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A Optimal Policies for a Small Open Economy: Derivations

A.1 First Best Policies for a Small Open Economy

A.1.1 Optimality Conditions of the Planner Problem

We begin by characterizing the solution to the program

max U
(
QdHH , Q

d
FH

)
=
((
QdHH

)σ−1
σ +

(
QdFH

)σ−1
σ

) σ
σ−1

s.t. LuH + LdH = LH

ÂuH (LuH)LuH = QuHH + τuQuHF
ÂdH

(
LdH , Q

u
HH , Q

u
FH

)
F d
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LdH , Q

u
HH , Q

u
FH

)
= QdHH + τdQdHF

P dFHQ
d
FH + PuFHQ

u
FH = QdHF (QdHF )− 1

σP dFF
(
QdFF

) 1
σ +QuHF (QuHF )−

1
θ PuFF (QuFF )

1
θ ,

where ÂuH and ÂdH are given by

ÂdH = ĀdH
(
F d
(
LdH , Q

u
HH , Q

u
FH

))γd
, ÂuH = ĀuH (LH)γ

u

,
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F d
(
LdH , Q

u
HH , Q

u
FH

)
=
(
Ldi
)α ((QuHH)

θ−1
θ + (QuFH)

θ−1
θ

) θ(1−α)
θ−1

.

The first order conditions associated with the choices of QdHH , QdFH , QdHF , QuHH , QuFH , QuHF , LuH , and
LdH are as follows:

UQd
HH

(
QdHH , Q

d
FH

)
= µd (A.1)

UQd
FH
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QdHH , Q

d
FH

)
= µTBP

d
FH (A.2)

τdµd = µTB
σ − 1
σ

P dHF (A.3)
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(
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F d
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F dQu
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(A.4)
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F dQu
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)
(A.5)

τuµu = µTB
θ − 1
θ

PuHF (A.6)

µL = µu (1 + γu) ĀuH (LH)γ
u

(A.7)

µL = µd
(
1 + γd

)
ĀdH

(
F d
(
LdH , Q

u
HH , Q

u
FH

))γd
F dLd

H

(
LdH , Q

u
HH , Q

u
FH

)
, (A.8)

where we used µL, µu, and µd for the multiplier on the first, second and third feasibility constraints,
respectively, and µTB for the multiplier in the trade balanced condition.

Dividing equation (A.1) by equation (A.2), and plugging in (A.3), we obtain:

UQd
HH

(
QdHH , Q

d
FH

)
UQd

FH

(
QdHH , Q

d
FH

) =
σ−1
σ P dHF /τ

d

P dFH
,

which corresponds to the first optimality condition (9) in the main text.
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Next, we divide equation (A.4) by equation (A.5), and plugging in (A.6), delivers

F dQu
HH

(
LdH , Q

u
HH , Q

u
FH

)
F dQu

FH

(
LdH , Q

u
HH , Q

u
FH

) =
θ−1
θ PuHF /τ

u

PuFH
,

which corresponds to the second optimality condition (10) in the main text.
Next, combining equation (A.4) with the ratio of equations (A.3) and (A.6) produces

(
1 + γd

)
ĀdH

(
F d
(
LdH , Q

u
HH , Q

u
FH

))γd
F dQu

HH

(
LdH , Q

u
HH , Q
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)
=

θ−1
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σ−1
σ

PuHF /τ
u

P dHF /τ
d
,

which corresponds to the third optimality condition (11) in the main text.
Finally, from dividing equation (A.7) by equation (A.8), and plugging in (A.4), we obtain

F dLd
H

(
LdH , Q

u
HH , Q

u
FH

)
= (1 + γu) ĀuH (LH)γ

u

F dQu
HH

(
LdH , Q

u
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u
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)
,

which corresponds to equation (12) in the main text.

A.1.2 Optimality Conditions of the Decentralized Market Equilibrium

In this Appendix, we provide more details on the derivation of the equilibrium conditions (13)–(16).
Remember that Home consumers maximize

U
(
QdHH , Q

d
FH

)
=
((
QdHH

)σ−1
σ +

(
QdFH

)σ−1
σ

) σ
σ−1

,

and face a price P dHH for domestic goods and a price
(
1 + tdH

)
P dFH for imports (remember that P dFH is

defined inclusive of trade costs but exclusive of import tariffs). Exporters at Home must be indifferent
between domestic sales or exports, which implies that P dHH =

(
1− vdH

)
P dHF /τ

d. Equating the marginal rate
of substitution to the relative price faced by consumers delivers

UQd
HH

(
QdHH , Q

d
FH

)
UQd

FH

(
QdHH , Q

d
FH

) = 1− vdH
1 + tdH

P dHF /τ
d

P dFH
,

which corresponds to equation (13).
Home producers in turn maximize profits, which are given by

πdH = 1
1− sdH

P dHHÂ
d
HF

d
(
`dH , q

u
HH , q

u
FH

)
− w`dH − PuHHquHH − (1 + tuH)PuFHquFH .

Imposing P dHH =
(
1− vdH

)
P dHF /τ

d and PuHH = (1− vuH)PuHF /τu, we can write this as

πdH = 1
1− sdH

(
1− vdH

)
P dHF

τd
ÂdHF

d
(
`dH , q

u
HH , q

u
FH

)
− w`dH −

(1− vuH)PuHF
τu

quHH − (1 + tuH)PuFHquFH .

The optimal mix of domestic and foreign inputs then ensures that the marginal rate of substitution between
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foreign and domestic inputs is equal to its relative price, or

F dQu
HH

(
LdH , Q
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HH , Q

u
FH

)
F dQu

FH

(
LdH , Q

u
HH , Q

u
FH

) = 1− vuH
1 + tuH

PuHF /τ
u

PuFH
,

which corresponds to equation (14).
Next, note that equating the marginal rate of substitution between domestic inputs and labor delivers

F dQu
HH

(
LdH , Q

u
HH , Q

u
FH

)
F d
Ld
H

(
LdH , Q

u
HH , Q

u
FH

) = (1− vuH)PuHF /τu
w

. (A.9)

Now note that w also needs to correspond to the value of the marginal product of labor in the upstream
sector, or

w = 1
1− suH

ÂuH (1− vuH) P
u
HF

τu
, (A.10)

which, plugged into (A.9), delivers

F dLd
H

(
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u
HH , Q

u
FH

)
= 1

1− suH
ÂuHF

d
Qu
HH

(
LdH , Q

u
HH , Q

u
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)
(A.11)

which corresponds to equation (16).
Finally, equating the value of the marginal product of labor w in both sectors implies

1
1− suH

(1− vuH)PuHF
τu

ÂuH = w = 1
1− sdH

(
1− vdH

)
P dHF

τd
ÂdHF

d
Ld
H

(
LdH , Q

u
HH , Q

u
FH

)
,

which, plugging (A.11), can be written as

(1− vuH)PuHF
τu

= 1
1− sdH

(
1− vdH

)
P dHF

τd
ÂdHF

d
Qu
HH

(
LdH , Q

u
HH , Q

u
FH

)
,

which corresponds to equation (15).

A.2 Second Best Policies for a Small Open Economy

In this Appendix, we characterize the second-best import tariffs when the government only has access to
import tariffs upstream and downstream. The optimal import tariff are given by

(
1 + tdH

)
=
UQd

FH

(
QdHH , Q

d
FH

)
UQd

HH

(
QdHH , Q

d
FH

) (QdHF )− 1
σP dFF

(
QdFF

) 1
σ /τd

P dFH
,

(1 + tuH) =
F dQu

FH

(
Ld, QuHH , Q

u
FH

)
F dQu

HH
(Ld, QuHH , QuFH)

(QuHF )−
1
θ PuFF (QuFF )

1
θ /τu

PuFH
,
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where the allocation is given by the solution of choosing LuH , LdH , QdHH , QdFH , QdHF , QuHH , QuFH , and QuHF
to

max U
(
QdHH , Q

d
FH

)
s.t. LuH + LdH = LH

ÂuH (LuH)LuH = QuHH + τuQuHF
ÂdH

(
LdH , Q

u
HH , Q

u
FH

)
F d
(
LdH , Q

u
HH , Q

u
FH

)
= QdHH + τdQdHF

P dFHQ
d
FH + PuFHQ

u
FH = QdHF (QdHF )− 1

σP dFF
(
QdFF

) 1
σ +QuHF (QuHF )−

1
θ PuFF (QuFF )

1
θ

ÂdHF
d
Qu
HH

(
LdH , Q

u
HH , Q

u
FH

)
= (QuHF )− 1

θ PuFF (QuFF )
1
θ /τu

(Qd
HF

)− 1
σ Pd

FF (QdFF ) 1
σ /τd

F d
Ld
H

(
LdH , Q

u
HH , Q

u
FH

)
= Âu (LuH)F dQu

HH

(
LdH , Q

u
HH , Q

u
FH

)
.

To prove Proposition 6 up to Propositions 8 we find useful to work with a modified version of this problem
where we replace the last two equality constraints and the definition of the input tariff with:

(QuHF )−
1
θ PuFF (QuFF )

1
θ /τu

(QdHF )− 1
σP dFF

(
QdFF

) 1
σ /τd

= κ̄1Â
d
HF

d
Qu
HH

(
LdH , Q

u
HH , Q

u
FH

)
(A.12)

F d
Ld
H

(
LdH , Q

u
HH , Q

u
FH

)
F dQu

HH

(
LdH , Q

u
HH , Q

u
FH

) = κ̄2Â
u, (A.13)

F dQu
FH

(
LdH , Q

u
HH , Q

u
FH

)
F dQu

HH

(
LdH , Q

u
HH , Q

u
FH

) PuHF /τu
PuFH

= (1 + tuH) κ̄1, (A.14)

where κ̄1 and κ̄2 are two parameters satisfying κ̄i ≥ 1.
This problem is useful because it allows us to think about the problem of a government choosing taxes

when some but not all instruments are available, and eventually to derive parameter restrictions that ensure
that the second-best import tariffs are escalated. For example, when κ̄1 =

(
1 + γd

)
θ
θ−1

σ−1
σ and κ̄2 = 1 + γu,

the problem reduces to solving for the first-best allocation as we did in Appendix A.1. On the other hand,
when κ̄i = 1 for all i the allocation is consistent with solving for second-best import tariffs. Intermediate
values of κ̄1 correspond to fixing an arbitrary value for the export tax upstream equal to 1− νuH = 1

κ̄1
(see

equation (15)), while intermediate values of κ̄2 correspond to fixing an arbitrary value for the production
subsidy upstream equal to 1− suH = 1

κ̄2
(see equation (16)).

A.2.1 Optimality Conditions of the Modified Planner Problem

The first order conditions associated with the choices of QdHH , QdFH , QdHF , QuHH , QuFH , QuHF , LuH , and LdH
are as follows:
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UQd
HH

(·) = µd (A.15)
UQd

FH
(·) = µTBP

d
FH (A.16)

µdτ
d = σ − 1

σ
µTBP

d
HF − µSB

1
σ

1
QdHF

PuHF /τ
u

P dHF /τ
d

(A.17)

µu = µd
(
1 + γd

)
Xd
H

F dQu
HH

(·)
F d (·) − µLC

[
1
θ

+
(
θ − 1
θ

)
πuHH

] F d
Ld
H

(·)
QuHH

+µSB
PuHF /τ

u

P dHF /τ
d

[(
1 + γd

)
(1− α)−

(
θ−1
θ

)]
πuHH − 1

θ

QuHH
(A.18)

µTBP
u
FH = µd

(
1 + γd

)
Xd
HF

d
Qu
FH

(·)
F d (·) − µLC

(
θ − 1
θ

) F d
Ld
H

(·)πuFH
QuFH

+µSB
PuHF /τ

u

P dHF /τ
d

πuFH
QuFH

[(
1 + γd

)
(1− α)−

(
θ − 1
θ

)]
(A.19)

µuτ
u = µTB

θ − 1
θ

PuHF + µSB
1
θ

1
QuHF

PuHF /τ
u

P dHF /τ
d

(A.20)

µL = µu (1 + γu) X
u
H

LuH
+ µLCγ

u
F d
Ld
H

(·)
LuH

(A.21)

µL = µd
(
1 + γd

)
Xd
H

F d
Ld
H

(·)
F d (·) + µLC

F d
Ld
H

(·)
LdH

+ µSB
(
1 + γd

) α

LdH

PuHF /τ
u

P dHF /τ
d
, (A.22)

where as before we use µL, µu, and µd for the multipliers in each of the feasibility constraints, µTB for
the trade balanced condition, while µSB is the multiplier on equation (A.12), and µLC is the multiplier on
equation (A.13). The variable Xs

H represents total output in sector s ∈ {u, d}, and πuHH and πuFH are defined
as:

πuHH ≡
(QuHH)

θ−1
θ

(QuHH)
θ−1
θ + (QuFH)

θ−1
θ

, πuFH = 1− πuHH .

