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Abstract

Age-period-cohort (APC) analysis has a long, controversial history in sociol-
ogy and related fields. Despite the existence of hundreds, if not thousands, of
articles and dozens of books, there is little agreement on how to adequately
analyze APC data. This article begins with a brief overview of APC analy-
sis, discussing how one can interpret APC effects in a causal way. Next, we
review methods that obtain point identification of APC effects, such as the
equality constraints model, Moore-Penrose estimators, and multilevel mod-
els. We then outline techniques that entail point identification using mea-
sured causes, such as the proxy variables approach and mechanism-based
models. Next, we discuss a general framework for APC analysis grounded
in partial identification using bounds and sensitivity analyses. We conclude
by outlining a general step-by-step procedure for conducting APC analyses,
presenting an empirical example examining temporal shifts in verbal ability.
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1. INTRODUCTION

Age-period-cohort (APC) analysis has a long, controversial history in the social sciences. Formally,
age refers to the time since birth, period refers to the calendar date at which an outcome is ob-
served, and cohort refers to the time when an individual was born. The core idea of an APC
analysis is that changes in any particular outcome can be attributed to three distinct types of
causal processes (Glenn 2005, p. 11): (2) changes over the life course of individuals, or age effects;
() changes due to the events in particular years, or period effects; and (c) changes due to the
replacement of older cohorts of individuals with younger ones with different characteristics, or
cohort effects. Typically the goal of an APC analysis is to understand social and cultural change in
a given outcome by identifying the separate contributions of the causal processes associated with
each of the three APC variables.

Despite the existence of hundreds, if not thousands, of articles and dozens of books, there is
little agreement on how to adequately analyze APC data. The central issue has been, and continues
to be, the linear relationship among age, period, and cohort, that is, that age = period — cohort.
This linear dependence results in the so-called APC identification problem, or the fact that it is
not possible to directly estimate the linear effect of any one of the APC variables holding the other
two constant. Numerous solutions have been proposed to deal with the identification problem, but
none have gained wide acceptance.

In this article, we review both older and more recent methods for analyzing APC data. We
also discuss which approaches provide viable means for separating out the independent effects of
age, period, and cohort and which do not. More specifically, we present a simplification of the
identification problem and clarify the properties of multiple traditional APC methods. In doing
so, we arrive at a number of key insights that have been either overlooked or underappreciated in
the literature:

1. Age, period, and cohort variables can be understood as observed indicators for distinct sets
of underlying, typically unobserved, causal processes (Clogg 1982, pp. 460-62; Heckman
& Robb 1985, pp. 137-40; Mason & Fienberg 1985, pp. 45-48). Typically the goal of an
APC analysis is to determine the unique contribution of these causal processes for some
particular outcome.

2. A vast number of studies in sociology and related fields are affected by the APC identifi-
cation problem. Too often these studies simply omit one or two of the temporal variables
entirely without reference to the identification problem. The assumptions underlying these
studies are often testable.

3. The fact that age, period, and cohort are exact functions of each other presents an identifi-
cation problem only for the linear effects (or slopes). Nonlinear effects (or deviations from
the slopes) are identified (Fienberg 2013, Fosse & Winship 2018). As such, the APC iden-
tification problem can be radically simplified as a problem of determining the value of the
three linear effects.

4. Any technique that identifies point estimates for age, period, and cohort amounts to choos-
ing a point on (or near) a multidimensional solution line in the parameter space (Luo et al.
2016; O’Brien 2014, pp. 59-91). Because only the linear effects are unidentified, this sim-
plifies to selecting a point on the canonical solution line, which lies in just three dimensions
(Fosse & Winship 2018). The canonical solution line is easily visualized using a 2D-APC
graph (Fosse & Winship 2019).

5. As with any problem of causal inference, techniques for analyzing APC data as causal struc-
tures necessarily entail assumptions (Converse 1976, pp. 16-26; Glenn 2005, p. 7). The
credibility of a set of APC estimates is strengthened greatly by the degree to which these

Fosse o Winship



ACCESS provided by dU.234.18Y.31 on U¥/18/1Y. For personal use only.

assumptions are based on social, biological, or cultural theory and/or tested against the data
(Fosse & Winship 2018, 2019). Complicated and highly technical APC methods can rely
on surprising, even unjustifiable theoretical assumptions.

6. With some and possibly most APC data, much can be learned about the relative importance
of different causal processes without point identification. Bounds based on constraining the
size, sign, or shape of one or more of the temporal effects can often provide informative
results, in some cases approximating point estimates under relatively weak theoretical as-
sumptions (Fosse & Winship 2019; cf. Manski 1990, 2003). Although bounds can be ex-
pressed mathematically, they have an equivalent visual representation in 2D-APC graphs,
simplifying the task of partial identification (Fosse & Winship 2019).

7. Observed measures of the causal processes indexed by the temporal variables can help
greatly in estimating the overall relative effects of age, period, and cohort on a given out-
come (Winship & Harding 2008). APC models with observed measures of causal processes
can be combined easily with bounding (or sensitivity) analyses, allowing one to make con-
clusions with even weaker assumptions.

We develop these insights in three main parts. First, we briefly discuss the history of APC
analysis, the classical APC model, the APC identification problem, and the interpretation of APC
effects as causal structures. Second, we review methods that obtain point identification of APC ef-
fects. In doing so, we investigate the properties of various traditional APC estimators commonly
used by demographers and sociologists, including the equality constraints model, intrinsic estima-
tor (IE), and hierarchical age-period-cohort (HAPC) model. These techniques can be understood
as selecting particular points on the canonical solution line, often relying on untested or untestable
assumptions that have little or no theoretical basis. We then review techniques that incorporate
explicit measures of intermediate causal processes, in particular the proxy variables approach and
mechanism-based models. Next, we discuss an alternative framework for APC analysis grounded
in partial identification using bounding or sensitivity analyses. We conclude by outlining a gen-
eral step-by-step procedure for conducting APC analyses and presenting an empirical example on
changes in verbal ability.

2. OVERVIEW OF AGE-PERIOD-COHORT ANALYSIS
2.1. Foundational Works and Key Applications

The earliest known APC analysis dates back to at least the 1860s, predating the eponymous dia-
grams of Wilhelm Lexis. In a remarkable confluence of thought, a number of German demogra-
phers devised inventive ways to visualize mortality data indexed by temporal variables (see Keiding
2011). The modern era of APC analysis began with seminal works in epidemiology and medicine
in the 1930s and later in sociology and demography in the 1950s and 1960s [Mannheim 1952
(1927), Ryder 1965]. In a now classic work, Frost (1939) noted that changes in observed tubercu-
losis mortality rates could be attributed to not only aging effects but also period and cohort effects
(Mason & Smith 1985).!

Similarly, in a posthumous theoretical essay, the sociologist and philosopher Karl Mannheim
[1952 (1927)] emphasized the importance of generations in understanding social change (see
also Demartini 1985, Pilcher 1994, Simirenko 1966). Among Mannheim’s insights was that so-
cial change occurs not only because individuals alter their views, but also because each cohort

1See Case (1956) for an overview of other early studies in epidemiology and medicine on cohort effects and
mortality rates (e.g., Andvord 1930, Derrick 1927, Kermack et al. 1934).
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is imprinted with different values and beliefs that they carry until their death [Mannheim 1952
(1927), pp. 292-302].

