
Using Emotions to Enhance Decision-Making

Dimitrios Antos1 and Avi Pfeffer2

1Harvard University, 2Charles River Analytics
Cambridge, MA

1antos@fas.harvard.edu, 2apfeffer@cra.com

Abstract
We present a novel methodology for decision-
making by computer agents that leverages a com-
putational concept of emotions. It is believed that
emotions help living organisms perform well in
complex environments. Can we use them to im-
prove the decision-making performance of com-
puter agents? We explore this possibility by for-
mulating emotions as mathematical operators that
serve to update the relative priorities of the agent’s
goals. The agent uses rudimentary domain knowl-
edge to monitor the expectation that its goals are
going to be accomplished in the future, and re-
acts to changes in this expectation by “experienc-
ing emotions.” The end result is a projection of
the agent’s long-run utility function, which might
be too complex to optimize or even represent, to a
time-varying valuation function that is being my-
opically maximized by selecting appropriate ac-
tions. Our methodology provides a systematic way
to incorporate emotion into a decision-theoretic
framework, and also provides a principled, domain-
independent methodology for generating heuristics
in novel situations. We test our agents in simula-
tion in two domains: restless bandits and a sim-
ple foraging environment. Our results indicate that
emotion-based agents outperform other reasonable
heuristics for such difficult domains, and closely
approach computationally expensive near-optimal
solutions, whenever these are computable, yet re-
quiring only a fraction of the cost.

1 Introduction
Decision-making in real-world environments is challenging
for a number of reasons. First, the real world is complex. An
agent should keep track of its changing state, which in most
cases is not fully observable—plus, the number of such states
in domains of even moderate size is already prohibitively
large. Second, the agent should reason about the effects of
its actions in every state, both in the short term and in the
long run. Such effects could be known, but in real-world sys-
tems they almost always have to be learned, either from data
or from experience. Unfortunately, past data might not be

available or might be sparse, and the agent might not afford
to spend time in the environment accumulating experiences.
Third, if the environment contains other agents, their strate-
gies and expected behavior need to be considered. However,
computing game-theoretic solutions is known to be a hard
problem, and in most cases requires making somewhat un-
reasonable assumptions about the agents’ computational and
epistemic capacity. Fourth, if the environment is changing
stochastically in a complex way, then even excessive learning
or computing precise solutions might not provide the agent
with robust significant benefits.

Because of these difficulties, researchers often use heuris-
tics to design agents for complex real-world environments.
At the expense of optimality, good heuristics may perform
well in most cases, evading computational complexity bar-
riers. Living organisms have also been argued [Gigerenzer
et al., 2008] to employ a heuristic toolbox that allows them
to perform well in tasks which are common in their environ-
ment, such as escaping enemies and locating food or potential
mates. Yet despite using such heuristics broadly and having
limited computational capacity, humans and animals perform
admirably well in very complex environments, even without
accumulating vast amounts of data, actively (or consciously)
representing an exponential number of states, or computing
Nash equilibria [Gintis, 2009].

The emotions are a psychological mechanism that influ-
ences human and animal decision-making in this heuristic
way. Emotion has been argued to perform a variety of func-
tions: (a) It directs cognitive resources to significant events
or aspects of a situation (e.g., fear, upon the animal locating
a threat, shifts focus toward escaping or neutralizing it). (b)
It aids in learning, by storing and easily accessing emotion-
ally intense or similar experiences [Christianson, 1992]. (c) It
interprets observations in a way that is consistent with the or-
ganism’s internal state (e.g., while running away from danger,
fear will cause many items in the environment to be ignored,
retaining perception of only those aiding in defense, evasion
or escape). (d) It aids in communicating the person’s mood
and intentions by means of facial expressions, tone of voice
or body stance.

