer to some-

one’s ability (or skill) to carry out a task, or their intentions (or motive) for doing so.

For example, a patient might trust her doctor because (a) he possesses the necessary

training and experience to perform a sensitive operation, a matter of ability and skill,

and (b) he desires for the patient to get better, a matter of intention. Similarly,

someone might trust her husband because he possesses both the self-control (skill)

and the desire (motive) to remain faithful to her.

People’s perceptions of agents’ trustworthiness are significant, as they influence

their behavior towards the agents, and may foster or inhibit repeated interactions

between them. Trust reduces the transaction costs of economic and social exchanges

among humans [19]. Interactions with our friends are easier, as we trust their words

and feel less inclined to thoroughly verify their statements, because we trust them.

Business partners that have developed mutual trust can perform economic trans-

actions faster, without excessive documentation to safeguard against fraud. The

economic benefits of trust have been documented in the Internet economy as well.

In one experiment [9] it was shown that eBay sellers with a high positive rating—a

proxy of trustworthiness—could on average command 8% higher prices over sellers

who lacked high ratings. As a result, whether agents can cause people to trust them
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is an important aspect of their design.

To study how perceptions of agents’ trustworthiness are formed in people, a ne-

gotiation game was used. Negotiation is a commonly-used method for parties with

diverging interests to reach a mutually-beneficial agreement. People negotiate over

how to schedule activities when participants have di↵erent time constraints and prior-

ities, to e�ciently allocate valuable resources across individuals or corporations with

varying needs and preferences, or to resolve international conflicts without resorting

to violence. The significance of negotiation has led to a large literature in the fields

of psychology, economics, sociology and computer science [76, 106, 60]. Computer

agents have been used in many negotiation settings, sometimes acting on behalf of

humans [60] and sometimes negotiating with them [77]. As the scale and complexity

of the domains in which negotiation is employed are expected to increase, the use of

computer agents as negotiators might grow. Examples of such domains might include

tra�c management [63] and commerce [80], among others. Furthermore, computer

agents have shown potential (compared with human negotiations) for improving ne-

gotiation outcomes in some cases [78].

Yet negotiation studies with computer agents have largely overlooked the fact

that humans use significant verbal and non-verbal cues when they negotiate [35].

The expression of emotion, in particular, has been shown to significantly influence

negotiation outcomes [10, 131]. For instance, displaying anger was shown to be e↵ec-

tive in forcing larger concessions out of the other party, whereas positive emotion was

found to be helpful in exploring and achieving mutually beneficial (integrative) solu-

tions [130, 20]. The e↵ects of emotion during business negotiations were also shown
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to be modulated by culture [75]. In most studies in which emotion was expressed by

computer agents, this emotion was conveyed by means of text sent by the computer

agent to its human partner [130] the computer would say “this o↵er makes me really

angry”). More recent implementations of virtual agents tested for di↵erences among

di↵erent modalities of emotion expression (e.g., text or virtual face) and found no

significant di↵erences [32].

Equally important is the fact that negotiation can distinguish between the two

meanings of trustworthiness. As discussed below, subjects in the study negotiated

with various computer agents on how to split a set of resources (virtual coins). After

the negotiation was over, they had to select one of these agents to play a di↵erent

(trust) game, in which the agent’s motives and intentions mattered, but not its skills

and abilities. In other words, people received information about both the agents’

negotiation skill and their motives during the negotiation games, but only the latter

were used in the evaluation of trust.

4.2.1 Experiment Design

To investigate the e↵ect of emotion in human-computer negotiation and percep-

tions of trustworthiness the following game was developed: A human subject (h) is

paired with a computer agent (a), and they must negotiate on how to divide a set of

resources amongst themselves. The resources consist of virtual “coins” of four types:

gold, silver, bronze and iron. In each game, there are three (3) coins of each type.

Before the game starts, people are told the relative value of each coin type, i.e., that

gold coins are more valuable than silver, which are more valuable than bronze, which
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are more valuable than iron coins. However, people are not given the exact numeric

value (in points) of each coin type.3 Subjects are also informed that the relative val-

uation of the items by the agents might be di↵erent than their own, e.g., computers

might prefer silver coins over gold ones. Notationally, the four item types are referred

to with numbers j 2 {1, 2, 3, 4}. The notation wi

j

is also used to denote the number

of points player i 2 {h, a} receives by possessing a coin of type j. In all experiments

wh =< 10, 7, 5, 2 > and wa =< 10, 2, 5, 7 >. Notice how item types 1 and 3 (gold

and bronze) present a “distributive problem,” i.e., players need to decide how to split

items of common value, but items 2 and 4 (silver and iron) present “integrative po-

tential,” i.e., there are exchanges of items that lead to mutual benefit. Moreover, it

must be pointed out that computer agents have full knowledge of vectors wh and wa.

The game proceeds by means of alternating o↵ers, and participants play in turns,

with the human always making the first o↵er in a game. An o↵er by player i 2 {h, a}

consists of a complete allocation of all coins between the two participants. The

notation ci
j

(t) is used to denote how many items of type j 2 {1, 2, 3, 4} player i was

given in the o↵er made at round t 2 {1, 2, . . .}. Hence, allowing only for complete

allocations means that in every round t, o↵ers must satisfy ch
j

(t) + ca
j

(t) = 3, 8j. In

every round t > 1 the negotiator whose turn it is may accept an o↵er, in which case

the game ends and both participants make their corresponding points; for the human

player, these would be ⇡h =
P

j

wh

j

ch
j

(t� 1). Alternatively, she may reject the o↵er,

and counter-o↵er a di↵erent split of the items. Finally, at any point in the game,

3A preliminary experiment with N = 25 showed that people’s behavior is not a↵ected by them
knowing the point value of every coin type.
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either participant may drop out. A game consists of a maximum of 15 rounds.4 If

no agreement is reached in any of these rounds, or if either player drops out, both

players make zero points.

The agents in the experiment di↵ered in two ways: with respect to their strategy,

and with respect to their emotion expression. The strategy of an agent encompasses

when o↵ers are accepted or rejected, and what counter-o↵ers are made by it. Likewise,

the emotion expression of an agent defines whether emotion is expressed, and what

type of emotion is displayed in each circumstance. Below the strategies and emotion

expression policies used in the agents are presented; the way in which emotion was

displayed to the human is also discussed.

Strategies of computer agents

The strategy of an agent prescribes how the agent behaves as a negotiator. Al-

though the literature on e↵ective negotiation strategies is extensive [125], straight-

forward, intuitive strategies for this experiment were used to keep matters simple.

The goal was not to exhaustively explore the e↵ect of emotion expression given com-

plex strategies, but to assess whether emotion has any e↵ect on people’s behavior in

computer-human negotiation, and whether this e↵ect is dependent upon the agent’s

strategy.

The strategies varied along two dimensions: “flexibility” and “self-interestedness.”

An agent follows a flexible strategy if its o↵ers change from round to round throughout

4Notice how, if the human always makes the first o↵er, the agent always makes the last o↵er. If
the game reaches the 15th round, then the human can either accept the computer’s o↵er, or drop

out, since there are no more rounds for counter-o↵ers to be made.
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the game; its strategy is inflexible if it always makes the same o↵er (or very similar

ones) in every round. In a similar fashion, an agent is said to follow a self-interested

strategy if it attempts to keep for itself almost all the points being negotiated; its

strategy is non-self-interested if the agent seeks agreement on balanced o↵ers, which

provide a more or less equal split of the points. Four simple strategies were used,

which are described below. (Table 4.1 groups them according to flexibility and self-

interestedness.)

1. Selfish: The selfish agent in every round chooses a single coin at random (but

never a gold one) to counter-o↵er to the human, and keeps everything else for

itself. Thus selfish agents are inflexible and self-interested.

2. Nash: This agent computes the Nash bargaining point (N.B.P.) of the game, which

is the allocation that maximizes the product of both players’ payo↵s, and o↵ers that

in every round. The N.B.P. presents the theoretically most e�cient point in the

negotiation, as it is Pareto-optimal and satisfies a series of axiomatic constraints

[90]. N.B.P. allocations split the points in a very balanced fashion, thus this agent

is inflexible but non-self-interested.

3. Conceder: This agent performs concessions in a constant rate. In particular, no

matter how the human behaves, at round t the agent o↵ers her 3t
2 points and keeps

everything else for itself. In other words, the first time it plays it will o↵er the

human 3 points (round 2), the second time 6 points, etc. Since this agent starts

from very imbalanced o↵ers (only 3 or 6 of a total of 72 points) and concedes

slowly, it is categorized as self-interested but flexible.
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4. Tit-For-Tat: This is an agent implementing reciprocity. In round t it o↵ers the

human 0.8⇥
P

j

wa

j

(t� 1) points. Hence, the more concessionary the human has

been in her last o↵er, the more concessionary the agent becomes; likewise, if the

human has been selfish, the agent would reciprocate this. The 0.8 coe�cient

represents a degree of “toughness” by the agent, i.e., it reciprocates slightly less

than what it is being o↵ered. This agent is both flexible and non-self-interested, as

agreement will only be reached when the two players start conceding, eventually

“meeting” somewhere in the middle.

Inflexible Flexible
Non-self-interested Nash Tit-For-Tat

Self-interested Selfish Conceder

Table 4.1: Strategies used in the negotiation game, grouped according to their flexi-
bility and self-interestedness.

All agent types accept an o↵er made by the human if and only if the points

they would request in their counter-o↵er (according to their strategy) are no greater

than the points the human is currently giving them. Agents never drop out of the

game. Also, whenever agents wish to give a certain number of points to the human,

they choose the most integrative way of doing so (i.e., of all possible counter-o↵ers

that would give the human c points, they choose the o↵er that maximizes their own

points).

Emotion expression by agents

The emotion expression policy of an agent denotes whether and how it displays

a↵ect. A↵ect in the game was displayed on a “face” the agent was given. Faces
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were all male, and were randomly assigned to the various agents from a pool of 15

templates, such that no subject would interact with two agents bearing the same face

during the experiment. The face of the agent was rendered to the side of the game

board, on which the items were being negotiated. Five emotion expression policies

were used, described below:

1. No-Face: This is the baseline case, in which there is no visible face to the agent.

2. Poker-Face: This agent shows a face, but never displays any emotion on it, always

keeping a neutral expression. This agent was used in addition to the No-Face agent

to assess how much of any e↵ect comes from displaying emotions, or merely from

the presence of a face (even if it displays no emotions).

3. Always-Smile: This agent displays a face and smiles to all the o↵ers made by the

human, independently of what these o↵ers look like.

4. Always-Angry: This agent displays a face and expresses anger toward all the o↵ers

made by the human, again, independently of what these o↵ers look like.

5. Appraisal: This agent would smile or show anger depending on the human’s ac-

tions, instead of following a fixed strategy. If at round t it was o↵ered by the

human at least 3
2t points it would smile, otherwise it would show anger.

All agents that display emotion follow the same pattern of expression: First, they

“look” to their right, where the coins are, to “see” the o↵er made by the human; they

then “look back” toward the human (straight gaze), perform their expression (of joy or

anger), and send their counter-o↵er (or acceptance notification). Joy is expressed by
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Figure 4.1: The Negotiation Game

a smile across the face, which forms in moderate speed (1 sec). Anger is expressed by

contraction of the corrugator muscle (frowning) as well as an aggressive twitching of

the mouth. Expressions dissipate linearly towards normal (expressionless face) after

the counter-o↵er is sent, while the human is deciding her move. These particular

displays were shown to be successful in conveying the desired emotions in [32]. Also,

no “gradients” of the expressions were employed (e.g., more or less intense smiles)—

all expressions were of the same intensity. A screenshot of the negotiation game can

be seen in Figure 4.1.

It must be pointed out that several factors in the presentation of emotion have been

overlooked in order to keep the experiment simple, although they could presumably

be carrying strong e↵ects which are well-documented in the literature. In particular,

gender e↵ects were not tested for, as all the agents were male. The e↵ect of race,
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Figure 4.2: The Trust Game

age, or physical attractiveness was also not examined, although all of these could

mediate how expressed emotions are interpreted. In all these cases, all these variables

were kept constant (using agents of the same age and gender) whenever possible, or

randomized uniformly (for race).

The trust game

Each subject in the experiment plays several negotiation games with di↵erent

agents. After every three such games, in which the agents di↵er in their emotion

expression policy, but not in their strategy, subjects are asked to play a ‘trust game.’

As an example, someone might play with three Tit-For-Tat agents, the first of whom

always smiles, the second always shows anger, and the third maintains an expression-

less face. After these three games, the subject is asked to play a trust game with

one of them. The trust game is a variant of the popular public goods game. To
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play it, people first have to select which of these three agents they want to be paired

with. (Agents are given names at random, like “Michael” or “James” to assist recall.)

After they indicate their choice, they are presented with a trust problem. In partic-

ular, they are shown their total gains (in coins) from the previous three negotiation

games, and are asked what fraction of these they are willing to trust to the agent

they have chosen as their partner. If the agent’s policy includes showing a face, it

also is displayed, but no emotions are ever shown on it.

If the subject chooses to trust her partner with a non-empty subset of her gains

t =< t1, t2, t3, t4 >, where t
j

is the count of coins of type j she has trusted, this

subset is tripled at the hands of the agent. Then, however, the agent chooses what

percentage p 2 [0, 1] of the value of these coins it will return to the human, and how

much it will keep for itself. Agents all choose p uniformly at random from [13 ,
2
3 ], but

subjects are told nothing about this. The subject at the end of the trust game keeps

the points she has not trusted to the agent, to which p⇥
P

j

(3t
j

)wh

j

points is added.

The trust game looks like the screenshot in Figure 4.2.

Experiment process

Each subject in the experiment played twelve negotiation games, in sets of three.

Each triad involved computer agents that di↵ered in their emotion expressions but

used the same negotiation strategy, and was followed by a trust game. The order of

games was randomized, and each subject faced triads of agents that di↵ered in terms

of strategy of emotion expression policy, but not both. Instructions were delivered to

the subjects over video, and they were all debriefed after the end of the experiment.
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After each negotiation game, subjects were asked to answer, in Likert 1-7 scales, four

short questions regarding their experience with the agent they had just played with.

Subjects were paid $20 for their participation, which lasted about 45 minutes. They

were also told that the person who would score the highest number of points would

be awarded an extra $100. The total number of subjects was N = 88, for a total of

1,056 negotiation games and 352 trust games.

4.2.2 Hypotheses

Two hypotheses were examined in this study. The main hypothesis concerns the

influence of emotion on perceptions of trustworthiness. Also, since there are plenty of

reported results in the literature, a second hypothesis was added, namely, to replicate

and confirm some of the best-known findings regarding the influence of agent emotion

expressions on people’s negotiation behavior.

The main hypothesis (H1) is formulated using the notion of action-consistency.

An emotion expression is called action-consistent with a strategy if the emotion em-

phasizes the characteristics of the agent that manifest in its actions. Positive emo-

tion typically emphasizes kindness and goodwill, whereas negative emotion is usually

illustrative of selfishness and intransigence. Hence, positive emotion is more action-

consistent with non-self-interested strategies, and negative emotion is more action-

consistent with self-interested strategies. In the same spirit, positive emotion is more

action-consistent with flexible than with inflexible strategies. Alternative notions

of consistency, which are not discussed here, have been introduced in the literature

before [91].
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Note here that the definition of action consistency employs the “typical,” most

common, and context-independent meaning of emotion expressions. Hence, a smile

might be typically reflective of good intentions and kindness, but in certain contexts

it might be a sneer, an indicator of Schadenfreude (rejoicing at the misfortune of

others), or simply a polite gesture. Similarly, an angry expression in a context-free

manner may be an indicator of inflexibility and self-interestedness, but in certain

contexts it might also convey frustration or moral judgment, among others.

H1. People’s perceptions of an agent’s trustworthiness are influenced by the action-

consistency between the agent’s emotional expression and its strategy.

Agents whose expressions are consistent with their strategies will be preferred

as partners for the trust game. Thus, when faced with a choice among self-

interested or inflexible agents, people will tend to prefer angry ones; and when

faced with a choice among non-self-interested or flexible agents, they will tend

to prefer smiling ones.

H2. Within the negotiation, existing findings in the literature are expected to be

confirmed; in particular:

(a) The expression of anger will result in higher concession rates by humans, as

evidenced by Van Kleef et al. [130].

(b) Agents who smile will help foster more integrative outcomes, as evidenced

by Carnevale and Pruitt [20]. Integrative outcomes are those in which the

sum of the two players’ payo↵s is high. These can be achieved if the players

realize there are mutually beneficial exchanges (such as one silver coin for
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one iron coin) that increase both their payo↵s.

(c) Positive emotion will cause humans to also concede more points. The theory

of “emotion contagion” [56] predicts that people in negotiation games in

which positive emotion is expressed will be more cooperative towards the

agent.

4.2.3 Results

To assess people’s behavior in the trust game, their choice of partner in the trust

game was used as a metric. As was mentioned before, a trust game always came

after three negotiation games, in which the agents di↵ered in their emotion expres-

sion policy but not in their strategy. Therefore people were presented with a choice

among three candidate emotion display policies (keeping strategy fixed). To inves-

tigate whether smiling agents or angry agents were preferred, it was tested whether

�µ = µ
smile

� µ
angry

= 0 (in which µ
x

denotes the fraction expression x was cho-

sen), which would be the case if smiling and angry agents were equally preferred.5

It is observed that, among selfish agents, �µ = �0.25, p < 0.05, denoting a pref-

erence toward angry agents. Among conceder agents, similarly, �µ = �0.125, al-

though this is not statistically significant. A similar trend was seen with Nash agents

(�µ = �0.153). On the other hand, among tit-for-tat agents preference is observed

toward smiling agents (�µ = +0.25, p < 0.05). Notice that angry agents are being

more preferred over smiling ones the more the strategy of the agent becomes inflexi-

5Agents implementing the fifth emotion expression strategy, “appraisal,” were counted among the
joyful or angry ones, depending on the emotion they actually expressed in the majority of rounds
they negotiated with the subjects. The results are robust to including or excluding the “appraisal”
agents’ data.
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ble or self-interested, confirming hypothesis H1 (results are summarized in Table 4.2).

Mo e↵ect of emotion was documented on the amount of resource trusted.

Inflexible Flexible
Non-self-interested �0.153 +0.25⇤

Self-interested �.0.25⇤ �0.125

Table 4.2: �µ = µ
smile

� µ
angry

, where µ
x

denotes the fraction of times emotional
expression x was preferred, for the various strategies in the trust game. Asterisk
denotes that the mean is significantly di↵erent from zero.

To assess the influence of emotion expression on negotiation outcomes, both be-

havioral and subjective measures were used. Behavioral measures include variables

relating to the negotiation game, such as the players’ payo↵ at the end of the game,

drop-out rates (i.e., the percentage of games with an agent in which humans dropped

out, ending the game without a deal and awarding zero payo↵ to both participants),

and measures indicating whether the games’ integrative potential was exploited. Sub-

jective measures, on the other hand, come from people’s questionnaire responses after

each negotiation game. Table 4.3 lists all the measures used. Let us now turn to the

two hypotheses.