Similarly, in an influential article linking population studies with cultural analysis, the demogra-
pher Norman Ryder (1965) noted that while social change is partly caused by individuals changing
their values and beliefs, a potentially more dramatic driver is that, through the biological processes
of birth and death, groups are continually entering and leaving society. His argument appealed to
a broad swath of social scientists in large part because he recognized that massive social change
can occur even though no particular individual has changed (Firebaugh 1989, Firebaugh & Harley
1991, Hobcraft et al. 1982, Inglehart 1971).

Since the seminal works by Frost, Mannheim, and Ryder, social and behavioral scientists have
used APC data to investigate a wide range of outcomes. There have been two parallel tracks of
research. On the one hand, demographers and epidemiologists have focused on examining disease
rates and health-related behaviors, including drug use (Chen et al. 2003, Kerr et al. 2004, O’Malley
etal. 1984, Vedoy 2014), obesity (Diouf et al. 2010, Fu & Land 2015), cancer (Clayton & Schifflers
1987, Liu et al. 2001), and mental health (Lavori et al. 1987, Yang 2008). A main goal of these re-
searchers has been to understand the future burden of disease as well as the risk factors related to
various health conditions. On the other hand, sociologists and other social scientists have focused
on a range of outcomes related to understanding social change, including verbal ability (Alwin
1991, Hauser & Huang 1997, Wilson & Gove 1999), social trust (Clark & Eisenstein 2013, Putnam
1995, Robinson & Jackson 2001, Schwadel & Stout 2012), party identification (Ghitza & Gelman
2014, Hout & Knoke 1975, Tilley & Evans 2014), and religious affiliation (Chaves 1989, Firebaugh
& Harley 1991). The goal of these applications has typically been to identify the separate contribu-
tions of age, period, and cohort effects so as to understand the ways in which societies are changing.

2.2. The Classical Age-Period-Cohort Model

The temporal effects of age, period, and cohort can be represented using the classical APC
(C-APC) model, also known as the multiple classification model (Mason et al. 1973, p. 243) or
accounting model (Mason & Fienberg 1985, pp. 46-47, 67). To understand the C-APC, suppose
we have collected data on a set of individuals and have measured each person’s birth year, age, year
of measurement, and value on some outcome. Typically such data are collected in an age-period
table, or what is called a Lexis table (see Table 1). It is common in the APC literature to use index
notation to keep track of the dimensions of an age-period table. Leti = 1,.. ., represent the age
groups; j = 1,...,J the period groups; and # = 1, ..., K the cohort groups, with # = j — i + I and
K=I+J-17

Table 1  Structure of a Lexis table with indices for age, period, and cohort

Period
Age j=1 j=2 j=3 =J
i=1 k=5 k=6 k=7 =K
i=2 k=4 k=5 k=6
i=3 k=3 k=4 k=5
i= k=2 k=3 k=4
i=5 =1 k=1 k=2 k=3

Age and period are aggregated into equally spaced intervals indexed by 7 (rows) and j (columns), respectively. Cohorts are
indexed by # (cells). Shaded cells trace the path through time for the kth cohort, where & = 3.

?Note that I is added to j — i so that the cohort index begins at £ = 1. This ensures that, for example, i = j =
k = 1 refers to the st group for all three temporal measures. One could just as easily index the cohorts using
k = j — i, but this identity would be lost.
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The C-APC model is, accordingly,
Yijg =+ ai + 7+ vi + €ijas L.

where Vjj;, is the outcome variable to be explained, u is the intercept, o; represents the ith age
effect, ; represents the jth period effect, y; represents the kth cohort effect, and €;;;, is the error
term. We can specify the above in matrix notation as follows:

y=Xb+e, 2.

whereyisan (I x J) x 1 outcome vector; Xisan (I x J) x 2(I 4+ J) — 3 design matrix; b is a vector
of coefficients with 2(I +J) — 3 rows; and € is an (I x J) x 1 vector representing random error.
Typically in an APC model, in order to allow for nonlinear effects, age, period, and cohort are
treated as categorical variables.’ As in traditional regression analysis, there are multiple possible
coding schemes, many of which necessitate applying a constraint to deal with the overparameter-
ization due to the inclusion of the intercept. For example, one could constrain the parameters to
sum to zero, such that Y a; = Y= S =04

2.3. The Age-Period-Cohort Identification Problem

It is recognized throughout the APC literature that all design matrices with APC variables are
rank deficient because of the linear relationship age = period — cohort. It is this rank deficiency
that results in the APC identification problem.’ Because APC models are not fully identified, we
cannot obtain point estimates for each of the age, period, and cohort linear effects (or effects that
are partially a function of the linear effects). A convenient way to express the nonidentifiability
problem is to note that, for any particular APC model, we can specify the linear effects as (Rodgers
1982a, p. 782)

o =a+v,
=1 — v, 3.
Y'=vy+v,

where the asterisk indicates an arbitrary set of estimated slopes from an APC model under a par-
ticular constraint or, equivalently, when the scalar v is fixed to some value. As Equation 3 indicates,
the estimated parameters are simple additive transformations of the true unobserved slopes «, 7,
and y shifted by a single arbitrary scalar, v.5

Although the linear effects of an APC model are not identifiable, several other quantities are.
First and most importantly, the nonlinear effects, that is, the deviations from the linear effects,

30ne could also use splines, treating age, period, and cohort as continuous variables (see Heuer 1997).
*Alternatively, one could fix the parameters at one of the levels to zero. By convention, researchers typically
fix the first set of levels (e.g., @j—1 = mj—1 = y—1 = 0) or the last set (e.g., @j—; = mj—j = =k = 0), although
another set could be chosen to satisfy the constraints.

SWith a few exceptions (Mason & Fienberg 1985, pp. 71-72), APC analysts have only considered models with
main effects for age, period, and cohort, ruling out interactions among these variables. Each interaction added
to a model increases the rank deficiency of the design matrix by one, further exacerbating the identification
problem. Procedures for dealing with such models are an important topic for future research.

6Researchers may believe that certain kinds of data, for example, cross-sectional or panel data, are immune to
the identification problem. This is incorrect. In a cross-sectional study, researchers are comparing age groups
in a snapshot of calendar time. The estimated linear age effect is not «, but @ = & — y. The data are not
themselves informative as to whether people differ because of age or cohort effects. In a panel study, one
might examine, say, a single cohort of people and observe how they change as they age. Here, the estimated
linear age effect is not o, but @ = o + 7.
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are fully identifiable [Fosse & Winship (2018) provide formal proofs]. Second, as we outline later,
particular combinations of the linear effects are also identifiable. Third, the predicted values of the
outcome are identical regardless of the constraint (i.e., the value of v) used to identify the model.
Finally, forecasts from an APC model are not subject to the identification problem. Specifically,
the predicted values of the outcome from a linear extrapolation are identifiable (Holford 2005).