Yet, despite the aforementioned benefits of emotion, it has
been largely ignored in AI as a concept relevant to decision-
making, with very few exceptions (e.g., [Scheutz and Scher-
merhorn, 2009], [Lisetti and Gmytrasiewicz, 2002], [Minsky,

2007]). Moreover, previous attempts to incorporate emotion
in decision-making specify general principles but avoid con-
crete implementations, or these implementations are highly
domain-specific. This paper provides a systematic way to
bring emotion into AI decision-making, and demonstrates
that measurable benefits may accrue. In particular, we fo-
cus on the first of the above functions of emotion, namely,
its ability to shift cognitive resources and re-prioritize a per-
son’s goals by reacting to significant events in the environ-
ment. More specifically, agents in our system have goals with
different priority levels. At every point in time, they take ac-
tions aiming to accomplish higher-priority goals. Emotions
are used to inspire the design of operators that are activated
by the agents interpreting their observations with respect to
their goals (e.g., fear is elicited when a goal seems to come
under threat). These operators’ function is to dynamically al-
ter the priorities of goals. For instance, a goal under threat
receives higher priority due to the emergence of fear and, as
a result, actions are taken to protect it. The net effect of emo-
tions is to “project” the agent’s long-run utility function—
which might be too complex to directly optimize—down to
a valuation function which varies across time, and in which
goals are weighted by their current priorities. By myopi-
cally maximizing this valuation function in the next time step,
the agent essentially ends up performing very well with re-
spect to its actual long-run utility. We test this methodol-
ogy in two domains: restless bandits, which are provably in-
tractable ([Guha et al., 2010], [Papadimitriou and Tsitsiklis,
1999]), and an artificial foraging environment. We compare
our emotion-based methodology against other heuristics and
optimal or nearly-optimal solutions, whenever these are com-
putable.

Our paper therefore makes two contributions: First, it for-
mulates emotion-inspired computational operators that adjust
the priorities (or weights) of an agent’s conflicting goals. In
doing so, it provides a principled way of thinking about emo-
tions in a decision-theoretic framework. Second, our work
provides a concise methodology for designing heuristics in
generic domains. The emotion-based operators we provide
are not domain-specific and can be transferred across do-
mains without losing their relevance. Thus, the agent de-
signer may avoid having to design novel heuristics for every
new domain.

Related work
Emotion has been widely investigated in the field of psychol-
ogy, but also in those of economics and computer science.
In psychology, cognitive appraisal theories ([Lazarus, 1991],
[Oatley and Johnson-Laird, 1987]) have provided the basis
for a large number of computational models of emotion (e.g.,
[Marsella and Gratch, 2009], [Ortony et al., 1988]). Evolu-
tionary psychologists have further demonstrated the connec-
tion between emotions and decision-making algorithms, by
treating emotions as cognitive operators optimized by natu-
ral selection [Cosmides and Tooby, 2008]. Emotions have
also been shown to aid interactions between agents and hu-
mans and foster relationships [Bickmore and Picard, 2005],
as well as influence people’s decision-making in a variety of
contexts, like negotiation [Van Kleef and De Dreu, 2010], the

prisoner’s dilemma [De Melo et al., 2009], or educational set-
tings [Conati and Maclaren, 2009].

In relation to decision-making, [Scheutz, 2002] argues in
favor of emotions as part of the design of agents and for-
mulates emotions as “clustering concepts,” whose function
is to group similar situations together (e.g., a flight response
might be appropriate in all situations eliciting fear). [Lisetti
and Gmytrasiewicz, 2002] also make the case that emotion
and rationality are not mutually exclusive and underline the
social role of the emotions. In more recent work, [Scheutz
and Schermerhorn, 2009] implement a simple emotion-based
methodology, in which “positive” and “negative” affect is
represented using two variables. These modulate the agent’s
expectations regarding the predicted reward of its actions (for
instance, an agent with a lot of “positive affect” becomes
more optimistic). Their model is similar to ours, in that affect
is used to modulate weights inside the agent’s architecture.
However, our model differs in three important ways: First,
we formulate actual emotions, such as fear and boredom, in-
stead of undifferentiated positive or negative moods. Second,
our emotions are defined in a domain-independent manner,
which allows them to be transferrable across domains. And
third, in their model emotions act as perceptual distortions,
making certain actions seem more or less beneficial than they
are—in contrast, in our model they merely update the prior-
ities of goals, without presenting false information about the
efficacy of actions.

2 Emotion-based decision-making
Below we describe how our emotion-based agents reason
about the world and make decisions. In principle, the agents
are using a decision-theoretic framework, selecting actions
that maximize a certain valuation function. We discuss how
this valuation function is formulated, how it changes across
time based on the agents’ emotions, and how these emotions
are elicited.

