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BAYESIAN AGE–​PERIOD–​COHORT 
MODELS 

Ethan Fosse

8.1  Introduction

Researchers in a wide range of fields have long sought to understand social and 
cultural change by identifying the unique contributions of age, period and cohort 
(APC) processes on various outcomes (Ryder 1965). The basic idea is that any tem-
poral change can be attributed to three kinds of processes: (1) changes over the life 
course of individuals, or age effects;1 (2) changes due to the events in particular years, 
or period effects; (3) changes due to the replacement of older cohorts of individuals 
with younger ones with different characteristics, or cohort effects. However, in what 
has been called the APC identification problem (Mason and Fienberg 1985a, 1985b), 
the linear effects of an APC model cannot be uniquely estimated due to the perfect 
linear dependency among the age, period and cohort variables. Intuitively, once we 
know a person’s age and the year of measurement (or period), then we also know 
that person’s birth year (or cohort). A variety of approaches have been proposed to 
deal with the APC identification problem, but the great majority of studies have 
taken a frequentist rather than Bayesian perspective.

As I discuss in this chapter, the main advantage of the Bayesian framework for 
APC analysis is that the analyst can, in principle, explicitly incorporate theoretical 
considerations, qualitative judgments and additional data into the inferential pro-
cess. In the frequentist tradition, researchers have long noted the importance of 
integrating what the political scientist Philip Converse (1976) dubbed “side infor-
mation” into an APC analysis, typically in the form of constraints on the parameters. 
However, the Bayesian paradigm, which places specification of the prior distri-
bution front and center, underscores that it is more appropriate to talk about the 
importance of incorporating primary information into any APC analysis. The task 
ahead, then, is to develop a general Bayesian APC model that allows researchers 
to easily and explicitly incorporate such primary information into their analyses. 
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Doing so will require specifying what the statistician Paul Gustafson (2015: 15–​18) 
calls a transparent reparameterization of an APC model, which renders clear the impact 
of nonidentifiability on one’s conclusions.

The rest of this chapter is organized as follows. First, I introduce the basics of 
the Bayesian approach to inference. Second, I outline the classical APC (or C-​APC) 
regression model in terms of the Bayesian perspective, comparing it with the clas-
sical (or frequentist) approach. Third, I discuss the identification problem from a 
Bayesian perspective using a transparent reparameterization of the C-​APC model. 
Fourth, I delineate a general framework for Bayesian APC modeling. In doing so, 
I review previous Bayesian approaches, which have focused primarily on developing 
reliable forecasts and applying mechanical, one-​size-​fits-​all, prior distributions. In 
addition, I discuss the specification of prior distributions in APC analysis, outlining 
a typology of four main kinds of priors. Next, using a transparently reparameterized 
model, I illustrate a Bayesian approach to APC analysis by examining the temporal 
effects of political party identification in the United States. Finally, I conclude with 
suggestions for future research, discussing how a Bayesian approach to the APC 
identification challenge places theoretical considerations to the fore.

8.2  Basics of the Bayesian approach

Before discussing Bayesian APC models, I  first outline the basics of the Bayesian 
approach to inference.2 Suppose we have an n × 1 column vector of data 
y = …( , , )y yn

T
1 , where the superscript T  denotes the transpose and an unknown 

parameter θ. For example, y  could represent the values of a socioeconomic index 
in a sample of n  individuals and θ  could represent the average socioeconomic 
index in a population of individuals. Let p .( )  denote a probability distribution and 
p(.|.)  denote a conditional probability distribution. We can further define a data 
(or sampling) distribution p( | )y θ , which gives the probability distribution of y 
conditional on θ  under an assumed parametric model. The typical goal is to obtain 
a reasonable estimate (or set of estimates) of the unknown parameter.

In the frequentist (or classical) tradition typically adopted by social scientists, the 
data y  is treated as a random variable while the parameter θ  is viewed as a single 
fixed, unknown quantity. As a result, in the frequentist perspective it makes little sense 
to talk about a probability distribution for the parameter given the data. Instead, 
to obtain an estimate of θ , we can define a likelihood function p( | ) ( | )y yθ θ= L ,  
where L( | )θ y  produces the likelihood of the parameter given fixed values of the 
data (Aster et  al. 2018).3 For many of the possible values of θ , the likelihood 
function will produce output values very close to zero because these values of θ  
are unlikely to have generated the observed data y . However, for other values of θ  
the likelihood function will produce considerably larger output values, indicating 
that the corresponding values of θ  are much more likely to have generated the 
observed data. In fact, by maximizing the likelihood function we obtain the value 
of θ  most likely to have produced the observed data, or what is known as the 
Maximum Likelihood Estimate (MLE) of θ . The MLE is usually calculated using 
numerical optimization methods, but in simpler cases it can be derived analytically.4
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In contrast to the frequentist tradition, in the Bayesian perspective both the data 
y  and parameter θ  are viewed as random variables (Gill 2008).5 Accordingly, our 
goal is to make an informed statement about p( | )θ y , or the probability of the 
parameter given the data under a particular assumed parametric model. To obtain 
this distribution, we need to make use of Bayes’ theorem, which is derived using 
basic probability theory. Because both y  and θ  are random variables, we can write 
out the joint probability of y  and θ , or p θ ,y( ) . This joint distribution can be 
factorized as

p p pθ θ θ
θ

, ( | ).
� �

y y( ) = ( )∑
all

	
(8.1)