As a reminder the two added equilibrium constraints are:

κ̄1X
d
H

F dQu
HH

(·)

F d (·) = PuHF /τ
u

P dHF /τ
d

(A.23)

κ̄2X
u
H

FuLu
H

(·)
Fu (·) F

d
Qu
HH

= F dLd
H

(·) (A.24)

Manipulating the First-Order Conditions From equations (A.15), (A.16), and (A.17), we obtain:

UQd
FH

(·)
UQd

HH
(·) = P dFH

P dHF

[
σ

σ − 1τ
d + µSB

µd

1
σ − 1

1
QdHF

PuHF /τ
u

P dHF /τ
d

]
.
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Because in a competitive equilibrium with tariffs we have

UQd
FH

(·)
UQd

HH
(·) =

(
1 + tdH

) P dFH
P dHF /τ

d
(A.25)

F dQu
FH

(·)
F dQu

HH
(·)

= κ̄1 (1 + tuH) PuFH
PuHF /τ

u
. (A.26)

we can establish that

1 + tdH = µTBP
d
HF /τ

d

µd
= σ

σ − 1 + µSB
µd

1
σ − 1

1
τdQdHF

PuHF /τ
u

P dHF /τ
d
. (A.27)

Now combine equations (A.19), (A.23), (A.24), (A.26), and (A.27),

1
κ̄1

1 + tdH
1 + tuH

= 1 + γd

κ̄1
+ µSB

µd

πuHH
QuHH

[(
1 + γd

)
(1− α)− θ − 1

θ

]
− µLC

µd

α

1− α
θ − 1
θ

1
κ̄1ÂdHL

d
H

. (A.28)

We next plug equation (A.19) into equation (A.18) to obtain

µTBP
u
FH

πuHH
QuHH

QuFH
πuFH

= µu + µLC
1
θ

F d
Ld
H

(·)
QuHH

+ µSB
PuHF /τ

u

P dHF /τ
d

1
θ

1
QuHH

.

Next, plugging µu from equation (A.20), and using what input tariff are in equilibrium we obtain

µTB
PuHF
τu

[
1
κ̄1

1
1 + tuH

− θ − 1
θ

]
= µSB

PuHF /τ
u

P dHF /τ
d

1
θ

[
1

τuQuHF
+ 1
QuHH

]
+ µLC

F d
Ld
H

(·)
QuHH

1
θ
.

And, dividing by µd and plugging in (A.27), this delivers:

1
κ̄1

1 + tdH
1 + tuH

−
(
1 + tdH

) θ − 1
θ

= µSB
µd

1
θ

(
1

τuQuHF
+ 1
QuHH

)
+ 1
θ

µLC
µd

P dHF /τ
d

PuHF /τ
u

F d
Ld
H

(·)
QuHH

. (A.29)

We finally seek to solve for µLC as a function of µSB . We begin with equation (A.21) and (A.22)

µu
µd

(1 + γu) X
u
H

LuH
=
(
1 + γd

)
Xd
H

F d
Ld
H

(·)
F d (·) + µLC

µd
F dLd

H
(·)
[

1
LdH
− γu

LuH

]
+ µSB

µd

(
1 + γd

) α
Ld

PuHF /τ
u

P dHF /τ
d
.

Next, plug equation (A.18) and using (A.24), we obtain

µLC
µd

=

(
1 + γd

)
Xd
H

Fd
Qd
HH

Fd(·)

(
1− κ̄2

1+γu

)
+ µSB

µd

PuHF /τ
u

Pd
HF

/τd
πuHH
Qu
HH

[(
1 + γd

)
(1− α)

(
1− κ̄2

1+γu

)
−

θ−1
θ πuHH+ 1

θ

πu
HH

]
F d
Ld
H

(·) πu
HH

Qu
HH

[ 1
θ+ θ−1

θ πu
HH

πu
HH

+ κ̄2
1+γu

1−α
α

(
1− γu L

d
H

Lu
H

)] .

(A.30)

Recap of Key Equations The above derivations were lengthy and tedious, so it is useful to recap
the four key equations that characterize the second-best optimal tariffs, which are equations (A.27), (A.28),
(A.29), and (A.30):
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1 + tdH = σ

σ − 1 + 1
σ − 1

µSB
µd

1
τdQdHF

PuHF /τ
u

P dHF /τ
d

1
κ̄1

1 + tdH
1 + tuH

= 1 + γd

κ̄1
+ µSB

µd

πuHH
QuHH

[(
1 + γd

)
(1− α)− θ − 1

θ

]
−µLC
µd

α

1− α
θ − 1
θ

1
κ̄1ÂdHL

d
H

1
κ̄1

1 + tdH
1 + tuH

−
(
1 + tdH

) θ − 1
θ

= µSB
µd

1
θ

(
1

τuQuHF
+ 1
QuHH

)
+ µLC

µd

P dHF /τ
d

PuHF /τ
u

F d
Ld
H

(·)
QuHH

1
θ

µLC
µd

=

(
1 + γd

)
Xd
H

Fd
Qd
HH

Fd(·)

(
1− κ̄2

1+γu

)
F d
Ld
H

(·) πu
HH

Qu
HH

[ 1
θ+ θ−1

θ πu
HH

πu
HH

+ κ̄2
1+γu

1−α
α

(
1− γu L

d
H

Lu
H

)]
+
µSB
µd

PuHF /τ
u

Pd
HF

/τd
πuHH
Qu
HH

[(
1 + γd

)
(1− α)

(
1− κ̄2

1+γu

)
−

θ−1
θ πuHH+ 1

θ

πu
HH

]
F d
Ld
H

(·) πu
HH

Qu
HH

[ 1
θ+ θ−1

θ πu
HH

πu
HH

+ κ̄2
1+γu

1−α
α

(
1− γu L

d
H

Lu
H

)] .

We can now explore various special cases of this system.

A.2.2 Proof Proposition 6 and Proposition 7

We start setting κ̄i = 1 for all i, the allocation corresponds to the second-best import tariff.

Second-Best Import Tariffs with No Labor Employed Downstream (α = 0). Consider
first the case in which α = 0, so labor is only used in the upstream sector. As noted in the main text, the
labor-market constraint and associated multiplier µLC become irrelevant, i.e., µLC = 0, and the above system
reduces to

1 + tdH = = σ

σ − 1 + µSB
µd

1
σ − 1

1
QdHF τ

d

PuHF /τ
u

P dHF /τ
d

1 + tdH
1 + tuH

=
(
1 + γd

)
+ µSB

µd

πuHH
QuHH

[(
1 + γd

)
−
(
θ − 1
θ

)]
.

As long as Assumption 1 holds, i.e., 1 + γd > (θ−1)/θ
(σ−1)/σ , then µSB > 0. We must thus have

1 + tdH >
σ

σ − 1 ,
1 + tdH
1 + tuH

> 1 + γd.

This proves Proposition 6 for the case α = 0.

Second-Best Import Tariffs with No Scale Economies Upstream (γu = 0). We next study
the case in which α > 0 but γu = 0 . In that case, equation (A.30) reduces to

µLC
µd

= −µSB
µd

ÂdH
F dQu

HH
(·)

F d
Ld
H

(·)
α
[(
θ−1
θ

)
πuHH + 1

θ

]
α
[(
θ−1
θ

)
πuHH + 1

θ

]
+ (1− α)πuHH

.
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Then, using this information in equations (A.27) and (A.28), we get the following two relationships:

1 + tdH = σ

σ − 1 + µSB
µd

1
σ − 1

1
τdQdHF

PuHF /τ
u

P dHF /τ
d

(A.31)

1 + tdH
1 + tuH

=
(
1 + γd

)
+ µSB

µd

πuHH
QuHH

(1− α)
[(

1 + γd
)
−

πuHH
(
θ−1
θ

)
α
[(
θ−1
θ

)
πuHH + 1

θ

]
+ (1− α)πuHH

]
. (A.32)

As long as Assumption 1 holds, i.e., 1 + γd > (θ−1)/θ
(σ−1)/σ , µSB > 0. Then, it follows that:

1 + tdH >
σ

σ − 1 ,
1 + tdH
1 + tuH

> 1 + γd.

This proves Proposition 6 for the case γu = 0.

Second-Best Import Tariffs with No Scale Economies in Either Sector. In this case, we
only need to set γd = 0 into equations (A.31) and (A.32) to get:

1 + tdH = σ

σ − 1 + µSB
µd

1
σ − 1

1
τdQdHF

PuHF /τ
u

P dHF /τ
d

1 + tdH
1 + tuH

= 1 + µSB
µd

πuHH
QuHH

(1− α)
[

1
θ

α+ (1− α)πuHH
α
[(
θ−1
θ

)
πuHH + 1

θ

]
+ (1− α)πuHH

]
.

Now notice that when γd = 0, Assumption 1 simplifies to σ−1
σ ≥ θ−1

θ , or σ ≥ θ. Then, as long as
Assumption 1 holds, we have µSB > 0 and tariffs are escalated. On the contrary, when σ < θ, then µSB < 0 ,
and tariffs are de-escalated. This concludes the proof of Proposition 7.

A.2.3 Proof of Proposition 8

To prove Proposition 8 we proceed in multiple steps. We start with two alternative second-best scenarios
where we allow the planner to use either an upstream production subsidy or an upstream export tax on top
of the two import tariffs. Although these two cases are not directly related to the main message in the paper,
they are useful for deriving the restrictions in the parameter space that guarantee escalated tariffs as a the
second-best policy. In this section, we further impose Assumption 2, i.e., 1 < 1 + γu ≤ θ

θ−1 .

Second-best with import tariffs and production subsidy. From our previous discussion at the
beginning of Section A.2, this case corresponds to setting 1

κ̄2
= 1− suH , with suH being the optimal production

subsidy that the planner chooses when import tariffs and a production subsidy upstream are available. In
this case, equation (A.13) trivially holds at the chosen allocation so we can drop it from the problem, i.e.,
µLC = 0. We also impose κ̄1 = 1,which implies zero export taxes. Our system equations (A.27), (A.28),
(A.29), and (A.30), reduces to:
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1 + tdH = σ

σ − 1 + µSB
µd

1
σ − 1

1
τdQdHF

PuHF /τ
u

P dHF /τ
d

1 + tdH
1 + tuH

=
(
1 + γd

)
+ µSB

µd

πuHH
QuHH

[(
1 + γd

)
(1− α)−

(
θ − 1
θ

)]
1 + tdH
1 + tuH

− θ − 1
θ

(
1 + tdH

)
= µSB

µd

1
θ

[
1

τuQuHF
+ 1
QuHH

]
µSB
µd

πuHH
QuHH

(
θ−1
θ

)
πuHH + 1

θ

πuHH
=

(
1 + γd

) [
1− 1

(1− suH) (1 + γu)

](
1 + πuHH

QuHH
(1− α) µSB

µd

)
.

Note then that under Assumption 1, µSB > 0. Therefore, we must have:

1 + tdH >
σ

σ − 1 , and 1− suH >
1

1 + γu
.

Furthermore, if (
1 + γd

)
(1− α) ≥ θ − 1

θ
(A.33)

tariffs are escalated with a level of escalation above its first-best level, i.e., 1+tdH
1+tu

H
≥ 1 + γd.