Surprisingly, anger was not observed having any e↵ect of the average human con-

cession rate (), thus disconfirming hypothesis H2(a). Figure 4.3 plots the average

concession rate across emotion expressions for all four strategies examined. As can

be seen, the average concession rate of the people was strongly influenced by the

strategy of the agent, but very little by its emotion expression. Similarly, no support

was found that the drop-out rate (d), or the integrative potential, as measured by

⇡⌃ or ⇡⇧, was influenced by the choice of emotion across all strategies (thus H2(b) is
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also rejected). Finally, the hypothesis that positive emotion will influence concession

rates according to the theory of “emotion contagion,” according to H2(c), was also

not supported by the measurements.

Behavioral Measures
⇡a : agent points at the end of the game
⇡h : human points at the end of the game
⇡⌃ = ⇡a + ⇡h : sum of payo↵s
⇡⇧ = ⇡a⇡h : product of payo↵s
 : average human concession rate between two rounds
d : average drop-out rate (%)

Subjective Measures (Likert 1-7)
q1 : how much did you like this agent?
q2 : how much did you feel this agent cared about you?
q3 : how human-like was the agent?
q4 : would you play with this agent again?

Table 4.3: Behavioral and subjective measures.

It must be noted that action-consistency seems to also play a role in people’s

subjective reports. With respect to “liking” (q1) people showed an aversion towards

always-angry agents for flexible strategies, but not for inflexible ones. With respect

to how much people felt the agent cared about them (q2), always-smile agents were

preferred under non-self-interested strategies. Also, with respect to people’s expressed

desire to play with an agent again in the future (q4), an aversion was seen toward

always-angry agents only among agents playing the tit-for-tat strategy. All the above

results indicate that action-consistent expressions are preferred over others. Finally,

looking at how much the agent was perceived to be human-like (q3) no e↵ects of

emotion were noticed.
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Figure 4.3: Average concession rate () per emotion expression and strategy in the
negotiation game (error bars denote 95% confidence intervals).

Supplementary results

This section presents further findings of the experiment that were not directly

related to the hypotheses examined. These are reported for two reasons: (a) be-

cause they might be useful in comparing with other negotiation experiments in the

literature, and (b) as evidence that the various strategies the agents employed did

make a di↵erence in people’s behavior (in other words, the strategy choice was not

superfluous). Hence Figure 4.4 displays the points in the possession of the agent and

the human at the end of the game. Here it can be seen that the conceder and selfish

agents (self-interested) fare better in terms of final score than the non-self-interested

agents. Also, the Nash agent causes very equitable outcomes to be obtained.

Figure 4.5 show the e↵ect of the selfish agents on humans who choose to drop-out,

hence punishing the agent at a cost (they both receive zero points). As can be seen
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Figure 4.4: Average human and agent points in the end of the game per strategy
(error bars denote 95% confidence intervals).

in the chart, no player drops out against any other agent, but up to a quarter of the

participants do when their partner shows such intransigence and self-interestedness.

Finally, Figure 4.6 shows the average duration of the game in rounds. It is clear

that people agree to a deal sooner with non-self-interested agents, but try harder

against self-interested ones. (Interestingly enough, a small but statistically significant

di↵erence of emotion expression on the game’s duration in the case of the selfish agent

was observed. In that subset of the data, it can be seen that smiling causes people

to play on average for two more rounds with the selfish agent, trying to forge a deal,

before they accept its terms or drop out. This is perhaps because smiling conveys

an interest—on the agent’s behalf—to be cooperative and work together with the

human, which keeps her trying for longer before conceding to the fact that the agent

will not change its mind.)
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Figure 4.5: Average human drop-out rate per strategy (error bars denote 95% confi-
dence intervals).

Figure 4.6: Average duration of game in rounds per strategy (error bars denote 95%
confidence intervals).
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4.3 Discussion and Extensions

The study discussed above demonstrates the role of emotion expressions in human-

computer interaction. Agents were perceived as more trustworthy when they deployed

appropriate emotion expressions that were consistent with their actions. The study

reveals important ways in which emotion expressions, and non-verbal cues in general,

can influence people’s perceptions and behavior.

The reason why people are influenced has been a subject of debate among re-

searchers. Kahneman and Tversky [129] back in the 1970s have argued against the

notion that people are always rational. They claimed that people employ a set of

heuristics and often exhibit consistent biases in their reasoning and decision-making.

As an example, the availability heuristic is the phenomenon n which people predict

the frequency of an event, or a proportion within a population, based on how easily an

example can be brought to mind. Thus someone might argue that cigarette smoking

is not unhealthy because his grandfather smoked three packs of cigarettes a day and

lived to be a hundred. The grandfather’s health could simply be an unusual case that

does not speak to the health of smokers in general, but because it is “available” in

the person’s memory, it biases his opinion.

Later Kahneman [62] and other economists [124] have suggested the two-system

hypothesis, according to which human decision-making is performed by means of two

systems: System 1 (S1) is fast, frugal, “quick and dirty” and leverages heuristics,

emotions, quick associations and conditioned reactions to make decisions quickly, but

not always accurately. System 2 (S2), on the other hand, is slower and deliberative.

S2 costs more to operate but is more accurate, while S1 is faster but often wrong. In
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the picture these researchers have drawn, human rationality emanates from S2, while

biases and errors arise out of S1. This idea has received criticism from some neuro-

scientists as of late, as brain regions typically associated with S1 (e.g., the amygdala,

one of the emotion centers of the brain [37]) and those associated with S2 (e.g., the

prefrontal cortex, responsible for predicting the consequences of actions, among other

activities) have been shown to be less distinguishable and more interconnected than

previously thought. As such, the idea that two distinct systems govern thought and

decision-making has come into question.

Besides these neuroscience-related objections, the two-system hypothesis has also

come under attack from evolutionary psychologists. Although it relaxes the notion of

absolute rationality by allowing for a “locus of biases” (S1), the theory still treats such

phenomena as emotion-influenced decision-making as disturbances of solid and correct

reasoning. Mood influences, cognitive heuristics and departures from rationality are

attributed to design imperfections in the brain or due to its limited computational

capacity, but no positive role is recognized to them in the two-system hypothesis.

On the contrary, evolutionary psychologists have argued that the emotions, much

like any aspect of our bodily or psychological design, have evolved to address frequently-

encountered problem in our evolutionary past. According to Cosmides and Tooby

[26] emotions are microprograms, short behavioral scripts, each with an activation

condition that prompts its execution under the right set of circumstances. These

microprograms governed the individuals’ behavior and were one of the determinants

of their procreative fitness. Hence, populations with more adaptive microprograms

prospered under natural selection. As such, emotions are not at all irrational, but
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highly useful means by which decisions can be reached in environments that resemble

those ancestral domains. Of course, a corollary of this argument is that emotions

might be maladaptive in situations that depart in structure from these environments

that helped promote them in our species’ evolution.

The influence of emotions—and non-verbal cues in general—on human perception

and behavior can then be interpreted under this light. People’s response to a certain

cue can be expected to be modulated by the function of that cue in frequently en-

countered settings.6 In most studies demonstrating that people treat computers as

social actors the e↵ects recorded can be attributed to the way signals and behaviors

are interpreted and processed by these microprograms. Recall from the introduction,

for instance, that reporting a happy story with a happy voice makes people perceive it

as more positive. This is simply a manifestation of the fact that a↵ective signals like

a happy voice carry meaning in life. A person reporting a story in a happy voice is

assumed to be in a state of elation, whose cause is then reflected to the characteristics

of story being reported. Taking the non-verbal cue out of context does in no way stop

the relevant cognitive processing functions from being activated.

Emotion expressions are also a frugal way to communicate information, as reported

in the last chapter. Their role in human-computer interactions studies can then be

understood in this context as well. If an emotion expression is a simple signal that

communicates a wide breadth of information, placing that signal in an interaction

6These frequently-encountered settings are not necessarily limited to frequent situations in evo-
lutionary history, but can be extended to frequent situations in the person’s lifetime, or her culture.
As a matter of fact, one of the adaptive functions of emotions is that they can have their activa-
tion conditions re-purposed, so that they be invoked by novel situations beyond those genetically
prescribed [96].
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serves to economically communicate all this information. One can imagine such “low-

bandwidth” signals being used constructively to influence not just people’s subjective

perceptions of computer systems, but also influence their behavior towards those

systems in constructive ways.

Similarly, the emotion expressions in the study serve to reinforce or contradict the

personality characteristics that the agent’s actions already convey. If the agent is a

tough negotiator but expresses positive emotions people get conflicting signals. On

the one hand, the agent through its actions shows little regard toward their well-being;

on the other hand, through its non-verbal expressions it advertises a willingness to

work together peaceably. The resulting confusion makes the agent less predictable,

and hence less likely to be trusted in the future in a situation of uncertainty, such as

the trust game in the study. If, however, the agent’s emotion expressions and actions

are consistent they both reinforce the same characteristics, increasing the agent’s

predictability, and hence its perceived trustworthiness.



Chapter 5

The Reasoning Patterns:

Simplifying and Representing

Games

Strategic environments are another place in which increased complexity makes

reasoning and decision-making more di�cult for agents. Game theory o↵ers a prin-

cipled way to analyze and predict the behavior of rational agents in such multi-agent

strategic environments. Section 1.2.2 of the Introduction o↵ers a short description of

the underlying assumptions, most important concepts and implications of game the-

ory. In brief, the theory assumes that all agents possess a utility function that they

are trying to maximize by formulating appropriate strategies. Agents are expected

to best-respond to each others’ strategies in what is essentially a fixed point in the

strategy space, referred to as a Nash equilibrium of the game.

Game theory is useful for the design of agents, as it provides a way for them

131
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to predict and anticipate the strategic behavior of other agents, and thus to select

appropriate best-responding strategies to maximize their own utility. Game-theoretic

models are also useful for reasoning about the game as a whole in three di↵erent

ways. First, they can be used for descriptive analysis: an outside modeler of the

game can use them to understand why agents behave a certain way. Second, they

can be used for prescriptive analysis: a modeler can use them to build agents that

implement strategies outperforming those of existing agents. Third, they can be used

for mechanism design: the modeler can alter the design of the game to induce agents

to adopt particular desirable behaviors.

To analyze a game, a modeler must reason about the interactions among the agents

in the game, the consequences of their actions, the flow of information among them,

their beliefs and observations, and their strategic thinking. Understanding the reasons

why agents choose a particular strategy is helpful in descriptive analyses, as it o↵ers

an intuitive understanding of their reasoning. It also enables easier prediction of how

these agents will behave under di↵erent circumstances or in di↵erent environments,

thus making it useful in prescriptive analyses and mechanism design.

Standard game-theoretic accounts o↵er a very coarse understanding of why agents

choose their actions. They assume that the agents’ only objective is to maximize their

utilities. In complex games, however, directly maximizing an agent’s utility might be

computationally hard. In such games it might be useful to reason in a finer way

about the agents’ objectives. In particular, the structure of the game can reveal

specific ways in which agents can achieve high utility. Consider an example, in which

an agent’s actions are observable by other agents. In this case, the agent might benefit
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by considering how these agents’ observations will influence their beliefs and future

actions. Being able to anticipate their responses, it can steer them towards choices

that improve its utility. Notice that this line of reasoning about a game says more

about agents’ reasoning and objectives. Agents’ choices are examined not only with

respect to the utility they provide, but also with respect to the dynamics within the

game that result to it.

Pfe↵er & Gal’s theory of reasoning patterns [103] o↵ers a principled account of

these kinds of strategic reasoning. In this chapter, I show how to use this theory to

assist game modelers, especially in complex games, while the next chapter presents an

application of the theory to assisting human decision-makers. Section 5.1 describes

the reasoning patterns and the ways they capture the flow of utility and information

within a game. Four types of reasoning pattern types su�ce to describe the objectives

of every player in every game, and these four types of reasoning patterns can be

interpreted in relatively straightforward, intuitive ways. The theory of reasoning

patterns is used to make two distinct contributions.

First, as discussed in Section 5.2, the theory of reasoning patterns is extended

to games of incomplete information (Bayesian games), with and without a common

prior. For this to be accomplished, a novel graphical formalism was introduced for

such games. This new formalism allows agents’ beliefs, no matter how divergent, to

be represented in a concise belief graph, which enables us to define reasoning patterns

across the belief sets of two or more agents, and to identify them easily, even when

these beliefs sets are mutually inconsistent.

Second, this chapter describes a technical, game-theoretic contribution. In Section
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5.3, it is demonstrated that the reasoning patterns can be used to simplify certain

games for the purpose of computing a Nash equilibrium, by recognizing decisions in

those games that can be ignored during the equilibrium computation. In some classes

of games this may lead to exponential time savings. A polynomial-time algorithm for

the e�cient detection of reasoning patterns in the MAID representation of a game is

also presented.

5.1 Reasoning Patterns in Games

Gal & Pfe↵er [103] investigate the reasons why agents choose their strategies in a

game. The fundamental objective of every player is assumed to be, consistently with

every other game-theoretic model, achieving the highest possible utility for itself.

But the way in which players may act to achieve high utility depends critically on

the structure of the game and the nature of their interactions with other players. For

instance, a player may choose to behave in a way that reveals private information

it possesses to others, or it may act to manipulate their beliefs to its own benefit,

if the game’s structure enables such strategic acts. The theory identifies systematic

patterns behind agents’ strategic reasoning, termed the “reasoning patterns.”

As Multi-Agent Influence Diagrams will be extensively used in presenting and

discussing the four types of reasoning patterns, we begin our discussion with a short

introduction of their semantics and most important concepts.
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5.1.1 Multi-Agent Influence Diagrams

A Multi-Agent Influence Diagram (or MAID [71]) is a concise graphical represen-

tation for games, like the Normal or Extensive forms (see Section 1.2.2). A MAID is

a graph that shares many of the structural features of a Bayesian network [102]. It

consists of nodes, which might be chance nodes, rectangular nodes, or utility nodes,

as well as directed edges connecting these nodes. For each node X we will denote its

parents in the MAID graph as Pa(X).

Chance nodes are ellipsis-shaped and correspond each to a random variable that

takes values stochastically. In particular, every chance node C has a domain A(C),

which is a set of possible values for that variable A(C) = {c1, . . . , c|A(C)|}. Nota-

tionally, we will use capital letters to refer to random variables or the corresponding

chance nodes, and lowercase letters to refer to particular values for that variable. If

a chance node has no parents in the MAID graph (Pa(C) = ;), then it is associ-

ated with a probability distribution over its domain, called the “prior” for that node,

p(C) = {pC1 , . . . , pC|A(C)|}, such that pC
i

� 0, 8i and
P

i

pC
i

= 1. If the chance node

has parents in the graph, then instead of a prior it is associated with a “conditional”

distribution p(C|Pa(C)), which stochastically selects values for that variable among

its domain, based on the values of its parents. In this way, chances nodes have the

exact same semantics as nodes in a Bayesian network.

Decision nodes are rectangular in shape and represent points along the game when

agents take actions. Each decision node D is associated with an agent that takes the

action in that node, denoted P (D). The domain of the node, A(D), is the set of

actions available to the agent. Finally, the parents of a decision node denote what
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the observations of the agent are when it is making its decision. For instance, if

decision node D has chance node C as one of its parents, this means that agent P (D)

observes the value of variable C when making its decision. Similarly, if decision node

D has decision node D0 as one of its parents, this is interpreted as agent P (D) having

observed the action selected by agent P (D0) in D0.

Utility nodes, finally, are diamond-shaped and represent agents’ payo↵s. A utility

function U is associated with a particular agent P (U), whose utility it represents. Its

parents denote the set of variables (chance or decision nodes), whose value influences

the agent’s utility. In particular, each utility node U is associated with a deterministic

(not stochastic) function that maps the values of its parent nodes to a real number

(U : ⇥
X2Pa(U)A(X) ! R). If a MAID contains more than one decision node for an

agent i, the agent’s total utility is taken to be the sum of the values of all these nodes:

u
i

=
P

U :P (U)=i

U .

A strategy for an agent i in a MAID consists of a “decision rule” �(D) for every

decision node D belonging to that agent (P (D) = i). This decision rule specifies

how the agent is going to decide an action within the set A(D) in decision D, by

looking at the observations the agent has at the time of its decision, i.e., the values of

the parents Pa(D) of D. Formally, �(D) maps the values of Pa(D) to a probability

distribution over A(D), allowing for stochastic decision-making.

Consider an example MAID with just a single agent to make the above definitions

clearer. A person must decide whether to take an umbrella with her in the morning

(decision D). She certainly wants to be carrying an umbrella in case it rains, but

she prefers not to carry the extra weight of the umbrella on a sunny day. Let us
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assume that the only observations she has are: (a) the weather forecast (F ), and (b)

yesterday’s closing prices of stocks (S). Another variable, the true weather (W ) is

unobservable by the decision-maker (hence not a parent ofD), but the forecast reveals

information about that hidden variable indirectly. In other words, F probabilistically

depends on W ; for example, on rainy days the forecast is also likely to be predicting

rain, but it might erroneously predict good weather sometimes. The person’s actual

utility depends on her choice D (take umbrella or not) and the true weather W (rain

or sun). The stock market prices neither reveal anything about the weather, nor do

they influence her utility in the context of carrying an umbrella. Figure 5.1 presents

the MAID for this simple game.

In this MAID, chance nodes S andW are each associated with a prior distribution.

For instance, W might be ‘rainy’ with probability 0.2 and ‘sunny’ with probability 0.8.

Node F , since it has a parent, has a conditional distribution p(F |W ). For instance, F

might be ‘rainy’ with probability 0.75 when W also indicates rain; when W is ‘sunny,’

F might be ‘rainy’ with probability only 0.15. Decision node D might have a domain

set containing actions ‘take umbrella’ and ‘not take umbrella.’ Finally, the utility of

the agent is +10 on a sunny day on which the agent does not carry an umbrella, +2

on a sunny day with an umbrella, 0 on a rainy day with an umbrella, and �20 on a

rainy day without an umbrella. Notice that, since S is not a parent of U , the agent’s

utility does not depend on the values of S.
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Umbrella 
(d) 

Forecast 
(F) 

Weather 
(W) 

Stock Prices 
(S) 

U 

Figure 5.1: The MAID for the simple example game

Relationship between MAIDs and other formalisms

A MAID is a formalism to represent games, and as such it shares similarities with

the Normal and Extensive forms, described in Section 1.2.2. That relationship is not

straightforward, however. To derive the Normal form representation of a game for

its made, we can proceed as follows: For every decision node D of each player i,

consider every possible combination between the possible values of its parents Pa(D)

and possible actions in the domain of the decision node A(D). The sum of these

combinations is the set of pure strategies S
i

for player i. The payo↵ to each player i

when players follow strategy profile s = (s1, . . . , sn) is the sum of values of i’s utility
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nodes, when every player j uses the decision rules specified by its strategy s
j

.

To construct the corresponding Extensive form game tree, the process is similar.

Every chance node can be represented as an information set ruled by the ‘Nature’

player, in which the probabilities associated with each action are given by the corre-

sponding prior or conditional distribution of each node. For every decision node D

of player i, also add an information set for all possible values of its parents Pa(D).

The leaf nodes of the tree will be assigned utility values computed in the same way

as for the Normal form representation.