Moreover, because we can write p p pθ θ, ( | ),y y y( ) = ( )  after substitution and 
rearranging terms we obtain Bayes’ theorem:

p
p p

p
( | )

( | )
,θ

θ θ
y

y

y
=

( )
( )

	 (8.2)

where p( | )y θ  is the likelihood, p θ( )  is the prior distribution and p( | )θ y  is the 
posterior distribution, which is a probability density function if θ  is continuous 
and a probability mass function if θ  is discrete. The denominator, p y( ) , is simply 
the unconditional (or marginal) probability distribution of the data.6 If θ  is a dis-
crete parameter, then we must sum over all possible values of θ  to find the uncon-
ditional distribution of the data:

p p py y( ) = ( )∑
all

( | ).
θ

θ θ 	 (8.3)

Alternatively, as is more commonly the case, if θ  is continuous then we must use 
integration to find the unconditional distribution of the data:

p p p dy y( ) = ∫ ( )( | ) .θ θ θ 	 (8.4)

The quantity p y( )  can be viewed as a normalizing constant, the purpose of which 
is to ensure that the posterior distribution integrates (or sums) to 1 as required by 
the definition of a probability density (or mass) function. Because p y( ) , which 
does not depend on θ , provides no information about which values of θ  are more 
or less likely, the denominator is often omitted when displaying Bayes’ theorem, 
which can be represented compactly as

p p p( | ) ( | )θ θ θy y∝ ( ) 	 (8.5)

or
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Posterior Likelihood Prior,∝ × 	 (8.6)

where ∝  means “proportional to.”7 Equations 8.5 and 8.6 define the core 
machinery of Bayesian data analysis, showing how the likelihood p( | )y θ  can be 
“inverted” to produce the posterior p( | )θ y . The general procedure is as follows.8 
Before we observe the data y , we express our beliefs about the values of the par-
ameter of a particular model using a prior distribution p θ( ). The possible values 
of θ  define what is known as the parameter space of our model. We then use the 
likelihood p( | )y θ  to update our prior beliefs, thereby producing a posterior dis-
tribution, or p( | )θ y .

After obtaining the posterior, we can summarize its distribution to make mean-
ingful conclusions about the probable values of the parameter θ . For example, a 
researcher can report the expected value, or E[ | ]θ y , and the variance, or Var( | )θ y , 
of the posterior distribution. Also one can select various quantiles. Most commonly, 
for example, researchers cut the posterior distribution at the 2 5. %  and 97 5. %  
quantiles to construct a Bayesian credible interval (Gill 2008).9 Alternatively, one 
might find the interval of minimum length that contains some specified probability 
level, or what is called the highest posterior density (HPD) interval (Gill 2008: 48–​
51). Also, because p θ( )  is a distribution, one could present the findings graphic-
ally, displaying a range of parameter values and their corresponding probabilities. 
I now turn to a discussion of the basic APC model in terms of both frequentist and 
Bayesian perspectives.

8.3  The classical APC regression model

It is common in the APC literature to use index notation to keep track of the 
dimensions of a temporal data structure (Mason and Fienberg 1985: 67–​71). We 
will let i I= …1, ,  represent the age groups, j J= …1, ,  the period groups, and 
k K= …1, ,  the cohort groups with k j i I= − +  and K I J= + − 1.10 Using this 
index notation, temporal effects in an age–​period array can be represented using 
the classical APC (C-​APC) model, also known as the multiple classification model 
(Mason et al. 1973: 243) or accounting model (Mason and Fienberg 1985: 46–​47, 
67), which has the following generic form (Mason and Fienberg: 67–​68):11

Yijk i j k ijk= + + + +∝ α ≠ γ  	 (8.7)

where Yijk is the outcome variable to be explained, µ is the intercept, αi represents 

the ith age effect, π j represents the jth period effect, γ k represents the kth cohort 

effect, and ijk is the error term. The errors are assumed to be additive, independent 

and identically distributed (iid) according to a normal distribution with a mean 

zero and variance σ2, such that ijk N∼ ( )0 2,σ . To avoid overparameterization, 
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we apply the so-​called “usual constraints” that the parameters sum to zero, 

or 

i

I

i
j

J

j
k

K

k
= = =
∑ ∑ ∑= = =

1 1 1

0α π γ .12

The parameterization shown in Equation 8.7 is very flexible, allowing the age, 
period and cohort effects to be highly nonlinear because there is one parameter for 
each age, period and cohort category (Mason et al. 1973: 246). This can be seen in 
Table 8.1, which shows how each cell is represented by a unique combination of 
parameters.