Second-best with import tariffs and an export tax. This case correspond to setting 1
κ̄1

= 1−νuH ,
with νuH being the optimal upstream export tax that the planner chooses when import tariffs and an upstream
export tax are available. In this case, equation (A.12) trivially holds at the chosen allocation so we can drop
it from the problem, i.e., µSB = 0. We also impose κ̄2 = 1,which implies zero production subsidies. Our
system equations (A.27), (A.28), (A.29), and (A.30), reduces to:

1 + tdH = σ

σ − 1 (A.34)

1 + tdH
1 + tuH

=
(
1 + γd

)
− µLC

µd

α

1− α
θ − 1
θ

1
ÂdH

1
LdH

(A.35)

1 + tdH
1 + tuH

(1− νuH)− θ − 1
θ

(
1 + tdH

)
= µLC

µd

1
θ

P dHF /τ
d

PuHF /τ
u

F d
Ld
H

(·)
QuHH

(A.36)

µLC
µd

=

(
1 + γd

)
Xd
H

FdQu
HH

(·)

Fd(·)

[
1− 1

(1+γu)

]
F d
Ld
H

(·) πu
HH

Qu
HH

{
[ 1
θ+( θ−1

θ )πuHH ]
πu
HH

+ 1
(1+γu)

1−α
α

[
1− γuLd

H

Lu
H

]} .(A.37)
Next, use equation (A.37) to eliminate µLC

µd
. Then, combine equations (A.34), (A.35) and (A.36) with

equation (A.23), and solve for the upstream export tax to get:

1
(1− νuH) =

(
1 + γd

) σ − 1
σ

θ

θ − 1

θ−1
θ −A

(1 + γu) θ−1
θ −A

, (A.38)

where ω̄ ≡
θ−1
θ πuHH

1
θ+ θ−1

θ πu
HH

satisfies ω̄ ∈ (0, 1), and A ≡ (1−α)
α Ld

[
γu

Lu −
1
Ld

]
ω̄ satisfies A ≤ θ−1

θ .1

1The upper bound on A follows from the fact that with γu ≥ 0 we have µLC ≥ 0.
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More importantly, from equations (A.35) and (A.37), we get that the ratio of import tariffs is given by,

1 + tdH
1 + tuH

=
(
1 + γd

)(
(1− ω̄) + ω̄

θ−1
θ −A

(1 + γu) θ−1
θ −A

)
. (A.39)

Note that the efficient level of escalation is multiplied by a convex combination of two numbers less or equal
to one, so the degree of escalation is below its first-best level.

Now we are ready to show that if the following condition holds,

1 + γu ≤
θ

θ − 1 , and
(
1 + γd

)(
1− γuα

θ − 1
θ

)
≥ 1, (A.40)

then tariffs are escalated. We split the proof in two parts. First, we will bound the equilibrium allocation of
labor upstream. Then, we will use this information to bound the ratio of import tariffs.

1. Bounding the allocation of labor. At the first-best allocation we have:(
LuH
LH

)∗
=

(1−α)
α γuω̄∗(

θ−1
θ

)
+ (1−α)

α ω̄∗ (1 + γu)
<

(1− α) γu
α+ (1− α) (1 + γu) ,

where the inequality comes from the fact that ω̄∗ is increasing in πuHH . We also know that the second-best
allocation is inefficient because it allocates a lower amount of labor upstream, and so the equilibrium allocation
of labor upstream satisfies: (

LuH
LH

)
≤
(
LuH
LH

)∗
<

(1− α) γu
α+ (1− α) (1 + γu) . (A.41)

To bound the allocation of labor upstream from below, we start from the labor market clearing condition
for labor, and use (in order): (i) the optimal choice of labor downstream, (ii) feasibility in the downstream
sector; (iii) the household budget constraint, (iv) the definition of the government revenue and trade balance;
(v) feasibility upstream and the relationship between upstream prices; and (vi) the zero-profit condition
upstream to get:

wHLH = wHL
d
H + wHL

u
H

= αP dHHX
d
H + wHL

u
H

= α
[
P dHHQ

d
HH + P dHHQ

d
HF τ

d
]

+ wHL
u
H

= α
[
wHLH +RH −

(
1 + tdH

)
P dFHQ

d
FH + P dHFQ

d
HF τ

d
]

+ wHL
u
H

= α [wHLH + (1 + tuH)PuFHQuFH − (1− νuH)PuHFQuHF ] + wHL
u
H

= α [wHLH + (1 + tuH)PuFHQuFH + PuHHQ
u
HH − PuHHXu

H ] + wHL
u
H

= α [wHLH + (1 + tuH)PuFHQuFH + PuHHQ
u
HH − wHLuH ] + wHL

u
H

= α

[
wHLH + PuHHQ

u
HH

[
πuFH
πuHH

+ 1
]
− wHLuH

]
+ wHL

u
H

= αwHLH +
[
α
PuHHQ

u
HH

PuHHX
u
H

1
πuHH

+ (1− α)
]
wHL

u
H .

Solving for LuH/LH gives us:
LuH
LH

= (1− α)
Pu
HH

Qu
HH

Pu
HH

Xu
H

1
πu
HH

α+ (1− α)
.
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Therefore,
Lu

L
>

(1− α)
1

πu
HH

α+ (1− α)
, ∀πuHH ∈ (0, 1) . (A.42)

2. Bounding from below the ratio of import tariffs. Remember from equation (A.39) that the
ratio of import tariffs is given by:

1 + tdH
1 + tuH

=
(
1 + γd

)(
(1− ω̄) + ω̄

θ−1
θ −A

(1 + γu) θ−1
θ −A

)
=
(
1 + γd

)(
1− θ − 1

θ
ω̄

γu

(1 + γu) θ−1
θ −A

)
.

Define then the following function2

f (x) ≡
(
1 + γd

)1−
x θ−1

θ γu[
(1 + γu)

(
θ−1
θ

)
+ (1−α)

α

]
x+ 1

θ (1 + γu)− γu

 .

which has the following properties: (i) the function f (·) has both a vertical and a horizontal asymptote at

xV A = γu−(1+γu) 1
θ[

(1+γu)( θ−1
θ )+ (1−α)

α

] and yHA =
(
1 + γd

) [
( θ−1

θ )+ (1−α)
α

]
(1+γu)( θ−1

θ )+ (1−α)
α

, respectively; (ii) for 1 + γu ≤ θ
θ−1 , the

function f (·) is decreasing in x for x ∈ [0, 1], and the vertical asymptote satisfies xV A < 0.
Because the ratio of import tariffs is a an increasing function of LuH/LH , we have that for all πuHH ∈ [0, 1]

the following inequality holds:3
1 + tdH
1 + tuH

≥ f (πuHH) ≥ f (1) > 1,

where the last inequality follows from the restriction
(
1 + γd

) (
1− αγu θ−1

θ

)
. Then, if restriction (A.40) holds,

tariffs are escalated in this scenario as well.

Second-best with only import tariff featuring escalation. Finally, we set κ̄1 and κ̄2 to one,
so both export taxes and the upstream production subsidies equal zero. The ratio of import tariffs is given in
this case by equation (A.28):

1 + tdH
1 + tuH

=
(
1 + γd

)
+ µSB

µd

πuHH
QuHH

[(
1 + γd

)
(1− α)−

(
θ − 1
θ

)]
− µLC

µd

α

1− α

(
θ − 1
θ

)
1
ÂdH

1
LdH

.

This expression conveys the necessary intuition to finish proving Proposition 8. The first term is the level
of escalation that the planner would like to impose if the first-best allocation were feasible. However, the
planner cannot use export taxes nor production subsidies so the ratio of tariffs is distorted from its first-best
value.4 The absent export tax upstream adds the first deviation from first-best captured by the second term.
When export taxes are not available, and provided condition (A.33) holds, the planner would like to set more
escalated tariffs. However, how much more escalation the planner is able to impose is constrained by the
absence of an upstream production subsidy. This is captured by the last term in the previous equation.

In general, it is not possible to determine the size of these forces to conclude the resulting degree of
2This function comes from imposing our bound equation (A.41) into our formula for tariff escalation.
3The restriction γu ≤ 1

θ−1 is important, otherwise the function f (·) has a vertical asymptote at x ∈ (0, 1).

Therefore, at that point the inequality 1+tdH
1+tu

H
≥ f (xV A − ε) breaks for ε very small.

4Remember that under Assumption 1, and provided that γu>0, we have that µSB and µLC are non-negative.
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escalation. However, we have shown that if condition (A.40) holds, the second term is not strong enough
to push the ratio of tariff below one. Therefore, when both condition (A.33) and (A.40) hold, the ratio of
import tariffs must be above one. In other words, whenever

(
1 + γd

)
×min

{
1− αγu θ − 1

θ
, (1− α) θ

θ − 1 ,
σ − 1
σ

θ

θ − 1

}
≥ 1,

we have,
1 + tdH
1 + tuH

> 1.

This completes the proof of Proposition 8.
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B Inspecting the Mechanism : Derivations

B.1 Closed-Economy Model

In this Appendix, we provide more details on the closed-economy version of our model.

B.1.1 Social Planner Problem

The social planner maximizes the Household utility, choosing Lu and Ld subject to feasibility, or:

max
Lu,Ld

U = Qd

s.t. L = Lu + Ld

Qu = Âu (Lu)Lu

Qd = Âd
(
F d
(
Ld, Qu

))
F d
(
Ld, Qu

)
.

Clearly, this reduces to

max
Lu,Ld

U = Ād
(
F d
(
Ld, Āu (Lu)1+γu

))1+γd

s.t. L = Lu + Ld,

which gives rise to the unique optimality condition

F dLd
(
Ld, Qu

)
= (1 + γu) Āu (Lu)γ

u

F dQu
(
Ld, Qu

)
. (B.1)

Given the Cobb-Douglas functional form in (2) and the fact that Qu = Āu (L)1+γu , this condition reduces
to

α

Ld
= (1 + γu) 1− α

Lu
,

which imposing labor market clearing implies that the socially optimal share of labor allocated to the upstream
sector is given by (

Lu

L

)∗
= (1 + γu) (1− α)
α+ (1 + γu) (1− α) . (B.2)

B.1.2 Decentralized Equilibrium

We next compare this social optimum with the decentralized equilibrium of the closed economy. Assume
the government sets production subsidies on downstream (sd) and upstream (su) production. Final-good
producers maximize profits taking ÂuH and ÂdH as given, or

max 1
1− sdP

dÂdF d
(
`d, qu

)
− w`d − Puqu,

which delivers the first order conditions:

1
1− sdP

dÂdF d`d
(
`d, qu

)
= w

1
1− sdP

dÂdF dqu
(
`d, qu

)
= Pu.
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Upstream producers only hire labor, and their zero-profit conditions imposes

Pu = (1− su) w

Âu
.

Combining these conditions, we find that

F d`d
(
`d, qu

)
= 1

1− su Â
uF dqu

(
`d, qu

)
.

Imposing symmetric behavior across all agents then implies

F dLd
(
Ld, Qu

)
= 1

1− su Ā
u (Lu)γ

u

F dQu
(
Ld, Qu

)
, (B.3)

which is the decentralized equilibrium analogue of equation (B.1).
Given the Cobb-Douglas functional form in (2) and the fact that Qu = Āu (L)1+γu , this condition implies

that
α

Ld
= 1

1− su
1− α
Lu

,

which imposing labor market clearing implies that the socially optimal share of labor allocated to the upstream
sector is given by

Lu

L
= 1− α
α (1− su) + 1− α. (B.4)

Comparing equations (B.2)-(B.4) to the corresponding ones in the market equilibrium, we conclude that:

Proposition B.1. In the decentralized equilibrium with no production subsidies, there is too little labor
allocated upstream unless α = 1 (so the upstream sector is shut down), α = 0 (so the downstream sector does
not use labor directly in production), or γu = 0 (so the upstream sector features constant returns to scale).

Notice also that the ratio of the socially efficient allocation of labor upstream to its decentralized
equilibrium allocation with su = 0 is given by

(Lu)∗

Lu
= 1 + γu

α+ (1 + γu) (1− α) ,

which is higher, the higher is α. Thus, the decentralized market misallocation of upstream labor is increasing
in the final-good sector’s labor share α.