2.4. Interpreting Age-Period-Cohort Effects

In order to understand the relationship between the formal structure of an APC model and typ-
ical applications, consider two examples. First, consider the possible factors involved in temporal
changes in verbal ability as measured by vocabulary knowledge (see, e.g., Alwin 1991, Hauser &
Huang 1997, Wilson & Gove 1999). At first glance, one may not expect that age would be a con-
tributing factor. Some scholars, however, have noted the potential for the age composition of a
population to result in observed changes in levels of verbal ability (Wilson & Gove 1999). The
situation, however, is complicated, as the age effect is likely to be curvilinear: At younger ages,
individuals’ vocabulary may increase as they are exposed to more new words, while at older ages
it might well decrease due to declines in basic cognitive functioning. Given this curvilinear rela-
tionship, the age distribution would only have a substantial effect on verbal ability if there were
a relative increase or decrease in the number of middle-aged individuals. It is also not obvious
that there would be period effects until one considers changes in the way people obtain informa-
tion. With the advent of radio, television, the Internet, and cell phones, individuals now read less
(Glenn 1994). Verbal ability, however, as measured by vocabulary has increased over time, partic-
ularly during the first half of the twentieth century (Schooler 1998). Scholars have recognized that
the expansion of higher education across birth cohorts is probably the critical factor in changing
levels of verbal ability (Alwin 1991). This important cohort-based change will appear as increasing
levels of verbal ability.

As a second example, consider changes in the prevalence of tuberculosis, the classic example
of an APC analysis being used to explain changes in disease rates (Frost 1939). Here too, age,
period, and cohort are all potential factors. Again changes in the age distribution could be a factor;
however, as with verbal ability, this is a complicated relationship because the young and the old
would be the most susceptible to tuberculosis. As well, there are likely period and cohort effects
(Mason & Smith 1985). Cohorts might well vary in their resistance and immunity, especially as
more recent cohorts are healthier in general. As with infectious diseases in general, however, period
effects are likely important and will shift due to the implementation of new medical technologies
and diagnostic tools, as well as changes in how diseases are classified.

In the APC literature, researchers have typically viewed age, period, and cohort as indicators
of distinct sets of unmeasured causes (see, e.g., Mason & Fienberg 1985, Rodgers 1990). APC
variables themselves are causally ill-defined because there is no direct intervention that would
change, say, cohort, to some other value while holding constant age and period. This point of
view is expressed by Clogg (1982, p. 460): “age, period, and cohort are merely indicators of other
variables which actually ‘cause’ the observed variation in the dependent variable under study. The
APC framework is properly interpreted as an accounting scheme, not a ‘causal model.”” Simi-
larly, Mason & Fienberg (1985, pp. 46-47) write, “these models do not explain so much as they
provide categories with which to seek explanation. For accounting models to have value, the pa-
rameterizations of the general framework must be linked to phenomena presumed to underlie the
accounting categories.” Figure 1 illustrates one way to represent APC variables as causal struc-
tures in a graphical model. The simplified model in Figure 14 can be understood as shorthand for
an underlying mechanism-based model, shown in Figure 15. Unobserved sets of causal processes

Fosse o Winship
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Figure 1

Graphical models of temporal variables. Panel # shows the simplified age-period-cohort graphical model for age (4), period (P), and
cohort (C). The double-line, double-headed arrows denote the linearly dependent relationships among the three temporal variables.

Y is the outcome, while Uy refers to idiosyncratic unobserved causes. Filled circles denote observed variables, while hollow circles
denote unobserved variables. Panel 4 shows the graphical model with a full set of mechanism variables (M4, Mp, and M), which are
unobserved. The single-line, double-headed arrows denote associational linkages between the temporal variables and unobserved causal
mechanisms.

(represented by M, Mp, and M in Figure 1b) are implied whenever researchers refer to “APC
effects.”

To illustrate how this might be conceptualized, consider a study examining temporal effects of
political alienation. For example, age might be associated with the marital status of the respondent
and the presence of children in the home, period with the unemployment rate and who is pres-
ident, and cohort with cohort size and the lifetime amount of education obtained. In this sense
one can think that in stating that an APC variable has a causal effect, one is actually making an
elliptical assertion in which the full statement is that the causal processes associated with one of
the APC variables has an effect on some outcome. For example, the statement “period has a causal
effect on political alienation” is shorthand for stating that “period membership is associated with
the unemployment rate and who is president, which change political attitudes.” Under this con-
ceptualization there is no problem when we state that an APC variable has a causal effect; we are
simply using shorthand for a more complicated statement.

There is still the problem of what the coefficient on an APC variable means in a standard linear
equation model. An approach that clarifies the distinction between indicators and associated causes
interprets the APC coefficients as estimates of differences in group means, which are potentially
explained by a set of associated causes that may or may not be observed. As we show below, this
approach amounts to conceptualizing an APC model as a problem in regression decomposition.

To illustrate, consider a simple model where a particular outcome is only a function of cohort
and period (that is, the age linear effect is zero in the population). In addition, for simplicity,
assume that both variables only have two categories and there are only linear effects, giving us the
following equation:

Yi=p+ n(period].) + y(cohorty) + €z, 4.

where y is the cohort linear effect and 7 is the period linear effect. Equation 4 can be interpreted
as expressing the conditional mean of Y for different period-cohort categories. As such, the co-
efficients 7 and y equal the differences in group means for the period and cohort categories,
respectively.

"The conceptualization here is close to that of Sen & Wasow (2016), who consider the related problem of
whether race can have a causal effect. They depict race, as one might also depict gender, as a bundle of causal
effects.
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Now consider extending Equation 4 by estimating a regression equation that includes measures
of the associated causes of the observed group differences. For example, one might attempt to
explain the differences in political alienation between age groups by controlling for income and
years of work experience. The goal here is to include a sufficiently detailed set of causal factors
representing the process associated with age and period that the estimated coefficients for age and
period are zero.

To understand how to interpret the coefficients in Equation 4, we can use regression decompo-
sition, an extensively employed method used to assess the relative importance of different causes
in explaining differences in group means on an outcome (Blinder 1973, Oaxaca 1973, Vaupel &
Romo 2003). Without loss of generality, assume that there are two dichotomous variables X and
Z that, when controlled for, reduce the linear coefficient of cohort, y, to zero. One could then de-
compose the coefficients of these two variables on the difference in group means, y, as follows:

y =L X))+ —Z1)Bs . 5.

1 I

Component I consists of the estimated causal effect of X on the outcome Y, given by the coeffi-
cient B, and the difference in the means of X across the two cohort groups (X, — X ). Likewise,
component II gives the estimated casual effect of Z on Y, given by B;, and the difference in the
means of Z across the two cohort groups (Z, — Z;). As such, components I and II in Equation 5
can be interpreted as representing the contribution of the two age-indexed causal processes, rep-
resented by X and Z, to the overall difference in the outcome ¥ between the two cohort groups,
given by .2 A similar decomposition could be conducted for 7, assuming that one had the causal
processes underlying observed differences across the period groups.

Now consider a full model in which all three of the APC variables are entered as inputs. Again,
for simplicity, we assume that there are only linear effects. The full model is

Yiu = p+ a(age;) + 7 (period;) + y (cohorty) + €z, 6.

where y is the cohort linear effect. This equation cannot be directly estimated because of the lin-
ear dependence among the three timescales. However, Winship & Harding (2008) show that it
is possible to estimate Equation 6 indirectly if one has a complete set of causes for the group
differences for either age, period, or cohort—that is, controlling for a sufficient set of vari-
ables, one can assume that the coefficient on at least one of age, period, and cohort variables is
zero.

There are two closely related ways to interpret the coefficients in Equation 6. One interpreta-
tion, as in Equation 4, is that the coefficients represent the differences in the group means for each
of the three APC variables conditional on the other two. The strength of this interpretation is that
it simply extends the interpretation of the coefficients for the two APC variables in Equation 4.
The weakness is that because of linear dependence, the three conditional mean differences are not
directly observed.