For ease of exposition it is convenient to represent the C-​APC compactly using 
matrix notation:

y X= +β ,	 (8.8)

where X  is an I J I J K×( )× + + −( )2  design matrix with a leading vector of 1s 
for the constant, β is an I J×( )×1  vector of parameters to be estimated, y  is an 
I J×( )×1  vector of outcome values, and   is an I J×( )×1  vector of errors. As 

noted previously, the errors are assumed to be additive, independent and identically 
distributed (iid) according to a normal distribution with a mean zero and variance 

σ 2 , such that  ∼ ( )N 0 2,σ I , where 0  is an I J×( )×1  vector of zeros, and I  is 

an I J I J×( )× ×( )  diagonal matrix.
In the frequentist tradition, we can obtain estimates of the parameters by maxi-

mizing the likelihood function. For Equation 8.8, the likelihood function, or the 
probability of the data given the parameter vector β and scalar σ 2  as well as the 
input variables X , is given by:

p I J
T

( | , , ) ( , | , ) ( )y X y X
y X y X

β β
β β

σ σ
πσ

σ2 2
1

21

2

2
= = ××( ) − −( ) −( )

L e

 ,	 (8.9)

where e  and π are the conventional constants. Under the standard assumptions 
of the normal linear model, maximizing the likelihood function in Equation 8.9 

TABLE 8.1  Classical APC model on an age–​period array

Age groups Period groups

j=1 j=2 j=3=j

i=1 µ+α1+π1+γ5+ϵ1,1,5 µ+α1+π2+γ6+ϵ1,2,6 µ+α1+π3+γ7+ϵ1,3,7

i=2 µ+α2+π1+γ4+ϵ2,1,4 µ+α2+π2+γ5+ϵ2,2,5 µ+α2+π3+γ6+ϵ2,3,6

i=3 µ+α3+π1+γ3+ϵ3,1,3 µ+α3+π2+γ4+ϵ3,2,4 µ+α3+π3+γ5+ϵ3,3,5

i=4 µ+α4+π1+γ2+ϵ4,1,2 µ+α4+π2+γ3+ϵ4,2,3 µ+α4+π3+γ4+ϵ4,3,4

i=5=I µ+α5+π1+γ1+ϵ5,1,1 µ+α5+π2+γ2+ϵ5,1,2 µ+α5+π3+γ3+ϵ5,1,3
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results in estimates that coincide with those of ordinary least squares (OLS), such 
that ˆ ˆ ( )β βMLE OLS= = −X X X yT T1 , where the superscript −1  denotes a regular 
inverse.13

8.3.1  The Bayesian C-​APC model

From the Bayesian perspective our goal is to make a statement about the prob-
ability of the parameters given the data. In other words, we want to summarize 
the posterior distribution p( , | , )β σ2 y X . However, the design matrix X  and 
outcome vector y  are both commonly considered the data. This implies a full 
Bayesian model includes not only the parameters β and σ 2  linked to the con-
ditional distribution of y  given X , but also another set of parameters ψ linked 
to the unconditional distribution of X  (Gelman et al. 2014: 354). Using Bayes’ 
theorem, this in turn suggests the following set-​up (see Jackman 2009: 99–​103; 
Trader 2014: 2):

p
p p

p
( , , | , )

( , | , , ) , ,

,
,β

β β
σ

σ σ
2

2 2

ψ
ψ ψ

y X
y X

y X
=

( )
( ) 	 (8.10)

where p( , , | , )β σ2 ψ y X  is the posterior distribution, p( , | , , )y X β σ2 ψ  is the joint 
likelihood, p β σ, ,2 ψ( ) is the prior distribution, and p y X,( )  is a normalizing 
constant.

However, Equation 8.10 does not encode the typical model of interest among 
social scientists. Specifically, the Bayesian version of the C-​APC model does not 
entail estimating a set of parameters for the joint distribution of y  and X; rather, 
as a regression model, it involves estimating parameters for the distribution of the 
outcome y  conditional on the variables in X. However, under standard regression 
assumptions, ψ provides no additional information about the parameters β and σ 2  
after conditioning on X. Accordingly, we can factorize Equation 8.10 into two dis-
tinct, independent parts:

p p p
p p

p

p

( , , | , ) ( , | , ) ( | )
( | , , ) ,

( | )
β σ β σ

β σ β σ
2 2

2 2

ψ ψy X y X X
y X

y X
= =

( )

×
(( | )

.
X

X

ν ( )
( )

p

p

ψ
	 (8.11)

Equation 8.11 tells us that we can independently focus on one of two ana-
lyses. Either we can make inferences about β and σ 2  based on the condi-
tional distribution of y  given X  or we can make inferences regarding ψ 
using the unconditional distribution of X . Our interest lies in the former. 
Noting that p p p p( | ) [ ( | ) ]/ψ ψ ψX X X= ( ) ( ), we can write Bayes’ formula for 
the C-​APC as:
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p
p p

p
( , | , )

( | , , ) ,

( | )
,β σ

β σ β σ
2

2 2

y X
y X

y X
=

( )
	 (8.12)

where p( , | , )β σ2 y X  is the posterior distribution, p( | , , )y X β σ2  is the likelihood, 
p β σ, 2( ) is the prior distribution and p( | )y X  is a normalizing constant. Because 
conditioning on the design matrix X  is implicit in our model and the denomin-
ator is just a normalizing constant, Equation 8.12 is often simplified as:

p p p( , | ) ( | , ) , ,β σ β σ β σ2 2 2y y∝ ( ) 	 (8.13)

where as before ∝  means “proportional to” (cf. Equations 8.5 and 8.6). This is just 
another way of stating that our prior beliefs about the parameters, encoded in terms 
of a prior distribution, can be updated by the likelihood function, which arises from 
the statistical model and the data. The result of this updating is a posterior distribution, 
which represents our “post-​data” beliefs about the parameters (Gustafson 2015: 6).