B.1.3 Optimal Policy

A simple comparison of equations (B.2) and (B.4) also reveals that:

Proposition B.2. The social planner can restore efficiency in the market equilibrium by subsidizing
upstream production at a rate (su)∗ = γu/ (1 + γu). Downstream production subsidies have no impact on
the decentralized equilibrium.

In sum, we have shown that a vertical model with external economies of scale features inefficient entry
upstream, and that this market failure can be addressed with an upstream production subsidy. Conversely,
downstream production subsidies are not helpful in addressing this market failure.

Notice finally that because the social planner seeks to maximize Qd, the optimal upstream subsidy
increases downstream output even though it pulls labor away from the downstream sector. This is due to the
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increasing returns to scale upstream. By increasing the size of the upstream sector, the optimal subsidy also
raises its efficiency, which provides the downstream sector with more inputs such that it also grows.

B.1.4 Extensions

We finally briefly develop two extensions of our closed-economy model, both featuring a more complex input
sector.

Roundabout Production Upstream We first allow the upstream sector to use not only labor in
production, but also the same bundle of inputs Qu used in the final-good sector. More specifically, we now
assume

xu = Āu (`u)β (qu)1−β
(

(Lu)β (Qu)1−β
)γu

xd = Ād
(
`d
)α (qu)1−α

((
Ld
)α (Qu)1−α

)γd
,

where β governs the labor intensity of production upstream. It is clear from the second of these expressions
that firms in the downstream sector will spend a fraction of their costs on the upstream sector, or

Puqu = (1− α)P dxd.

Noting that, due to symmetry, xu = Qu and xd = Qd, and that the decentralized market prices for the
downstream sector is given by

P d = 1
Ād

(w
α

)α( Pu

1− α

)1−α ((
Ld
)α (Qu)1−α

)−γd
.

Invoking P dQd = wL and Qd = Ād
((
Ld
)α (Qu)1−α

)1+γd
we thus obtain

1
Ād

(w
α

)α(PuQu
1− α

)1−α
Ād
(
Ld
)α = wL

or (w
α

)α
(wL)1−α (

Ld
)α = wL,

from which it is immediate that
Lu = (1− α)L, and Ld = αL,

just as in our baseline model
We next consider the planner problem,

max
Lu,Ld

Qd = Ād
((
Ld
)α (Qu)1−α

)1+γd

s.t. Qu = Āu
(

(Lu)β (Qu)1−β
)1+γu

Lu + Ld = L.
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Noting that the second constraint can be written as

Qu = Ãu (Lu)1+γ̃u
,

where

Ãu =
(
Āu
) 1

1−(1−β)(1+γu)

γ̃u = γu

1− (1− β) (1 + γu) ,

it then becomes clear that this program is identical to the one in our baseline model, except for the fact that
the scale elasticity upstream is now not given by γu, but by γ̃u > γu (the program also features a rescaled
upstream productivity, but that is immaterial). Note that the gap between γ̃u and γu is decreasing in β.

Analogously to equation (B.2), the socially optimal allocation of labor is given by

(Lu)∗ = 1 + γ̃u

γ̃u (1− α) + 1 (1− α)L, and
(
Ld
)∗ = 1

γ̃u (1− α) + 1αL.

Clearly, the market equilibrium features too little labor allocated to the upstream sector whenever γu > 0
and 0 < α < 1, just as in our baseline model, but the inefficiency is now decreasing in β. Finally, one can
also verify that an upstream subsidy equal to (su)∗ = γ̃u/ (1 + γ̃u) is sufficient to restore efficiency. Because
γ̃u > γu, this subsidy is now higher than in our baseline model, and it is decreasing in β.

Multi-Stage Production We next develop a multi-stage extension of the model. We begin with a
simple three-stage production process with a downstream sector, a midstream sector, and an upstream sector.
The technologies are given by

xu = Āu (`u) (Lu)γ
u

xm = Ām (`m)β (qu)1−β
(

(Lm)β (Qu)1−β
)γm

xd = Ād
(
`d
)α (qm)1−α

((
Ld
)α (Qm)1−α

)γd
,

Using the fact that, in a decentralized equilibrium, we have

P dQd = wL;

Qd = Ād
((
Ld
)α (Qm)1−α

)1+γd
;

P d = 1
Ād

(w
α

)α( Pm

1− α

)1−α ((
Ld
)α (Qm)1−α

)−γd
;

PmQm = (1− α)P dQd,

we immediately obtain
Ld = αL.
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Next, because

PmQm = (1− α)wL;

Qm = Ām
(

(Lm)α (Qu)1−α
)1+γm

;

Pm = 1
Ām

(
w

β

)β (
Pu

1− β

)1−β (
(Lm)β (Qu)1−β

)−γm
;

PuQu = (1− β)PmQm,

we obtain
Lm = β (1− α)L, and Lu = (1− β) (1− α)L.

Now consider the planner problem

max
Lu,Lm,Ld

Qd = Ād
((
Ld
)α (Qm)1−α

)1+γd

s.t. Qm = Ām
(

(Lm)β (Qu)1−β
)1+γu

Qu = Āu (Lu)1+γu

Lu + Lm + Ld = L.

which delivers

(Lu)∗ = (1 + γu) (1 + γm)
α+ (1− α) (1 + γm) (β + (1− β) (1 + γu)) (1− β) (1− α)L

(Lm)∗ = 1 + γm

α+ (1− α) (1 + γm) (β + (1− β) (1 + γu))β (1− α)L(
Ld
)∗ = 1

α+ (1− α) (1 + γm) (β + (1− β) (1 + γu))αL.

Notice that the gap between the socially optimal and the market allocation of labor is higher the more
upstream the stage. Does that mean that subsidies are higher, the more upstream a sector? To answer this
question, consider the following key conditions which identify a market equilibrium with subsidies:

P dQd = wL− smPmQm − suPuQu

Qd = Ād
((
Ld
)α (Qm)1−α

)1+γd
;

P d = 1
Ād

(w
α

)α( (1− sm)Pm
1− α

)1−α ((
Ld
)α (Qm)1−α

)−γd
;

(1− sm)PmQm = (1− α)P dQd

Qm = Ām
(

(Lm)α (Qu)1−α
)1+γm

Pm = 1
Ām

(
w

β

)β ( (1− su)Pu
1− β

)1−β (
(Lm)β (Qu)1−β

)−γm
(1− su)PuQu = (1− β)PmQm

Note that
P dQd = wL− sm

1− sm (1− α)P dQd − su

1− su
(1− β)
1− sm (1− α)P dQd
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or
P dQd = wL

1 + sm

1−sm (1− α) + su

1−su
(1−β)
1−sm (1− α)

.

Next

P dQd =
(
wLd

α

)α( (1− sm)PmQm
1− α

)1−α

=
(
wLd

α

)α (
P dQd

)1−α
,

so
Ld

L
= α

1 + sm

1−sm (1− α) + su

1−su
(1−β)
1−sm (1− α)

.

Next,

PmQm =
(
wLm

β

)β ( (1− su)PuQu
1− β

)1−β

=
(
wLm

β

)β
(PmQm)1−β

,

so
PmQm = (1− α)

(1− sm)P
dQd = wLm

β

or
Lm

L
=

β (1−α)
(1−sm)

1 + sm

1−sm (1− α) + su

1−su
(1−β)
1−sm (1− α)

.

We thus have that the subsidies sm and su need to satisfy

α

1 + sm

1−sm (1− α) + su

1−su
(1−β)
1−sm (1− α)

= 1
α+ (1− α) (1 + γm) (β + (1− β) (1 + γu))α

and

β (1−α)
(1−sm)

1 + sm

1−sm (1− α) + su

1−su
(1−β)
1−sm (1− α)

= 1 + γm

α+ (1− α) (1 + γm) (β + (1− β) (1 + γu))β (1− α) ,

which delivers
sm = γm

1 + γm
; su = γu

1 + γu
.

As is clear from this expression, subsidies in all sectors producing inputs are positive, but notice that subsidies
are higher upstream relative to midstream only if γu > γm, i.e., only if the scale elasticity is higher upstream
than midstream. This contrasts with the results of Liu (2019), who finds that optimal subsidies should
necessarily be higher, the more upstream the sector. The reason is that, unlike in Liu’s work, we solve for
first-best subsidy policy: when the government can only set subsidies in one sector, the size of the subsidy
would be higher, the more upstream the sector, because as we have seen above, the gap between the social
optimal and market allocation of labor is highest in the upstream sector.
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B.2 Equilibrium of Isomorphic Economy with Internal Scale Economies

In this Appendix, we outline the equilibrium conditions corresponding to the two-country model featuring
internal scale economies, product differentiation and monopolistic competition outlined in Section 4.2. We
will then work with these equations in Appendix to demonstrate the isomorphism with the model with
external economies of scale developed in the main text.

B.2.1 Environment

Consider a world economy with two countries (Home and Foreign), indexed by i or j (and sometimes by H
and F ), each populated by Li consumers/workers. The representative consumer in each country i values the
consumption of differentiated varieties of manufacturing goods according to the utility function

Ui =

 ∑
j∈{H,F}

(∫ Md
j

0
qdji(ω)

σ−1
σ dω

) σ
σ−1

, σ > 1, i ∈ {H,F}, (B.5)

where Md
j is the endogenous measure of firms in country j, qdji(ω) is the quantity consumed of variety ω from

country j in country i, and σ is the elasticity of substitution across varieties. Individuals supply one unit of
labor inelastically, with Li denoting the total labor force. There are no other factors of production, so labor
should be interpreted as representing “equipped” labor.

Labor is used for the production of intermediate inputs (the upstream sector) and (possibly) in producing
final goods (the downstream sector). More specifically, we represent technologies in the upstream and
downstream sectors with

fui + xui ($) = Aui `
u
i ($), $ ∈ [0,Mu

i ], i ∈ {H,F}, (B.6)

and
fdi + xdi (ω) = Adi (`di (ω))αQui (ω)1−α, ω ∈ [0,Md

i ], α ∈ [0, 1], i ∈ {H,F}. (B.7)

respectively. In these expressions, fsi denotes the fixed output requirements for entry in sector s ∈ {D,U} in
country i, xsi (ω) is the output produced for sale by variety ω in sector s ∈ {D,U} in country i, Asi is a sector-
and country-specific technology parameter, and Qui (ω) is a composite of all intermediate goods available in
country i, which is in turn given by

Qui (ω) =

 ∑
j∈{H,F}

(∫ Mu
j

0
quji($)

θ−1
θ d$

) θ
θ−1

, θ > 1, i ∈ {H,F}, (B.8)

where quji($) is the quantity consumed of input variety $ from country j in country i. In words, the upstream
sector uses only labor, and technology features increasing returns to scale due to the presence of a fixed
overhead cost. The downstream sector combines labor with a continuum of intermediate inputs (domestic
and foreign), and technology again exhibits increasing returns stemming from a fixed overhead cost. Notice
that θ > 1 governs the degree of substitutability across inputs, while α ∈ [0, 1] corresponds to the downstream
labor (or value-added) intensity in production.5

5Note that we specify the fixed costs of production in terms of output rather than labor. This assumption is
immaterial for our main results, and it avoids introducing additional sources of inefficiency into our framework (see
also Costinot and Rodríguez-Clare, 2014, footnote 20).
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There is an endogenous measure, Md
i , of manufacturing firms in the downstream sector in country i, each

producing a single final-good variety. Analogously, there is an endogenous measure, Mu
i , of manufacturing

firms in the upstream sector in country i, each producing a single intermediate-input variety. All entrants have
access to the same technologies in (B.6), (B.7) and (B.8). Market structure in both sectors is characterized
by monopolistic competition and free entry.