Goals and valuation
Any agent is designed to perform certain functions in a partic-
ular environment. For instance, a robot exploring the surface
of Mars has to locate interesting-looking rocks, collect sam-
ples, avoid falling, and return to base. These functions of an
agent can be thought of as its goals (G). In our system, each
goal gi ∈ G is associated with three numbers: First, it has a
value vi ∈ R+, denoting its relative importance. Second, it
has a priority rti ∈ N+ in every time step t ≥ 0. Goals of
higher priority are considered more significant in the current
time step, whereas goals of lesser priority are less significant.
Notice here that the value vi of a goal does not change over
time, but its priority might differ between time steps. Third,
each goal has a degree of achievement dti ∈ [0, 1]. This is
a measure of the agent’s subjective expectation that the goal
will be achieved at some point in the future.

These three figures (value, priority and degree of
achievement) combine to give a valuation function ût =∑
gi∈G d

t
i · q(vi, rti). Before we explain the function q, no-

tice that the valuation at time t increases with the degree of
achievement of the agent’s goals. In other words, if the agent

is taking actions to maximize its valuation function, it essen-
tially is acting to increase the degree of achievement of its
goals. This quantity is, however, weighted by each goal’s
value and priority, which is what the function q(·, ·) is do-
ing. In our experiments we capped 1 ≤ rti ≤ rmax and used
q(vi, rti) = vi · (rti/rmax). Since goals are weighted by their
priorities, by sufficiently increasing the priority of a goal the
agent will be geared towards taking actions to accomplish it,
rather than lesser-priority goals. Finally, notice that chang-
ing rt = (rt1, . . . , r

t
|G|) provides a way to change an agent’s

valuation function across time. This change induces adap-
tive behavior, by essentially switching the agent’s focus be-
tween its various goals. Notationally, we shall use û(rt,dt)
to denote function û parametrized by priority and degree of
achievement vectors rt and dt, respectively.

Notice that we use the notation ût for the agent’s valuation
function. The use of the hat (ˆ) operator serves as a reminder
that this is not the agent’s actual utility. This other function
(u) might be too complex to even represent, as it needs to in-
corporate every action taken and every event having occurred
across the agent’s lifetime, interactions between events, costs
and probabilistic dependencies, etc. It might therefore be too
complex to even meaningfully write down. In contrast, ût
comes merely from the functional specifications (desired be-
havior) of the agent at every point in time.

Domain Knowledge, Action Selection, Observations
We next turn to how the degrees of achievement dti get as-
sessed and updated. To answer this, we need to enrich
our agent with the ability to predict the effect of its actions
(A). Hence, we introduce the function f(dt, a). This func-
tion receives as arguments the degree of achievement vector
dt = (dt1, . . . , d

t
|G|) and a candidate action a ∈ A, and re-

turns the expected degree of achievement vector after the ac-
tion has been taken. To accomplish this, it must incorporate
domain knowledge, such as, for instance, the fact that running
in the opposite direction of an enemy increases the degree of
achievement of goal “avoid enemy,” but decreases the degree
of goal “preserve charged battery.” Given this function f , we
have a way of selecting an action in every time step: the agent
simply chooses action

a∗t ∈ argmaxa∈Aû(r
t, f(dt, a))

In other words, the agent selects the action with the highest
expected increase in the degree of achievement of its goals,
each weighted by its current priority. Notice here that, in
maximizing its valuation function, the agent is treating goal
priorities as constants, i.e., it does not reason about how these
might change in the future because of its actions.

The agent is, however, also able to observe things in the
environment. Things like the presence of a threat or a reward
ought to change its beliefs regarding the degrees of achieve-
ment of its goals. To incorporate this functionality, we add
the observation function b(dt, e), where e is an observation
obtained. The function returns—much like f—an updated
degree of achievement vector. For instance, if an enemy ap-
proaches, the function b will return a degree vector in which
the di of goal “avoid enemy” is decreased. At every time step

an observation et is received and

dt+1 = b(dt, et)

Notice here that domain-specific knowledge in our system
is contained only within the values of goals vi and within the
functions f and b. Furthermore, these are directly derived
from the functional specifications of the agent design and are
unavoidable in every agent architecture. For instance, a log-
ical or game-theoretic decision-making algorithm would still
need to somehow define a goal or utility, and reason about
the predicted effects of actions and the interpretation of ob-
servations. Also, as explained below, the emotions in our ar-
chitecture are formulated in an entirely domain-independent
manner.