To obtain Bayesian estimates we must specify our beliefs about the parameters 
in the form of a prior distribution. Because there are many types of distributions, 
each of which can take any number of forms, there are many ways to set up our 
model. Using “stacked” notation (e.g., see McElreath 2018: 124), which explicitly 
reveals our distributional assumptions, one way to set up the Bayesian version of the 
C-​APC model is as follows:

Y Yijk ijk∼ ( )N ˆ ,σ 	 (8.14)

Ŷ A P Cijk
i

I

i i
j

J

j j
k

K

k k= + + +
− − −

∑ ∑ ∑µ α π γ
1 1 1

� � � 	 (8.15)

µ µ σµ µ∼ ( )N , 2 	 (8.16)

α µ σα αi i i
i I∼ ( ) = … −N for, , ,2 1 1

π µ σπ πj j j
j J∼ ( ) = … −N for, , ,2 1 1	 (8.17)

γ µ σγ γk k k
k K∼ ( ) = … −N for, , ,2 1 1

σ σ σ∼ ( )Uniform a b, , 	 (8.18)

where Ai , Pj  and Ck  are sum-​to-​zero effect (or deviation) contrasts, with the last 

of each age, period and cohort category dropped. The corresponding parameters 
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α αi I, ,… −1, π πj J, ,… −1 and γ γk K, ,… −1 give the age, period and cohort deviations, 
respectively, from the overall (or grand) mean, captured by the intercept ∝ .  
Equation 8.14 represents the likelihood and Equation 8.15 represents the model, 
while Equations 8.16–​8.17 outline the prior distributions for the model parameters. 
In this specification of the C-​APC model I use normal priors for the intercept and 
deviation parameters while I use a uniform prior for the variance.14 The Bayesian 
version of the C-​APC model outlined above is general, requiring the researcher 
to input center and spread values for the normal priors as well as lower and upper 
values for the uniform prior. Any number of input values are possible, reflecting 
the wide range of possible prior beliefs about the parameters. An initial approach 
might be to use what are known, somewhat incorrectly, as “noninformative” (i.e., 
diffuse or flat)15 priors for the parameters, which would typically produce Bayesian 
estimates comparable to those from MLE or OLS in the frequentist tradition. 
However, the Bayesian estimates generated by the C-​APC model are highly sensi-
tive to the choice of priors, even those deemed to be “noninformative.” As a conse-
quence, researchers naively estimating the model outlined in Equations 8.14–​8.18 
may fail to realize that their findings are driven, in no small part, by their prior 
beliefs rather than the data and model. It is for this reason that I do not recom-
mend that researchers use the C-​APC model to estimate temporal effects, even in 
the context of a Bayesian analysis. To better understand why I advise against using 
the C-​APC model, I now turn to the issue of model identification from a Bayesian 
perspective.

8.3.2  The identification problem

A model is unidentified16 when multiple values of one or more of the parameters 
correspond to the same distribution of observed data (Gustafson 2015: 1–​2). When 
a model is identified, there is a one-​to-​one mapping between the distribution of 
the observed data and the parameter space, or the set of possible values of the 
parameters of a model. Accordingly, altering the values of the parameters will in 
general change the distribution of the data. In contrast, when a model is unidenti-
fied, there is a one-​to-​many mapping between the data and the parameter space. As 
such, it is possible to alter the values of at least one of the parameters and yet keep 
the distribution of the data unchanged. Furthermore, in the absence of identifica-
tion, this one-​to-​many mapping between the data and the parameter space remains 
even as the sample size goes to infinity.

As is well known, the C-​APC model in Equation 8.7 suffers from a fundamental 
identification problem due to linear dependence in the columns of the design 
matrix (Fosse and Winship 2018; 2019a). Algebraically, at least one of the columns 
of X  can be rewritten as a function of the other columns, such that the design 
matrix X  is rank deficient one (i.e., singular).17 Accordingly, a regular inverse 
( )X XT −1  does not exist and the model lacks a unique set of parameter estimates. 
In other words, there is a one-​to-​many mapping between the data and the param-
eter space. More formally, the set of parameters of the C-​APC model can be altered 
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without affecting the likelihood. Viewing the likelihood as a “hill,” the identifica-
tion problem corresponds to a “ridge” in the likelihood. This is a direction in the 
parameter space in which the likelihood is flat, extending from positive to negative 
infinity, no matter how large the sample (Gelman 2014: 89). In the frequentist trad-
ition, researchers have typically dealt with the lack of identification by applying a 
constraint, such as setting two adjacent age groups equal to each other or dropping 
one of the temporal dimensions altogether. However, as a number of scholars have 
pointed out (e.g., Fosse and Winship 2019a; O’Brien 2015; Yang and Land 2013), 
such constraints can rely on quite strong, often untenable, theoretical assumptions.