MAIDs are also closely linked to Bayesian networks. One can transform a MAID

into a Bayesian network by fixing the strategies of all players in it. Since strategies

o↵er decision rules for each decision node D mapping Pa(D) onto probability dis-

tributions over the domain A(D), we can replace the decision node with a chance

node implementing the decision rule as a conditional probability distribution. We

can do something similar for utility nodes, replacing them with chance variables as-

sociated with a deterministic conditional probability distribution over the set of real

numbers. The resulting structure is a Bayesian network that captures probabilistic

dependencies between the random variables, the agents’ actions, and their utilities.

Well-Distinguishing (WD) strategies

Before the four reasoning patterns types are presented, a key technical assumption

needs to be mentioned. Pfe↵er & Gal assume that all players adopt well-distinguishing

(WD) strategies. Intuitively, WD strategies do not condition an agent’s decision on

irrelevant observations. Consider the previous example in Figure 5.1. The observa-
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tions of the decision-maker in this game are F and W , the forecast and the stock

market prices. A strategy for her is then a mapping from stock market prices and

forecasts to distributions over her action set, containing choices ‘take umbrella’ and

‘not take umbrella.’ For instance, a possible strategy might be “if the stock mar-

ket went up more than 5.4% and the forecast predicts rain, then take an umbrella

with probability 30%; otherwise, take an umbrella with probability 2%.” The above

strategy is not WD. Well-distinguishing strategies would never condition the player’s

decision on stock-market prices, as they neither influence the agent’s utility, directly

or indirectly, nor do they reveal anything about any variable that does.

Formally speaking, consider the observation set Pa(D), an observed variable X 2

Pa(d), and define set V X(D) = Pa(D) � X, the set of all observations excluding

X. Also, consider û(pa(D),Do(a)) to be the expected utility for the agent making

a decision in D upon choosing action a 2 A(D) with assignment of values pa(D) to

observations Pa(d).1 For every observation variable X 2 Pa(d), for every assignment

of values x1, x2 to variable X, if for every assignment of values vX(D) to all other

variables except X it holds that û((o1, vX(D)),Do(a)) = û((o2, vX(D)),Do(a)) for

every decision a 2 A(D) of the agent, then a well-distinguishing strategy should not

condition on variable X, but instead be a mapping from V X(D) onto probability

distributions over A(d).

Back to our example, consider the observation S, the stock market prices. For

every possible assignment to the forecast variable F (sun or rain), for every action

the agent takes (take umbrella or not), her expected utility does not change based

1Consistent with our notation, we use the uppercase to refer to the observed variables, Pa(D),
and the lowercase to refer to their their specific values, pa(D).
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on the stock market prices. Hence, should never condition on S if her strategy is to

be well-distinguishing. A WD strategy for the player would be, for instance, “if the

forecast predicts rain, then take an umbrella with probability 40%; otherwise, take

an umbrella with probability 4%.”

Definitions aside, is it plausible to assume that players only use well-distinguishing

strategies? For rational, utility-maximizing agents, it easy easy to show that for

every non-well-distinguishing strategy they may implement, they can obtain the same

utility using a well-distinguishing strategy.2 For human players, empirical studies have

revealed that they do not always follow well-distinguishing strategies. At this point,

however, and for the remainder of the chapter, we are going to assume that players

limit their strategic choices among well-distinguishing strategies. Admitting non-WD

strategies into the analysis of a game would allow for a very large number of “bizarre”

behaviors to be considered. For the purpose of illustration, consider two examples.

It is non-WD in poker to always ‘raise’ if the player to your right has brown hair,

although his hair color does not influence your own utility. It is non-WD to sell a

stock if its ticker starts with the letter ‘S’ or the day of the week is Tuesday, although

this information is irrelevant to the stock’s prospects. Most would clearly consider

such behaviors to be non-sensical. Excluding non-WD strategies makes the analysis

of agents’ objectives significantly more concrete, so we will henceforth assume strictly

WD strategies by all players.

2That said, the new well-distinguishing strategy might no longer be in equilibrium with the
strategies of other agents. The set of equilibria in which all agents use well-distinguishing strategies
is a (possibly proper) subset of the full set of equilibria in every game.
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Blocking Paths

In presenting the reasoning patterns, we shall use an important technical concepts,

the “blocked path.” As mentioned above, a MAID is a directed graph containing

chance, decision and utility nodes, and we can treat a MAID as a Bayesian network

by fixing the strategies of agents. We can then define a path on a MAID (or Bayesian

network) as a sequence of nodes connected by arcs, like on any other graphical struc-

ture. Paths can be directed (e.g., < n1 ! n2 ! . . . ! n
m

>) or undirected (e.g.,

< n1  n2 ! . . .  n
m

>), but we assume that they do not contain circles. A

path must contain at least two nodes. Nodes along the path have converging arrows,

diverging arrows, or sequential arrows.

• A node n along a path ⇡ is said to have converging arrows if it is not the first

or the last node of the path, and the both edges along the path are incoming

to it. For instance, in path < n1 ! n2  n3 >, the node n2 has converging

arrows.

• A node n along a path ⇡ has diverging arrows if it is not the first node in of the

path and both edges along the path are outgoing from it, for instance nodes n2

and n4 in path < n1 ! n2 ! n3  n4 >.

• Finally, a node has sequential arrows, if it has neither converging or diverging

arrows, e.g., node n2 in path < n1 ! n2 ! n3 > or path < n1  n2  n3 >.

Regarding blocked paths, we shall define path ⇡ to be blocked by the set of nodes

Z, called the “blocking set,” at node n 2 ⇡, called the “blocking node,” when either
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(B) 

Crashed OS 
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Software 
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(S) 

Figure 5.2: A BN example illustrating blocking

of the following two conditions holds: Either n does not have converging arrows and

n 2 Z, or n has converging arrows and neither n nor any of its descendants are in Z.

To understand intuitively the concept of blocking, consider a simple example: a

robot may be operational or not, which is represented as binary variable O. There

are two reasons why a robot might be non-operational: either it is out of battery

(binary variable B) or its operating system has crashed (variable C). Operating

system crashes may be caused by a virus (V ) or software errors (S). The Bayesian

network for this simple scenario is shown in Figure 5.2.

Blocking paths help illustrate the “flow of inferences.” The blocking set Z can

be interpreted as the set of variables whose values are observed (known). A path

between two unobserved variables X1 and X2, when not blocked by blocking set Z,

is then interpreted as variable X1 being able to change our beliefs about variable X2,
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despite us knowing the values of variables in Z.

Suppose, for instance, that we have observed the system having a virus, that is

Z = {V }. Consider path ⇡ =< V ! C ! O >. This path is not blocked in

any of its nodes by set Z, because variable C does not have converging arrows and

C 62 Z, and the same is true for variable O. This allows inference to “flow.” In other

words, knowing that there is a virus makes it more likely that the operating system

has crashed, which makes it more likely that the robot is not operational. Evidence

from variable V allows us to make inferences about all the other variables downwards

along the path. Notice that the same is true if we observed that the robot was non-

operational instead, i.e., Z = {O}. Again, path ⇡ is not blocked and inference can

similarly “flow.” The fact that the robot is non-operational would make it more likely

that there is an OS crash, and by extension more likely that the system has a virus.

Consider another case, now, in which the inference path is blocked. Suppose we

observe that the operating system has crashed, that is, Z = {C}. Take again path

⇡ =< V ! C ! O >. This time, the inference does not “flow” through variable C.

To see this, consider the e↵ect of a virus in the system (V ) on whether the robot is

operational or not (O). Since we already know that the operating system has crashed,

the presence of a virus can tell us nothing more about the operational status of the

robot. In other words, there is no influence of the virus’s presence on the operational

status of the robot, except the one that “goes through” the crashing of the operating

system. Since we already observe this (C 2 Z), there is nothing more that we can

learn by reasoning about the virus. Hence inference from V to O is blocked at C.
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For an example with converging arrows, suppose we observe that the system is

not operational (Z = {O}). This of course makes it more likely that the battery is

low, along path < O  B >. It also makes it more likely that the OS has crashed,

along path < C ! O >. But consider now path ⇡0 =< C ! O  B >, on which

node O has converging arrows. Having observed that the system is non-operational,

we can still perform inferences from variable B to variable C. In particular, if the

battery is low, the probability that the system has crashed now decreases. This is

because the battery being low can explain the non-operational status of the robot,

which makes it less likely that an OS crash is also responsible for it. Because O 2 Z

and O has diverging arrows along path ⇡0, the path is not blocked and such inferences

are able to “flow.” If, instead, we observed only the battery status (Z = {B}), then

we would not be able to say anything about an OS crash. A low battery and an OS

crash are independent events, and observing one says nothing about the likelihood of

the other, without also observing the robot’s operational status. In that case, path

⇡0 is blocked at O, since it has converging arrows and O 62 Z.

The Reduced MAID

In MAID graphical notation, as discussed above, any observations available to an

agent i when making a decision D must be parents of node D in the MAID graph.

Hence the decision rule for D is essentially a mapping from the parents of D to a

probability distribution over the actions A(D). If agents follow WD strategies they

cannot, however, condition their choices on irrelevant variables. There is a simple

graphical way to discern which variables among Pa(d) are irrelevant for the agent
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making a choice in D. A variable X 2 Pa(D) is irrelevant if all paths from X to any

utility node U of agent i are blocked by set Pa(D)�X. Extending this definition to

more than one variable, a subset K ✓ Pa(D) is irrelevant if all paths from any node

in K to any utility node U of agent i are blocked by set Pa(D)�K.

As mentioned before, a variable X is irrelevant when it has no impact on the

agent’s utility. Intuitively, then, a variable “matters” (is not irrelevant) for a decision

when its value reveals important information about what the right decision should be.

In other words, a variable matters when inference can “flow” from that variable to a

utility node of the agent in the MAID graph, i.e., there is a path from that variable

X to some utility node U of i. However, that inference should not be mediated

exclusively by all the other observed variables Pa(D)�X. If that were the case, then

X o↵ers no more insight than the remaining variables, hence it is de facto irrelevant.

Therefore, if all paths between X and all U of agent i are blocked by Pa(D) � X,

then X is irrelevant.

To reflect that all players are required to follow WD strategies in a game, we can

take every decision node D in the MAID and remove the edges connecting it to any

of its irrelevant parents. This process can be repeated iteratively, as severing an edge

might cause other paths to become blocked and more variables to be marked irrele-

vant. The final output of this process is called the reduced MAID. In the discussion

of the reasoning patterns that follows, we shall assume that all MAIDs are in their

corresponding reduced form.
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Conditional Blocking Set

Finally, we shall introduce one more notational element. We shall use W Y

X

, called

the conditional blocking set of node X for node Y , to denote all parents of X that

are not descendants of Y in the maid graph. Formally, W Y

X

= Pa(X) � {n : n 2

Pa(X)^ 6 9⇡ =< Y ! . . . ! n >}. The conditional blocking set will be important

in the definition of the reasoning patterns, discussed below.

The Four Types of Reasoning Patterns

Pfe↵er & Gal identify four types of reasoning patterns, presented below. For

each pattern an intuitive description is o↵ered, followed by a formal definition and a

correspondence to graphical properties of the MAID representation of the game.

These four reasoning pattern types are important because they are “complete,”

in the sense that they can fully characterize the objectives of a rational agent under

WD strategies. Pfe↵er & Gal prove this in a theorem. They denote a decision D

of agent i motivated if agent i has a reason to deliberate about his choice in D.

Technically speaking, decision D is motivated if there is an assignment pa(D) to

its parents Pa(D), and two actions a1, a2 2 A(D), such that û
i

(pa(D), Do(a1)) >

û
i

(pa(D), Do(a2)), for some strategy choice of all other players except i. In that case,

the agent has a reason to deliberate, because choosing action a1 yields him a higher

expected utility over action a2. (If all actions yielded the same expected utility under

all possible observations available to agent i in D, then his choice would have no

e↵ect whatsoever, hence the decision would not be “motivated.”) Pfe↵er & Gal prove

that, if a decision D is motivated, then it must be associated with at least one of the
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four types of reasoning patterns described above. As a consequence, a decision node

that is associated with no reasoning pattern is by definition unmotivated. They also

prove a weaker version of the converse: If a decision node has one or more reasoning

patterns in a MAID graph, there exists an assignment to the MAID parameters that

will make this decision motivated.3

1. The first reasoning pattern is direct e↵ect. It refers to instances in which a

player can influence his utility without the intervention of another player being

required. This influence could be deterministic or stochastic. Consider an ex-

ample: Andrew and Beatrice, with utility functions u
A

and u
B

, respectively, are

playing the ‘matching pennies’ game, in which both simultaneously choose ei-

ther Heads or Tails; if they select the same choice, then both gain $1, otherwise,

they both lose $1. In this game Andrew has direct e↵ect, since his choice im-

pacts his utility, causing it to be u
A

(1) or u
A

(�1) for a given choice by Beatrice.

Notice that Andrew’s utility depends also on Beatrice’s choice, not just his own.

Direct e↵ect only requires that Andrew may unilaterally influence his utility by

his choice, not that this ought to be the only source of influence. Beatrice’s

decision in this game has direct e↵ect for the same reasons. The MAID for this

game is presented in Figure 5.3(a).

In the previous game agents influenced their utilities deterministically by their

choices. Consider now an extension of this game. In the beginning of a game

players select Heads or Tails, as in the basic version, but then an actual coin is

3This converse theorem is weaker because the presence of a reasoning pattern might, under some
extreme choices for MAID parameters, cause a decision to remain unmotivated, c.f. [103], p.6.
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Figure 5.3: Two examples of direct e↵ect

tossed. There are two choices for that coin: if Andrew has selected Heads, coin 1

is tossed, which is a fair coin; otherwise, if he has selected Tails, coin 2 is tossed,

which comes up Heads with only 10% probability. Again, players win or lose

one dollar depending on whether their own choices match or di↵er, respectively.

The only di↵erence is that, if the coin lands on Heads, their wins or losses are

doubled. Notice now that players’ utilities are not deterministic but can be

computed in expectation only. Despite the stochasticity introduced, however,

both agents’ decision still have direct e↵ect. The MAID for this extended version

of game is presented in Figure 5.3(b).

In the MAID representation of a game, decision D of agent i has direct e↵ect

if there is at least one directed path from the decision node D to a utility node

U
i

of agent i that does not contain any decision nodes of other players j 6= i.
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Figure 5.4: An example of manipulation

The path might, however, contain chance nodes, if the influence is stochastic,

like in the second version of our game.

2. The second reasoning pattern type is manipulation. This reasoning pattern

refers to cases in which another player is involved, and her decision can be

influenced (manipulated) in desirable ways. Consider again a simple example:

Andrew and Beatrice play the matching pennies game as before, but this time

Andrew announces his choice of Heads or Tails, then Beatrice makes her choice

after having observed Andrew’s announcement. The MAID for this game is

presented in Figure 5.4.

In this game Andrew can influence Beatrice’s choice by means of his announce-

ment. If he selects Heads, for example, Beatrice will also wish to select Heads,

obtaining a utility of u
B

(1) for herself, as opposed to u
B

(�1) if she instead
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selected Tails. Three factors make this influence mechanism work: First, An-

drew’s decision is observable by Beatrice (arrow from decision node A to node B

in the MAID). In the standard game in which both players make decisions simul-

taneously and independently, Andrew could never hope to influence Beatrice,

as his choice cannot be known by her at the time of her decision. Second, Beat-

rice’s decision influences Andrew’s utility (arrow from B to u
A

). If that were

not the case, Andrew would have no reason to bother influencing her choice.

And third, Andrew’s choice impacts Beatrice’s utility (arrow from A to u
B

). If

that were not true, then Beatrice would never alter her decision based on An-

drew’s action. (Remember that we only allow for well-distinguishing strategies.

If Beatrice could adopt non-WD strategies, she could arbitrarily condition her

choice on Andrew’s, whether his actions mattered for her utility or not.)

The formal graphical definition of manipulation relies on these two conditions,

broadly considered. There is thus manipulation for decision D of agent i if:

(a) there is a directed, decision-node-free path from D to a decision node D0 of

another agent j 6= i; (b) there is a directed path from D0 to a utility node U
i

of

agent i; and (c) there is a directed path from D to a utility node U
j

of agent j

that does not pass through D0. The paths in (b) and (c) may contain decisions

of agent i, agent j, or some other agent.

3. The third reasoning pattern type is signaling. This reasoning pattern, like ma-

nipulation, involves influencing another player. But whereas under manipula-

tion the influencing player impacts the other player’s utility through his actions,

under signaling he stands to change her beliefs. Consider an example involving,
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Figure 5.5: An example of signaling

once more, Andrew and Beatrice: A fair coin is tossed and the outcome is re-

vealed secretly only to Andrew, who must then choose between Heads and Tails.

Beatrice observes Andrew’s choice, but not the outcome of the coin toss, and

then also chooses between Heads or Tails. After this, players receive payo↵s as

follows: Andrew receives $1 if Beatrice selected Heads, and nothing otherwise.

Beatrice receives $1 or loses $1 based on whether her choice matched the out-

come of the original coin toss, which was unobservable to her. Finally, Andrew

loses a dollar if that coin landed on Tails, irrespective of what Beatrice chooses.

Graphically, the game is shown in Figure 5.5.



Chapter 5: The Reasoning Patterns: Simplifying and Representing Games 153

Notice that in this game Andrew’s action (A) “signals” something about the

unobservable variable C to Beatrice, hence the name for that reasoning pat-

tern. Andrew knows that Beatrice will use the observation of his action to infer

something about the coin toss, and he can thus select an appropriate action to

influence her decision favorably for himself. This is possible because Beatrice

“cares” about that unobservable variable, in the sense that it influences her

utility, and because Andrew’s utility depends on Beatrice’s choice. Formally,

five things in the graph define signaling for decision D of agent i: (a) a directed,

decision-free path from D to decision node D0 of some other agent j 6= i; (b)

a directed path from D0 to a utility node U
i

of agent i; (c) an undirected path

< X, . . . , U
j

from a parent X of D to some utility node U
j

of agent j that is

not blocked by WD

D

0 [ {D0}; (d) a variable C along that path such that C has

diverging arrows, called the “key” node; and (e) a directed path from the key

node C to a utility node U
i

of agent i that is not blocked by WC

D

[ {d}. The

paths in (c) and (e) may contain decision nodes of other agents.

To intuitively understand why these paths are necessary, consider what would

happen if any of them were missing. If path (a) were not present, player i could

not influence player j at all. Similarly, if (b) were absent, then player i would

not have a reason to influence j’s choice. If (c) and (d) were absent, then player

i would possess no information of value to j, therefore he would have nothing

to signal. The variable being signaled is essentially the key node C. Finally,

if (e) were missing then player i’s action would not depend on the key node C

under WD strategies. Since we are operating within the reduced MAID, if (e)
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were missing then we would have to sever the path concocting the key node

(or its descendant along the path, X) to node D, thus preventing player i from

conditioning on it, in which case player j would not make any inferences about

the key node from i’s observed action.

4. The fourth and final reasoning pattern type is revealing-denying. This last

reasoning pattern type is similar to signaling, with one exception. Instead of the

agent conveying to another something about information he privately—directly

or indirectly—observes, he influences another agent’s access to information that

he does not observe. In other words, the influencing agent controls another’s

access to information, granting such access (revealing the information to her)

or blocking access (denying her the information).