Trade is costly due to the presence of both iceberg trade costs and import tariffs. We denote the symmetric
iceberg trade costs that apply to final goods and inputs by τd > 1 and τu > 1, respectively, and we denote
the tariffs set by country i on imports of final goods and intermediate inputs by tdi and tui , respectively. We
also consider additional instruments, namely domestic production subsidies (sdi and sui ) and export taxes (vdi
and vui ) in both sectors.6

Given symmetry across firms, the tariff revenue collected by the government is rebated to households via
lump-sum transfers in an amount

Ri = tdi
1 + tdi

Md
j p

d
jiq

d
ji + tui

1 + tui
Md
i M

u
j p

u
jiq

u
ji + vdi

1− vdi
Md
i p̃

d
ijq

d
ij + vui

1− vui
Md
jM

u
i p̃

u
ijq

u
ij , (B.9)

where pdji and puji are the prices paid by consumers in i for final goods and by firms in i for inputs, and where
p̃dij and p̃uij are the prices collected by producers in i when selling final goods and inputs in country j. When
the government also levies production subsidies, this government balance condition needs to be modified in a
straightforward manner.

B.2.2 Firm Behavior

Import tariffs on the downstream sector create a wedge between consumer prices in country i and producer
prices in country j. More specifically, given CES preferences, consumer prices in i for goods originating in j
are given by:

pdji =
(
1 + tdi

) σ

σ − 1τ
d 1
Adj

(wj
α

)α( Puj
1− α

)1−α

= 1 + tdi
1− vdj

p̃dji. (B.10)

Similarly, import tariffs on the upstream sector create a wedge between the price paid by final-good producers
in i for inputs from j, and the producer price for those inputs obtained by suppliers in country j. In particular,
we have

puji = (1 + tui ) θ

θ − 1τ
u wj
Auj

= 1 + tui
1− vuj

p̃uji. (B.11)

In equation (B.10), the price index Pui is given by

Pui =

 ∑
j∈{H,F}

(
Puji
)1−θ 1

1−θ

, (B.12)

with

Puji =
[∫ Mu

j

0

(
puji ($)

)1−θ
d$

] 1
1−θ

. (B.13)

When setting j = i, the above pricing equations also characterize domestic prices in country j after setting
tdi = tui = vdi = vui = 0 and τd = τu = 1. Note that pdii = p̃dii and puii = p̃uii.

6Implicit in the equations derived above is the fact that because trade costs are all ad-valorem and preferences are
CES, all firms in all sectors find it profitable to sell in both markets.
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Next, utility maximization implies that when consuming country j varieties, consumers in i allocate to
each variety ω a share of spending equal to

pdji (ω) qdji (ω)
P djiQ

d
ji

=
(
pdji (ω)
P dji

)1−σ

, (B.14)

of their total spending on country j varieties, where

P dji =
[∫ Md

j

0

(
pdji (ω)

)1−σ
dω

] 1
1−σ

. (B.15)

Consumers’ (aggregate) spending on Home and Foreign varieties is in turn determined by

P djiQ
d
ji =

(
P dji
P di

)1−σ

(wiLi +Ri) , (B.16)

where P di is the aggregate consumer price index in i

P di =

 ∑
j∈{H,F}

(
P dji
)1−σ 1

1−σ

, (B.17)

and Ri is tariff revenue, which we have defined in equation (B.9).
We now turn to profit maximization by downstream producers in country i. First note that free entry

implies that firm revenue (net of tariffs) will equal total costs, and that a share of those costs will go to pay
labor. As a result, labor compensation by each final-good producer in i is given by

wi`
d
i = α

(
p̃diiq

d
ii + 1− vdi

1 + tdj
p̃dijq

d
ij

)
. (B.18)

Next, when purchasing inputs from upstream producers in country j, final-good producers in country i, will
demand an amount of each variety $ from country j equal to

quji($) = Quji (ω)
(
puji
Puji

)−θ
,

while aggregate spending on all country j’s input varieties is given by

PujiQ
u
ji = (1− α)

(
p̃diiq

d
ii + 1− vdi

1 + tdj
p̃dijq

d
ij

)(
Puji
Pui

)1−θ

Md
i . (B.19)

Aggregate spending on Home and Foreign intermediate inputs in country i is then given by

Pui Q
u
i = (1− α)

(
p̃diiq

d
ii + 1− vdi

1 + tdj
p̃dijq

d
ij

)
Md
i . (B.20)

Our final set of equilibrium conditions impose market clearing. First, labor-market clearing in both
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countries implies that
Li = Md

i `
d
i +Mu

i `
u
i , (B.21)

where `di is given in (B.18), and `ui = (fui + xui ) /Aui .7 Second, goods-market clearing imposes

qdii + τdqdij = xdi (B.22)

and
Md
i q
u
ii +Md

j τ
uquij = xui . (B.23)

Note that free entry upstream and downstream implies that firm revenue is equal to total costs, which
delivers

xdi = (σ − 1) fdi ; xui = (θ − 1) fui (B.24)

for i = {H,F}. Firm-level production levels are thus independent of tariff choices, and the only way in which
tariffs can affect the allocation of labor across sectors is by changing the measure of firms in each of the two
sectors. As a result, optimal trade policies will seek to achieve a social-welfare maximizing allocation of labor
across sectors, with no concern for the allocation of labor within sectors (across fixed costs of entry versus
marginal costs of production).

B.2.3 Isomorphism of Preferences, Technology and Resource Constraints

We next show that equilibrium conditions of the decentralized equilibrium of this two-country model featuring
internal scale economies, product differentiation and monopolistic competition can be reduced to a set of
equations identical to equations (5) through (16) applying to the competitive model with external economies
of scale developed in the main text.

Preferences We begin by noting that given symmetry in final-good production, we can express preferences
as

Ui =

 ∑
j∈{H,F}

(∫ Md
j

0
qdji(ω)

σ−1
σ dω

) σ
σ−1

=
[
Md
i (qdii)

σ−1
σ +Md

j (qdji)
σ−1
σ

] σ
σ−1

=
((
Qdii
)σ−1

σ +
(
Qdji
)σ−1

σ

) σ
σ−1

where
Qdii ≡

(
Md
i

) σ
σ−1 qdii; Qdji ≡

(
Md
j

) σ
σ−1 qdji. (B.25)

Starting from (B.5), we have thus derived (1), which are preferences in the isomorphic economy with two
final goods (a Home one and a Foreign one) and external economies of scale.

7Naturally, equilibrium also requires trade balance, but this is ensured by the other equilibrium conditions outlined
in this section.
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Labor-Market Clearing Next, remember that `di and `ui are the firm-level amounts of labor used
downstream and upstream to cover fixed and variable costs. Hence, defining

Ldi ≡Md
i `
d
i ; Lui ≡Mu

i `
u
i , (B.26)

we have that equation (B.21) in the monopolistic competition model implies equation (5) in the external
economies model, or

Li = Md
i `
d
i +Mu

i `
u
i = Lui + Ldi .

Upstream Market Clearing and Upstream Endogenous Productivity Next let us define

Quii ≡Md
i (Mu

i )
θ
θ−1 quii; Quij ≡Md

j (Mu
i )

θ
θ−1 quij . (B.27)

Given these definitions in (B.27), and given the definition of the input aggregate Qui (ω) in the monopolistic
competition model, that is

Qui (ω) =

 ∑
j∈{H,F}

(∫ Mu
j

0
quji($)

θ−1
θ d$

) θ
θ−1

, θ > 1, i ∈ {H,F},

we have that the total usage of inputs by firms in country i is given by

Qui = Md
i Q

u
i (ω) =

[
Mu
i (quii)

θ−1
θ +Mu

j

(
quji
) θ−1

θ

] θ
θ−1

=
[(
Md
i (Mu

i )
θ
θ−1 quii

) θ−1
θ +

(
Md
i

(
Mu
j

) θ
θ−1
(
quji
)) θ−1

θ

] θ
θ−1

=
[
(Quii)

θ−1
θ +

(
Quji
) θ−1

θ

] θ
θ−1

, (B.28)

and thus is analogous to a CES aggregator of only two inputs: a Home and a Foreign one, as defined in
equation (B.27). These inputs are either produced domestically or are imported.

Now consider the domestic production of those inputs. Let us start from the definition of upstream
technology in the monopolistic competition model, that is

fui + xui ($) = Aui `
u
i ($), $ ∈ [0,Mu

i ], i ∈ {H,F}.

Imposing symmetry and firm-level output in equation (B.24) – i.e., xui = (θ − 1) fui –, and invoking the
definition of Lui in (B.26), we have

Xu
i ≡ (Mu

i )
θ
θ−1 xui =

(
Aui
θfui

) θ
θ−1

(θ − 1) fui (Lui )
θ
θ−1 (B.29)

or
Xu
i = Âui F

u
i (`ui ) = Āui (Lui )1+γu ,

where

Āui ≡
(
Aui
θfui

) θ
θ−1

(θ − 1) fui ,
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and
γu ≡ 1/ (θ − 1) .

Because this domestic production Xu
i is sold domestically or exported, we have

Āui (Lui )1+γu = Quii + τuQuij ,

which corresponds exactly to equation (6) in the external economies model.

Downstream Market Clearing and Downstream Endogenous Productivity We can pro-
ceed analogously for final-good production. We begin with the definition of technology in the downstream
sector in the monopolistic competition model:

fdi + xdi (ω) = Adi (`di (ω))αQui (ω)1−α, ω ∈ [0,Md
i ], α ∈ [0, 1], i ∈ {H,F}.

Imposing symmetry and (B.24), we obtain

Md
i = Adi

σfdi
(Md

i `
d
i (ω))α

(
Md
i Q

u
i

)1−α
or

Xd
i ≡

(
Md
i

) σ
σ−1 xdi = Ādi

(Ldi )α
((
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ
θ−1
)1−α σ

σ−1

. (B.30)

where

Ādi ≡
(
Adi
σfdi

) σ
σ−1

(σ − 1) fdi .

This aggregate output Xd
i is sold domestically or exported, and thus

Ādi

(Ldi )α((Quii)
θ−1
θ +

(
Quji
) θ−1

θ

) θ(1−α)
θ−1

γd

= Qdii + τdQdij ,

where
γd ≡ 1/ (σ − 1) .

In sum, starting from the monopolistic competition model, we have derived equation (6) in the external
economies model.

Trade Balance Consider next the trade balance condition. Starting from the monopolistic competition
economy, we have

pdji
1 + tdi

Md
j q
d
ji +

puji
1 + tui

Md
i M

u
j q

u
ji =

p̃dij
1− vdi

Md
i q
d
ij +

p̃uij
1− vui

Md
jM

u
i q

u
ij , (B.31)

which equates the import revenue in i paid to exporters in j with export revenue collected from j by producers
in i.
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Now from equations (B.14) and (B.15), notice that we have

pdji (ω) qdji (ω)
P djiQ

d
ji

=
(
pdji (ω)
P dji

)1−σ

,

and

P dji =
[∫ Md

j

0

(
pdji (ω)

)1−σ
dω

] 1
1−σ

,

so given symmetry, we have
P dji =

(
Md
j

) 1
1−σ pdji (B.32)

and
P djiQ

d
ji =

(
Md
j

) −1
σ−1 pdji ×

(
Md
i

) σ
σ−1 qdji = Md

j p
d
jiq

d
ji.

Similarly, for inputs
PujiQ

u
ji =

(
Mu
j

) 1
1−θ puji ×Md

i (Mu
i )

θ
θ−1 quji = pujiM

d
i M

u
j q

u
ji.

This implies that we can write total imports in the trade balance condition (B.31) as

P dji
1 + tdi

Qdji +
Puji

1 + tui
Quji = P̄ djiQ

d
ji + P̄ujiQ

u
ji,

which corresponds to the left-hand-side of the trade balance condition (8) for the economy with external
economies of scale after noting that P̄ dji and P̄uji are the prices collected by country j (or Foreign) exporters
(not those paid by domestic or country i consumers).