In the Bayesian approach, it has been suggested that nonidentification is not 
inherently a problem because a prior must be specified (see Gelfand and Sahu 
1999; Neath and Samaniego 1997; Poirier 1998). As the statistician Dennis Lindley 
(1972: 46) has noted, “unidentifiability causes no real difficulties in the Bayesian 
approach.” That is, as long as the researcher specifies a legitimate probability distri-
bution as the prior, then Bayes’ theorem will produce the posterior in terms of a 
legitimate probability distribution. For example, using the Bayesian version of the 
C-​APC model outlined in Equations 8.14–​8.18, one can choose some set of values 
for the priors, “turn the Bayesian crank” and generate a set of Bayesian estimates, 
which can then be summarized in the conventional way (Gustafson 2015: 5–​6). This 
is true even though the C-​APC model is not identified. However, an unidentified 
Bayesian model is not without the potential for misuse, especially if the parameter-
ization obscures the flow of information, as is the case with the C-​APC model. As 
Gustafson (2015) has forcefully argued, although the choice of parameterization in 
an unidentified model is mathematically arbitrary, some parameterizations are more 
useful than others for clarifying the influence of the prior distribution on the pos-
terior distribution (see also Gustafson 2005, 2009). In particular, he makes the case 
that nonidentified models should be expressed in terms of a transparent parameter-
ization, which clearly separates those parameters directly informed by the observed 
data from those that are, so far as possible, indirectly informed by the data.

8.4  Transparent reparameterization of the classical APC model

In this section I outline a transparent reparameterization of the C-​APC model that 
will clarify the underlying assumptions of the model. Let α , π and γ  denote the 
true, unknown linear effects. Similarly, let α* , π* and γ *  denote some other set of 
values of the linear effects. We can write the identification problem algebraically as 
(Fosse and Winship 2018: 316):

α α π π γ γ* * *and= + = − = +v v v, , ,	 (8.19)

where v  is some unknown scalar. Setting a range of values for v  traces out what 
is known as the canonical solution line, which is the set of possible values of the 
linear effects consistent with the data (Fosse and Winship 2018: 313–​319). This line 
corresponds with the maximum likelihood (or OLS) estimates in the frequentist 
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tradition. The canonical solution line lies in a three-​dimensional parameter space, 
where the dimensions are the values of the age, period and cohort linear effects 
ranging from negative to positive infinity.18

8.4.1  The linearized APC model

Researchers typically fit some version of the C-​APC model, which, under sum-​to-​
zero constraints, is expressed in terms of deviations (or “effects”) relative to a grand 
(or overall) mean. However, an equivalent representation entails decomposing each 
“effect” in the C-​APC into their respective linear and nonlinear effects. Fosse and 
Winship (2019b) call this reparameterized model the Linearized APC (or L-​APC) 
model (see also Chapter 6).

The ith  age effect in the C-​APC can be represented in the L-​APC model in 
terms of an overall linear age effect along with a unique parameter for the ith  

age nonlinearity: α α αi ii i= −( ) +*
 , where α  is the age linear effect, αi  is the 

ith  age nonlinear effect, and the asterisk denotes a midpoint or referent index 
i I* = +( )1 2/  (which ensures that the sum-​to-​zero constraints are satisfied). In 
other words, each age effect αi  is split into the sum of a common parameter α  
representing the age slope for the entire array, with a value shifting across rows 
(or age categories) as a function of the age index i , and a unique parameter αi , 
which is a nonlinearity specific to each age category. One can similarly decompose 
each period effect as π π πj jj j= −( ) +*

  with j J* = +( )1 2/  and each cohort 

effect as γ γ γk kk k= −( ) +*
  with k K* = +( )1 2/ . The L-​APC model thus has 

the following general form:

Y i i j j k kijk i j k ijk= + −( ) + −( ) + −( ) + + + +µ α π γ α π γ* * *
    . 	 (8.20)

The L-​APC model is based on a design matrix in which the linear and nonlinear 
components are in some way orthogonal to each other. There is a variety of ways 
to set up this design matrix, but orthogonal polynomial contrast gives parameter 
results that are easiest to interpret (for details, see Fosse and Winship 2018).