Again, consider an example. A coin will be tossed (variable C). Andrew gets

to choose between Heads and Tails before the coin toss. He must also select

whether Beatrice will be allowed to observe the coin toss outcome or not. Beat-

rice gets to play after to coin is tossed, and must select Heads or Tails. In the

end of the game, players get $1 if their choices matched, and lose $1 if they did

not. Andrew makes a bonus $10 if Beatrice chose Tails, and Beatrice makes a

bonus $10 if her choice matches the outcome of the coin toss. The MAID for

this game is depicted in Figure 5.6.

The variable C represents the coin toss, and can be either Heads or Tails. Vari-

able E, which represents Beatrice’s observation of the coin toss, is distinguished

from C, because it can get values Heads, Tails, or Unobservable, in case An-

drew denies her access to the outcome of the coin toss. (Andrew’s decision now
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Figure 5.6: An example of revealing-denying

has domain containing four choices, reflecting his dual decision: ‘Heads & Re-

veal,’ ‘Heads & Not Reveal,’ ‘Tails & Reveal’ and ‘Tails & Not Reveal.’) Notice

how Andrew, with his choice of action, controls Beatrice’s access to important

information, namely, the coin toss.

Formally, to have revealing-denying for decision D of agent i, three things must

be true in the MAID graph: (a) a directed, decision-free path from D to a

decision D0 of some agent j (here j could be the same agent as i); (b) a directed

path from D0 to a utility node U
i

of agent i; (c) a path from a child of D to a

decision node U
j

of agent j that is not blocked by WD

D

0 [ {D0}. Paths (b) and
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(c) might contain other decision nodes. Intuitively, if (a) or (b) are missing,

then as before agent i has no way or no incentive to influence j’s decision in

D0. As for the third path, its existence signifies that j cares about a variable

along that path (it impacts her utility U
j

, agent i’s action impacts that variable

or interferes with her ability to infer it, and she cannot unilaterally infer that

variable by means of her own observations (or the conditional blocking set would

not be blocking that path).

These four types of reasoning patterns are appealing because they o↵er a way to

intuitively comprehend the objectives of agents. An agent either wishes to improve its

own utility directly, or somehow alter the decision of another agent, either by exerting

influence on that agent’s utility or by controlling its beliefs and observations.

5.2 Extending the Reasoning Patterns to Bayesian

Games

In defining the reasoning patterns, Pfe↵er & Gal restricted their attention to

games of perfect and imperfect information. Although games of incomplete infor-

mation (Bayesian games) are useful in modeling and studying a large number of

interesting strategic situations, reasoning patterns were not defined for them. One

notable exception is Bayesian games with a common prior. When the common prior

assumption (CPA) holds, a game of incomplete information can be transformed into

a corresponding game of imperfect information, for which reasoning patterns can be

defined.
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The CPA has been extensively invoked as a useful and convenient modeling de-

cision. When it holds, the game can be represented in a more concise form, agents’

beliefs are mutually consistent, and solving the game is simpler. As noted by a num-

ber of economists, however, the CPA is not always appropriate, and might distort

the structure of the game being represented. It might also be unrealistic, or simply

unnecessary [87].

This section presents an augmented theory of reasoning patterns for all types of

games, including games of incomplete information with and without a common prior.

Following a discussion on the merits and shortcomings of the CPA, the theory is

presented in two steps: First, a new graphical formalism is introduced for both types

of Bayesian games, which allows players’ beliefs to be represented in a concise way

and dependencies between them to be easily detected by constructing the game’s

belief graph. This belief graph is utilized in the second step, in which the reasoning

patterns are defined for Bayesian games. Surprisingly, the reasoning patterns defined

in this expanded set of games are semantically identical to the four types identified

originally by Pfe↵er & Gal in games of perfect and imperfect information. However,

all four types of reasoning patterns now correspond to significantly richer graphical

structures involving the MAID and the belief graph of the game.

5.2.1 The Common Prior Assumption (CPA)

The common prior assumption (CPA) in Bayesian games stipulates that players’

types are drawn from a distribution, called the “prior distribution,” that is common

knowledge to all players. Since the type of a player encapsulates all the information



Chapter 5: The Reasoning Patterns: Simplifying and Representing Games 158

privately known by her, the CPA essentially implies that players, before learning

their own type (i.e., in the absence of any information privately revealed to them),

must agree on the likelihood of every stochastic event in the world. More specifically,

the typical interpretation of games in which the CPA holds goes as follows: Players

originally agree on the game being played and the likelihood of all possible events,

which is captured by the common prior. Before any moves are made, players receive

observations stochastically by Nature. This information constitutes each player’s

type, and they use it to condition the common prior to a posterior, which might

be di↵erent for each agent. After this, players implement their strategies and take

actions.

According to Morris [87], the CPA has been widely accepted in the literature on

the basis of three arguments:

• Rationality implies the CPA. This argument states that rational agents having

received identical information should have no reason to disagree on the likeli-

hood of any event or outcome in the world—if one agent disagrees, then she

must have made a mistake and therefore she is not thinking rationally. The

above argument is flawed in three ways: First, probabilities of events are not

directly observable in the world, but are instead statistical properties of com-

plex phenomena that either we do not fully understand or might be too hard to

exhaustively model. For example, the fact that a fair coin lands on either side

with equal likelihood is a result of small forces applied to its surface, its weight

distribution and small air currents in a “typical” environment where the coin is

tossed; but the number 0.5 is not directly observable or measurable on the coin
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itself. If probabilities are then derived from statistical assessments, rationality

objections are irrelevant. Second, if one adopts the subjective view of proba-

bility (as Bayesian statisticians do), there is nothing implying that all agents

must agree on the probabilities of all events—otherwise probabilities would not

be truly subjective. Finally, rationality tells us how to update a prior given new

observations, but in general says nothing about how to choose a prior in the

first place.

• Learning will cause agents’ priors to converge to the empirically observed fre-

quencies. This argument basically states that, even if agents start with di↵erent

and unequal priors, they should, given enough data, update those to more or

less identical posteriors, which they will then use as their new (almost common)

priors. Of course such a claim is valid only if we can safely assume that agents

have been given enough time in the environment to explore and assess the like-

lihood of every event with su�cient accuracy. In many multi-agent systems,

however, the environment is too complex to even represent in state-space, let

alone fully explore and quantitatively assess. Furthermore, agents often engage

in localized interactions, and therefore their experiences may be concentrated

in only a narrow subspace of the environment.

• Abandoning the CPA would cause serious modeling issues. This is a more serious

concern. As mentioned before, under the common prior assumption the only

source of disagreement regarding the likelihood of an event in the world can

be private information that some of the agents have obtained but not others.

This private information is essentially what the type of an agent represents.
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Therefore, under the CPA agents’ inferences are “compatible,” e.g., what agent

i believes agent j of a particular type believes is exactly what agent j of that

type in fact believes. On the contrary, dropping the CPA may lead to infinitely

nested beliefs of the form “i believes that j believes that k believes that i

believes” that are quite hard to formally reason about computationally [49].

Another problem with such belief structures is that repeated Bayesian games

without the CPA may never converge to any equilibrium under any learning

process [34].

In many cases, forcing the agents to have a common prior is an unnatural im-

position on the model. Why would they have a common prior if they have di↵erent

subjective beliefs about how the world works, or the space of possible strategies? In

such cases, we can try to relax the CPA. To do so, we assign the agents di↵erent prior

distributions over the joint types. Consider a simple example of a cards game with

three players, in which player can be of two types: blu↵er, or non-blu↵er. The CPA

would require that, in the beginning of the game, all players agree on the probability

of each player being a blu↵er. If we relax the CPA, we will be able to say things

like “Alice thinks Bob is a blu↵er with probability 0.4, but Carol only thinks he is a

blu↵er with probability 0.1.” The question then could arise: “What does Alice think

that Carol thinks about Bob?” One possible answer to this question is to say that

while the priors are uncommon, they are common knowledge, so Alice knows Carol’s

prior and the fact that she thinks Bob is a blu↵er with probability 0.1. However, if

we are not assuming that the agents have a common prior, this assumption is very

hard to justify. If the agents have di↵erent subjective beliefs that lead them to have
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di↵erent priors, how can we expect them to know each others’ subjective beliefs?

Alternatively, we can say that agents do not know other agents’ priors. Instead,

they maintain beliefs about them. One possibility is to say that agents believe other

agents’ priors are like their own, so Alice believes Carol thinks Bob is a blu↵er with

probability 0.4. In this approach, each agent solves a separate Bayesian game with

a common prior equal to their own individual prior. In this way the agents do not

reason about other agents having di↵erent priors from their own. Each agent comes up

with a di↵erent, completely subjective solution to the game under this assumption.

Obviously, agents whose beliefs about each other’s priors are entirely independent

might also derive a completely di↵erent set of Bayes-Nash equilibria for the game.

Another possibility is to say that each agent has private beliefs about the priors

of other agents, which need not necessarily be the same as their own. For example,

Alice might believe that Carol thinks Bob is a blu↵er with probability 0.3, while

Carol herself believes he is a blu↵er with probability 0.1. We then need to ask what

Alice believes Carol believes Alice thinks about Bob. We thus end up with a complex

hierarchy of beliefs that is very hard to model. Furthermore, each agent’s belief

hierarchy has no interaction with the other agents, so each agent’s solution of the

game is again completely subjective.

These three approaches—common knowledge, believing everyone has the same

prior, and completely private beliefs—are just three out of many structures that can

arise when relaxing the CPA. Below, a formalism is presented that can represent a

wide and diverse array of belief structures. Before doing that, however, let us look at

an example illustrating how such rich structures can come about.
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(t1, t2) probability
(maximizer, maximizer) p2

(maximizer, naive) p(1� p)
(naive, maximizer) p(1� p)

(naive, naive) (1� p)2

Table 5.1: Your prior for the RPS game

Suppose you (player 1) are playing Rock-Paper-Scissors (RPS) with a child (player

2). Let us also assume that there are only two types of agents in RPS: ‘maximizer’

and ‘naive.’ The maximizer agents have a correct model for the game, and utility

function that gives them +1 for winning, �1 for losing and 0 for a draw. The naive

type, on the other hand, represents how children might be expected to play the game:

naive players model their opponent as an automaton that always repeats its last move.

Therefore, naives best-respond to their opponent’s last choice, e.g., they play ‘scissors’

after their opponent has played ‘paper.’ For completeness, assume that naives on the

first round choose any action with equal probability.

Now let us assume that you are a maximizer (you know your type, t1) and you

believe that the child’s type t2 is either a maximizer (with probability p), or a naive

(with probability 1 � p). This belief is consistent with many possible priors. One

possibility is shown in Table 5.1.

However, the child does not share your prior. This is because, if a child is a naive,

it would be rather unreasonable to expect it to even be aware of the concept of a

game-theoretic maximizer. Hence, the child’s prior could look like Table 5.2.

Clearly, no common prior can adequately capture this situation. Many instances

in which bounded rationality is evoked, or in which some agents are only partially
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(t1, t2) probability
(maximizer, maximizer) p2

(maximizer, naive) 0
(naive, maximizer) p(1� p)

(naive, naive) 1� p

Table 5.2: The child’s prior for the RPS game

aware of the game’s structure, can be viewed as generalizations of the above scheme.

The question that now arises is “what prior does the child believe you are using?” One

option here would be to assume that the child believes that you use your actual prior,

the one shown in Table 5.2. In this case, the situation is a game with uncommon,

common knowledge priors. However, closer scrutiny would reveal that this turns out

to be rather unnatural: the child, when its type is naive, is assumed not to even be

aware of the possibility of you being anything but naive, but in this model its also

maintains a non-zero probability that you might think it is not a naive.

A better solution here can be achieved by constructing a richer belief structure. In

this case, we shall use three types: ‘maximizer,’ ‘naive,’ and ‘naive-adult.’ An agent

of the naive-adult type models the game exactly as a naive, but disagrees with the

naive type on the prior. In our example, you, as an adult, will still use the prior shown

in Table 5.2. The child, however, will use the prior of Table 5.3 (missing assignments

are assumed to have probability zero).

Furthermore, the child shall believe that you are using the prior in Table 5.4.

This belief structure now describes a child that, if a maximizer, will be aware of the

possibility that you are either a maximizer or a naive (Table 5.3, first and third rows).
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(t1, t2) probability
(maximizer, maximizer) 0.9p2

(maximizer, naive) 0
(naive, maximizer) 0.9p(1� p)

(naive, naive) 0
(naive-adult, naive) 0.9(1� p)

(naive-adult, naive-adult) 0.1

Table 5.3: The child’s updated prior for the RPS game

(t1, t2) probability
(maximizer, maximizer) 0.7p2

(maximizer, naive) 0.7p(1� p)
(naive, maximizer) 0.7p(1� p)

(naive, naive) 0.7(1� p)2

(naive-adult, naive-adult) 0.3

Table 5.4: The child’s updated prior for your prior in the RPS game

If the child is a naive, though, the child will also assume that you are a naive (Table

5.4, fifth row) and that you are as oblivious to the existence of any types other than

naive. To capture that last piece, the naive-adult type is introduced, such that it is

wholly similar to the naive type, except it fails to consider other alternative types

(Table 5.4, last row).4

5.2.2 Graphically representing Bayesian games

The main idea behind the formalism is that modeling a game becomes simpler if

the players’ types and beliefs are captured in a conceptually appealing and graphical

way. As shown later, this allows the agents’ beliefs, even when the CPA does not

4Note: The constants in Table 5.2 – 5.4 are chosen such that the probabilities sum to one and
do not a↵ect the posterior distributions.



Chapter 5: The Reasoning Patterns: Simplifying and Representing Games 165

hold, to be represented concisely. It also allows agents to reason about which beliefs

of other agents they need to consider in their own decision-making problem, instead

of having to reason about the (possibly vast in number) sets of beliefs of all other

agents. Finally, it allows reasoning patterns to be defined for Bayesian games without

a common prior, which can be used to answer qualitative questions about the behavior

of agents, as well as identify, anticipate or prescribe well-performing strategies, as

discussed in Section 5.2.3.

The formalism introduces the concept of a “block,” and defines a game as a

collection of blocks B. A block b 2 B consists of two elements: (1) the model m(b)

players in that block have about the world, and (2) the beliefs �(b) the players assume,

and believe others to have, in that block. The players’ model is a complete game

in normal or extensive form, with every player’s information sets, available moves

and utilities fully specified. The beliefs in block b consist of n(n � 1) probability

distributions over B, indexed pb
ij

for all i, j 2 N, i 6= j, where N is the set of agents

(|N | = n). The distribution pb
ij

captures agent i’s beliefs over which block agent j

is using. Also, let us denote by pb
ij

(b0) the probability assigned to block b0 by the

distribution pb
ij

.

It is straightforward to map this construct onto a Bayesian game. For each agent

i, her typeset T
i

is equivalent to the set of blocks B. When agent i is of a particular

type, say b 2 B, then agent i’s private information (utility, observations, etc.) are

fully captured by the game m(b). Moreover, i’s posterior distribution over the beliefs
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of all other agents given her type, p(T�i

= (t
j

)
j 6=i

|T
i

= b), is given by the product:5

Y

j 6=i

pb
ij

(t
j

)

In each block b, the set of pure strategies for player i contains all her pure strategies

in the model m(b). For the game as a whole, a pure strategy for i is then a choice

of pure strategy for every block b 2 B. In other words, i’s pure strategy space is the

product space of her pure strategies across all blocks b 2 B.

Furthermore, if the models m(b) are represented in extensive (tree) form, a pure

strategy for i for the whole game is a mapping from all information sets of all trees

m(b) to an action available to her in every such information set. Similarly, mixed

strategies are probability distributions over pure strategies, and behavioral strategies

can be defined as mappings from information sets to probability distributions over

available actions. Finally, as in typical Bayesian games, a strategy profile � denotes,

for every agent i and every type b 2 B, a choice of mixed (or behavioral) strategy

�
i,b

.

The belief graph

One useful property of the formalism is that it allows for belief dependencies to be

uncovered easily. In particular, it can help a modeler answer the question “Which of

the beliefs of other agents are relevant to agent i’s decision-making?” Alternatively,

this question can be stated as “Which of the other agents’ beliefs does i need to know

5Notice how in the formalism the modeling is performed in terms of the posterior distributions
pi(Tj |Ti = b) = pbij , not the priors pi(T ). Given these posteriors, any prior that is consistent with

them will be essentially expressing the same game.
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Figure 5.7: The belief graph of the RPS game

in order to compute her optimal decision?” This is performed by constructing the

game’s belief graph.

In Figure 5.7 the belief graph for the Rock-Paper-Scissors example discussed above

is presented. Blocks are represented as nodes and edges (x, y) are labeled “i.j” to

indicate that agent i in block x believes agent j to be using block y (i.e., agent j is

believed to follow the structure of the game and adopt the beliefs within block y).

Figure 5.7(a) shows the graph for the case of common knowledge priors. The block b1

contains game m(b1), which is a standard description of rock-paper-scissors, while the

block b2 contains game m(b2), an alternative game in which the adult always repeats

her last move. In b1, you (the adult) model the child as using b2, while in b2 the child

models you as using b1. Next to this graph, in Figure 5.7(b), the case with the richer

belief structure is illustrated, whereby you model the child as using b3, and the child

models you as using b4.

The belief graph reveals which belief sets of others an agent needs to take into
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account in its decision-making. Notice how in the case with individual priors (Fig.

5.7(b)) the child, which follows b3 need not be aware of your beliefs in b1 to compute

its optimal strategy, since it considers you to be using block b4. On the other hand,

you in b1 must consider the child’s beliefs in b3, and therefore also your own beliefs in

b4. These insights about belief dependence can be obtained by reachability arguments

in the graph. The only blocks (games and beliefs) relevant to you are the ones that

are reachable from your own block, following directed edges.

Formally, the belief graph is constructed as follows: Its nodes are the set of blocks

B. Then, we add an edge (b, b0) and we label it “i.j” if pb
ij

> 0. This edge denotes

that agent i in block b assumes that j might be using block b0 as his model of the

world. The destination block b0 may be the same as the source b (self-edge). Next,

we define a path ⇡ = (b1, . . . , bm) such that, for every node b
k

, where k 2 [1,m� 1],

there is an edge (b
k

, b
k+1) and, for each consecutive edge pair {(b

k

, b
k+1), (bk+1, bk+2)},

where k 2 [1,m � 2], the label of the first edge is “i.j” and the label of the second

is “j.k” for some agents i, j and k. (A path may very well contain self-edges.) We

say that a block-agent pair (b0, j) is reachable from pair (b, i) if there is a path from b

to b0 in which the first agent is i and the last agent is j. The set of reachable blocks

from (b, i) is denoted by R(b, i).

Only those posterior distributions pb
000
l

, where (b000, l) 2 R(b, i), are relevant to agent

i’s decision-making, when that agent is in block b. This is because, in block b, when

this is deemed by agent i to be the “true world” (that is, b is the true type of agent

i), some other agent j will be modeled as if he was using one of the blocks for which

an edge (b, b0) exists with label “i.j,” hence j’s beliefs in b0 need to be considered by
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i in b. Furthermore, agent j in b0 might be modeling k (who could be the same as i),

as if she were using some block b00, which j needs to consider in order to predict their

behavior and hence best-respond to it. Therefore i in b, who is best-responding to

j, must also consider k in b00. By induction, if (b000, l) 2 R(b, i), the game tree m(b000)

and the posterior pb
000
l

are potentially relevant to i’s decision-making problem. On the

other hand, if (b000, l) 62 R(b, i), there is no path of reasoning by which agent i in b

needs to take agent l in b000 into consideration, so pb
000
l

is irrelevant to i in b.