A second, less demanding way to interpret these coefficients is to state that they represent the
total contribution or total effects of the causal processes that produce observed mean differences
across the cross-classified age, period, and cohort categories. This is consistent with the view that,
by referring to APC effects, researchers are referring to the total effects of causal processes believed
to be associated with the temporal variables. For example, if we were comparing a single cohort at

8Note that the differences in group means in Equation 5 could be modeled in a way similar to that in Equation 4
by two conditional mean equations with each variable, X and Z, as the outcome. The coefficients in each
equation would then equal the mean differences in components I and II in Equation 5.
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two different ages, and thus at two different periods, the difference in their observed mean on the
outcome would be equal to the effect of age plus the effect of period because they would differ on
both age and period.

The above presentation makes many simplifying assumptions. Extensions to situations in which
variables have multiple categories and where variables interact with each other is conceptually
straightforward but requires quite extensive and cumbersome notation.

3. POINT IDENTIFICATION OF AGE-PERIOD-COHORT EFFECTS

As noted in Section 1, traditional approaches to APC analysis have attempted to obtain point es-
timates of the total effects of age, period, and cohort. Doing so always involves making a strong
assumption involving a mathematical constraint that generally either is not tested or is untestable
(O’Brien 2014). In this section we review the most commonly used methods for point identifica-
tion. These methods fall into two broad types: approaches where measures of the causes associated
with the three APC variables either are not available or are not used, and methods that rely on
such measures. As our presentation makes clear, we are skeptical about the usefulness of these
methods in the absence of tests of their implied constraints.

3.1. Point Identification Without Measured Causes

Point identification methods without measured causes can be divided into two groups: those that
use explicit constraints, such as setting the effects associated with two categories equal to each
other, and those that use mechanical constraints, such as the recently developed IE.

3.1.1. Explicit constraints. Here we consider two types of explicit constraints. The two most
common techniques using explicit constraints are drop-one variable models and the equality con-
straints approach.

3.1.1.1. Drop-one variable. By far the most common approach among researchers, sometimes
stated and other times unstated, is to drop one or more of the three APC variables (see, e.g., Brooks
& Manza 1997; Firebaugh 1989; Firebaugh & Harley 1991; Putnam 1995, 2001; Voas & Chaves
2016). Dropping a variable is equivalent to constraining its linear and nonlinear effects to zero,
which is typically an unnecessarily strong assumption.” What has not generally been recognized
is that because the nonlinear effects are identifiable, constraining them to be zero is a testable
assumption. As such, if one is considering dropping one of the three APC variables, one should
always test whether this is consistent with the data.

3.1.1.2. Equality constraints. 'The most frequent approach used during the initial wave of re-
search on APC effects in the 1970s and 1980s was an equality constraints model (Fienberg &
Mason 1979, Mason et al. 1973, Mason & Fienberg 1985). The basic idea is to set the effects for
two (typically adjacent) APC groups equal to each other (e.g., 7; = 7;41).!° For instance, in an-
alyzing tuberculosis, Mason & Smith (1985) assume that the coefficients for ages 5-9 and ages
10-14 are equal to each other.

The main problem with the equality constraints approach is that it relies on a much stronger
assumption than it might appear, because setting two groups equal to each other is tantamount

°Tf these constraints are not valid, then the estimates of the other two APC variables’ linear and nonlinear
effects will be inconsistent.
10A slight variation is to fix the first and last group to have equal effects, which sets the linear effects to zero.
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to setting each of the unknown linear effects to some particular value.!! In addition, despite the
assertion by Fienberg and colleagues that equality constraints should be based on overt theoretical
assumptions (Mason & Fienberg 1985, Smith et al. 1982), in practice researchers have used such
constraints in arbitrary and often atheoretical ways (though for a notable exception, see Mason
& Smith 1985, pp. 175-78). Furthermore, researchers may be misled by failing to recognize that
models with differing equality constraints have identical fit statistics (Yang & Land 2013, pp. 65—
66).

An additional problem is that researchers using the equality constraints approach have fre-
quently relied on just-identifying constraints by, for example, setting two groups equal to each
other on just one of the temporal variables. The focus on just-identifying constraints has resulted
in neglect of the usefulness of applying multiple constraints. For example, one could set multiple
groups equal to each other, resulting in an overidentified model. In general a model with multiple
constraints will be overidentified and thus testable against the data. Further research is needed to
determine the extent to which this is a fruitful direction for new analyses.

3.1.2. Mechanical constraints. Methods utilizing mechanical constraints have been popular
over the past several decades (Fu 2000, Fu et al. 2011, Yang & Land 2006). By “mechanical con-
straint,” we are referring to general-purpose methods (see Glenn 2005). For example, Yang &
Land (2013, p. 76) write that “the IE is a general-purpose method of APC analysis.” These tech-
niques have led to a wave of prominent studies on various topics, including verbal ability (Yang
& Land 2006), infant mortality (Powers 2013), heart disease (Lee & Park 2012), obesity (Reither
et al. 2009), and perceived happiness (Yang 2008). By far the two most widely used techniques
are the IE and the HAPC, but similar results can be obtained from ridge regression, partial least
squares regression, and principal components regression (O’Brien 2011).

3.1.2.1. Moore-Penrose estimators. Moore-Penrose (MP) estimators, and in particular the IE,
have recently gained popularity in sociology, public health, and a variety of other fields. However,
these estimators are controversial because they are sensitive to the design matrix used (Fienberg
2013, Luo etal. 2016, O’Brien 2011). As shown in the mathematical appendix to Luo et al. (2016),
there will always be an MP estimator based on a specific design matrix that will produce any set of
estimates that are equally consistent with the data, that s, any set of points that fall on the so-called
solution line (discussed in detail in Section 4.1). As such, the choice of design matrix is critical.

MP estimators are based on what is known as the Moore-Penrose inverse, a particular kind of
generalized inverse. Conceptually, an MP estimator can be thought of as a two-stage least-squares,
minimum-norm estimator. In the first stage, the estimator applies the least-squares criterion. Be-
cause the APC design matrix is rank deficient, there are multiple sets of least-squares estimates.
In the second stage, the estimator applies the minimum norm constraint, selecting that particular
set of least-squares estimates for which the square root of the sum of the squared estimates is as
small as possible. This is equivalent to choosing that point on the solution line that is closest in
Euclidean distance to the origin. Alternatively, an MP estimator can be thought of as a type of
shrinkage estimator, where estimates are being shrunk toward zero. They are also closely related
to ridge regression.

1TAs Rodgers (1982a, p. 785) has cautioned, “Although a constraint of the type described by Mason et al. (1973)
and Fienberg & Mason (1979) seems trivial, in fact it is exquisitely precise and has effects that are multiplied
so that even a slight inconsistency between the constraint and reality, or small measurement errors, can have

very large effects on estimates.” However, see also the reply by Smith et al. (1982) as well as the rejoinder by
Rodgers (1982b).
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MP estimators have several desirable statistical properties (Fu 2000, 2016; Fu & Hall 2006;
Fu et al. 2011; Yang et al. 2004, 2008): First, an MP estimator has minimum sampling variance
among all possible estimators based on its specific design matrix; second, it is an estimable function,
meaning that it produces a unique set of estimates for the effects of age, period, and cohort; and
finally, it is unbiased, meaning that the average of any estimates produced by an MP estimator over
an infinite number of simple random samples will equal that estimator’s values when it is applied
to the full population data.