Emotion-inspired operators
We are now ready to define emotion-inspired operators,
whose function is to update the priority vector rt. Emotions
are of two types: Goal-specific emotions are elicited in con-
nection to, and update the priority of a particular goal. For
example, fear is elicited when a particular goal is threatened.
Goal-independent emotions are elicited without a particular
goal in mind, and may change the entire priority vector. For
instance, the emotion of boredom is elicited when nothing out
of the ordinary happens for a while, but is not associated with
any particular goal.

Each emotion operator m ∈ M is associated with two
functions: on the one hand, the activation function λm con-
tains the elicitation condition for the emotion and returns
TRUE if that condition is met; on the other hand, the con-
sequence function κm describes how the priority vector is to
be changed when the emotion is present. Below we present
the functional form for some emotions:
• Hope and fear are reactions to changes in the expecta-

tion of the future accomplishment of a goal, positive or
negative (hence, hope and fear are goal-specific emo-
tions). We define λm for fear in this case to be TRUE
iff dt−1

i − dti ≥ θ1, where θ1 is an externally set thresh-
old. A similar condition and threshold can be defined for
hope. In essence, fear and hope are elicited when there
is a significant change in the expectation that a particular
goal gi will be accomplished. For instance, if an enemy
shows up, function b will cause a decrease in the di for
goal “avoid enemy” and this will elicit fear (if larger than
θ1). We also define κm to increase the rti of the threat-
ened (hoped-for) goal by a constant c. This increase, if
sufficient, will direct the agent’s efforts into protective
actions, such as running away.
• Boredom, a goal-independent emotion, is elicited when

the û experienced by a number of rounds has not
changed significantly. In particular, λm is TRUE iff the
standard deviation of payoffs {ût−τ , . . . , ût−1} does not
exceed a certain threshold θ2 (we set τ , the length of
history considered for the elicitation of boredom, to 10).
When activated, the emotion of boredom perturbs the
priority vector rt at random. The net effect of this is an
avoidance of “local maxima,” i.e., actions that lead to
historically good payoffs, but which might prevent the
agent from exploring even better alternatives.

• Anger is an emotion that gets elicited when blame-
worthiness can be attributed to another party for some
negative-impact event [Ortony et al., 1988]. As such,
its elicitation λm must consider whether an observed
change in the environment has been caused by some
other agents, and whether they had an alternative course
of action or they specifically intended to cause it, as op-
posed to it being a side-effect of their plans (to establish
blameworthiness). Anger will result in the raising of pri-
orities among goals geared toward harming the supposed
perpetrators or negating the effect of their actions.
• Sadness is an emotion that is elicited from repeated or

significant failure. In humans it elicits withdrawal from
activity and rigorous thinking, aimed at re-planning
one’s course of action. Consistent with this function of
sadness, our λm was set to be TRUE when a series of
payoffs {ût−τ , . . . , ût−1} all lie below a certain fraction
δ of the historically average or expected reward. The
result of sadness is to suppress the priority of higher-
priority goals, and increase that of low-priority goals, es-
sentially “switching focus” to a potentially more promis-
ing set of actions.

Notice that the above emotion operators are defined in a
general-purpose and not domain-specific manner. Between
domains, the definition of the emotions does not change, al-
though their elicitation thresholds could be adjusted accord-
ingly. (As we show in the next section, however, performance
is very robust with respect to the threshold values chosen.) In
our simulations, we implemented the emotion operators of
hope, fear, as well as the emotion of boredom, to keep the
model simple. We also used the same threshold for hope and
fear in each case.

3 Experimental evidence
To evaluate our methodology we selected two domains that
are characterized by high uncertainty and complex stochas-
tic change. Those two features are very common in real-
world environments, for which ample data or full observ-
ability might not be available. Furthermore, uncertainty and
stochasticity make the computation of optimal strategies dif-
ficult and also might impede learning, thus accentuating the
need for heuristic approaches. Finally, the reason we chose
two domains (instead of one) was to illustrate that our ap-
proach is not fine-tuned to the specifics of a particular envi-
ronment, but might have potentially broader applicability to a
variety of domains.