In addition, if there is an edge from b to b0 labeled “i.j,” then agent i in block

b believes that agent j’s model of the world is m(b0) and his beliefs are �(b0). Thus

agent i in b knows the model and beliefs of j in b0. Likewise, if there is an edge from

b0 to b00 labeled “j.k,” agent j in b0 knows agent k’s model and beliefs in b00. It follows

that agent i in b knows agent k’s model and beliefs in b00. Recursively, agent i in

block b knows the beliefs of all agents l in blocks b000 such that (b000, l) 2 R(b, i). Thus

the belief graph precisely captures what agents must know about the beliefs of other

agents. A subtle point must be made, however. If (b0, j) is not reachable from (b, i),

the graph does not preclude the possibility that agent i in b knows the beliefs of agent

j in b0. It merely says that i does not need to know them in the context of estimating

her optimal decision.

Reachability in the belief graph is equivalent in practice to knowledge. Since

unreachable parts are irrelevant to an agent’s decision-making problem, they can be

considered unknown. Inversely, if an agent is not aware of another agent’s beliefs,

they will be unreachable from his block in the belief graph.

This allows us to represent the di↵erent relaxations of the CPA discussed above
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as special cases of the belief graph. If in the graph every block-agent pair is reachable

from every other block-agent pair, then the agents’ beliefs are common knowledge.

This is because, when every block is reachable from every other block, there are no

agents (no matter which block they exist in) that have partial knowledge or partial

visibility of another’s beliefs, hence everyone’s beliefs are mutually consistent. The

case in which priors are completely private is captured by a belief graph containing

n disconnected subgraphs, one for each agent. In this extreme case, not only are the

agents’ beliefs divergent, but they have no information whatsoever regarding others’

beliefs. All other graphs represent in-between cases, in which agents might have

individual beliefs, but also some knowledge about others’ beliefs that are relevant to

them.

An extended example

An extended example is now presented that further illustrates these concepts,

and shows the interesting equilibrium analysis that the framework supports. Suppose

Alice works for company X and all her retirement savings are tied to X’s stock,

therefore she would benefit greatly from an increase in their value. Bob is a billionaire

considering to buy a large number of X’s stocks, but lacks the expertise to make this

decision. Hence, he relies on a predicting agency C that informs him whether the

stock price will go up (in which case it is optimal for him to buy) or down (in which

case he should optimally rest). Clearly, Alice would significantly prefer Bob buying

the stock. Let us also assume that Bob believes that C, the predicting agency, has

prior probability 0.2 to suggest ‘buy’ and 0.8 to suggest ‘rest.’
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Suppose now that, in Alice’s model of the world, she can “threaten” the predicting

agency in some frowned-upon way, which Alice thinks is entirely e↵ective, i.e., a

threatened C will do as Alice says, i.e., suggest ‘buy’ if Alice dictates it to say ‘buy,’

and suggest ‘rest’ if Alice dictates it to say ‘rest.’ (Assume that either action has

zero cost for Alice.) In Bob’s model, Alice can choose either action, but the agency

cannot be bullied by her threats (in this case, the scenario is equivalent to Bob

being un-aware of Alice’s presence); this means that Bob considers, in his model,

C’s suggestion to be trustworthy and predictive of the stock’s future price. Alice,

however, is uncertain of whether Bob is aware of her manipulative powerin fact, she

believes that the probability of him being aware of her actions’ e↵ects is 0.3.

We shall create two blocks to represent this situation (B = {K,L}). In blocks

K and L the models, which are represented by extensive form game trees, look like

in Figure 5.8. At first Alice decides whether to dictate ‘buy’ or ‘rest.’ Then Nature,

labeled C, representing the agency, makes a suggestion to Bob. Finally, Bob has to

decide whether to buy the stock or not. He has two information sets, one representing

the history “C suggested ‘buy’,” and one capturing the alternative “C suggested

‘rest’.” The only di↵erence between the two trees m(K) and m(L) is the fact that

the probability of C making a ‘buy’ suggestion to Bob in m(L) is 0.2 independently of

Alice’s action, whereas in m(K) it is either one or zero, depending on Alice’s threat.

Let us now define the beliefs �. In block K we need to have a distribution

pK
A,B

=< 0.3 : K, 0.7 : L > to capture the fact that Alice of type K thinks that Bob

is likely to use K (and hence be aware of her threats) with probability 0.3, or use L

(and therefore be oblivious to her actions) with probability 0.7. Bob in K will have
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Figure 5.8: The trees for the Alice-Bob example

what we call a trivial belief, i.e., pK
B,A

=< 1 : K >, meaning that a Bob who is aware

of Alice’s threats also considers her to be aware of them, which makes sense. In block

L both agents have trivial beliefs, such that Bob of type L is unaware of Alice.

The belief graph for the game is presented in Figure 5.9. Notice here how Bob of

type L has no edges going back to K, hence Bob of that type need not even consider

(or be aware of what happens in) block K. This makes sense, as Bob in L is modeled

as an agent who is truly oblivious of Alice’s threats.

Identifying the game’s Bayes-Nash equilibrium could be done as follows: First of

all, Alice has two pure strategies in either block, ‘dictate buy’ and ‘dictate rest.’ Bob

in turn has four strategies, ‘do what C suggests,’ ‘do the opposite of what C suggests,’

‘always buy’ and ‘always rest.’ In tree m(L) it is clearly optimal for Bob to ‘do what

C suggests,’ as the agency’s suggestion is predictive of the stock’s performance. And

of course, Alice cannot a↵ect the situation, so any randomization between ‘dictate
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Figure 5.9: The belief graph for the Alice-Bob example

buy’ and ‘dictate rest’ constitutes an equilibrium strategy. In block K, however,

things are di↵erent. First, the strategy ‘do the opposite of what C suggests’ is weakly

dominated by ‘never buy’ for Bob; once re-moved, then ‘dictate buy’ becomes weakly

dominant for Alice, in which case the dominant strategy for Bob becomes ‘never buy.’

These would be the equilibria in each block, if that block was commonly held to

be true by both agentsbut how about the game as a whole, given the agents’ complex

beliefs? Clearly, the Bayes-Nash equilibrium would have Bob of type L playing ‘do

what C says,’ as in that case Bob is unaware that Alice might even be of a di↵erent

type. For Bob of type K, similarly, he should ‘never buy,’ as his beliefs in K are

also trivial. As for Alice, if she is of type L she could do whatever, but if she is of

type K, she needs to best-respond to a mixture consisting of Bob of type K (with 0.3

probability) and Bob of type L (with 0.7 probability). Hence, her optimal strategy

overall would be to ‘dictate buy.’

Notice that the equilibria are interdependent but subjective. We have not taken

a position which of these blocks, K or L, accurately represents the real world (if any
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does). The notion of “truth” is not employed in the analysis. If K happens to be

true, then Alice’s threats will indeed be e↵ective and Bob of type L will be most likely

misled into an ill-adivsed purchase. If L happens to be true, there will be no e↵ect

and Bob’s decision will be profitable to him. If it was important to us to identify what

would happen in the real world, we could introduce a modeler agent whose beliefs

correspond to what we believe the truth actually is.

5.2.3 An augmented theory of reasoning patterns

If the CPA holds in a Bayesian game, the game can be represented in the graphical

formalism as a single block. Within this block, the joint type T can be a variable in

the MAID representation of the game, and individual types T
i

can be deterministic

children of T. Then, we can draw an edge (T
i

, d) for all decisions d of agent i, and

the representation is complete, rendering the Bayesian game as a game of imperfect

information. As far as the reasoning patterns are concerned for such games, since

Bayesian games with a common prior are then representable in a single MAID, the

original definition of the reasoning patterns can be used unchanged.

However, as soon at the CPA is relaxed, the original definitions of the reasoning

patterns cannot be applied. As we have seen, in a Multi-Agent Influence Diagram

(MAID), the directed edges represent probabilistic dependencies between variables

(actions, events, utilities). In the block formalism, we say that agent i “believes” in

edge (x, y) of a MAID if this edge exists in the model m(b) of the block b she has

been assigned to (i.e., the block that represents his real type). Clearly, if all the paths

constituting a reasoning pattern exist wholly within the block of agent i, then that
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reasoning pattern is believed by i. However, a reasoning pattern may span several

blocks.

Before we proceed, let us remember the definition of a motivated decision and

that of well-distinguishing (WD) strategies. A decision D of agent i in block b is

motivated if, when i has been assigned to block b, there is a strategy profile for all

other agents ��i

such that there are two actions a1 and a2 available in D that yield a

di↵erent expected utility: E[ub

i

(a1|��i

)] 6= E[ub

i

(a2|��i

)] . In simpler terms, a decision

is motivated for an agent if her action “matters” under some choice of strategy by

other agents. (On the contrary, if a decision is not motivated, then any choice by i

in that decision is equally good, so his choice “does not matter.”)

A strategy �
i

for player i defines, for each decision D of i, a mapping from value

assignments to its parentsPa(D) to a probability distribution over actions a
j

available

in D. A strategy �
i

is then well-distinguishing (WD) for i if, intuitively, i does not

condition on a variable v 2 Pa(D) if that variable has no e↵ect on her utility (hence,

“well-distinguishing”). Hence, if configurations c1 and c2 of Pa(D) di↵er only in the

value of variable V , a strategy would be well-distinguishing if it prevented i from

choosing a di↵erent probability for any action a
j

under c1 and c2, unless her expected

utility was di↵erent, i.e., V “mattered.”

The four reasoning patterns are then defined, examples of which are given in

Figure 5.10. In the definitions below the following assumption is made: For every

node c in block b we assume there is a corresponding node c in every other block b0,

i.e., MAIDs in all blocks have the same set of nodes. Only edges are allowed to di↵er

between blocks. In the following, we denote as U
i

the set of i’s utility nodes.
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Figure 5.10: Examples of reasoning patterns across blocks
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1. A decision d
i

of agent i in block b has direct e↵ect if there is a directed path

wholly within m(b) from d
i

to one of the utility nodes of i that does not go

through any other decision node (decision-free path). Direct e↵ect captures the

influence an agent’s action has on her utility, without the intervention of other

agents.

2. A decision d
i

of agent i in block b has manipulation if there exists:

(a) a directed, decision-free path in b from d
i

to a decision d0 of agent j 6= i,

(b) a directed path from d0 to a node in U
i

in b that contains only motivated

decision nodes (e↵ective path), and

(c) a directed e↵ective path from d
i

to a node in U
j

(the utility nodes of j)

that does not go through d0 in some block b0 for which pb
ij

(b0) > 0, i.e.,

which is considered possible for j by i in b.

Manipulation captures how an agent can influence her utility through exercising

influence on another person’s utility. Agent i takes an action that influences j’s

utility (path c). This changes j’s optimization problem, because j stochastically

knows i’s action (path a). His (j’s) optimal action under this setting can thus

be influenced to increase i’s utility (path b).

3. A decision d
i

of agent i in block b has signaling if there exists:

(a) a directed, decision-free path in b from d
i

to a decision d0 of agent j 6= i,

(b) a directed e↵ective6 path from d0 to a node in U
i

in b,

6As explained above, a path is called “e↵ective” if all the decision nodes on it are motivated.
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(c) an undirected e↵ective path from a node C to a utility in U
j

that is not

blocked by the set W d

d

0 = {d0} [ (Pa(d0) �Desc(d)), where Desc(d) are

the descendants of node d, in some block b0 for which pb
ij

(b0) > 0,

(d) a directed e↵ective path from C to d
i

in both b and b0, and

(e) an undirected e↵ective path from C to a node inU
i

in b, that is not blocked

by WC

d

.

Signaling captures the situation in which agent i can influence her utility through

the action of another agent j, by conveying something about a variable in the

world (C) that she can infer (path d) and which j cares about (path c).

4. A decision d
i

of agent i in block b has revealing-denying if there exists:

(a) a directed, decision-free path in b from d
i

to a decision d0 of agent j 6= i,

(b) a directed e↵ective path from d0 to a node in U
i

in b,

(c) a directed e↵ective path from a node E to d0 in in some block b0 for which

pb
ij

(b0) > 0,

(d) a directed e↵ective path from d
i

to E in b,

(e) a directed e↵ective path from a node C to E in b and b0, and

(f) a directed e↵ective path from C to a node in U
j

in b0 that is not blocked

by W d

d

0 .

Revealing-denying captures the situation in which an agent (i) influences her

utility thought the action of another agent (j) by controlling the uncertainty

j has over some variable (C) that he cares about. By increasing or decreasing
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the clarity by which j can infer C through E (paths d, e), agent j’s optimal

decision can be changed to benefit i’s utility (path b).

We say that a decision node that has a reasoning pattern is “e↵ective.” The

following theorem is then proved:

Theorem: If a decision node d of agent i in block b is motivated, and all agents use

WD strategies, then it is e↵ective.

Proof: First, we look at our restriction to WD strategies, which implies the following

for our graph structure. First, if a parent node v of a decision d has no e↵ect on i’s

utility (for any assignment to the MAID paremeters), then is it d-separated from U
i

given the set W v

d

= {d}[ (Pa(d)�{v}). Then, if i uses only WD strategies, she does

not condition on such a variable v, therefore we can sever the edge (v, d) and retain

an equivalent MAID graph.

Suppose then for the sake of contradiction that d is motivated but not e↵ective.

Since d is not e↵ective, there is no directed, decision-free path from d to U
i

in b (by

definition of direct e↵ect). Therefore, the only way d might a↵ect U
i

in b (in order

to be motivated) is through some other agent j 6= i. Suppose d0 is the decision node

of agent j that facilitates this indirect e↵ect. By our assumption, d must be able to

a↵ect d0, therefore there must be a directed path from d to d0 in block b; moreover,

d0 must be able to a↵ect a node in U
i

, hence there must be a directed path from d0

to U
i

in block b.

But since j uses WD strategies, the path from d to d0 can only exist if u, the

parent of d0 along that path, is not severed from d0, that is, if u is not d-separated

by U
j

given W u

d

0 . The only way this can be is if u is d-connected to U
j

given this
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set, i.e., there is an undirected path from u to U
j

that is not blocked by W u

d

0 . This

path should exist in the MAID of a block which is deemed likely for j to use, i.e., in

a block satisfying pb
ij

(b0) > 0.

Such a path might go through d or not. If it goes through d, there can be two

cases: it either contains a sequence of nodes < x, d, y > where y is a child of d, or y

is a parent of d (by definition x must be a child of d). If y is a child of d, then the

definition of manipulation holds, as there is now a subpath from d to U
j

that does not

go through d0 by its blocking restrictions. If y is a parent of d, then signaling holds.

This is because there is now a path from C, an ancestor of d (and y), to a node in

U
j

. Moreover, since the edge from C to d is retained and not severed, there must be

a path from C to some utility U
i

, which completes the definition for signaling. The

only remaining case is if the path does not go through d at all. Then, there must be

an edge E along that path that is a descendant of d, and a sequence of nodes along

the path < x,E, y >, where y is a parent of E but not on the path from d to E. In

that case, there must be a path from y to U
j

that satisfies the blocking properties.

But this is the definition for revealing-denying. As a final note, if any decision nodes

exist along any of these undirected paths, the edges incoming to them must not be

severed, therefore similar restrictions exist, i.e., the nodes must be e↵ective. This

is the reason why the definitions of the reasoning patterns use “e↵ective paths.” In

conclusion, it cannot hold that a node is motivated but not e↵ective, Q.E.D. ⇤

The theorem is significant because it renders the four reasoning pattern types

“complete.” If a decision of an agent has no reasoning pattern, the theorem states

that the decision will not be motivated, and thus the agent will have no reason to
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prefer one decision over another. Therefore, by examining the reasoning patterns we

can capture all the reasons why an agent might choose an action.

Using reasoning patterns for Bayesian games

The usefulness of reasoning patterns is illustrated in the analysis of Bayesian

games by means of an example. Imagine there is an intelligence agency consisting

of N agents. These agents collect information in the world, then summarize and

interpret it, passing it on to their superiors, who then aggregate all the information

and make decisions. Such a domain can be represented by a MAID. Rectangles are

the actions taken by the agents, and oval nodes are information collected in the world

or passed between agents. If all agents are cooperative, then all can be assumed to

share a utility function U , which is represented as a single diamond node in the graph.

However, some of the agents might be “confederates.” Such agents are trying to

subvert the operation of the agency, and therefore can be assumed to have a di↵erent

utility function U 0, which gives them a high value when the agency fails (i.e., when

U is low). The agency is aware of the possibility of confederates among its members.

To take a simple case, suppose N = 4, named 1, 2, 3 and 4 respectively. Each

agent i might be a confederate (c(i) = 1) or not (c(i) = 0). If agent i is a confederate,

we also assume he knows all other agents that are confederates. Finally, we make the

assumption that there are either zero or exactly two confederates in the agency.

In a Bayesian game, each agent would have a type t
i

, drawn from a set T
i

. Each

type would have to indicate (a) whether the agent is a confederate, and (b) if the

agent is indeed a confederate, the identity of the other confederate. Hence T
i

=
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Figure 5.11: Agency example

{(c, j) : c 2 {0, 1}, j 2 N [ {;}� {i}}, with the restriction that, if c = 0 then j = ;,

and if c = 1 then j 6= ;. The joint type vector T = ⇥
i

T
i

might be drawn from

a common distribution p(T), or not. The latter case, in which the common prior

assumption does not hold, might be necessary to describe cases in which some agents

trust the various members of the agency more than others, e.g., if the prior of 1 for

the possibility of 3 being a confederate is di↵erent than the prior held by 2 for the

same event.

Imagine now that the graph looks as in Figure 5.11. Agents 1 and 2 get information

from the world (C, D and E) and compile reports (F and G). Agent 3 then makes a

decision which is being communicated to agent 4, who makes a final decision. The

utility node U is influenced by the decisions of agents 3 and 4, but is being shared by
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all agents. Agents in this game have reasoning patterns: Agent 4 has direct e↵ect.

Agent 3 has both direct e↵ect (edge (d3, U)) and manipulation (through 4). Agents

1 and 2 have signaling (as they signal the values of C, D and E) to agent 3.

Suppose now we were interested in answering the following question, set forth by

agent 4, who is not a confederate: “Which pairs of agents should be more feared to

be confederates?” and “Which pairs of agents are more likely to be the confederates,

given that misreported information have been observed in node G?” In a traditional

analysis, we would have to know, given t4 = (0, ;), what the distribution of (t1, t2, t3)

is and, given this distribution, what the Bayes-Nash equilibria of the game are. Then,

we would answer the first question by trying to compare the expected behavior of

the players under the various Bayes-Nash equilibria with the observed behavior, as

indicated by the misinformation received by player 4.

The problems with this analysis are that (a) there might be a multitude (or

infinity) of equilibria, making the comparison hard, (b) equilibria are not easy to

compute to begin with,7 and (c) players might not agree on which equilibrium is to

be played, or they might not be rational equilibrium players at all. Furthermore, this

analysis requires that we know the probability distributions of all variables C, D, E,

F and G, as well as the exact formula in U .