However, MP estimators differ from one another in a vitally important way: Because they are
based on different design matrices, and because different design matrices change the location of
the origin relative to the solution line, they will produce quite different estimates. In general the
estimates of the linear effects produced by an MP estimator, including the IE, will vary depending
on at least three aspects of the data: first, the number of APC groups in the data set, e.g., the
number of periods; second, the size and sign of the nonlinearities; and third, the choice of the
reference category. This lack of robustness is a serious weakness.

In a series of papers and books, Fu, Land, and their various coauthors have argued for the IE
(e.g., see Yang & Land 2013), an MP estimator based on a design matrix of categorical variables
parameterized as sum-to-zero effects. Fosse & Winship (2018) suggest that if one is going to use an
MP estimator, one should use one based on a linearized design matrix, that is, a matrix in which
the linear effects of age, period, and cohort are orthogonal to their nonlinear terms. They call
this the orthogonal estimator (OE). Unlike other MP estimators, the OE estimates of the linear
effects are not affected by the number of APC groups, the size or sign of the nonlinear effects, or
the reference category used. However, there is no reason to think that the OE or any other MP
estimator will produce reliable estimates of the actual APC effects.

In general, we are not enthusiastic about MP estimators. We are in agreement with Duncan &
Stenbeck (1988), who “consider it a methodological absurdity to propose all-purpose models for
‘dependent variables’ as diverse as tuberculosis mortality, human fertility, educational attainment,
and electoral participation.” For arguments in their favor, particularly for the IE, the reader should
consult the extensive literature by Fu, Land, and coauthors (for recent books on the topic, see Fu
2018, Yang & Land 2013). If one is going to use an MP estimator, we recommend using the OE
because it is not affected by the number of periods or other aspects of the data structure. If one
is going to estimate temporal effects with the OE (or other MP estimator), then we recommend
using the OE’s estimates as a starting point for APC analysis, not as an end point. In particular, as
we discuss below, a researcher should use a 2D-APC plot to examine whether or not other points
result in qualitatively different effects that are equally theoretically reasonable. It is possible that
a set of estimates from the OE (or IE) may seem plausible. This, however, does not rule out
the possibility that other estimates, which are just as consistent with the data, may be equally as
credible and, as such, should be discussed.

3.1.2.2. Hierarchical age-period-cobort model. 'The HAPC model has been used in a variety of
studies, including analyses of obesity, mental health, and verbal ability. This approach entails spec-
ifying a multilevel (or hierarchical) model with age and age-squared terms and varying intercepts
for the period and cohort groups. In matrix notation the HAPC model can be represented as

y=WB+Zu+e, 7.
whereyisan N x 1 column vector of outcome values; W is an N x 3 design matrix for the overall
intercept, age, and age-squared fixed effects (or additional higher level polynomials); B isa 3 x 1

column vector for the overall intercept, age, and age-squared fixed effects; Z is an N x (J + K)
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design matrix for the period and cohort random effects; u is a (J + K) column vector containing
the period and cohort random effects; and € is an N x 1 column vector for the individual-level
error term. The vector of random effects is assumed to be normally distributed around a zero
mean [i.e., each # ~ N(0,0?), as are the individual-level error terms, i.e., € ~ N(0, 02)]. Written
as a single equation, the HAPC is

Ve = [+ a1 (age) + az(age?)] + [@; + Vel + €ijes 8.

where 1 is the mean, «; and «; are the parameters for the age and age-squared fixed effects, ¢; are
the period random effects, ¥ are the cohort random effects, and ¢;j; is random error. The model
can be estimated using Bayesian (e.g., Markov chain Monte Carlo) or frequentist (e.g., maximum
likelihood) approaches. There is a two-step procedure using residual maximum likelihood, a
procedure typically used in empirical applications (see O’Brien 2017).

As discussed by several authors (Bell & Jones 2018, Luo & Hodges 2019, O’Brien 2017), the
HAPC imposes a set of nonobvious constraints on the estimates. Typically, such constraints end
up setting the linear cohort effect to zero or close to zero. Intuitively, the reason for this appears
to be because the cohort variable has the largest number of categories, so for the same slope the
cohort random effects will have greater total variance compared with the period random effects
(Bell & Jones 2018, pp. 786-88; Luo & Hodges 2019, p. 24).1? The assumption that the cohort
linear effect is near zero can be confirmed visually by noting that in empirical applications, the
HAPC consistently generates results with a zero linear cohort effect. For instance, in Figure 2,
we show the cohort random effects for the probability of being a political independent, the proba-
bility of trusting other people, and the number of words correct on a ten-item vocabulary test. All
results are based on the HAPC. These findings clearly show, consistent with the body of empirical
research on the HAPC, that the cohort effects have a zero overall slope. In fact, the results are
nearly identical to simply estimating a model with a zero linear cohort effect except without the
shrinkage property of the random effects (i.e., the fact that, for cells with few observations and
high internal variance, estimates shrink toward the overall mean).

12More or less coarse groupings of APC variables will also influence results by affecting the variation in the
data (Luo & Hodges 2016).
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To reiterate, the consequence of the strong assumptions imposed by the HAPC model can
be seen by inspecting the published results using the HAPC; studies on verbal ability, social trust,
confidence in institutions, subjective happiness, and obesity have all assumed that the cohort linear
effect is zero (for example, see figure 5 in Reither et al. 2009). In contrast, Ryder, Mannheim, and
other thinkers have long theorized that intercohort differences account for massive social and
cultural change. Yet, the HAPC will, in general, arbitrarily fix the cohort slope near to zero, giving
results that assume trendless fluctuation.

3.2. Point Identification with Measured Causes

As discussed in Section 2.4, at the heart of any APC analysis is a theoretical model that specifies
how various causal processes, what we call here mechanisms,!? are associated with each of the APC
variables. What is peculiar to many APC analyses is the attempt to assess the relative importance of
the three APC processes without relying on either theory or observed measures of their associated
causal mechanisms.

The first instance of a mechanism-based approach in an APC analysis was by Duncan (1985),
who proposed using education as a mechanism between cohort and an outcome. The existence of
observed measures of associated processes has two advantages. First, with assumptions, the total
effects of the APC variables may be identified. Second, in some cases, models—or more precisely
some components of a model—will be overidentified, allowing one to jointly test the consistency
of one’s assumptions. In general the more measures one has of the associated processes and related
assumptions, the more likely that the model will be at least just identified, if not overidentified. As
is the case with the methods using equality constraints discussed in Section 3.1, overidentification
can be of great assistance in supporting the credibility of a model’s assumptions.

3.2.1. Proxy variables. Starting in the 1980s, researchers began using what is now called the
proxy variables approach, which involves replacing one of the temporal variables with one or more
mechanisms (Glenn 2005, Heckman & Robb 1985).!* For example, Farkas (1977) replaced the
period variable with unemployment rates to examine the female employment rate across age and
cohort groups. Other examples include cohort size (Kahn & Mason 1987), cohort exposure to lead
(McCall & Land 2004), and cohort smoking behavior (Preston & Wang 2006).

The proxy variables approach is typically viewed as simply substituting one of the temporal
variables for another nontemporal variable. There is considerable advantage, however, in under-
standing this approach as assuming that there is a single mechanism, here Mp, representing all of
the direct association of P with Y. As specified, the model can be estimated in two stages. Using
the example of female employment rate in the previous paragraph, in the first stage, one would
regress the unemployment rate on the period variable. In the second stage, one would regress the
female employment rate, ¥, on age, cohort, and the unemployment rate.