Now consider revenue from exporting final goods. Notice that, regardless of whether the Foreign
government imposes import tariffs or not, we have that export revenue is

p̃dij
1− vdi

Md
i q
d
ij +

p̃uij
1− vui

Md
jM

u
i q

u
ij

Prices paid by country j are p̃dij/
(
1− vdi

)
and p̃uij/ (1− vui ), so following analogous steps, the right-hand-

side of (8) becomes
P̃ dij

1− vdi
Qdij +

P̃uij
1− vui

Quij = P̄ dijQ
d
ij + P̄uijQ

u
ij ,

where P̄ dij and P̄uij are the prices paid by country j (or Foreign) importers (not those collected by country i
exporters).

Note: In the main text, we denote P̄ dji, P̄uji, P̄ dij , and P̄uij as simply P dji, Puji, P dij , and Puij . We do so not to
clutter the notation, but these are distinct from the price indices applying to the monopolistic competition
model, which are always built based on prices paid by consumers, regardless of their country.
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B.2.4 Isomorphism of Social Planner Problem

We have shown that we can reduce the planner problem of the Krugman model with internal economies of
scale to

max U
(
QdHH , Q

d
FH

)
=
((
QdHH

)σ−1
σ +

(
QdFH

)σ−1
σ

) σ
σ−1

s.t. LuH + LdH = LH

ÂuH (LuH)LuH = QuHH + τuQuHF
ÂdH

(
F d
(
LdH , Q

u
HH , Q

u
FH

))
F d
(
LdH , Q

u
HH , Q

u
FH

)
= QdHH + τdQdHF

P dFHQ
d
FH + PuFHQ

u
FH = QdHF (QdHF )− 1

σP dFF
(
QdFF

) 1
σ +QuHF (QuHF )−

1
θ PuFF (QuFF )

1
θ ,

where

Qdii ≡
(
Md
i

) σ
σ−1 qdii; Qdji ≡

(
Md
j

) σ
σ−1 qdji;

Ldi ≡ Md
i `
d
i ; Lui ≡Mu

i `
u
i ;

Quii ≡ Md
i (Mu

i )
θ
θ−1 quii; Quij ≡Md

j (Mu
i )

θ
θ−1 quij ;

ÂuH (LuH) =
(
Aui
θfui

) θ
θ−1

(θ − 1) fui (LuH)
1
θ−1 ;

ÂdH
(
F d
(
LdH , Q

u
HH , Q

u
FH

))
=

(
Adi
σfdi

) σ
σ−1

(σ − 1) fdi

(Ldi )α
((
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ
θ−1
)1−α 1

σ−1

.

It is then clear that this planner problem is identical to the one developed in Section 3.1 of the main text,
so it naturally leads to the same exact optimality conditions (9)–(12) There are only two subtle aspects of
the isomorphism. First, the productivity terms Ādi and Āui in equations (3) and (4) are a function of the
primitive parameters of the ‘Krugman’ model (including final-good and input elasticities of substitution and
the levels of fixed costs). Second, the scale elasticities γd and γu are no longer free parameters and are in fact
given by γd = 1/ (σ − 1) and γu = 1/ (θ − 1), respectively.

B.2.5 Isomorphism of Decentralized Market Equilibrium

We have shown above that the four ‘resource’ constraints (5) through (8) of our baseline external economies
economy can be derived from an isomorphic model with monopolistic competition and internal economies of
scale. We next turn to an analogous derivation for the optimality conditions (13) through (16).

Optimality in Final-Good Consumption Let us begin with the first one, equating the marginal
rate of substitution in final-good consumption to relative prices. Given equation (B.16) in the model with
monopolistic competition, we have

Qdii
Qdji

=
(
P dii
P dji

)−σ
,
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where Qdji, Qdji, P dji and P dji are defined in (B.27) and (B.32). Thus, we have

(
Qdii
Qdji

)− 1
σ

= P dii
P dji

=
(
1− vdi

)
P̄ dij(

1 + tdi
)
P̄ dji

,

where P dii =
(
1− vdi

)
P̄ dij because of the indifference between selling domestically or exporting to country j

(remember that, in the external economies of scale model, P̄ dij is the price paid by consumers in j for final
goods from j). We have thus derived an equation that corresponds to (13) in the external economies of scale
model.

Optimality in Input Consumption We next equate the marginal rate of substitution in input
consumption to relative prices. In particular, from equation (B.19) in the model with monopolistic competition,
we have

Quii
Quji

=
(
Puii
Puji

)−θ
,

where Quji, Quji, Puji and Puji are defined in (B.27) and (B.32). Thus, we have

(
Quii
Quji

)− 1
θ

= Puii
Puji

=
(1− vui ) P̄uij
(1 + tui ) P̄uji

,

where Puii =
(
1− vdi

)
P̄uij because of the indifference between selling domestically or exporting to country j

(remember that, in the external economies of scale model, P̄uij is the price paid by consumers in j for final
goods from j). We have thus an equation that corresponds to (14) in the external economies of scale model.

Optimal Domestic Input Allocation We next move to the third optimality condition (15), which
equates the benefits of exporting domestic intermediate inputs with the benefits of using those additional
domestic inputs to produce an additional amount of the final good that is in turn exported.

We begin with equation (B.20), and note that aggregate input use in country i in the monopolistic
competition model is given by

Pui Q
u
i = (1− α)

(
p̃diiq

d
ii + 1− vdi

1 + tdj
p̃dijq

d
ij

)
Md
i . (B.33)

To reiterate this, note from (B.11) that 1−vdi
1+td

j

p̃dij = τdpdii, and plugging in equation (B.22), we obtain

Pui Q
u
i = (1− α) pdii

(
qdii + τdqdij

)
Md
i = (1− α) pdiixdiMd

i . (B.34)

Next, invoke equation (B.19) applied to PuiiQuii to obtain (after plugging in (B.33)):

Pui Q
u
i = PuiiQ

u
ii

(
Puii
Pui

)θ−1
. (B.35)

Combining (B.34) and (B.35), we obtain:

(1− α) pdiixdiMd
i = PuiiQ

u
ii

(
Puii
Pui

)θ−1
,
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which we decompose as

(1− α)×
(
Md
i

) −1
σ−1 pdii ×

(
Md
i

) σ
σ−1 xdi = PuiiQ

u
ii

(
Puii
Pui

)θ−1
, (B.36)

Now remember from equation (B.30) derived above that

(
Md
i

) σ
σ−1 xdi = Ādi

(Ldi )α
((
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ
θ−1
)1−α σ

σ−1

,

and also from (B.32) that
(
Md
i

) −1
σ−1 pdii = P dii, so we can write (B.36) as

P dii (1− α) Âdi
(
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ(1−α)
θ−1 1

Quii
= Puii

(
Puii
Pui

)θ−1
.

Now invoke (B.19)
Quii
Qui

=
(
Puii
Pui

)−θ
,

to obtain

P dii (1− α) Âdi
(
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ(1−α)
θ−1 1

Quii
= Puii

(
Quii
Qui

)− θ−1
θ

,

which given the definition of Qui in (B.10) delivers

P dii (1− α) Âdi
(
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ(1−α)
θ−1 1

Quii

(Quii)
θ−1
θ

(Quii)
θ−1
θ +

(
Quji
) θ−1

θ

= Puii .

The final step is to note, as we did above, that indifference between selling domestically and exporting,
delivers P dii =

(
1− vdi

)
P̄ dij and Puii = (1− vui ) P̄uij , where remember that P̄ dij and P̄uij are the prices paid by

country j residents. In sum, we have derived

(1− α) Âdi
(
Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ(1−α)
θ−1 1

Quii

(Quii)
θ−1
θ

(Quii)
θ−1
θ +

(
Quji
) θ−1

θ

= (1− vui )(
1− vdi

) P̄uij
P̄ dij

,

which corresponds to equation (15) in the external economies of scale model

Optimal Labor Market Allocation We finally tackle the fourth optimality condition, associated
with the optimal allocation of labor across sectors. We begin with the firm-level monopolistic competition
model, equating the wage paid in both sectors. Because of free entry, total revenue upstream must equal total
wage payments, while in the downstream sector, wage payments are a share α of total revenue, as indicated
in equation (B.18), or

α
(
p̃diiq

d
ii + 1−vdi

1+td
j

p̃dijq
d
ij

)
`di

=
p̃uiiM

d
i q
u
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1+tu
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p̃uijM

d
j q
u
ij

`ui
.
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Now noting that from (B.11), we have 1−vdi
1+td

j

p̃dij = τdpdii (and analogously 1−vui
1+tu

j
p̃uij = τupuii), and using equations

(B.22) and (B.23), we have
αpdiix

d
i

`di
= puiix

u
i

`ui
. (B.37)

Next, invoke the price index definitions – see equation (B.32) – as well as the definitions Ldi = Md
i `
d
i and

Lui = Mu
i `
u
i , to write (B.37) as

αP dii
xdi
(
Md
i

) σ
σ−1

Ldi
= Puii

(Mu
i )

θ
θ−1 xui
Lui

.

Next, plugging (B.29) and (B.30), delivers

αP dii
Ldi

Âdi
(
Ldi
)α((

Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ
θ−1
)1−α

= PuiiÂ
u
i ,

where remember that Âdi and Âui are defined in equations (3) and (4) in the main text.
The next step is to note, as we did above, that indifference between selling domestically and exporting

delivers P dii =
(
1− vdi

)
P̄ dij and Puii = (1− vui ) P̄uij , where remember that P̄ dij and P̄uij are the prices paid by

country j residents, so we have

α

Ldi
Âdi
(
Ldi
)α((

Ldi
)α((Quii)

θ−1
θ +

(
Quji
) θ−1

θ

) θ
θ−1
)1−α

= Âui
(1− vui )(
1− vdi

) P̄uij
P̄ dij

.

The final step is to plug optimality condition (B.2.5) and cancel terms to obtain

α

Ldi
= (1− α) Âui

1
Quii

(Quii)
θ−1
θ

(Quii)
θ−1
θ +

(
Quji
) θ−1

θ

,

which corresponds to the last optimality condition (16) in the model with external economies of scale.
This completes the proof of the isomorphism claimed in Section 4.2 of the main text

B.3 General Functional Forms

As demonstrated in the derivations in the above Appendix A.1, we have made no use of the properties of the
functions U

(
QdHH , Q

d
FH

)
and F d (QuHH , QuFH). In particular, we could assume that

U
(
QdHH , Q

d
FH

)
=
((
QdHH

)σH−1
σH +

(
QdFH

)σH−1
σH

) σH
σH−1

and that

F d (QuHH , QuFH) =
(

(QuHH)
θH−1
θH + (QuFH)

θH−1
θH

) θH
θH−1

,

with potentially σH 6= σ and θH 6= θ. It is clear from the derivations in Section B.3 that the first-best trade
policies will continue to be shaped by σ and θ, and not by σH or θH .

The only significant difference in this case is that if we want to invoke our isomorphism to claim that
these policies also implement the first-best in the Krugman vertical economy with internal economies of scale,
then we necessarily need to impose γd = 1/ (σH − 1), and thus the level of the tariff escalation is closely
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related to the degree of differentiation in the Home final-good sector. This is not particularly surprising, since
love-for-variety effects will be more powerful, the lower the degree of substitutability across final goods.
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C Quantitative Analysis

C.1 Numerical Simulations of Second-Best Tariff Escalation

In this Appendix, we describe how we solve numerically for second-best trade policies in the small open
economy (SOE), and report the results of solving this problem for various parameter values. We perform an
extensive grid search over various values of the key parameters: (i) the two scale elasticities (γd and γu); (ii)
the two demand elasticities (σ and θ); and (iii) the downstream labor share (α). Table C.1 provides the list
of values we consider for each parameter.

Table C.1: List of Parameters in Grid Search Exercise

Parameter List of values
Downstream Scale Elasticity, γd {0.04, 0.09, 0.13, 0.17, 0.21, 0.26}
Upstream Scale Elasticity, γu {0.04, 0.09, 0.13, 0.17, 0.21, 0.26}
Downstream Demand Elasticity, σ {2.5, 3.5, 4.5, 5, 5.5, 6.5, 7.5}
Upstream Demand Elasticity, θ {2.5, 3.5, 4.5, 5, 5.5, 6.5, 7.5}
Downstream Labor share, α {0, 0.1, 0.2, . . . , 0.9}

Notes: Each row presents the list of values considered for each parameter in the
grid search exercise. Iceberg costs and the two productivities Iceberg costs, and
the two productivity levels are fixed at their calibrated values. Table 1 in Section
6.1.