3.1 Restless bandits
Restless bandits (RB) are an extension of stochastic multi-
armed bandits (MAB). In a typical setting, the bandit consists
of a number (k) of arms, each of whom delivers a reward
when selected. In the simple MAB case, the reward ri of
each arm i is drawn from a probability distribution that de-
pends on the arm’s state (si). In each time step, the agent
may choose only one arm and obtain the reward from it; af-
ter this, the arm that was selected transitions stochastically to
another state according to a transition matrix Ti. The restless
bandit case extends the above framework by allowing all arms

to undergo a transition in each round, even those not selected.
In particular, each arm i transitions to a different state in each
round according to matrix Ti (if selected) or matrix T̃i (if not
selected). The goal in both cases is to maximize average re-
ward. But whereas MABs admit an optimal solution, termed
the “Gittins index” [Gittins, 1989], restless bandits have been
shown to be a hard problem. According to [Papadimitriou
and Tsitsiklis, 1999] even with deterministic transitions the
problem is intractable in the general case. Recently, work has
been done to be able to compute solutions for subclasses of
the problem (e.g., [Slivkins and Upfal, 2008]), most of which
follow the “Whittle index” (for a good review and an approx-
imation algorithm see [Guha et al., 2010]). Such solutions,
however, suffer from assuming that too much is known: pay-
off distributions and transitions matrices, as well as the ini-
tial state of each arm, are usually considered known, and the
problem is cast as being able to reap high rewards despite the
state of all arms changing over time. However, this does not
directly apply in situations where neither the stochasticity in
payoffs nor in transitions is known, as in out setting.

In our simulations there are k = 5 arms, each of which can
be in one of three states: “good,” “medium” and “bad.” In
each state s of arm i, payoffs are given by a Gaussian with
mean µsi and standard deviation σsi . Naturally, good states
have higher means than medium ones, which have higher
means than bad ones. An agent is allowed to make choices
for a number R of steps (the value of which we varied among
30, 100, 500 and 1500) and the average payoff (as well as its
variance) were recorded. For every agent tested, the experi-
ment was repeated 100 times.

Our emotion-based agent was given five goals, one for each
arm, of the form gi = “obtain high reward from arm i.” All
goals had the same value vi = v. The agent did not track the
states of the various arms across time. It merely assumed
that the state of every arm remained unchanged since the
last time it was selected. When the agent selected an arm,
it compared the payoff received with historical payoffs from
the same arm, and made a crude estimate whether its state
was good, medium or bad. Given its assessment of the arms’
states, action “select arm i” was expected (in function f) to
increase the degree of achievement of goal gi if arm i was be-
lieved to be in the good state, decrease it if i was believed to
be in the bad state, and leave it unchanged otherwise. This is
basic domain knowledge, merely stating that selecting good-
state arms is better than selecting bad-state ones. After a re-
ward was obtained, the degree of achievement of the corre-
sponding goal would be adjusted accordingly (function b), in-
creasing upon high rewards and decreasing upon low rewards
(dt+1
i ← payoff received at t / max payoff). The agent em-

ployed the three aforementioned emotion operators of hope,
fear and boredom to update the priorities of its goals, which
were all initialized to 5 and were allowed to range between
1 and rmax = 10. We tried different values for the emotion
thresholds (θ1 ∈ {0, 0.1, 0.3} and θ2 ∈ {0, 1}). Hence a total
of six variants of the emotion-based agent were tested, in or-
der to examine the robustness of our emotion-based method-
ology with respect to the choice of thresholds. The approach’s
performance was taken to be the average among the six vari-
ants examined in order to prevent any observed performance

benefits being obtained by a fine-tuning of the threshold val-
ues.

We compared this to the following agents: (i) a random
agent, which selected arms with uniform probability; (ii)
a reactive agent, which selected an arm until a significant
decrease (greater than 30%) in payoffs was observed, then
switched to a different arm at random; (iii) a learning agent,
which made assessments (based on past data) about the mean
and variance of each state, but did not track the change in
states across time; (iv) an “all-seeing” agent, who would
(somehow) know the payoff means of all the states, as well as
the current state of each arm; (v) a “half-seeing” agent, who
would know the payoffs means of all the states but would not
know their exact current state; and (vi) a collection of index-
ing agents. These indexing agents are guaranteed according
to [Guha et al., 2010] to contain the optimal policy, and work
as described below.