The model as specified makes two strong assumptions. The first assumption is that neither age
nor cohort influence the unemployment rate, an assumption that is testable. The second assump-
tion is that Mp is the only mechanism linking P with Y. This can be assessed using conventional

methods by testing the hypothesis that period’s nonlinear effects are zero.!’

130Brien (2014) uses the term “characteristic” in discussing the type of models in this section.

14When the proxy refers to the cohort variable, O’Brien (2014) terms these “age-period-cohort characteristic”
models.

15A problem can occur if the proxy variable only depends linearly on its APC variable. In this case, we are
simply back to the original identification problem in that age, cohort, and the unemployment rate are linearly
dependent.
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Figure 3

This graph shows a full-fledged mechanism-based age-period-cohort model of political alienation.
Double-line, double-headed arrows denote the linearly dependent relationships among the three temporal
variables. All variables are observed in the graph. 4, P, and C refer to age, period, and cohort, while
denotes the outcome, political alienation. The causal mechanisms are defined as follows: M, cohort size;
M,, church attendance; M3, Watergate; My, Republican president; Ms, unemployment rate; Mj, educational
level; M7, employment status. Figure adapted with permission from Winship & Harding (2008).

3.2.2. Mechanism-based approaches. As noted above, the proxy variable approach makes
two strong assumptions: that any mechanism is only affected by a single APC variable and that
the association between any APC variable and the outcome runs through a single mechanism.
Winship & Harding (2008) show that neither of these two assumptions are desirable or necessary.
Figure 3 shows their model for political alienation based on General Social Survey (GSS) data.

As can be seen in this figure, both period and cohort work through multiple mechanisms and
cohort size is associated with both period and cohort. Winship and Harding’s approach brings a
full-fledged mechanism-based strategy to APC analysis. They show in particular that Pearl’s (2009)
front door criterion allows for specific APC models to be just-identified or even overidentified.
A key result of Winship & Harding (2008) is that if one has measures of all the causal processes
indexed by atleast one of the APC variables, then the total effects for all three APC variables will be
identified. This can be assessed by testing the hypothesis that the nonlinear effects of the variable
on the outcome are zero after conditioning on its associated mechanisms. Winship and Harding’s
model is vastly overidentified, containing 62 degrees of freedom (if it were just identified, it would
have zero degrees of freedom). They present chi-square, Bayesian information criterion (BIC), and
Akaike information criterion (AIC) statistics that all show that the model fits the data very well.

In general, the more overidentified the model, the more opportunity there is for the model to be
inconsistent with the data. Without additional information, all APC models with just-identifying
constraints fit the data equally well. With respect to the data, these models are empirically equiv-
alent (see Lee & Hershberger 1990). Distinctions among empirically equivalent models must be
made on the basis of theoretical grounds. It is far better if one can also use data to justify one’s
model and its underlying assumptions.

4. PARTTAL IDENTTFICATION USING BOUNDING
AND SENSITIVITY ANALYSES

As we hope the previous section has convinced the reader, point identification of the total effects of
the three APC variables involves strong assumptions. Unless these assumptions are theoretically
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motivated and/or tested against the data, it is unclear how one should interpret one’s estimates,
much less have any confidence in them. In this section we discuss an approach based on partial
identification of the total effects using bounds (see Fosse & Winship 2019), a less demanding
goal and, as such, one requiring weaker assumptions. Using bounds, we can achieve estimates
of the total effects of the APC variables that are typically far more defensible because the strong
assumptions required for pointidentification are not needed. That noted, as the empirical example
reveals, and our analysis of other empirical examples has found (Fosse & Winship 2019), a partial
identification analysis can often give bounds that are sufficiently tight that one has, in essence,
obtained point identification.

4.1. The Canonical Solution Line

"To understand the bounding approach, it is crucial to recognize the geometric interpretation of
the linear dependence problem (O’Brien 2011, 2014). In the discussion that follows, we let 6, =
@ + 7 and 6, = y + 7. These are estimable quantities that determine the location of the canonical
solution line in the parameter space (that is, each data set will produce differing values of these
parameters and thus different trade-offs for setting various constraints). In the absence of data,
the age, period, and cohort slopes may take on any combination of values in a 3D space. For
convenience, in Figure 42 we show the age-period plane defined by the identified quantity 6; = 3,
while in Figure 4b we show the period-cohort plane defined by the identified quantity 6, = —2.
The intersection of these two planes then defines a line, as demonstrated in Figure 4d. This line
is known as the solution line as all points on the line represent parameter estimates for o, 77, and
y that are equally consistent with the data (O’Brien 2011, 2014). This is a visual representation
of the APC identification problem. If there were no linear dependency, then we would have three
planes intersecting at a single point in the parameter space. Any constrained set of estimates o*,
7%, and y* will lie on this line, which is mathematically equivalent to assuming a particular value
of the unknown overall linear component given by the scalar v in Equation 3.

It is crucial to understand what is accomplished when data are applied to an APC model. In
the simple case where there are only linear effects, the data can take us from a 3D space where
all parameter values are possible to a 1D space where only combinations of estimates lying on
a line are consistent with the data. This same reduction also holds if our model has nonlinear
effects, because they are fully identified. This has not been widely recognized in the current APC
literature in sociology and demography. As Fosse & Winship (2018) show, the solution line can
always be reduced to just three dimensions. They call this the canonical solution line. Accordingly,
the data go a long way toward constraining the possible estimates for the age, period, and cohort
slopes, restricting an initial set of parameters that could be anywhere in a high-dimensional space
representing a full set of possible linear and nonlinear effects to values lying on a single line. As
such, the data have been quite informative about parameter values, just not quite as informative
as we might like in the sense of providing unique estimates for the linear effects.

4.2. Bounding Regions and 2D-APC Graphs

There is a convenient way to further simplify the representation of the solution line in the previous
section. Because of the linear relationships & + 7 = 6; and = + y = 6,, we can reduce our 3D
representation to just two dimensions. One way of doing this is by having the horizontal axis
represent the period slope, the left vertical axis represent the age slope, and the right vertical axis
represent the cohort slope. Fosse & Winship (2019) call this a 2D-APC graph.

Continuing with our example, in Figure 5 we show a 2D-APC graph based on values of 6; = 3
and 0, = —2. The solution line shown in Figure 5 is identical to that shown in Figure 4. We
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Figure 4

Geometric derivation of the canonical solution line (blue diagonal lines). Panel 2 shows the age-period plane (red area) defined by

7 = 60; — a, where 0; = 3. Panel b shows a period-cohort plane (b/ue area) defined by w = 6, — y, where 6, = —2. Panel ¢ visualizes the
intersection of the age-period and period-cohort planes, while panel d visualizes the solution line based on 6; = 3 and 6, = —2.

specify each point in the coordinate space in terms of age, period, and cohort so that, for example,
the point (1, 3, —5) refers to @ = 1, 7 = 3, and y — 5. The solution line runs from the upper left
to the bottom right and the three dotted lines indicate, respectively, when the age, period, and
cohort coefficients are equal to zero.