It is important to underscore that, because each of the “effects” in the C-​APC 
can be decomposed into their respective linear and nonlinear parts, the parameters 
from the L-​APC and C-​APC are fundamentally equivalent. That is, the L-​APC 
parameter vector is simply a decomposed version of the C-​APC, such that

β µ α π γ α α π π γ γι= , , , , ,…, … …∗ ∗ ∗
− − −( , , , , , , )     I j J k K

T
1 1 1

= , + − + … … …− − −( , , , , , , , , , , , ) .µ α π γ α α π π γ γv v v i I j J k K
T

     1 1 1 	 (8.21)

I will make use of this identity in the next section when I separate the C-​APC 
model into identified and unidentified components. Note that the presence of the 
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scalar v  indicates some of the parameters are not identified. In particular, some set 
of slopes α*, π* and γ *  will correspond to the true parameter slopes α, π and γ  
only if v  is exactly specified. This is equivalent to stating that the analyst needs to 
apply an exactly correct just-​identifying constraint to recover the true, unknown 
values of the temporal effects. However, because the intercept and nonlinear effects 
do not include the scalar v, they are identified.

8.4.2  Transparent reparameterization of the classical model

To construct a transparent reparameterization of the C-​APC, it is necessary to split 
the parameter vector into identified and unidentified components. To do so, I will 
take advantage of the L-​APC parameterization discussed in the previous section. 
Formally let β ξ λ β= ( ) = ( ), h , where β is the original C-​APC parameterization 
(see Equation 8.7), ξ is some set of identified parameters, λ  is an unidentified 
parameter, and h β( ) is the transparent reparameterization. There are several ways to 
define ξ and λ  –​ and thus, by definition, h β( ). One approach is to drop the period 
linear component from the design matrix of the L-​APC model, which results in the 
corresponding identified parameter vector:19

ξ µ α γ α α π π γ γ= … … …− − −( , , , , , , , , , , , ) .* *
     i I j J k K

T
1 1 1 	 (8.22)

Simple algebra can be used to show that ξ is, in fact, identified. To demonstrate this, 
note that dropping the period linear component from the design matrix is equiva-
lent to stating that π* = 0 or, equivalently, π − =v 0. Accordingly, we know that, in 
the identified parameter vector above, v = π. Using the fact that α α* = + v  and 
γ γ* = + v , after plugging in v = π we can thus express the identified parameter 
vector as

ξ = … … …− − −( , , , , , , , , , , , ) ,µ θ θ α α π π γ γ1 2 1 1 1     i I j J k K
T 	 (8.23)

where, in the terminology of Fosse and Winship (2019b), θ α π1 = +  and θ γ π2 = + .  
Because dropping the linear component is equivalent to constraining π* = 0,  
we can express the unidentified parameter as λ π= = v , where v  is an unknown 
scalar.

To summarize the foregoing, we can write the transparent reparameterization of 
the C-​APC model as h β ξ λ( ) = ( ), , where ξ is defined in Equation 8.23 and λ = v.  
This transparent reparameterization of the C-​APC model has two fundamental 
properties (Gustafson 2015). First, the distribution of the outcome given the design 
matrix depends only on the identified parameter vector ξ, not on the unidentified 
parameter λ . In other words, the likelihood with and without the unidentified 
parameter is the same, such that p p( | , ) ( | , )y X y Xξ λ σ ξ σ, , = ,2 2 . Second, regular 
parametric asymptotic theory applies to the model represented by p( | , , )y X ξ σ2 .  
In other words, the estimate of ξ converges in probability to its true value as the 

04_9780367174422c08_p142-175.indd   152 01-Sep-20   11:53:50 PM

Ethan
Rectangle

Ethan
Rectangle

Ethan
Rectangle



Bayesian Age–Period–Cohort Models  153

sample size increases to infinity. With these two insights, we are now ready to 
examine the identification problem within a Bayesian framework.

8.5  Bayesian interpretation of the APC identification problem

Using the transparent reparameterization outlined previously, we can write out the 
identification problem in Bayesian terms. Recall that we can write the posterior 
distribution of the Bayesian version of the C-​APC model as follows:

p
p p

p
( | , )

( | , , )

( | )
.β σ

β σ β σ
, =

,( )2
2

2

y X
y X

y X
	 (8.24)

To make sense of the identification problem from a Bayesian perspective, it is useful 
to re-​express the parameter vector β into identified and unidentified parts. The 
transparent reparameterization discussed previously informs us that we can substi-
tute ξ λ,( ) for β, where λ  is an unidentified parameter and ξ is a vector of identi-
fied parameters. Two important relationships follow from this reparameterization. 
First, we can write the likelihood as:

p p( | , , , ) ( | , , ),y X y Xξ λ σ ξ σ2 2= 	 (8.25)

which is another way of stating that the unidentified parameter λ  is not itself inform-
ative about the likelihood. Second, we can decompose the prior distribution as:

p p pξ λ σ ξ σ λ ξ σ, , , ( | , ),2 2 2( ) = ( ) 	 (8.26)

where p ξ σ, 2( ) is the prior for the identifiable parameters and p( | , )λ ξ σ2  is the 
prior for the unidentified parameter, conditional on the identified parameters. 
Using these identity relationships, we can thus split the model into two separate 
parts, one of which is identified and the other which is not (see Gustafson 2015; 
Nielsen and Nielsen 2014; Poirier 1998):

p
p p

p
( , | , )