For every indexing agent, an integer value ti (the index) is
associated with each arm i. The agent then acts as follows:
Initially, it selects a few arms at random to assess the mean
of good and bad states across the five arms. Then, it chooses
its next action by looking at the reward obtained by its last
choice. If the arm selected in the last round is evaluated as
being in the good state, the agent selects it again; otherwise,
it chooses at random from the subset of arms i that have not
been selected for at least ti time steps, where ti is the index
for that arm. In other words, the index of an arm denotes how
long an agent must wait, after the arm is detected in the bad
state, until it starts considering it again.

We simulated 515 such index policies (ti ∈ [1, 15],∀i).1
Results from our simulation are presented in Table 1. (All dif-
ferences are significant at the 1% level according to pairwise
non-parametric Wilcoxon tests.) Naturally, policies (iv)–
(vi) are not candidates for direct comparison, because they
“cheat” by having access to knowledge the remaining agents
do not; nonetheless, they are good indicators for the perfor-
mance of our agents.

Agent R = 30 100 500 1500
Average Emotion 3.64 3.26 3.07 3.17

i. Random 1.91 3.03 1.94 2.37
ii. Reactive 1.29 2.98 2.83 2.45
iii. Learner 3.15 2.93 2.32 2.22

iv. All-seeing 8.75 8.73 8.83 8.72
v. Half-seeing 3.99 3.70 3.62 2.92

vi-i. Best-index 5.64 4.46 4.13 4.16
vi-ii. Avg-index 2.44 2.47 2.46 2.43

Table 1: Average payoff of agents in restless bandit domain

As can be seen in the table, the emotion-based agent
consistently outperforms the random, learning, and reactive
heuristics, as well as the average index policy, and comes
close to the optimal index policy (which, is, however, not

1This brute force approach was chosen due to the fact that the
optimal index policy cannot be computed without having knowledge
of the means of all states and the transition probabilities between
them, which our agents did not know.

computable without a priori knowledge of the parameters of
the bandit arms). As a matter of fact, only about 50 of the
515 index policies outperformed the emotion-based agent for
every choice of R.

Moreover, the performance of the emotion-based agent
seems robust with respect to the time R allotted for learn-
ing and experimentation. Next, we tested the robustness of
our agents with respect to the choice of thresholds θ1 and
θ2. Across all choices of R, the variance in the payoff ob-
tained among the six variants of the emotion-based agents
(with different choices of θ1 and θ2) never exceeded 0.3. Ta-
ble 2 shows the performance of six variants forR = 1500. As
can be seen, all but one variant (6) still outperform the other
heuristics (last column of Table 1).

Variant 1 2 3 4 5 6
Avg. payoff 3.51 3.79 3.01 3.76 3.23 2.36

Table 2: Average payoff of emotion variants for R = 1500

3.2 Foraging
We next evaluated our methodology in a foraging domain
consisting of a 10×10 square field. Random units of food are
placed on squares of the board, such that their total number
does not exceed 15. A single agent starts in location (0, 0)
and is allowed, in every time step, to either (a) walk in one
of the four directions, spending 5 HP, (b) run, covering twice
as much space, but spending 20 HP, (c) pick up food, if it
stands on it, or (d) eat food, if it carries some. An agent may
carry up to one unit of food at each time, and picking up a
unit of food causes one more to randomly appear somewhere,
such that the total remains 15. The field is also populated by
a number of enemies (8) and a number of friends (8), which
are indistinguishable to the agent. However, standing on the
same square as an enemy in the end of a round causes the
agent to suffer damage of −100, while a friend provides 100
units of benefit. Both friends and enemies will move in every
round toward the agent, if it finds itself next to them. Eating
food also gives the agent 200 HP. There are two seasons (win-
ter and summer) in this environment, and the season changes
stochastically with probability 0.02 after every round. The
location of friends, enemies, and food is not uniform; they
are all clustered in parts of the field based on the current sea-
son (e.g., in the winter there are more enemies in the top-left
corner). Agents are assumed to perceive the area that is one
step away from their current location, counting diagonal steps
(i.e., the 3×3 square surrounding them). However, agents do
not observe the season, do not know the transition probabil-
ity for its change, and have no knowledge of the movement
patterns of friends or enemies.