As shown in Figure 5, and as is the case for all APC graphs, the slope of the solution line
relating period to age and cohort will always be —1. The values of 6, and 6; determine two things.
First, the difference between 6, and 6y, —5 in Figure 5, determines the offset between the age and
cohort scales. Thus, in Figure 5, when & = 0, y = —5. Second, at the point where 7 = 0, 6; and
6, determine, respectively, the location of the solution line in terms of & and y. Various traditional
APC estimators can be located on the 2D-APC graph and can be understood as making particular
assumptions about the linear age, period, and cohort effects (see Supplemental Appendix A).

The 2D-APC graph also clarifies an important, unrecognized fact in the APC literature
that by fixing the location of the solution line, the data also determine which of the eight
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2D-APC graph. Panel # reveals the 2D-APC graph is a function of the values of 6; and 6,, where 6 = o + 7
and 6, = 7 + y, and the variables «, 7, and y signify the age, period, and cohort linear effects, respectively.
As in Figure 4, 6; = 3 and 6, = —2, and the solution line is indicated in blue. The three dotted lines indicate
when the age, period, and cohort linear effects are equal to zero. Panel & shows the various signed plotting
regions: I (+, —, +), L (+, +, +), I (+, —, =), IV (+, +, =), V (=, —, =), and VI (—, +, —). Note that there is
no region representing either the (—, +, +) or (—, —, +) combinations of linear effects.

combinations of positive and negative age, period, and cohort effects are empirically possible.
Because the offset between age and cohort must be either positive or negative as determined by
the difference between the s, only six combinations can exist. Then, depending on the location
of the solution line, as few as two and as many as four remaining combinations might be possible.

Figure 5 shows six regions of the parameter space defined by the signed combinations of the
slopes («a, 7, y). These are regions I (+, —, +), Il (+, +, +), I (4, —, =), IV (+, +, =), V (—, —,
—), and VI (—, +, —). Note first that there is no region representing either the (—, 4+, +) or (—, —,
+) pattern of effects. Thus, theories that posit a linear negative age but positive period and cohort
effects, as well as those that posit a linear negative age and period but positive cohort effects, have
been ruled out by the data alone. In addition, the solution line runs through only four out of the
six regions, so we can also rule out any social or biological theory that posits that the linear age,
period, and cohort effects are all positive (region II) or all negative (region V). Thus, despite the
linear dependence problem, the data can eliminate a number of theoretical possibilities.

In order to make further progress in estimating the effects of age, period, and cohort, theory
is needed. For the moment, assume that age, period, and cohort have only linear effects. If we are
willing to make an assumption about the sign of one or more of the APC variables, we can often
draw conclusions about the sign and even the size of the remaining APC variables. For example,
suppose the outcome of interest is political ideology on a simple left-right scale, where higher
values indicate a more left-leaning ideology. One might think it reasonable to assume that the age
linear effect is negative (i.e., that people become less liberal as they age). Under this assumption,
the only pattern of effects that is consistent with the solution line are those associated with region
VI (—, +, —), that is, if the age effect is negative, then the period effect must be positive and the
cohort effect negative. Furthermore, we would know that the period effect had to be greater than
3 and the cohort effect less than —S5.
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Specifying monotonicity constraints. Suppose we have reason to believe the overall age effect is
monotonically increasing, and we want to specify a value for the linear age effect that ensures this is the case.
The red dashed lines show simulated nonlinearities for age. The solid blue line in panel & reflects the
assumption that o = 2, which is the minimum age slope required for a monotonic increasing overall age
effect.

Of course, most APC data contain linear and nonlinear effects. In addition, in most situations,
theory does not imply that linear effects should be positive or negative, but rather that the effect
of a variable should be monotonically increasing or decreasing over some range of the variable. As
we now explain, assumptions about monotonicity bound both the sign and size of linear effects.

Assume that we have strong theoretical reasons to believe that the overall age effect is mono-
tonically increasing. Now consider the dotted line in Figure 6, which graphs the nonlinear effects
of age. As can be seen, the effect is first increasing and then decreasing. We want to specify a
value for the linear age effect that ensures that the effect in age is monotonically increasing. This
means that between any two adjacent age categories, the effect is at least flat, if not upward slop-
ing. To do so, we need only find that pair of adjacent age categories in which the downward effect
is most negative. For example, suppose that the forward differences for the age nonlinearities are
Ao =1{5,2,1,—1,-2,—1.5,—1.5}. The minimum of these differences is —2, which is between
ages 35 and 40. To counter this downward deviation, the parameter value for the linear age term
must be greater than or equal to +2. In this figure the solid line shows what happens to the overall
age effect when the age slope is set to +2. As can now be seen, the overall effect of age is now
monotonically increasing. This will be true as long as the linear age effect is greater than or equal
to +2.16

Bounds analysis is not necessarily restricted to using a single bound. Fosse & Winship (2019)
conduct an APC analysis of homicide rates in the United States. They assume that the effect
of age is monotonically increasing during adolescence but monotonically decreasing after young
adulthood. This leads to very narrow bounds for the effects of period and cohort. They further
restrict the period effect to be nondecreasing during the crack epidemic of the second half of the
1980s. This essentially gives point estimates. An additional advantage of using multiple bounds for
more than one APC variable is that there may be no portion of the solution line that is consistent

16With some data sets, it may be useful to smooth the observed effects in age, period, or cohort in the Lexis
table to rule out the possibility of unreasonable sharp nonlinearities in the data affecting one’s monotonicity
analysis.
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with one’s assumed bounds. In this sense one is testing the theory as specified by a set of bounds
against the data.

Bounding analyses can be easily incorporated with mechanism-based models to produce sen-
sitivity analyses. A bounds analysis begins with the widest possible range of estimates, which can
be narrowed down to a point estimate using progressively stronger assumptions. In contrast, a
sensitivity analysis begins with a point estimate and then weakens the assumptions to consider a
wider range of estimates. In other words, they come from different starting points, but bound-
ing analyses and sensitivity analyses are essentially equivalent. To conduct a sensitivity analy-
sis, one can first use a mechanism-based model to obtain a point estimate and then specify up-
per and lower bounds representing the sensitivity due to omitted pathways.!” For example, in
their study of political alienation, Winship & Harding (2008) construct bounds by theorizing
about the sign and size of the effect of cohort on church attendance, which is omitted in their
model due to linear dependence. The resulting bounds are small, and their main conclusion of the
dominance of period effects in understanding changes in political alienation remains unchanged.
As Winship & Harding (2008, p. 392) point out, it is often the case that “a partially identified
model may be quite informative if the bounds on the effects of the APC variables are relatively
narrow.”

4.3. A General Framework for Age-Period-Cohort Analysis

The insights outlined above provide general guidelines for doing an APC analysis. A basic prin-
ciple is that a researcher should attempt to learn as much as possible from the data while making
the fewest assumptions possible. We recommend the following steps when conducting an APC
analysis:

1. Linearized design matrix: Separate the linear from the nonlinear components using a lin-
earized design matrix. Using the linearized design matrix, fit a model with the period linear
effect fixed to zero.!®

2. Identified quantities: Report the identifiable combinations of linear effects (e.g., 6y = o + 7
and 6, = y + ) that determine the location of the canonical solution line in the parameter
space. Report the full set of nonlinear effects (e.g., &, 77, and ). Conventional significance
tests and fit statistics can be applied.

3. Canonical solution line and the 2D-APC graph: Visualize the canonical solution line using
a 2D-APC graph. Because the nonlinear effects are point-identified, they can be visualized
using traditional graphical techniques.