( | , , ) ,

( | )
ξ σ

ξ σ ξ σ
2

2 2

y X
y X

y X
=

( )
	 (8.27)

and

p p( | , , , ) ( | , ),λ ξ σ λ ξ σy X 2 2= 	 (8.28)

where p( , | , )ξ σ2 y X  is the posterior of the identified parameters and p( | , , , )λ ξ σy X 2  
is the posterior of the unidentified parameter, conditional on the identified 
parameters. Equation 8.27 tells us that the identified part acts as a standard Bayesian 
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154  Ethan Fosse

model, such that the prior p ξ σ, 2( ) is updated by the likelihood p( | , , )y X ξ σ2  to 
produce the posterior p( , | , )ξ σ2 y X . In contrast, Equation 8.28 reveals that the 
conditional prior of the unidentified parameter, or p( | , )λ ξ σ2 , is not updated by a 
likelihood function. In fact, regardless of the sample size, the conditional posterior 
distribution of the unidentified parameter equals its conditional prior distribution. 
It also follows that the predictive distribution does not depend on the conditional 
prior for λ  (see Nielsen and Nielsen 2014: 8).

The implications of the Bayesian interpretation of the APC identification problem 
can be further clarified by restricting our attention to the linear effects (e.g., see Fosse 
and Winship 2018). Focusing just on the linear effects of the C-​APC, this means that 
β ξ λ α π γ θ θ= ,( ) = ( ) = ( )* * *, , , ,1 2 v . The parameters θ1  and θ2 , along with some 
value for v, are sufficient to derive a set of values for α*, π* and γ * . Crucially, the like-
lihood is equal to p p( | , ) ( | , )y X y Xβ ξ=  or p p( | , , , ) ( | , , )y X y Xα π γ θ θ* * * = 1 2 .  
In other words, the likelihood is a function of θ1  and θ2 , not the unidentified par-
ameter v. The prior distribution can be written as p p p pβ ξ λ ξ λ ξ( ) = ( ) = ( ), ( | ) 
or p p v p p vα π γ θ θ θ θ θ θ* * *, , , , , ( | , )( ) = ( ) = ( )1 2 1 2 1 2 . That is, we have a prior for 
the identifiable parameters, denoted by p θ θ1 2,( ) , and a prior for the unidentified 
parameter, conditional on the identified parameters, given by p v( | , )θ θ1 2 . Using 
Bayes’ theorem, we can accordingly write the posterior distribution for the identi-
fied parameters as:

p
p p

p

p
p p

( | , )
( | , )

( | )

( , | , )
( | , , ) ,

ξ
ξ ξ

θ θ
θ θ θ

y X
y X

y X

y X
y X

=
( )

=

or

1 2
1 2 1 θθ2( )

p( | )
,

y X
	 (8.29)

which shows that the posterior distribution for θ1  and θ2  is a function of the like-
lihood p( | , , )y X θ θ1 2  as well as the prior distribution p θ θ1 2,( ) . In other words, 
our prior beliefs about θ1  and θ2  are, in fact, updated by the data. In contrast, 
focusing on the unidentified parameter, we can write:

p p p v p v( | , , ) ( | ) ( | , , , ) ( | , ),λ ξ λ ξ θ θ θ θy X y X= =or 1 2 1 2 	 (8.30)

which indicates that the conditional prior for the unidentified parameter v  is not 
updated by the likelihood. That is, given values of θ1  and θ2 , the data do not 
modify our prior beliefs about the possible values of v . As a consequence, the 
choice of the prior is absolutely critical in determining the estimates of the linear 
APC effects. To avoid arbitrary results, APC analysts should, whenever possible, use 
a transparent reparameterization of the underlying model, basing their priors on 
careful, theoretically informed decisions.

Even though one’s prior beliefs are crucial in determining the results of the C-​
APC model, the data are still informative about the parameters, even those that are 
unidentified (Gustafson 2015: 18–​22). Specifically, the transparent reparameterization 
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of the C-​APC model reveals that the nonlinear effects are directly informed by the 
observed data, while the linear effects are indirectly informed by the data via the 
values of θ1  and θ2 . Given a set of estimated values for θ1  and θ2 , we will have a 
restricted set of possible estimates of the linear effects (Fosse and Winship 2018). That 
is, only a subset of possible values of the slopes are actually consistent with the observ-
able data. Furthermore, in the limit of an infinite amount of data, the posterior dis-
tribution can be described as a limiting posterior distribution, with a point mass at some 
value of θ1  and θ2  combined with a conditional prior distribution for the unidenti-
fied parameter v  (Gustafson 2015: 16–​39). In other words, as the sample size goes to 
infinity, the estimates of θ1  and θ2 , which are directly informed by the data, become 
concentrated at a single point, providing maximal information on the set of possible 
combinations of the slopes. Thus, even if the only parameters of interest are the linear 
effects, in general a larger sample size will be preferable to a smaller sample size.