Our emotion-based agent had two goals: g1 =“avoid dan-
ger” and g2 =“replenish HP.” The presence of food and the
acts of picking it up and eating it were set to increase the de-
gree of achievement of g2, while the presence of another crea-
ture (friend or enemy) was initially expected to decrease the
degree of g1. However, after an interaction, and depending
on its outcome (experiencing damage or benefit), the degree
of achievement of g1 would go down or up. Hope would

0

5000

10000

15000

20000

25000

30000

35000

40000

45000
A

ve
ra

ge
 H

P

Agent

Figure 1: Average 500-round HP in foraging environment

ensue after a positive interaction and decrease the priority
of g1, while fear, caused upon suffering damage, would in-
crease it. The net effect of hope and fear was, therefore, a
tendency to avoid creatures right after being damaged by one
(since now g1 had a high priority), and not avoid them af-
ter being benefited (since now g1 had a low priority). This
emotion-based agent was compared against a random policy,
and three scripted heuristic policies of the form: “walk about
at random, pick up and eat food when you see it, and move in
the opposite direction of other creatures.” The three heuristic
policies differed in whether the agent would walk or run away
from enemies, and whether it would consider interacting with
a creature to see if it is a friend or not. The agents were al-
lowed 500 moves on the field and then their HP was recorded;
for all agents the experiment was repeated 100 times.

The optimal policy in this problem would be the solution
to a very complex POMDP with over 8 million states. To
get a better sense of the performance of our system, however,
we abstracted features of the problem and reduced the num-
ber of states by assuming certain independencies. Thus, we
only accounted for the location of nearby creatures (up, down,
left, right, center, none), the location of food, whether food is
being carried and whether the very last interaction was with
a friend or enemy, for an MDP with a total number of 144
states. (The abstracted problem is an MDP since unobserved
variables, like the location of unseen creatures, are assumed
not to matter.) In Figure 1 we present the performance of the
various agents. (Differences are significant at the 1% level.)

As can be seen the emotion-based agent outperforms the
most obvious heuristics and comes very close to the MDP
which was formulated on the reduced (abstracted) problem.
Note that, although the emotion-based agent underperforms
the MDP, the latter requires more computational resources,
and also requires some knowledge about things that our
emotion-based agent does not know. For example, the MDP
needs to know the transition probabilities between states,
which in turn requires making assumptions of the behavior
of friends and enemies in the environment.

4 Discussion & Conclusion
We have presented a methodology for emotion-based
decision-making in complex environments with high uncer-
tainty and stochasticity, and demonstrated that benefits may
accrue with very little computational cost. Furthermore,
emotions in our methodology were formalized as domain-
independent operators, making them applicable to virtually
every situation and providing a way for the design of heuris-
tics in novel environments. However, two issues need to be
clarified. First, our use of the word “emotion” must be under-
stood as detached from the biological and psychological com-
plexities of emotions in living organisms. Although cognitive
appraisal theories have taken an information-processing ap-
proach to analyzing the emotions, the biological substrate and
the psychological influences of emotions are far too complex
to account for. Moreover, we are merely inspired by certain
functions of affect and wish to replicate them in computer
agents to the extent that they confer a performance advantage
or reduce computational cost. In that spirit, our goal is not to
replicate human emotional reactions with high fidelity, but to
adapt basic notions of emotion-based decision-making to the
practical needs of AI agents. Second, it must be noted that
our tests examined very complex domains, for which optimal
solutions are either not tractable or very hard to compute. We
feel this illustrates the value in further investigating the bene-
fits from emotion-based decision-making. However, because
of the absence of more sophisticated algorithms, we had to
compare our agent against fairly simple heuristics. This was
necessary as, to the best of our knowledge, no better meth-
ods exist that can be used without extensive periods of learn-
ing. Despite such heuristics being justified as competitors,
however, our simulations say little about domains for which
optimal solutions are currently within our reach. We plan to
explore how this methodology lends itself to such domains
and how it compares with currently optimal solutions. One
of the avenues we are exploring is comparing it with “any-
time” algorithms, and thus assessing the computational cost
(in time and resources) for these algorithms to catch up with
an emotion-based decision-maker which operates “out of the
box.” Quantifying in this way the limits of our current algo-
rithms, we will have a better sense of when an emotion-based
methodology is appropriate or not.