4. Partial identification using bounding analyses: Specify a series of bounds using explicit theo-
retical assumptions about the size, sign, and/or shape of the temporal effects. If one is willing
to make strong assumptions, then the bounds will reduce to point estimates on the canon-
ical solution line. In specifying bounds, one should ask whether there is value in making
stronger assumptions to obtain more precise estimates. If not, proceed to the next step.

5. If observed measures of causes are available:

(1) Mechanism-based models: Using the observed measures of causes, fit one or more
mechanism-based models to obtain point estimates of the temporal effects. Overiden-
tification tests may be applied.

7For an excellent overview of sensitivity analyses with underidentified structural equation models, see Land
& Felson (1978).

18Methods for constructing a linearized design matrix can be found in most textbooks on matrix algebra; also
see Fosse & Winship (2018).
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(i7) Sensitivity analyses: After fitting mechanism-based models, consider conducting a sensi-
tivity analysis with a 2D-APC graph to assess the robustness of findings in the presence
of unobserved causal pathways.

6. Development of theoretical models: Make tentative conclusions oriented toward building
more detailed, richer theoretical models of temporal effects.

4.4. Empirical Example with Verbal Ability

For the purposes of illustration, we examine APC effects on verbal ability. Using the GSS, we
obtain data on N = 23,824 respondents. We restrict the sample to white males born in the United
States who are 30 years or older (i.e., who are likely no longer enrolled in college).!? The outcome
is the number of words correct on a basic vocabulary quiz of ten items. For simplicity of exposition,
we assume the outcome is continuous.?’ Age and period are grouped into five-year intervals.

We followed the general procedure outlined in the previous section to analyze these data. First,
we constructed a linearized design matrix that separates the linear from the nonlinear components.
In our design matrix, we fixed the period linear effect to zero in order to obtain estimates of 6;
and 6,, which were 8, = —0.122 (t = —1.466, p = 0.143) and &> = 0.384 (z = 4.109, p < 0.001).

Second, we inspected the nonlinear effects. F-tests indicated that the nonlinear effects are sta-
tistically significant for all three variables. Third, we graphed the canonical solution line using a
2D-APC graph (see Figure 7a) as well as the nonlinear effects (see Figure 10 in Supplemental
Appendix B). The 2D-APC graph in Figure 74 reveals that we can rule out all parameters lying
in regions IT and V (note that the canonical solution line runs through a small part of region III).
In other words, the three temporal linear effects cannot be all positive or all negative. We also fur-
ther divided the 2D-APC graph into additional regions based on monotonicity constraints. These
regions are shown in Figure 11 in Supplemental Appendix B.

Next, we conducted a series of basic bounding analyses, which are shown in Figure 7b,c. In
Figure 7b, we assume that the linear effect for age is nonnegative, reflecting a basic assumption
that the verbal ability variable in the GSS captures crystallized rather than fluid intelligence. With
this assumption, we can conclude that the period linear effect is negative and the cohort linear
effect must be greater than 0.506. In Figure 7¢, we impose monotonicity constraints on the age
effect. Specifically, we assume that the age effect increases monotonically to age 45 and is not
monotonically increasing after age 45. In other words, the age effect after 45 can monotonically
decrease, remain the same, or increase (but not necessarily monotonically so). This is equivalent to
the assumption that —0.031 < « < 2.755. When combined with the nonlinear effects, we obtain
the bounded effects shown in Figure 8a—c.

At this point we would quit our analysis if we had no measured causes. Because the GSS is a rich
source of other variables, we proceed to the fifth step and conduct a mechanism-based analysis.
As a basic mechanism-based model, we use years of education (ranging from zero to 20) as a
mechanism between period and cohort and the outcome. This reflects the widely held belief that
the rise in verbal ability scores throughout the twentieth century is at least partly attributable to
the expansion of higher education (Schooler 1998). The mechanism-based model includes a full
set of nonlinearities that have a direct effect on the outcome and indirect effects via the education
variable. Using the product rule, the mechanism-based model produces a total linear effect of
7 = 0.888.

9Note that this sample restriction increases the plausibility of no direct path between age and years of
education.
20We obtain similar results treating the outcome as a count variable.
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Figure 7

Verbal ability: 2D-APC graph with bounds. Panel # indicates the canonical solution line (so/id blue line) on the 2D-APC graph for verbal
ability, as measured by the US General Social Survey, with the boundaries for the signed plotting regions as shown in Figure 5. Panel &
displays bounds on the 2D-APC under the assumption that the linear age effect is non-negative. The shaded area indicates the regions
with possible solutions for each parameter, and the dashed blue line indicates portions of the canonical solution line that have been
ruled out. Panel ¢ displays bounds under monotonicity constraints for the age effect, such that —0.031 < « < 2.755. Panel 4 shows
bounds under the assumption that the age linear effect is positive and that 7 = 0.888 is an upper bound on the cohort linear effect.

However, it is likely that several mechanisms are missing, so we proceed to the sixth step and
conduct a bounding analysis. As argued by Glenn (1994), increases in television use and declines
in newspaper consumption likely drive cohort effects in verbal ability. Glenn argues that these
negatively impact verbal ability, suggesting that the estimated linear effect for cohort using just
education as a mechanism is an upper bound on the true cohort linear effect.?! We also assume that
the age effect is monotonically increasing from ages 30 to 45. These bounds and the point estimate
for the mechanism-based model are shown in Figure 7d. When combined with the nonlinear
effects, we obtain the overall temporal effects in Figures 8d—f. These results reveal that cohort
effects dominate in explaining changes in verbal ability. Finally, we conclude by specifying that

21As Glenn (1999, p. 270) contends, “the main ‘something’ that has offset the effects of increased education is
a decline in reading.”
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theoretical models of temporal effects should include not only education but also measures of
media consumption, which are thought to be linked to the cohort timescale (Glenn 1999).

5. CONCLUSION

Social and cultural change is a fundamental topic in the social sciences, especially within sociology.
The great classical thinkers in sociology—Weber, Marx, and Durkheim—all placed understanding
social and cultural change at the core of their works. In sociology and demography, APC models
are a popular, general set of techniques for understanding temporal effects. Over the decades, a
variety of methods have been proposed to identify the point estimates of the effects of each of the
three APC variables. However, there has been little agreement on the validity of any proposed
approaches, and findings from APC models remain highly controversial.

In the first part of this article, we reviewed the basics of APC analysis, discussing how APC
effects can be interpreted as causal structures. In the second part of the article, we examined a
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range of APC techniques used by researchers. Traditional methods are only potentially useful
if researchers are willing to recognize the strong assumptions behind them and justify these as-
sumptions theoretically and, in the case of overidentified models, test them against the data. Far
too seldom is this done. Researchers have been too ambitious in immediately desiring point es-
timates of the total effects of age, period, and cohort and then remiss in failing to recognize the
costs in pursuing this goal. Much can be learned from APC data using methods that are more
transparent and make much weaker assumptions. In the third part of the article, we reviewed an
approach based on partial identification using bounds. The goal has been to clarify what can be
learned from the data itself and what can be concluded using theoretical assumptions about the
size, sign, or shape of the temporal effects. As is generally the case with methodological advances,
there is the question of whether past substantive findings will be sustained or overturned. This is
a critical task for future APC analysis given that many of the methods used have often relied on
untested or untestable assumptions.
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