C.1.1 Solving for optimal import tariff

Solving for optimal tariffs in this second-best setting requires providing values for import prices and export
demand shifters, both of which are exogenously given in the SOE, and for productivities in both sectors. To
recover the value of these parameters, we use that the large open economy (LOE) approximates the SOE
when Home’s population is low relative to the rest of the world. In this case, import prices and export
demand shifters in the SOE can be constructed from the equilibrium values of the LOE as follows,

P dsoe,FH =
(
Md
F

) 1
1−σ pdFH

Pusoe,FH = (Mu
F )

1
1−θ puFH

P dsoe,HF = P dHFC
1
σ

HF

Pusoe,HF = PuHFQ
1
θ

HF .

Similarly, productivity levels in the two sectors can be constructed using:

Ausoe =
(
AuH
fθH

) θ
θ−1

(θ − 1) fuH , Adsoe =
(
AdH
fdHσ

) σ
σ−1

(σ − 1) fdH .

Given these values, it is straightforward to compute numerically the second-best import tariff. In practice,
however, we solve for the optimal import tariff in the LOE with LH/LF = 0.01 for each combination of the
parameters in Table C.1, keeping iceberg costs and productivity levels at those estimated in Section 6.1. We
find this method to be more numerically stable than the corresponding one in the SOE. Table C.2 shows
that using this method to compute the optimal taxes in SOE works well, at least for the calibrated values of
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Section 6.1.

Table C.2: Optimal taxes in the large and small open-economy

1 + td 1 + tu 1− vu 1− su

LOE - First-Best 1.25 1.07 0.86 0.85
SOE - First-Best 1.25 1.07 0.86 0.85

LOE - Second-Best 1.30 1.20
SOE - Second-Best 1.31 1.20
Notes: Table compares the first- and second-best policy in
the LOE and SOE. We compute the optimal tariffs using
the estimated parameters in section 6.1, but we imposed
LH/LF = 0.01.

C.1.2 Grid over γd, γu and α

We solve for optimal trade policy for values of γd and γu ranging from 0.04 to 0.26, and for values of α ranging
from 0 to 0.9, as described in Table C.1. We fix the values Ad, Au, τd and τu to the values we estimate in
Section 6.1. Overall, we explore 6× 6× 10 = 360 configurations of parameters. We can successfully solve the
model for all of them.

Statistics tariff ratio wedge

The next three tables report statistics related to the tariff escalation wedge, the mean, the median, the
standard deviation, the minimum and the maximum. On average, downstream tariffs are 9 percent higher
than upstream tariffs, and the medians show a similar divergence. Some cases feature tariff escalation levels
as high as 1.29, while tariff de-escalation remains modest even in the most extreme cases (minimum of 0.82).
The third and fourth column of Table C.6 recalculates the statistic but looking at the cases for which the
tariff ratio is above and below 1, respectively. It is interesting to note that when our model predicts tariff
de-escalation, it does so with fairly moderate levels (median of 0.96).

Table C.3: Statistics of the tariff escalation wedge: all cases

All cases With escalation With de-escalation

Mean 1.09 1.12 0.95
Median 1.09 1.11 0.96
Standard Deviation 0.09 0.08 0.04
Minimum value 0.82 1.00 0.82
Maximum value 1.29 1.29 1.00

N 360 302 48
Notes: Table reports statistics for the tariff escalation wedge for optimal import
tariffs computed in the grid search exercise.
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C.1.3 Tariff escalation and parameter space

We now present results about the parameter combinations that generate de-escalated tariffs. Table C.4
reports the fraction of cases for which tariffs are de-escalated for a given parameter, for each possible value
that this parameter can take. For example, we have 60 combinations with γd = 0.21, with 2 percent of these
cases featuring de-escalated tariffs.

Table C.4: Tariff De-escalation across the parameter space, I

Values Downstream Scale Elasticity (γd)
0.04 0.09 0.13 0.17 0.21 0.26

Share of cases w. De-escalation: 0.48 0.28 0.13 0.05 0.02 0.00

Values Upstream Scale Elasticity (γu)
0.04 0.09 0.13 0.17 0.21 0.26

Share of cases w. De-escalation: 0.00 0.07 0.12 0.18 0.27 0.33

Values Downstream Labor Share (α)
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Share of cases w. De-escalation: 0.00 0.00 0.00 0.06 0.11 0.17 0.25 0.28 0.33 0.42

Notes: Table reports the share of cases in each cell for which optimal tariffs are de-escalated, i.e
(
1 + tdH

)
/ (1 + tuH) <

1.

Table C.5 presents the fraction of cases with de-escalated tariffs for the ten values of the downstream
labor share (α) split into cases with γd > γu, γd < γu, and γd = γu. In line with the intuition in the draft,
optimal tariffs are more likely to be de-escalated when the scale elasticity upstream is larger than the scale
elasticity downstream, and when the downstream labor share is high.

Table C.5: Tariff De-escalation across the parameter space, II

Values of α
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

γd > γu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
γd < γu 0.00 0.00 0.00 0.13 0.27 0.40 0.60 0.67 0.80 1.00
γd = γu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Table presents the share of cases in each column for which the optimal tariff are
de-escalated.
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C.1.4 Second-best tariff escalation and the labor share

We replicate Figure 2 for different values of the demand elasticity downstream in Figure C.1. Furthermore,
we plot tariff escalation as a function of the returns to scale downstream relative to those upstream in Figure
C.2.

Figure C.1: Second-Best Tariff Escalation and the Labor Share

Notes: Figure plots the ratio of optimal downstream to upstream tariffs (i.e., tariff escalation) as a function
of the downstream labor share (α) and upstream scale elasticity (γu) for different values of the downstream
scale elasticity (γd). The two trade elasticities (σ and θ) are both fixed at 5.

C.1.5 Grid over σ, θ and α

We solve for optimal trade policy for values of σ and θ ranging from 2.5 to 7.5, and for values of α ranging
from 0 to 0.9, as described in Table C.1. We fix the values Ad, Au, τd and τu to the values we estimate in
Section 6.1. Overall, we explore 7× 7× 10 = 490 configurations of parameters. We can successfully solve the
model for 489 of these 490 cases.

Statistics tariff ratio wedge

The next three tables report statistics related to the tariff escalation wedge, the mean, the median, the
standard deviation, the minimum and the maximum. The second column of Table C.6 provides values of
these statistics for the 489 cases for which we have a solution. On average, downstream tariffs are 11 percent
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Figure C.2: Second-Best Tariff Escalation and Relative Scale Economies

Notes: Figure plots the ratio of optimal downstream to upstream tariffs (i.e., tariff escalation) as a function of the
relative scale elasticity in downstream versus upstream production (γd/γu) and the downstream labor share (α). The
trade elasticities (σ and θ) are both fixed at 5.

higher than upstream tariffs, and the medians show a similar divergence. Some cases feature tariff escalation
levels as high as 1.34, while tariff de-escalation remains modest even in the most extreme cases (minimum of
0.98). The third and fourth column of Table C.6 recalculates the statistic but looking at the cases for which
the tariff ratio is above and below 1, respectively. It is interesting to note that when our model predicts tariff
de-escalation, it does so with fairly moderate levels (median of 0.99).

Table C.6: Statistics of the tariff escalation wedge: all cases

All cases With escalation With de-escalation

Mean 1.11 1.11 0.98
Median 1.11 1.11 0.99
Standard Deviation 0.06 0.06 0.01
Minimum value 0.98 1.01 0.98
Maximum value 1.34 1.34 0.99

N 489 484 5
Notes: Table reports statistics for the tariff escalation wedge for optimal import
tariffs computed in the grid search exercise.

C.1.6 Tariff escalation and parameter space

We now present results about the parameter combinations that generate de-escalated tariffs. Table C.7
reports the fraction of cases for which tariffs are de-escalated for a given parameter, for each possible value
that this parameter can take. For example, we have 70 combinations with σ = 4.5, with 1 percent of these
cases featuring de-escalated tariffs.

Table C.8 presents the fraction of cases with de-escalated tariffs for the ten values of the downstream
labor share (α) split into cases with σ > θ, σ < θ, and σ = θ. In line with the intuition in the draft, optimal
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Table C.7: Tariff De-escalation across the parameter space, I

Values Downstream Demand Elasticity (σ)
2.5 3.5 4.5 5 5.5 6.5 7.5

Share of cases w. De-escalation: 0.00 0.06 0.01 0.00 0.00 0.00 0.00

Values Upstream Demand Elasticity (θ)
2.5 3.5 4.5 5 5.5 6.5 7.5

Share of cases w. De-escalation: 0.00 0.00 0.00 0.01 0.01 0.01 0.03

Values Downstream Labor Share (α)
0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Share of cases w. De-escalation: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10

Notes: Table reports the share of cases in each cell for which optimal tariffs are de-escalated, i.e
(
1 + tdH

)
/ (1 + tuH) <

1.

tariffs are more likely to be de-escalated when the demand elasticity upstream is larger than the elasticity
downstream, and when the downstream labor share is high.

Table C.8: Tariff De-escalation across the parameter space, II

Values of α
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

σ > θ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
σ < θ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.24
σ = θ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Table presents the share of cases in each column for which the optimal tariff
are de-escalated.

C.1.7 Second-best tariff escalation and the labor share

We replicate Figure 3 for different values of the demand elasticity downstream in Figure C.3. Furthermore,
we plot tariff escalation as a function of the downstream elasticity downstream relative to the upstream
elasticity in Figure C.4.
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Figure C.3: Second-Best Tariff Escalation and the Labor Share

Notes: Figure plots the ratio of optimal downstream to upstream tariffs (i.e., tariff escalation) as a function
of the downstream labor share (α) and upstream demand elasticity (θ) for different values of the downstream
demand elasticity (σ). The two scale elasticities (γd and γu) are both fixed at 0.17.

Figure C.4: Second-Best Tariff Escalation and Relative Scale Economies

Notes: Figure plots the ratio of optimal downstream to upstream tariffs (i.e., tariff escalation) as a function of the
relative demand elasticity in downstream versus upstream production (σ/θ) and the downstream labor share (α). The
scale elasticities (γd and γu) are both fixed at 0.17.
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C.2 Robustness for Calibrated Parameters

Table C.9 reports the estimated values for the two iceberg costs and the two productivity levels for the
different combinations of the scale elasticities (γd and γu), demand elasticities (σ and θ), and the downstream
labor share (α) over which we explored robustness of optimal policies featuring escalated tariffs.

Table C.9: Calibrated Parameters - Robustness

σ θ γd γu α τu τd AdRoW AuRoW

5 5 0.170 0.170 0.55 2.031 2.368 0.348 0.149
5 5 0.170 0.128 0.55 2.031 2.368 0.348 0.156
5 5 0.170 0.128 0.25 2.014 2.349 0.464 0.156
5 5 0.170 0.128 0.75 2.045 2.367 0.253 0.153
5 5 0.170 0.128 0.90 2.020 2.321 0.181 0.150
5 5 0.128 0.170 0.55 2.031 2.368 0.364 0.149
5 5 0.128 0.170 0.25 2.014 2.349 0.481 0.148
5 5 0.128 0.170 0.75 2.045 2.367 0.265 0.147
5 5 0.128 0.170 0.90 2.020 2.321 0.189 0.144
5 5 0.170 0.170 0.55 2.030 2.368 0.348 0.149

6.44 4.43 0.170 0.170 0.55 2.292 1.854 0.330 0.152
3.59 2.45 0.170 0.170 0.55 7.310 3.916 0.353 0.178
4 2.5 0.170 0.170 0.55 6.837 3.222 0.342 0.176
4 5.5 0.170 0.170 0.55 1.873 3.222 0.371 0.148
5 5 0.170 0.170 0 2.044 3.025 0.495 0.158
5 5 0.170 0.170 0.25 2.014 2.349 0.464 0.148
5 5 0.170 0.170 0.75 2.045 2.367 0.253 0.147
5 5 0.170 0.170 0.90 2.020 2.321 0.181 0.144

Notes: This table reports the re-calibrated parameters used in our robustness
exercise in Table 2 and in Table 3.
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D Data Appendix

D.1 Data Construction for Figure 4

US Tariff Data.