Acknowledgements
This work has been supported by NSF grant IIS-0705406.

References
[Bickmore and Picard, 2005] Timothy W. Bickmore and Ros-

alind W. Picard. Establishing and maintaining long-term human-
computer relationships. ACM Trans. Comput.-Hum. Interact.,
12:293–327, June 2005.

[Christianson, 1992] Sven Ake Christianson. The Handbook of
Emotion and Memory: Research and Theory. Psychology Press,
1992.

[Conati and Maclaren, 2009] Cristina Conati and Heather Ma-
claren. Empirically building and evaluating a probabilistic model
of user affect. User Modeling and User-Adapted Interaction,
19:267–303, August 2009.

[Cosmides and Tooby, 2008] L. Cosmides and J. Tooby. Handbook
of Emotions, chapter Evolutionary Psychology and the Emotions.
NY: Guilford, 3rd edition, 2008.

[De Melo et al., 2009] Celso M. De Melo, Liang Zheng, and
Jonathan Gratch. Expression of moral emotions in cooperating
agents. In IVA, pages 301–307, 2009.

[Gigerenzer et al., 2008] Gerd Gigerenzer, Henry Brighton, and
Max Planck. Homo heuristicus: Why biased minds make bet-
ter inferences, 2008.

[Gintis, 2009] Herbert Gintis. Game Theory Evolving. Princeton
University Press, 2nd edition, 2009.

[Gittins, 1989] John C. Gittins. Multi-armed bandit allocation in-
dices. Wiley-Intersc. Series in Systems and Optimization, 1989.

[Guha et al., 2010] Sudipto Guha, Kamesh Munagala, and Peng
Shi. Approximation algorithms for restless bandit problems. J.
ACM, 58:3:1–3:50, 2010.

[Lazarus, 1991] R. S. Lazarus. Emotion and Adaptation. Oxford
University Press, 1991.

[Lisetti and Gmytrasiewicz, 2002] C. L. Lisetti and P. Gmy-
trasiewicz. Can a rational agent afford to be affectless? a formal
approach. Applied Artificial Intelligence, (16):577–609, 2002.

[Marsella and Gratch, 2009] Stacy C. Marsella and Jonathan
Gratch. Ema: A process model of appraisal dynamics. Cognitive
Systems Research, 10(1):70 – 90, 2009. Modeling the Cognitive
Antecedents and Consequences of Emotion.

[Minsky, 2007] Marvin Minsky. The Emotion Machine: Common-
sense Thinking, Artificial Intelligence, and the Future of the Hu-
man Mind. Simon and Schuster, 2007.

[Oatley and Johnson-Laird, 1987] K. Oatley and P. N. Johnson-
Laird. Towards a cognitive theory of emotions. In Cognition
and Emotion, volume 1, pages 29–50, 1987.

[Ortony et al., 1988] A. Ortony, G. L. Clore, and A. Collins. The
Cognitive Structure of Emotions. New York: Cambridge Univer-
sity Press, 1988.

[Papadimitriou and Tsitsiklis, 1999] C.H. Papadimitriou and J. N.
Tsitsiklis. The complexity of optimal queuing network control.
Math. Oper. Res., 24(2):293–305, 1999.

[Scheutz and Schermerhorn, 2009] Matthias Scheutz and Paul
Schermerhorn. Handbook of Research on Synthetic Emotions
and Sociable Robotics: New Applications in Affective Comput-
ing and Artificial Intelligence, chapter Affective Goal and Task
Selection for Social Robots, pages 74–87. IGI Global, 2009.

[Scheutz, 2002] Matthias Scheutz. Agents with or without emo-
tions? In 15th Intl. Florida AI Research Society, pages 89–93,
2002.

[Slivkins and Upfal, 2008] R.S. Slivkins and Eli Upfal. Adapting
to a changing environment: the brownian restless bandits, 2008.

[Van Kleef and De Dreu, 2010] G. A. Van Kleef and C.K.D.
De Dreu. Longer-term consequences of anger expression in nego-
tiation: Retaliation or spillover? Journal of Experimental Social
Psychology, 46(5):753 – 760, 2010.