On the contrary, reasoning patterns allow us to do the following: First, we can

represent this game in blocks B = {b1 = (0, ;), b2 = (1, 2), b3 = (1, 3), . . .}. Each

player i is assigned to one of the blocks B � {(1, i)}, because there must be exactly

two confederates if he happens to be one himself. Edges between the blocks are

7In this graph computation would be trivial, but in larger graphs it would be significantly more
challenging.
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drawn accordingly. Next, we can run the (polynomial) algorithm for the detection of

reasoning patterns, described in the Section 5.4 of this thesis.

We may then claim that the agents that have reasoning patterns such as manip-

ulation, signaling and revealing-denying are more susceptible to being confederates

than other agents. This requires some explaining. In signaling, the value being sig-

naled must not be observable by other agents (otherwise the blocking conditions for

path c in the definition do not hold). Hence, if an agent has a signaling reasoning

pattern, that means he has the ability to misrepresent information without that being

directly detectable. Similarly, through a revealing-denying reasoning pattern he con-

trols access to information other agents have. Agents with this pattern can greatly

enhance or impede the decision-making ability of their superiors. Likewise, manipu-

lation reasoning patterns involve fabricating information that is input to some other

agent’s problem.

But the reasoning patterns do not just tell us that there might be an e↵ect. They

tell us “what the e↵ect is,” e.g., which variable is being signaled, or which variable will

contain fabricated information. For instance, in the manipulation reasoning pattern,

the confederate (i) will alter the value of the nodes on the path from d
i

to d
j

, where

j is one of his superiors and no intermediates exist between i and j. Hence, if we

receive evidence that one of these reports are fabricated, we can immediately cast

suspicion upon agent i.

Also notice that the reasoning patterns analysis does not require knowledge of the

exact utility function, or all the probabilistic dependencies. But if such knowledge is

available, we may quantify the reasoning patterns, and calculate the expected utility
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of misrepresenting a variable by a confederate. Still, reasoning patterns would enable

us to limit this search within the variables that the alleged confederate would have a

reason to maliciously influence through his reasoning patterns.

In general, examining the reasoning patterns is suitable for answering questions

of a qualitative nature. We may gain insight on the strategies agents are likely to

follow, or understand their reasoning, even without solving the game. We may thus

be able to anticipate their behavior, respond appropriately to it, or come up with

well-performing strategies. On the other hand, the reasoning patterns do not neces-

sarily o↵er a way to address more quantitative problems, such as identifying a Nash

equilibrium of the game. In complex games, however, it might be very challenging to

answer such quantitative questions, especially with limited computational resources

or under time pressure. In those settings, the reasoning patterns can o↵er a shortcut

to quickly break down a game and understand or predict the behavior of agents, by

precisely avoiding expensive computations.

5.3 Simplifying Games With Reasoning Patterns

Pfe↵er & Gal [103] prove a theorem according to which every decision in a MAID

for which a player has a reason to deliberate, in the sense that some actions yield

her higher utility than others, is associated with at least one reasoning pattern. As a

corollary, in every decision that is not associated with a reasoning pattern, the agent

is indi↵erent between all actions. This observation can be used in the context of

equilibrium computation. In particular, a game G can be simplified by removing all

these decision nodes, before a Nash equilibrium is computed for it. The equilibrium
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of the this reduced game, G0, can then be extended into a Nash equilibrium for

the original game, by merely plugging uniform random strategies for the decision

nodes that were removed. In certain classes of games, this simplification can lead to

exponential time savings in equilibrium computation.

A useful analogy from game theory is the elimination of dominated strategies

in the Normal form representation of a game. A strategy of an agent is strongly

(respectively, weakly) dominated when, under any choice of strategy by other agents,

it yields strictly less utility (respectively, at most as much as) another strategy of

that agent. Clearly, dominated strategies can never be part of a Nash equilibrium

of the game, hence they can be eliminated, and doing so may reduce the running

time of an equilibrium detection algorithm. Similarly, by removing decision nodes

that have no reasoning patterns, we can solve for an equilibrium of a smaller game

faster. In fact, removing decision nodes with no reasoning patterns is equivalent to

eliminating weakly dominated strategies that di↵er only in what the agent does in

those decision nodes. Using the reasoning patterns, however, this can be done even

without enumerating all the strategies of the agent and comparing their payo↵s.

An algorithm is presented here (Algorithm 1) that takes a game of perfect or

imperfect information, G, in MAID format, and returns a simplified version of it,

by removing all edges that do not have a reasoning pattern. The algorithm uses

procedures df , man, sig, rev and retract edges, which are defined below. The first

four of these correspond to detecting the existence of the respective four reasoning

patterns, whereas the fifth prunes edges connecting decision nodes to any parents

of them which are irrelevant. The algorithm proceeds iteratively, and terminates
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Algorithm 1 The simplification algorithm
Input: MAID G

1: D  decision nodes in G

2: for d in D do

3: effective(d) true

4: repeat

5: retracted false; simplified false

6: {identification phase}

7: repeat

8: changed false

9: for d in D do

10: if not (df(d) or man(d) or sig(d) or rev(d)) then

11: effective(d) false

12: simplified true

13: changed true

14: remove edges incoming to d

15: make d a chance node w/uniform distr.

16: discard memoization database

17: until changed = false

18: {pruning phase}

19: if retract edges(G) then

20: retracted true

21: until retracted = simplified = false
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when a full iteration (identification and pruning phases) causes the graph to remain

unchanged. The output is the reduced MAID corresponding to the game.

All these procedures are built upon simple graph reachability or path blocking op-

erations, all of which can be e�ciently computed in polynomial time. For example, the

procedure directedDecisionFreePath(x, y) is simply implemented by a breadth- or

depth-first search. Certain more sophisticated procedures are used to search for a path

that satisfies particular properties. For example, e↵ectivePath(x, y,W ) is used to

search for a path from x to y on which all decision nodes d have a reasoning pattern

(called “e↵ective” nodes) and, moreover, the path is not blocked by the set of nodes

W .

df(d)

1: U  utility nodes belonging to the owner of d

2: for u in U do

3: if directedDecisionFreePath(u,D) then

4: return true

5: return false

man(d)

1: U  utility nodes belonging to the owner of d

2: N  decision nodes reachable by d through a directed decision-free path

3: for u in U and n in N do

4: U 0  utilities belonging to the owner of n

5: for u0 in U 0 do

6: if directedE↵ectivePath(n, u) and directedE↵ectivePathNotThrough(d, u0, n)
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then

7: return true

8: return false

sig(d)

1: U  utility nodes belonging to the owner of d

2: N  decision nodes reachable by d through a directed decision-free path

3: for u in U and n in N do

4: U 0  utilities belonging to the owner of n

5: w0  all parents of n that are not descendants of d

6: for u0 in U 0 do

7: if directedE↵ectivePath(n, u) then

8: A ancestors of d

9: for a in A do

10: if backDoorPath(a, u0, w0) then

11: w  all parents of d that are not descendants of a

12: if e↵ectivePath(a, u, w) then

13: return true

14: return false

rev(d)

1: U  utility nodes belonging to the owner d

2: N  decision nodes reachable by d through a directed decision-free path

3: for u in U and n in N do

4: U 0  utilities belonging to the owner of n
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5: w  all parents of n that are not descendants of d

6: for u0 in U 0 do

7: if directedE↵ectivePath(n, u) and frontDoorIndirectPath(d, u0, w) then

8: return true

9: return false

retract edges(d)

1: InfEdges all edges incoming to decision nodes in G

2: removed false

3: for (x, y) in InfEdges do

4: disabled((x, y)) true

5: D  all decision nodes in G

6: repeat

7: change false

8: for d in D do

9: Parents(d) parents of d

10: Utilities(d) utilities of d

11: for p in Parents(d) and u in Utilities(d) do

12: w(p, d) all parents of d except for p

13: if not dSeparUseEnabled(p, u, w(p, d)) then

14: disabled((p, d)) false

15: change true; removed true

16: until change = false
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17: remove all disabled edges from G

18: return removed

directedDecisionFreePath(x1, x2)

return true if there is a directed, decision-free path from x1 to x2

directedE↵ectivePath(x1, x2)

return true if there is a directed path from x1 to x2 in which all decision nodes,

except perhaps the first node of the path, are e↵ective

e↵ectivePath(x1, x2)

return true if there is an undirected path from x1 to x2 in which all decision nodes,

except perhaps the first node of the path, are e↵ective

directedE↵ectivePathNotThrough(x1, x2, Y )

return true if there is a directed e↵ective path from x1 to x2 that does not go

through any of the nodes in Y

backDoorPath(x1, x2,W )

return true if there is a back-door path from x1 to x2 that is not blocked by W

frontDoorIndirectPath(x1, x2,W )

return true if there is a non-directed front-door path with converging arrows at

some node from x1 to x2 that is not blocked by W

dSepartUseEnabled(x1, x2,W )

return true if x1 is d-separated from x2 given W , by using only edges e having

disabled(e) = false

A back door path in the above methods is defined as an undirected e↵ective
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path where the first edge comes into the first node, e.g., < n1  n2 . . . >. A front

door indirect path is an undirected e↵ective path where the first edge comes out of

the first node and, moreover, the path has converging arrows at some node, e.g.,

< n1 ! n2 . . .! n
i

 . . . >.

5.3.1 Proof of correctness

We wish to show that the algorithm performs a legitimate simplification M 0 of

the input MAID M , given our assumptions of how agents reason about available in-

formation. A simplification is legitimate if the equilibria of the simplified game are

also equilibria of the original game, i.e., no new equilibria are introduced in the sim-

plification. This allows us to solve the simplified game for an equilibrium with much

smaller computational cost, and then use the solution for the more complex original

game. On the other hand, a legitimate simplification is not guaranteed not to lose

some equilibria of the original game (see Section 5.3.3 for an example showing how

certain desirable equilibria may be lost in the simplification process). Besides legiti-

macy, the simplification generated by the algorithm is also shown to be “maximal,”

i.e, the maximum possible number of non-e↵ective nodes is detected and removed.

We also care about the e↵ect of the order under which nodes are being eliminated,

in order to guarantee that we do not have to identify a priori a particular “optimal

order of elimination.”

Definition 1. A simplification M 0 of a MAID M is legitimate if all the Nash equilib-

ria of M 0 are also Nash equilibria of M , in the sense that all nodes in M that have not

been eliminated do not have an incentive to deviate from their equilibrium strategy in
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M 0 and all nodes that are not e↵ective play in M according to a fully-mixed, uniform

strategy.

We begin by first proving that, if the algorithm marks e↵ective and non-e↵ective

nodes correctly, all Nash equilibria of the simplified MAID M 0 are also Nash equilibria

of the original MAID. More precisely, since the original game also contains the decision

nodes that were eliminated (and replaced by chance nodes) we need to show that

extending the equilibria of M 0 by adding fully mixed uniform strategies for all non-

motivated decisions yields a Nash equilibrium of M .

Theorem 1. Let D be the decision nodes of the original MAID M and D0 be the

corresponding decision nodes in the simplified MAID M 0. If �0 is a Nash equilibrium

of M 0 then construct � by adding fully mixed uniform strategies for all decision nodes

in D �D0. Then � is a Nash equilibrium of M .

Proof. We prove this by contradiction. Let there be an agent with a decision node

a who wishes to deviate from �
a

; there are two cases: either a 2 D0 or a 2 D �D0.

In the first case, if the agent owning a wants to deviate to a strategy �1
a

in M

then she would deviate to �1
a

in M 0 as well, contradicting our assumption that �0

is a Nash equilibrium in M 0. In the second case, a was marked as non-e↵ective,

therefore a is not motivated, by Theorem 1. By the definition of a non-motivated node,

EU<��a,d1>(a,q) = EU<��a,d2>(a,q) for every pair of actions d1, d2 of a and every

configuration q of its informational parents. Therefore a provides with a fully mixed

uniform strategy the same payo↵ as from any possible deviation from it. Therefore �

is a Nash equilibrium of M . The above reasoning holds even in cases where the agent

of a owns other decision nodes besides a, from which he might try to simultaneously
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deviate. The reason is that a is non-motivated due to strictly graphical properties

of the MAID, not due to any particular parameters employed in other chance or

decision nodes; thus strategies followed by any other agent—including the owner of

a—elsewhere cannot cause it to become motivated.

We then prove that the algorithm eliminates nodes correctly, irrespective of order.

We do this first by looking at the four procedures that detect reasoning patterns.

These work by explicitly following the definitions of the four reasoning patterns, so

they are correct (details are omitted). We then look at the first phase of the algorithm

(lines 6-18). First, however, we need the following lemma.

Lemma 1. If RE

n

is the set of reasoning patterns that hold for a decision node n when

the set of edges in the MAID is E, then RE

0
n

✓ RE

n

for all E 0 ✓ E.

Proof. Consider a MAID with edges E and a set RE

n

of reasoning patterns holding

for decision node n. Now remove an edge e 2 E, such that the MAID now has edges

E 0 = E � {e}. Suppose now, for the sake of contradiction, that RE

0
n

* RE

n

. This

means that a reasoning pattern r did not exist under E but exists under E 0. Take the

paths P
r

of this reasoning pattern and let E(P
r

) be the set of their edges. Clearly,

E(P
r

) ✓ E 0 ⇢ E so all the paths the reasoning pattern r depends on existed in the

original MAID with edges E. Thus the only reason why r did not hold under E was

that one or more of its paths were blocked at some node. Let p 2 P
r

be one such path

with blocking set W
p

(W
p

= ; if the definition of the reasoning pattern required no d-

separation properties to hold for that path) and let b be the node where p was blocked

by W
p

. If p has non-converging arrows in b then b 2 W
p

, so p should be blocked again

under E 0, since no nodes were removed, only an edge. If p has converging arrows in
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b then it means that neither b nor any of its descendants were in W
p

. But removing

e can neither add b to W
p

, nor cause the set of its descendants to grow. Therefore,

under E 0, too, W
p

will block p at b and therefore our argument is contradictory.

Lemma 2. If a node is identified in some identification phase under some order, it

will be so identified under any order.

Proof. Let n1, ..., nk

be an order of identifying non-e↵ective nodes and n0
1, ..., n

0
k

be a

di↵erent order. Also define as E
n

the set of edges in the MAID after node n has been

eliminated and as E the edges in the MAID in the beginning, before any elimination

takes place. Suppose that under the new order node n1 is placed at position h. Then,

by Lemma 1, in the identification phase and under the new order n1 will be eliminated

irrespective of h, since E 0
h

✓ E and node n1 was eliminated under E. We then reason

by induction. Now assume that n1, ..., ni

have been eliminated. Then n
i+1 will be

eliminated at the latest in the next phase after all of n1, ..., ni

have been eliminated,

because the set of edges present will be a subset of E
i

.

For the second phase of the algorithm (pruning), this is exactly implemented as

in [83], which contains the proof of its correctness.

Theorem 2. The algorithm produces a correct and maximal simplification of a MAID.

Proof. We know that the operation of each phase is correct. Moreover, we know the

pruning phase only removes edges. Thus, by Lemma 1, it does not matter in the

context of the identification phase on which iteration of the algorithm the pruning

phase removes an edge e, as long as it eventually removes it (on some iteration). Thus
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the only thing we need to establish is that no operation in the identification phase

might ever prevent an edge from being removed in the pruning phase.

The pruning phase works by testing for certain d-separation properties, while the

identification phase only removes edges (never adds). Thus, in spirit similar to the

proof of Lemma 1, if the MAID has edges E in the beginning of the pruning phase

and an edge e = (x, y) is removed during its execution, then if the MAID had edges

E 0 ⇢ E then e would still be removed. If e was removed with edges E then x was d-

separated from the utility nodes of y given {y}[ {d : (d, y) 2 E, d 6= x}, by definition

of [83]’s algorithm. Now under the smaller set of edges E 0 it is the case that x must,

again, be d-separated from y’s utility nodes, since the removal of any edge in E �E 0

cannot have made these two less separated. Therefore, no matter in which order we

execute the two phases and no matter what their intermediate results are, the end

product is the same.

Furthermore, the iteration of identification and pruning phases will terminate.

Neither adds an edge and there are at most E edges to remove, so the process will

eventually terminate.

We have shown that the algorithm’s operations are consistent with our assump-

tions and that it will always return a maximally simplified MAID. In the following

section its complexity is analyzed.

5.3.2 Algorithm Complexity

The complexity of the algorithm is easy to estimate. We first begin with the

bottom-level procedures which are path operations. Those that do not involve a non-
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empty blocking set are instances of graph reachability, which can be performed in

O(E+N) = O(E) time, assuming E > N . If the blocking set is non-empty, however,

every time a path is expanded one needs to check that it is not blocked at that node.

This can be done using an algorithm such as BayesBall [116], which is O(E).

We also use memoization to improve the computation of blocking properties along

the paths. In particular, whenever we query whether a path with converging arrows

at at a node b is blocked by a set W , we store the result blocked(b,W ) in a hash table.

Subsequent queries for the same node and blocking set first check the hash table for

an already computed result and only execute the full operation (costing O(E)) if

needed. After each iteration, since the structure of the graph has changed, we drop

all memoized entries (line 16).

Theorem 3. The algorithm simplifies the MAID in time O(D2N2E), where D is the

number of decision nodes in the graph.

Proof. We have established that all path operations take polynomial time. In partic-

ular, suppose C and U are the number of chance and utility nodes. Then procedure

df performs O(U) simple path operations, so it costs O(UE) in the worst case. Ma-

nipulation (man) performs O(DU2) simple operations, for a total cost of O(DEU2).

Signaling (sig) requires certain paths to satisfy blocking properties and performs

O(CDU2) of those, for a total worst-case cost of O(CDU2E2). Here the E2 results

from the following: For every combination of nodes related to the signaling patterns

we need to find certain paths with graph reachability (O(E)); for each such path, at

every step we need to check for blocking properties, which adds another O(E), for at

total of O(E2). Finally, revealing-denying (rev) performs O(DU2) blocking-sensitive
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path operations and thus has worst case cost of O(DU2E2).

We see that signaling is the most expensive of these operations. However, with

memoization, its worst-case complexity can be reduced. We reason as follows. There

can be a total of O(DN) blocking sets required for the purposes of identifying rea-

soning patterns in the graph (for every decision node there can be one blocking set

including all of its parents but one, and there are O(N) parents per decision). Thus,

even if we were to calculate blocking properties for all nodes and possible sets, the

time per iteration would be bounded by O(DN2E). In a similar fashion, the time

complexity for revealing-denying identification can be bounded.

The algorithm as a whole also performs at most O(D) iterations in the outer

loop. This is because if two consecutive iterations eliminate no nodes the algorithm

by definition terminates, since the pruning phase of the second iteration will remove

no edges. Therefore the total cost of the algorithm is polynomial and on the order of

O(D2N2E).

Of course it has to be noted that the expected performance of the algorithm is

likely to be much better than its worst-case bound calculated above. In particular,

the evaluation of the if structure in line 10 is short-circuited, meaning the expensive

sig operation is only evaluated if df and man are false, since it is su�cient to show

that a node participates in one reasoning pattern to be e↵ective. Moreover, real

games very likely have much fewer reasoning patterns mainly consisting of direct

e↵ects and manipulations, especially after the pruning phases of the first iterations

have reduced the number of edges in the graph that are important to signaling and

revealing-denying patterns.
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Figure 5.12: MAID representing the full example game

5.3.3 Time Savings in Equilibrium Computation

Consider an example game, represented as a MAID in Fig 5.12. We have agents

A, B and C. Agent A draws a card J , whose value can either be H, M or L. Only

agents A and C have knowledge of that card, yet A may communicate its value to

agent B, not necessarily truthfully. B gains $30 by guessing the value of the card

correctly. A gains $10, $5 or $1 if B guesses H, M or L, respectively, no matter what

the real value of the card is. C, on the other hand, gains $30 if his choice of H, M

or L di↵ers from that of B.