• We use US import tariff data at the 8-digit level from the US Harmonized Tariff Schedule (HTS)
available at https://dataweb.usitc.gov/tariff/annual. We use the most-favored-nation (MFN) ad
valorem tariff rate whenever possible. In approximately 25% of the cases, the MFN ad valorem rate is
available and instead a “specific” tariff rate is applied such as “68 cents/head”, “1 cents/kg”, “0.9 cents
each” etc. In these cases we perform an imputation by calculating an ad valorem equivalent tariff rate
using unit values obtained from the US Census Bureau.

• In a next step we use the imputed ad valorem tariff rate to calculate applied MFN ad valorem tariff
rates for all goods, taking trade agreements between the US and other countries into account. That
is, we calculate the applied MFN ad valorem tariff rate as an import weighted average of the MFN
ad-valorem rate and the tariff rate that is paid by countries that are members of a trade agreement.8

US import data for the year 2015 come from the US Census Bureau.

• Data on tariffs imposed in February and March 2018 on almost all countries (washers; solar panels;
iron and steel; aluminum) come from Fajgelbaum et al. (2020) and all subsequent tariffs imposed on
imports from China throughout 2018 and 2019 from Chad Bown (available here).

ROW Tariff Data.

• We use tariff data for 115 countries plus the European Union at the 6-digit HS code level from
the WTO Tariff Download Facility available at http://tariffdata.wto.org/default.aspx. We use the
most-favored-nation (MFN) ad valorem tariff rate which constitutes the simple average duty of all
products within a 6-digit HS code classification.

• We use data on retaliatory tariffs imposed by China throughout 2018 and 2019 from Chad Bown
(available here). Data on retaliatory tariffs imposed by the European Union, Canada, Mexico, India
and Turkey stem from Li (2018). Using data on these tariff waves we adjust the MFN applied tariff
rates taking 2015 US export value weighted averages with US export data coming from the US Census
Bureau.

Intermediate and Final Goods Classification

• We classify goods into intermediate and final goods using the UN Broad Economic Categories (BEC),
rev. 5. The cross-walk between HTS codes (specifically HS 2012) and end-use categories is available
here. We classify goods as intermediate when BEC indicates their final use is as an intermediate or
capital good (third digit 1 or 2, respectively); we classify goods as final goods when their BEC end use
is consumption (third digit 3). There are a handful of HTS codes corresponding with more than one
BEC end use; in these cases, we classify them as intermediate if they are hybrid intermediate-capital,

8We account for the following trade agreements: Generalized System of Preferences (GSP, 41 countries), The
Agreement on Trade in Civil Aircraft (32 countries), NAFTA (3 countries), Caribbean Basin Initiative (CBI, 17
countries), African Growth and Opportunity Act (AGOA, 40 countries), Caribbean Basin Trade Partnership Act
(CBTPA, 8 countries), Dominican Republic-Central America FTA (6 countries) and the Agreement on Trade in
Pharmaceutical Products (7 countries).
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and exclude those with any other combination (e.g. mixed use as an intermediate and consumption
good).

Tariff Escalation Unweighted

• As alternative to Figure 4 which shows trade-weighted tariff rates, Figure D.1 displays an unweighted
version of the tariff increase on intermediate and final goods by the ROW on imports from the US
throughout the trade war and vice versa.

Figure D.1: Comparison of ROW and US Input & Final-Good Tariffs (Unweighted)

(a) US average tariffs on ROW (b) ROW average tariffs on US

Notes: Pre: Tariffs in January 2018, Post: Tariffs in December 2019. Tariff data from WTO and USITC. Goods are
classified as intermediate or final according to the Broad Economic Categories rev. 5 (BEC5) code corresponding to
their HS code. BEC5 codes with a third digit of 1 or 2 (intermediate and capital final use in BEC5, respectively) are
classified as intermediate goods and BEC5 codes with a third digit of 3 are classified as final consumption goods. When
the HS to BEC5 correspondence implies mixed use as intermediate and consumption or capital and consumption, we
assign no classification and omit from consideration.

D.2 Elasticity Estimation

Below we explain the estimation of the elasticities of substitution in the upstream and downstream sectors
using two different approaches: the trade elasticity approach, and the sectoral markup approach. We present
results on optimal taxes for the two approaches and demonstrate how they differ.

Trade Elasticity Approach. We estimate elasticities in the upstream and downstream sectors by
measuring the response of imports in the upstream and downstream sectors to changes in import tariffs. More
specifically, we calculate the changes in US import values in both sectors during the US-China trade war
(January 2018 to December 2019) that raised US import tariffs on upstream goods by 4.5 percentage points and
downstream goods by 3.6 percentage points. We obtain data on import values at the country-HTS10-month
level from the US Census Bureau’s Application Programming Interface (API). Data on US import tariffs are
constructed as described in Section D.1.

We regress 12-month log changes in import values on 12-month log changes in tariff rates via the following
regression specification:

∆ log(vijt) = αj + τit + β∆ log(1 + Tariffijt) + ωijt, (D.1)
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where i indicates foreign countries, j denotes products, and t corresponds to time; αj is a product fixed effect;
τit is a country-time fixed effect; and ωijt is a stochastic error. We denote import values by vijt. We estimate
equation (D.1) separately for intermediate and final goods using both log differences and the inverse of the
hyperbolic sine transformation, log[x+ (x2 + 1)0.5], to be able to estimate changes when import values are
zero in t or t− 12.9 The results are presented in Table D.1.

Table D.1: Impact of US Tariffs on Import Values

Intermediate Goods Final Goods
(1) (2) (3) (4)

Log Change
Import Value

∆ log(vijt)

Inv. Hyperb.
Import Value

∆ log(vijt)

Log Change
Import Value

∆ log(vijt)

Inv. Hyperb.
Import Value

∆ log(vijt)
log change tariff
∆ log(1 + Tariffijt) -1.20∗∗∗ -2.45∗∗∗ -1.65∗∗∗ -3.59∗∗∗

(0.07) (0.41) (0.18) (0.79)
N 1538067 2619150 753535 1395205
R2 0.025 0.043 0.026 0.045

Notes: Observations are at the country-HTS10-month level for the period January 2018 to December 2019. Since the specifica-
tion is in 12-month changes, the data includes observations from January 2017 onwards. Robust standard errors in parentheses.
Variables are in twelve-month log change. All columns include product-level and country-time fixed effects. The dependent
variables are the log change and the change in the inverse hyperbolic sine of US import values of intermediate and final goods,
respectively. We use the inverse of the hyperbolic sine transformation, log[x+ (x2 + 1)0.5], to be able to estimate changes when
import values are zero in t or t− 12. *p < 0.05, **p < 0.01, ***p < 0.001.

Column 1 (3) suggests that a one percent increase in tariffs on intermediate (final) goods is associated
with a 1.20 (1.65) percent decrease in import value. However, since tariffs can lead to zero imports, which
will be dropped from the regression, columns 2 and 4 perform the same regression this time using the inverse
hyperbolic sine instead of the log change. This adjustments leads to greater trade elasticities for both types
of goods. A one percent increase in tariffs on intermediate (final) goods is associated with a 2.45 (3.59)
percent decrease in import value. Note that the estimates from this specification correspond to an elasticity
of substitution between intermediate (final) goods of 2.45 (3.59).

Sectoral Markup Approach Information on firm-level markups allows us to derive elasticities in a
straightforward manner since markup = elasticity

elasticity−1 . We thus compile data for this exercise as follows. We
obtain upstream/downstream sector classifications using WIOD. We use 2014 sales of the US to the US
and RoW to calculate the share of total sales per sector that goes to final consumers. We then classify a
sector as upstream when the share of total sales to final consumers is below the median across all sectors
and as downstream when the share is above the median. This yields a dataset which shows upstream and
downstream classifications for 87 sectors at the 2-digit NACE level (European industry classification). We
combine this 2-digit NACE with a NACE-NAICS concordance file that maps 4-digit NACE (we only use the
first 2 digits) to 6-digit NAICS. If there are multiple NACE 2-digit codes for a NAICS 6-digit code, we choose
the NACE 2-digit code that has larger total US sales. This yields a final dataset that shows upstream and

9Note that regression coefficients based on the hyperbolic sine transformation are sensitive to the scale of the
import values. This is, results vary depending on whether import values are measured in thousands, millions, etc.
Following Amiti et al. (2019), we measure import values in single US dollars.
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downstream classifications for 1,175 different NAICS 6-digit codes. We combine these data with data kindly
provided by Baqaee and Farhi (2020) (BF) based on 6-digit NAICS codes. The BF data list markups and
sales for 31,683 different firms from 1978 – 2018. They provide three different types of markups calculated
based on a user cost, a production function, or an accounting profits method. We select their data between
2012 and 2017 and focus on the markups calculated using the production function estimation approach. We
further exclude firms that have markups smaller than 1 (14% of all firm-year observations).

Table D.2: Elasticities

mean sd min p5 p25 p50 p75 p95 max count
Upstream 4.43 4.26 1.10 1.15 1.60 2.75 5.04 16.50 16.50 11045
Downstream 6.44 6.05 1.29 1.46 2.44 4.03 7.49 22.24 22.24 14773

Notes: The table shows weighted mean elasticities for upstream and downstream sectors between 2012 and 2017 across all firms
in the WIOD that have markups greater than 1. Elasticities stem from the production function estimation approach. Weights
represent the share of firm sales in total sales. We winsorize elasticities and sales at the 5-95th percentile by sector.

We then calculate firm-level elasticities as elasticity = markup
markup−1 and winsorize elasticities and sales at the

5-95th percentile by sector. Finally, we calculate weighted mean elasticities for upstream and downstream
sectors across all firms where weights represent the share of firm sales in total sales. Table D.2 presents
elasticities for upstream and downstream sectors pooling all years from 2012 to 2017.

D.3 Scale Elasticity

Data on scale elasticities comes from Bartelme et al. (2021). The authors provide 2SLS estimates on scale
elasticities for 15 manufacturing industries presented in Table D.3. We classify these industries into upstream
and downstream industries following the same procedure as in the Sectoral Markup Approach and then
calculate the average scale elasticity in those sectors. For the upstream sector we obtain an average scale
elasticity of 0.166 and for the downstream sector an average scale elasticity of 0.170.

D.4 Share of Inputs in the Downstream Sector

As in the Sectoral Markup Approach, we classify sectors into upstream and downstream depending on whether
the share of total sales to final consumers is below or above the median across all sectors. From the WIOD in
2014 we calculate the share of inputs in the downstream sector as the ratio of intermediate inputs to sales in
the downstream sectors leading to an estimate of 1− α = 0.45.
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Table D.3: Scale Elasticity Estimates from Bartelme et al. (2021)

Industry NACE Rev. 2 WIOD class. Scale elast.
Food products, beverages and tobacco 10, 11, 12 downstream 0.22
Textiles 13, 14, 15 downstream 0.12
Wood and products of wood and cork 16 upstream 0.13
Paper products and printing 17, 18 upstream 0.15
Coke and refined petroleum products 19 upstream 0.09
Chemicals and pharmaceutical products 20, 21 upstream 0.24
Rubber and plastic products 22 upstream 0.42
Other non-metallic mineral products 23 upstream 0.17
Basic metals 24 upstream 0.09
Fabricated metal products 25 upstream 0.12
Computer, electronic and optical products 26 downstream 0.08
Electrical equipment 27 upstream 0.08
Machinery and equipment, nec 28 downstream 0.24
Motor vehicles, trailers and semi-trailers 29 downstream 0.18
Other transport equipment 30 downstream 0.18

Notes: Industries and 2SLS scale elasticities stem from Bartelme et al. (2021). Upstream and downstream classifications stem
from WIOD where we classify a sector as upstream when the share of total sales to final consumers is below the median across
all sectors and as downstream when the share is above the median.
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