This game has an extensive game form representation with 34 leaves. On the

other hand, the algorithm can discover the following subtleties in the above scenario:

Agent C’s decision is not a↵ected by the card value, so the information arc (J, C)

can be removed. Then, the decision node for A is non-e↵ective, i.e. A has no reason

to act di↵erently upon seeing any of the card values. Knowing that, B will ignore

what A tells her and just randomize equally between H, M and L. Thus the large
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Figure 5.13: Simplified MAIDs

game is reduced to two mini-games of 32 leaves each (Figure 5.13). Adding more

players to the game, one can easily show that computational savings are exponential

in the number of agents, whereas the algorithm that breaks the game down runs in

polynomial time.

Of course this process is not without loss. Removing the redundant edges follow-

ing the algorithm of [83] happens to eliminate certain, possibly e�cient, equilibria.

For example in our little scenario an equilibrium could be as follows: A always com-

municates H to B, B always believes him and C randomizes equally between M and

L. This is clearly a Nash equilibrium: if B always believes him, then A responds best

to that by communicating always H to her. Knowing that A will always communicate

H and B will believe him and respond with H as well, C will choose either M or L

to win. Finally, since the card is H with probability 1
3 no matter what A tells her,

B’s strategy to always believe A is equally good as pure randomization. In this equi-

librium, the players’ expected payo↵s are $(10, 10, 20), whereas in our reduced game

equilibrium all players will randomize equally, yielding expected payo↵s $(173 , 10, 20).
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One can see that the equilibrium that was “lost” is a Pareto-improvement upon the

one that has been retained.



Chapter 6

The Reasoning Patterns: Helping

Humans

In the previous chapter, Pfe↵er & Gal’s theory of reasoning patterns was used to

assist game modelers in representing, studying and solving complex games. In this

chapter, the theory is also demonstrated to be useful to human decision-makers. An

empirical study is presented, in which people were asked to play a repeated Bayesian

game in pairs. Half the participants had access to a computer assistant that gave

them advice on how to play the game, while the remaining half did not have access to

it. The computer assistant used the game’s reasoning patterns to generate arguments

for or against particular strategic choices the subjects made, and quantified the e↵ects

of their actions. The group of subjects who had access to the assistant performed

significantly better than the second group. This result suggests that the reasoning

patters can be used to o↵er non-trivial insights to people about how to make decisions

in complex games.

202
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6.1 Using Reasoning Patterns to Assist Human

Decision-Makers

People are often expected to make decisions in complex environments. In such

domains, it may be hard for them to identify the optimal decision, or even a reasonably

good one, due to the size of the domain, limited computational resources, or the need

to decide under strict time limits.

How can computers aid people in such decision-making contexts? A straight-

forward approach would consist in computing the optimal decision or strategy—for

instance, a Nash equilibrium of the game—and advise people to implement it. This

approach, however, su↵ers from a number of limitations. First, Nash equilibria are

computationally very challenging to compute, and require exponential time in the

general case [28]. Second, for most games of interest, such as repeated games or

games of incomplete information, there is a multitude of equilibria, and it is hard to

know which one to suggest to the human decision-maker. Third, a Nash equilibrium

is optimal with respect to ideal “rational” play, but not necessarily with respect to

the actual play of the other players, especially other humans’. In a tournament in

which agents had to play a repeated version of the well-known ‘rock-paper-scissors’

game, agents implementing the Nash equilibrium of the game came in the middle of

the pack [13]. A computer suggesting this equilibrium strategy for rock-paper-scissors

would not be o↵ering very useful advice.

The most fundamental problem with this approach, however, is that it takes

people out of the decision making process. If a human decision maker bears ultimate
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responsibility for the outcome of the decision, he or she may want to understand

the reasons behind the decision and personally make it. In a recent study [21],

researchers recommended the Nash equilibrium strategy to subjects in a two-player

game. They found that subjects were reluctant to follow the recommendations, even

when they knew that the other player was recommended the same unique equilibrium.

This experiment represents ideal conditions, as in ordinary games players cannot be

sure that others are following the same equilibrium strategy, or even an equilibrium

strategy at all, so they will plausibly be even less likely to entrust their decision to

an equilibrium calculator.

Furthermore, humans have judgment, insight and intuition that are not available

to the computer in its equilibrium analysis. Computers are capable of fast execution

of algorithms, which allows them to excel in quantitative analyses. In games, defined

as sets of agents, strategies and utility functions, a computer will be able to evaluate

probability distributions over outcomes, expectations over the players’ utilities, and

employ numerous techniques to help them maximize their payo↵s. On the other hand,

humans have good intuitions as to what models or strategies their opponents are most

likely to construct and follow. Because people often have reasonably accurate beliefs

about how other people tend to behave, they gain the edge over computers in identi-

fying what is “reasonable.” In addition, humans may be able to cut through complex

games to identify key patterns and simplifications that lead to good strategies.

In this section the theory of reasoning patterns is used to generate advice and

present arguments in favor of di↵erent strategies to the human decision-maker. These

arguments are derived directly from the reasoning patterns of the game, and it helps
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people understand, for each action, what will be accomplished by it, how it will a↵ect

other agents’ choices in the future, how it is going to benefit them, and what the

potential risks are.

It is hypothesized that people may benefit from such advice in two key ways.

First, it relieves them of having to quantify the e↵ects of their actions. The advice

provides numeric estimates of the benefits and risks of particular strategies. People

can easily compare the numbers and quickly identify which course of action best

serves their goals and preferences. Second, the advice may contain insights about the

game that people had not thought of at all. This is particularly the case in more

complex games, in which it is harder to identify all the relevant arguments for and

against each strategy.

This hypothesis was tested empirically in a complex repeated game of incomplete

information. Subjects were asked to play this game in randomly chosen pairs. Half

of them were given advice generated by the game’s reasoning patterns, whereas the

other half played the game with intuition alone. It was observed that, on average,

subjects who received the advice performed significantly better compared to those

who did not have access to it. These results demonstrate that the reasoning patterns

can be a valuable source of intuition for decision-makers, and that they can improve

people’s ability to navigate and understand how to play complex games successfully.

6.1.1 The principal-agent game

To test the hypothesis that arguments provided to humans as advice are beneficial,

a simple, yet subtle game was constructed, which we will refer to as the principal-agent
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(p-a) game, due to its resemblance with similar games in the economics literature [47].

In those games, one player, called the “principal,” must choose whether to hire, and

how much to pay, another player, called the “agent.”1 The agent has a type, which is

hidden from the principal. The agent’s choice consists of selecting an e↵ort level. Both

players’ payo↵s depend on the actions of the agent (assuming she was hired) and the

payment exchanged. This generic model is of interest, because it may serve as a good

approximation for many real-life situations, such as hiring employees, constructing

incentive-compatible payment schemes, and teaching students, among others.

The particular version of the principal-agent game used in this experiment fol-

lows a similar structure. The principal and the agent are both initially given some

resources, which are privately known to them. At first, the principal may choose to

transfer part (or all) of his resources to the agent, or he may choose to transfer nothing.

Then the agent may opt to spend some of her resources to move towards a goal square

on a grid.2 The principal’s payo↵ is increasing in the amount of resource held in the

end of the game, as well as the closeness of the agent to the goal. The agent’s payo↵

is, however, dependent upon her “type.” Agents can either be “resource-lovers,” who

value resources but not distance from the goal, or “goal-lovers,” who value closeness

to the goal but not resources. Clearly, the incentives of goal-lovers are aligned with

those of principals, as they will naturally try to move as close to the goal as possible,

which increases principals’ utility. On the contrary, the incentives of resource-lovers

1The term “agent” is used here not in the common sense of a computer agent, but in the narrow
sense in this particular class of games in economics. We shall refer to both parties, the principal
and the agent, as players to avoid confusion.

2Throughout the chapter we will refer to the principal and the agent with masculine and feminine
pronouns, respectively.
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are not, as they will not waste any of their resources to move towards the goal square,

something that carries no value for them.

The repeated version of the above game is used, however, in which both types’

incentives are less clear-cut. In each round, the game is reset, and both players’

resources are restored, but the same principal is paired again with the same agent,

whose type remains unchanged. This allows for nuanced behavior to form: First,

the principal can maintain a belief over the agent’s type and update it after every

round, by observing her actions. Second, the agent may find it beneficial to adjust her

behavior in order to reveal or mask her true type, such that the principal may take

actions in subsequent rounds that improve her payo↵. In other words, the agent may

choose to manipulate the principal’s beliefs. For instance, a resource-loving agent

might still choose to move towards the goal just by a few squares. Although this

reduces her payo↵ in the current round of the game, it prevents the principal from

inferring her true type and thus denying them any resources in all subsequent rounds,

which would greatly reduce her payo↵. (Because her initial resources held by the

agent are known only to her, not moving all the way to the goal can be attributed to

her lacking the necessary resources to reach the goal square.)

Why was this particular game chosen? There are many reasons: For one, it is

di�cult to solve it analytically. There is no simple way to model the principal’s

belief update function, which maps current beliefs and observed actions to updated

beliefs. This is because the probability of an agent taking an action does not just

depend on her type and her (privately known) resources, but also on the degree

in (and direction to) which she has chosen to manipulate the principal’s beliefs in
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this round. A similar argument holds for the agent: to be able to reason about

how the principal will interpret any one of her actions, she must be aware of the

model the principal has constructed of her strategy. Technically, this is a Bayesian

repeated game, in which types are constant throughout all stage games, and each

stage game has imperfect information. An impossibility result has been proved for

Bayesian learning in such games [89]. Moreover, since this is a repeated game, one

would expect a multitude of equilibria, alluded to by the folk theorems. In addition,

people’s play in this game might deviate significantly from equilibrium. Thus the

traditional game theoretic approach su↵ers from the disadvantages outlined above:

equilibria are hard to compute, numerous, and it is not clear that they are relevant.

Yet, despite its complexity, the principal-agent game has strong appeal. Although

optimal strategies are di�cult to compute, something can be said of what might

constitute a “good” or “reasonable” strategy. First, both players’ scores in any given

round depend directly on their actions: for the principal, a larger transfer is costlier,

and for the agent the move a↵ects her score either by influencing distance (for the

goal-lover) or resources possessed (for the resource-lover). Second, the goal-lover

agent has an incentive to move in a way that reveal her type more explicitly to

the principal. This is because, if the principal becomes convinced that the agent is a

goal-lover sooner, he might transfer larger amounts of resource in more future rounds.

Conversely, the resource-lover has an incentive to hide her type, by not performing

moves that are “characteristic” of resource-lovers (e.g., not moving), so as to maintain

“useful doubt” in the principal’s mind. Therefore, the game is a good example of what

is technically hard but perhaps intuitively approachable.
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6.1.2 Experiment implementation

For the experiment, the principal-agent game was implemented in the Colored

Trails (CT) framework [53], a client-server architecture system for studying multi-

agent decision making. CT is, in the simplest sense, a board game played over a

computer network. In the experiment there was a 5⇥ 5 board of colored squares (see

Figure 6.1). The squares were uniformly and independently colored in each round with

a palette of four colors (red, green, orange and purple). There were two players, the

principal and the agent. The agent was either a “goal-lover” or a “resource-lover” with

probability 0.5. The agent was positioned in the lower-left corner (coordinates (4,0)).

At the same time, a goal square was always placed in the upper-right corner (0,4).

Both players in each round were given five chips at random (i.e., any combination of

colors adding up to 5 chips was equally likely), and each player could only see his/her

own chips, not his/her opponent’s. These chips could be used to move on the board:

for the agent to move on a red square, for example, she had to give up a red chip.

Each round was then played in two phases: in the transfer phase, lasting 2 minutes,

the principal could initiate a transfer of chips. The principal was allowed to transfer

any subset of his/her chips, from the null transfer to everything. As soon as the

transfer was carried out (or the 2 minutes expired), the round moved on to the

movement phase, in which the agent could drag her icon on the board and move it

(no diagonal moves were allowed), spending chips in the process. After the movement

phase the round was ended. Players would get scores based on their actions (in a so-

called score update phase), and a new round would begin between the same principal

and the same agent with probability 90%. With the remaining 10% the game would
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The game board!

The game has 3 phases: 

-"Transfer phase (2 minutes) 
  The principal chooses how many chips 

  to transfer to the agent. 

-"Movement phase (2 minutes) 
  The agent moves on the board. 

-"Score update phase (10 sec) 
  Both get their scores. 

This is the status bar with: 

-"Your type (PRINCIPAL) 

-"The round number (1) 

This is the board. The “me” 

icon shows the position of 

your player. “G” is the goal. 

These are your chips. 

Figure 6.1: The user interface of the CT game
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end and, when all games between all subjects ended, the subjects were again randomly

re-paired. Thus, for example, a subject who was a principal in the first game might

assume the role of a goal-lover agent in the second game. Subjects were fully aware

that the identity of their opponent would change between games, but not between

rounds of the same game.

More specifically, the principal’s scoring function was ⇡
p
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are the initial chipset given to the principal and the transfer made, | · |

denotes set size, G is the goal position and dist(·, ·) measures the Manhattan distance

between two points on the board. The scoring functions for the goal-lover agent was

⇡
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the resource-lover gained ⇡
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is the agent’s

original chipset and chips(p) denotes the chipset required to move from the original

position along path p. All scoring functions were common knowledge to the subject

pool.

Subjects were paid with real money according to their scores, as compared to those

of other players. Scores were normalized within a single type, such that a subject who

happened to play as a principal and a resource-lover was paid as a function of how

high his/her score was compared to the average principal and the average resource-

lover. This was done to eliminate unfairness in payments, as principals generally had

higher absolute numeric scores than agents, so if a subject happened to assume the

agent role she would be paid less for no reason. Proper procedures were followed

for teaching subjects how to play the game, letting them play a few test rounds,
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answering their questions, and debriefing them in the end.

6.1.3 Using reasoning patterns for advice generation

Reasoning patterns are naturally appealing for generating meaningful, intuitive

arguments for people on how to play a game. The main advantage of reasoning pat-

terns is that, while they are deeply grounded in theory and easy to discover and

quantify by a computer, at the same time they are describable in a way that people

may find intuitive, For example, a “manipulation” reasoning pattern might be de-

scribed as “if you do x then this other player will want to choose y, which will boost

your utility by k points.”

Identifying the reasoning patterns in a game might be easy. The more challenging

step is to transform them into arguments. The main idea here was that every reason-

ing pattern r for decision D of a player can be represented with a scoring function

v
r

: A(D) ! R, where A(D) is the set of actions available to the player in D. Intu-

itively, higher values of v
r

mean better choices. This scoring function is constructed

to be localized in nature, as it ignores portions of the game that lie outside its main

description. Technically, the portion of the MAID graph that lies outside the paths

forming the reasoning pattern is ignored. The format of the scoring functions used

for each of the patterns is as follows:

• Direct e↵ect: We score an action with respect to direct e↵ect in decision D by

summing over the expected payo↵ the player stands to make in all the util-

ity nodes within the MAID that descend from D, and which are not blocked

by other players’ decision nodes. This measures exactly captures direct e↵ect,
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reflecting what the player can accomplish by acting on her own, without de-

pending on others’ decisions.

• Manipulation: The scoring function for manipulation (of player A to player B)

measures the expected increase in utility obtained due to B taking an action

because she has observed A’s decision. This increase is usually computed with

respect to a reference action of A, which can be chosen arbitrarily, since it serves

only for comparison purposes.

• Signaling: When A signals C to B we compute the extra utility obtained by

A by causing B to update his probability distribution over C, and thus change

the probability of his actions that a↵ect A’s utility.

• Revealing-denying: Similarly, we score an action with respect to revealing-

denying by computing the incremental utility the player obtains by causing

another’s belief to be updated in a particular way.

Each such scoring function represents an argument. Di↵erent arguments may be

computed for a particular decision. Thus, if there are two reasoning patterns r1 and

r2 of D, it might be the case that a particular action a 2 A(d) fares well in v
r1 but

poorly in v
r2 . This is because a might be a good action in the portion of the game

captured by r1, but not so good in the portion described by r2. Note also that the

total utility to the agent of taking a is not necessarily the sum v
r1(a) + v

r2(a), as the

MAID portions of r1 and r2 might be overlapping.
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6.1.4 Reasoning patterns in the p-a game

The MAID for the multiple-round p-a game is constructed by connecting copies

of the corresponding MAID for a single round. The MAID for the first two rounds

of the p-a game, for instance, is shown in Figure 6.2. In each round i, there are

two decision nodes, P
i

, the principal’s choice of a chip transfer, and A
i

, the agent’s

choice of a movement path. There are also four chance nodes, B
i

, the board coloring

(known to both players), Cp

i

and Ca

i

, the principal’s and the agent’s chipsets (known

to their respective players), and T , the agent’s type. Notice that the agent’s type is

not subscripted, because it remains the same throughout the game. Also, variable T

is only observable to the agent, not the principal. Between rounds there are two types

of arrows: (i) observation arrows, e.g., an arrow from A
i�1 to P

i

, meaning that the

principal in round i has observed the agent’s action in the previous round, and (ii)

no-forgetting (perfect recall) arrows, e.g., from P
i�1 to P

i

, meaning that the principal

has not forgotten his action in the past.

This game has the following reasoning patterns:

1. Direct e↵ect for P
i

: For all rounds i, the principal’s decision P
i

has direct e↵ect,

meaning that his choice of a transfer a↵ects his score in round i. This is because

the number of chips he chooses to transfer directly a↵ects his score.

2. Direct e↵ect for A
i

: For all rounds i, again, the agent’s decision A
i

has direct

e↵ect, as her movement a↵ects her score directly, e.g., if she is a resource-lover,

spending chips to move closer to the goal decreases her current-round score,

whereas if she is a goal-lover it increases her score.



Chapter 6: The Reasoning Patterns: Helping Humans 215

!

!"

#"!

$"!

%""

&'"!

&(""

)'"!

)("!

##!

$#!

%#"

&'#"

&(#"

)'#!

)(#!

Figure 6.2: Two rounds of the p-a game

3. Manipulation for P
i

to A
i

: For all rounds i, the principal influences the agent

through manipulation. This captures the fact that, if the principal transfers

more chips to a goal-lover, the principal may allow her to move closer to the

goal, and thus positively a↵ect the principal’s utility, which is decreasing in the

distance between the agent and the goal at the end of the game.

4. Signaling for A
i

to P
i+1: In every round, the agent takes an action that the

principal will observe and update his belief over her type. His chip transfer in

the following round will then be decided under this updated belief and may be

crucially a↵ected by it. The agent has an incentive to convince the principal

that she is a goal-lover, as it is beneficial for the principal to transfer more chips

to the agent when he believes she is a goal-lover. An actual goal-loving agent

may thus wish to move as close to the goal as possible to advertise her type,

while a resource-lover may want to avoid total immobility, to maintain some
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“useful doubt” in the principal’s mind.

5. Revealing for P
i

to P
i+1: In every round the principal’s transfer serves two pur-

poses: On the one hand, it enables the agent to move closer to the goal in that

same round. On the other hand, it is a useful “exploration tool.” In particular,

by making a transfer and observing the agent’s response, the principal updates

his belief over her type. Some transfers are more helpful than others in that

latter respect. For instance, if the principal transferred all his chips to the agent

in one round, the agent would have no excuse for not moving all the way to

the goal square. If she would refrain from doing so, this would reveal to the

principal that she is a resource-lover with very high probability. We say that

“the principal reveals the agent’s type to himself in the future.”

To generate advice for the p-a game, these five reasoning patterns applicable to

every round of the game are used, as well as the scoring functions defined for each

pattern. In particular, we compute v
ri(·) for every pattern r

i

of the principal (agent),

and we output these values to the human subject acting as the principal (agent), along

with natural language text explaining what these numbers mean. In this advice there

is no direct suggestion of a specific optimal (or good) action the player must take.

The point here is to educate the subjects with the intuition gained by examining the

reasoning patterns, and then let them take over the task of meaningfully weighing

them, combining them and reaching a final decision.

Both players may seek advice while playing the game, but only for a particular

action (transfer or move). For example, the principal can use the advisor interface to

ask “what do you think about a transfer of 1 blue chip and 2 green?” In particular, if
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players wish to receive advice, they turn on the “advice mode” by pressing a button

on the game’s interface and then choosing a specific move. Instead of the move being

carried out, advice is generated regarding the move and presented to the player.

The advice for the principal consists of a general and a transfer-specific part. The

general part explains the three relevant reasoning patterns (1, 3 and 5 above). In this

general part the advisor also computes an estimate of the likelihood that the agent is

a goal-lover, giver her actions so far. The specific part of the advice mentions (i) the

cost of the transfer, (ii) the expected gain in points due to the agent moving because

of the transferred chips (compared to making a null transfer), and (iii) the extra

points expected to be gained in the next round due to a more refined distribution

over the agent’s type (exploration). These three quantities correspond to the scoring

functions associated with the three reasoning patterns of the principal’s decision.

Similarly, the agent receives general-purpose advice, which explains that her move

will be used by the principal to reason about her type. The advice also mentions that

a resource-lover should try to use at least the chips transferred to her to the extent

that the board color configuration allows. The move-specific advice mentions: (i)

the score obtained in that round by making that particular move, and (ii) the extra

points expected to be gained in the next round due to controlling the principal’s belief

with that move (compared to not moving). Again, these two correspond to the two

reasoning patterns associated with the agent’s decision in that round.
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6.1.5 Strategic assumptions and approximations

As mentioned earlier, the scoring function for each reasoning pattern only looks

at the MAID subgraph lying within the paths comprising that reasoning pattern.

However, the utility obtained by an agent within that subgraph may be a↵ected by

what other agents might be choosing outside the subgraph. We therefore need to

make assumptions about the strategic choices these agents are making in that other

part of the MAID. The same is true for belief updates. For example, if we wish to

update the principal’s beliefs about the agent’s type based on the agent’s actions, we

need to know what strategy the agent would use for each type. We argued earlier

that in the p-a game this is di�cult to compute, as the agent might be actively trying

to mask her type.

To address these issues, we plug in some approximations for players’ strategies.

In particular, we define �̂
p

, �̂
a

for the principal and the agent, respectively, to be

myopic quantal response strategies, and use those whenever we need to make calcu-

lations using the other agent’s strategy, either in the section of the MAID that lies

outside a reasoning pattern or to perform belief updates. This involves two assump-

tions: (1) the players myopically only consider their utility in the current round when

considering their play; and (2) they implement a quantal response. In a quantal re-

sponse equilibrium [82], a player determines the utility ⇡(a) for each action a, given

his beliefs about the other players’ strategies. The player then chooses action a with

probability e

�⇡(a)
P

a0 e
�⇡(a0) , where � is a parameter. As � ! 1, the player is completely

rational and chooses his best response with probability 1. If � = 0 the player chooses

actions uniformly at random. Thus by choosing � we can control to what degree
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agents choose their best scoring action. We set � = 0.5 in the above formula, be-

cause it generated decision-making behavior matching the actual observed behavior

of people in a preliminary test run of the experiment.

One might argue that the advice given is only as good as the assumptions made

about strategies used in computing the scoring functions. This is certainly true.

However, no great e↵ort was made to be particularly clever or realistic about the

strategies, yet nevertheless solid results were obtained. This combination of myopic

strategies (or at least strategies with short look ahead) and quantal response may

work well in many games. Quantal response is important because it smooths out any

errors made in the myopic assumption. For example, myopic best response would tell

a resource-loving agent never to move. Quantal response smooths this out so that

the resource-loving agent moves, at least by a small amount, a good fraction of the

time. This is important because then, if the principal observes that the agent moved

a little bit, he can still place high probability on the agent being a resource-lover.

If the principal believed the agent was purely myopic, then after the agent moved a

little bit the principal would believe she is a goal-lover with certainty.

It must also be clarified that, whenever a subject asked for advice, the algorithm

had to perform several computations, including updating probability distributions

and calculating expectations of values. Whenever possible, these computations were

performed by exact inference or closed-form solutions. In cases where that was infea-

sible, however, sampling approximations were instead used. For instance, to compute

the expected number of points the principal could expect when dealing with an agent

who was believed to be a goal-lover with some probability, the algorithm sampled
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several board color configurations, principal and agent chipsets for the next round,

and then responses from both players according to �̂
p

and �̂
a

, and then computed

payo↵s.

6.1.6 Results

The experiment was performed with 18 subjects in two sessions (one with 10 and

one with 8 subjects). Half the subjects in each session had access to the advice,

while the remaining half did not, but were aware of some of their opponents being

able to access it. Subjects were randomly paired and assumed di↵erent roles between

games, but advice-seeking was either on or o↵ for a particular subject throughout the

experiment.

A subject’s performance was calculated as follows: Suppose R = {p, g, c}, where

p, g, c stand for “principal,” “goal-lover,” and “resource-lover.” If subject i assumed

roles R
i

= {p, c} during the experiment, and made an average ⇡p

i

and ⇡c

i

points

respectively, his score is defined as s
i

= 1
2(

⇡

p
i
⇡̄

p + ⇡

c
i
⇡̄

c ), where ⇡̄t is the average score of

all players of type t. In general, the performance of a player i is defined as

s
i

=
1

|R
i

|
X

t2Ri

⇡t

i

⇡̄t

Similarly, the performance of a group G containing the set of agents A(G) is

defined as

s
G

=
1

|A(G)|
X

i2A(G)

s
i
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Figure 6.3: Cumulative scores in the p-a game

Then let A, AC be the two groups of subjects, those playing with advice and those

not having access to it. The experiment measured that s
A

= 1.19 and s
A

C = 0.87, a

performance boost equal to 37% from taking advice (see Figure 6.3). This result is

statistically significant at the 1% level.

One other interesting result is that, if the payo↵s of players in AC are examined,

but two cases are taken: when the player was paired with someone also in AC and

when the player was paired with someone in A, it can be observed that in the first

case subjects achieve an average of 11% higher scores (see Figure 6.4). This implies

that a subject is always better o↵ using the advice, regardless of whether his/her

opponent also has access to it.

One could also examine the “raw” in-game scores subjects attained, instead of
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Figure 6.4: Cumulative scores of agents without advice

their normalized payo↵s. This serves to answer whether total payo↵ (for both agents)

increases. (Observe that, if the advice causes both players’ payo↵s to increase by, say,

20%, then this will not be reflected in the normalized scores used above.) However,

social welfare, defined this way, generally does not increase among subjects using the

advice (see Table 6.1).

6.2 Discussion

The results show that people who are given advice in the form of arguments based

on the reasoning patterns did better than people who were not given advice. There

are three main questions that need to be discussed with respect to these results. First,



Chapter 6: The Reasoning Patterns: Helping Humans 223

principal goal-lover resource-lover
A against A 297.5 20.5 130
A against AC 605 60.5 150
AC against A 297.5 140 100
AC against AC 295 60 130

Table 6.1: Average (raw) scores in the p-a game

can the performance gap be attributed solely to the quality of the advice? Second,

how do these results generalize to other games or situations? And third, how would

this advice compare to direct instructions, i.e., outright saying to people what actions

to take?

The first question is important if one considers possible side-e↵ects of the advice-

giving mechanism. For example, one might claim that, for subjects that could request

advice, just the fact that they spent more time on their decisions—even if the “con-

tent” of the advice was not helpful—improved their performance. Alternatively, the

gap might be explained by user interface modifications (e.g., that the advice-giving

interface was in some sense “smart” and led subjects to better actions, without the

advice providing them any insights per se). To ensure as much as possible that the

GUI did not interfere, the simplest possible form of UI was used, a bare popup window

with just text, no graphics and no explicit interaction within the advice window. The

text contained the general-purpose advice in one paragraph, followed by the transfer-

(or move-) specific advice, in one sentence per relevant reasoning pattern. The phase

time limit was also kept to 2 minutes for subjects who got the advice, so that any

potential benefit from spending more e↵ort in the decision-making process would be

outweighed by less time to actually make the decision.
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As for the second concern, this first experiment is to be treated as a first step

in exploring the possibilities of the method. Although no claim can be made of its

universality, I am hopeful that its usefulness is not restricted to the principal-agent

game of the experiment, but is extensible—albeit not e↵ortlessly—to other games

where arguments can be similarly identified. It is the deferred to future work to further

develop and formalize the technique for quantifying and combining reasoning patterns

to generate more nuanced advice and perhaps identify good and intuitive strategies

automatically, without the need for a human to weigh each argument against other,

possibly conflicting arguments, in the advice.

Finally, we need to consider other means of generating advice, especially direct

instructions. Directly telling people what actions to take is, after all, a lot simpler

than giving them insights about the game or evaluating candidate actions only after

they suggest them, as in the experiment. Arguably, in games with a single optimal

strategy which can be easily computed, instructing people to follow it seems preferable

to relying on their exploration and understanding. The advice-generation technique

is more suited, however, for games in which there is no single optimal strategy, or

running an optimization algorithm is computationally very expensive, or the strategy

space of the game is too big to explore. It is in those complex games that the merit of

the reasoning patterns is most pronounced, since they allow for qualitative arguments

to weigh in people’s reasoning, and enable people to make decisions using their intu-

ition, having gained valuable insights from the reasoning patterns. It remains up to

future work to validate the conjecture that, in such complex games, exploration-based

advice will be more helpful in practice than direct instruction.



Chapter 7

Conclusion & Extensions

Logic and game theory have been used successfully in the design of computer

agents. These theories o↵er a principled approach for computers to make decisions

and communicate with each other. Each, however, faces challenges in environments

characterized by large scale and high uncertainty.

Regarding the way people make decisions, psychologists have shown that certain

techniques rooted in a↵ect are useful for certain kinds of decisions. This begs the

question whether computationally modeling such techniques could provide a similar

benefit to computer agents. The preceding chapters of this dissertation answer this

question in the a�rmative, demonstrating that emotion-inspired techniques can be

incorporated into the design of computer agents in a variety of beneficial ways.

First, it shows how to improve agent performance by incorporating analogues of

cognitive functions associated with human emotions into an artificial agent’s decision-

making. It defines computational operators inspired by emotions. These operators

are used to re-prioritize an agent’s goals in complex uncertain environments, resulting

225
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in improved performance relative to many existing approaches.

Second, it shows how to use an analogue of the communicative functions of hu-

man emotions, by building a domain-independent automatic signaling mechanism.

This mechanism improves the ability of agents to make inferences about each other’s

unobservable characteristics, making them both faster and more accurate. A↵ective

signals result in better coordination among agents in collaborative domains, as well

as improved payo↵s in both collaborative and competitive domains.

As well as serving as signals within populations of computer agents, emotion

expressions can also be utilized in agents’ interactions with people. The third contri-

bution of this thesis lies in demonstrating that, by displaying emotion, virtual agent

faces can influence people’s perceptions of a system’s trustworthiness. In the context

of a computer-human negotiation for allocating resources, people found computer

partners that used emotion expressions to be more trustworthy, and in particular

when those expressions matched the agents’ negotiation strategy. An agent’s per-

ceived trustworthiness significantly influenced people’s willingness to interact with it

in the future.

Finally, this thesis considers strategic environments and makes three more con-

tributions by using the theory of reasoning patterns of Pfe↵er & Gal [103]. The

reasoning patterns are used to generate advice for people making decisions in com-

plex games. An empirical study demonstrates that this advice can improve people’s

decision-making performance, by helping them understand the possible e↵ects of var-

ious courses of action. The original theory of reasoning patterns is also extended

to Bayesian games, with and without a common prior, for which a new graphical
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formalism is presented. This formalism can capture agents’ reasoning across possibly

inconsistent beliefs sets. Finally, the thesis presents a polynomial-time algorithm to

detect a game’s reasoning patterns. This algorithm is utilized to simplify games for

the purpose of computing a Nash equilibrium.

7.1 Reflections on the Use of Emotions

This thesis has shown the usefulness of computational analogues of human emo-

tion for agent decision-making and communication in complex environments. In this

section, a few issues concerning the generalizability of this approach are discussed.

First, how is an a↵ective approach to decision-making di↵erent from other stan-

dard approaches in AI, such as heuristics? The answer to this question can be traced

to the fact that the emotions are not tied to specific domains and can therefore gen-

eralize across environments. A↵ective techniques in people and animals have evolved

to address the decision-making and communication needs of these living organisms

across a great number of situations. We can thus think of emotion as a “meta-

heuristic,” consisting of generic behavioral responses which, in a given situation, give

rise to particular (domain-specific) heuristics. For instance, the emotion of fear is a

broad behavioral pattern aimed at recognizing and responding to danger. In a given

context, it manifests as a heuristic that detects threats and prompts the organism

towards defensive measures, such as escape or hiding.

Second, which situations are more amenable to an a↵ective approach, and which

are best addressed by means of standard AI techniques? As the emotions have evolved

in nature to deal with complex and uncertain environments, such domains are a
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primary candidate. Other situations might also be useful to consider, however. If an

agent is designed to operate in multiple di↵erent domains, it might be more e�cient

for its developer to provide it with an approach that generalizes well across domains,

instead of incorporating into its design separate solutions for each environment. Also,

if an agent is expected to encounter novel situations, the emotions can be used as

“meta-heuristics,” in the sense described above. In particular, the emotions could

generate a set of heuristics that will give the agent satisfactory behavior, until it has

explored the domain and can compute a better, more domain-specific solution.

Finally, what are the challenges in designing a↵ect-based agents for decision-

making in the real world? To establish good research standards, I would propose

the establishment of standards of computational analogues of emotions. To demon-

strate that emotions are of value, and to accelerate the adoption of the method,

researchers should not design separate computational analogues for the same emo-

tion to suit their domain’s needs, but should rely on broadly accepted definitions. As

other approaches, such as game theory, have precise definitions, so should the emo-

tions. Moreover, a set of candidate domains must be identified to act as benchmarks,

in the same way “robo-soccer” has been used as a testbed for robotics algorithms.

7.2 Future Possibilities

The driving theme of this thesis is that agents should be able to reason e�ciently

in a variety of settings, and that reasoning can be done in a qualitatively di↵erent way

from current AI mechanisms and techniques, by using insights from human cognitive

and a↵ective processing. The thesis results suggest additional research possibilities,
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and they reveal a number of challenges for future consideration. Three particular

ways to extend this initial investigation are outlined below.

Enriching Existing Models

This thesis has presented emotion-inspired computational operators to re-prioritize

an agent’s goals, as well as an a↵ective signaling mechanism for populations of agents,

and has demonstrated the usefulness of these techniques. Both of these approaches

have built on previous computational accounts of human emotion, but have restricted

their attention to a small set of these emotions. People have a very rich emotional

repertoire. Ekman [36] has described a set of basic emotions, such as joy, sadness,

fear or anger, as well as secondary emotions like embarrassment, guilt, vengefulness,

etc. It is a question for future study whether computational models of these sec-

ondary emotions can be utilized in the design of computational operators for agent

decision-making, and whether they could carry helpful information as signals among

agents, or between agents and people.

Applications to Machine Learning

Machine learning algorithms face many computational challenges similar to those

of decision-making. To address these, researchers have exploited the structure of do-

mains, and have suggested hierarchical [16], object-oriented [69] and graphical models

[102], among other approaches. Most of these e↵orts attempt to discover indepen-

dencies in the structure of the domain, and thus reduce the size and complexity of

the learning problem.

Although psychology and neuroscience have not yet o↵ered a clear picture of
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e↵ective learning in people,researchers have demonstrated that emotion is a crucial

component of the human learning process [24]. People are more likely to retain

events of emotional significance, and their mood determines the way they process

new information that contradicts their existing beliefs [42].

These findings suggest that there might be significant opportunities for the use

of emotion-inspired concepts in Machine Learning. Intrinsic Reinforcement Learning

(IRL) is perhaps the most promising candidate in which to deploy emotion-inspired

operators. Standard models of Reinforcement Learning (RL) consist of a family of

algorithms that utilize a simple exploration principle, by which agents learn which

action is best in each state of the world. IRL algorithms improve upon this basic

framework by shaping the rewards the agent obtains from the environment during

its exploration. In particular, IRL algorithms allow agents to receive an additional

internal (intrinsic) reward, along with the standard (extrinsic) reward provided by

the environment. In many domains this has resulted in improved learning e�ciency

and the expansion of RL applicability to harder, more complex domains [119].

Computational models of emotion describe how events in the world can trigger

emotional responses in people. Such models could inform the design of general-

purpose intrinsic reward functions with desirable properties, as also suggested by

Sequeira et al. [114]. These intrinsic rewards could perhaps confer some of the

benefits that emotion provides in the process of human learning.
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A↵ective Interfaces for Teamwork, Collaboration and Crowdsourcing

In human-human teamwork and collaboration, the expression of emotions has

been shown to significantly influence team dynamics [57, 86]. Positive emotion fosters

trust and creativity and motivates people to share their ideas more openly. Negative

emotion may also beneficial; expressions of sadness implicitly convey a call for support

and assistance that can often lead to problems being addressed sooner; even anger

has been argued to play a role in improving collaboration between two people, by

breaching an unhealthy relationship and helping form a new one [132].

Recent years have witnessed the emergence of Human Computation—and, in par-

ticular, of crowdsourcing algorithms—as a solution to many task domains in which

people can do better than machines. In crowdsourcing, a group of “workers,” who may

be financially compensated or not, engage in relatively short-term simple tasks, such

as image tagging and audio transcription. Recent e↵orts have extended the crowd-

sourcing paradigm to longer-term interactions, lasting hours or days, in which people

do not work individually but collaborate with each other [17]. In such settings, the

e�ciency of a crowdsourcing system may depend on how well these workers perform

as a team. Within such teams, workers may interact in richer ways and relationships

may emerge between them, sharing many of the characteristics of traditional human

relationships in the workplace. As this thesis and other work has demonstrated, af-

fective cues may be deployed in those settings by the crowdsourcing algorithm itself

or in its communication with workers to constructively build and maintain solid re-

lationships among workers and boost productivity, e�ciently address conflicts and

disruptions, and maintain team cohesion.
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