The transparent reparameterization outlined above clarifies the APC identifi-
cation problem from a Bayesian perspective. Placing prior distributions over the 
parameters of the C-​APC model has the potential to mislead researchers. The 
reason is that, in both the frequentist and Bayesian versions of the C-​APC model, 
virtually the entire parameter vector is unidentified, because each estimated effect 
(i.e., each deviation from the grand mean) is composed of both linear and non-
linear effects. An unfortunate consequence is that the influence of the prior on the 
parameter estimates is unclear, because the prior is only partly updated by the like-
lihood.20 In contrast, the reparameterized model splits the parameter vector into a 
set of identifiable parameters and an unidentified parameter, elucidating the central 
role of the prior in Bayesian APC models.

8.6  Introducing the linearized Bayesian APC model

The previous sections discussed how one can reparameterize the C-​APC model 
into the L-​APC model, which can then be used to illuminate the identification 
problem from a Bayesian perspective. Besides clarifying the identification problem, 
we can also use the L-​APC model’s parameterization to set up a linearized Bayesian 
APC (L-​BAPC) model. As with the conventional (i.e., non-​Bayesian) L-​APC 
model, the design matrix is one that simply separates the linear from the nonlinear 
components. Prior distributions are then placed over the parameters, with par-
ticular attention to priors placed over the linear effects in light of their particular 
sensitivity to the specified priors. There are a wide range of possibilities for setting 
up the L-​APC model. For example, one way to specify the L-​BAPC model is as 
follows (again using “stacked” notation):

Y Yijk ijk∼ ( )N ˆ ,σ 	 (8.31)

Ŷ A P C A P Cijk L L L

I

i i

J

j j

K

k k= + + + + + +
− − −

∑ ∑ ∑µ α π γ α π γ
2

1

2

1

2

1

� � �   	 (8.32)
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µ µ σµ µ∼ ( )N , 2 	 (8.33)

α α α∼ ( )Uniform a b,

π π π∼ ( )Uniform a b, 	 (8.34)

γ γ γ∼ ( )Uniform a b,



 

α µ σα αi i i
i l∼ ( ) = … −N if, , ,2 2 1



 

π µ σπ πj j j
j m∼ ( ) = … −N if, , ,2 2 1	 (8.35)



 

γ µ σγ γk k k
k n∼ ( ) = … −N if, , ,2 2 1



 

α µ σα αi i i
i l I∼ ( ) = … −Laplace if, , ,2 1



 

π µ σπ πj j j
i j m J∼ ( ) = … −Laplace f, , ,2 1	 (8.36)



 

γ µ σγ γk k k
k n K∼ ( ) = … −Laplace if, , ,2 1

σ σ σ∼ ( )Uniform a b, , 	 (8.37)

where AL , PL  and CL  represent the linear components and Ai , Pi  and Ci  
represent the nonlinear components. The linear and nonlinear components are 
represented in terms of sum-​to-​zero orthogonal polynomial contrasts. For example, 
A2  denotes a quadratic orthogonal polynomial age contrast, A3  a cubic orthog-
onal polynomial age contrast, A4  a quartic orthogonal polynomial age contrast, 
and so on. As with the C-​APC model, the overall (or grand) mean is captured by 
the intercept µ. Equation 8.31 denotes the likelihood and Equation 8.32 denotes 
the model, while Equations 8.33–​8.37 outline the prior distributions for the model 
parameters. In this particular version of the L-​BAPC model I use uniform priors for 
the linear effects and variance. However, as I discuss below, many other options are 
available, which is an especially important consideration for the linear effects. When 
using orthogonal polynomials it is desirable to set more restrictive priors for the 
higher-​order polynomials, which arguably just capture noise (or relatively minor 
fluctuations in the data). I define higher-​order (versus lower-​order) polynomials by 
some cut-​off levels l , m  and n  for age, period and cohort, respectively. For the 
lower-​order polynomials I use normal priors, while for the higher-​order polynomials 
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I  use Laplace distributions, also known as double-​exponential distributions. The 
Laplace distribution can be specified so that there is a spiked concentration near 
zero, acting to “shrink” the coefficients.

8.6.1  Typology of priors

The priors outlined in the L-​BAPC model above are just one set of distributions 
that could be placed over the parameters. Depending on the choice of prior 
distributions the L-​BAPC model can be used to encode a wide range of explicit 
theoretical assumptions. In general, there are four main kinds of priors one can 
place over the linear and nonlinear effects: (1) proxy variables; (2) variable selec-
tion; (3) smoothing; and (4) bounding. This typology not only can help guide APC 
model-​building, but also elucidates how a flexible Bayesian framework maps onto 
existing APC models coming out of the frequentist tradition. The distinctions 
between these priors are not hard-​and-​fast, however, and in practice multiple kinds 
of priors can be used in the same L-​BAPC model.21 For example, one could easily 
incorporate all four main kinds of priors by simply altering the input values of the 
priors in the L-​BAPC model outlined in Equations 8.31–​8.37. I review each of 
these types of priors in turn.

First, there are priors that represent information about proxy variables (or 
mechanisms). The conventional proxy variables approach involves replacing age, 
period or cohort with another variable thought to represent an underlying mech-
anism, such as relative cohort size in lieu of cohort (O’Brien, 1989). A  more 
sophisticated version of the proxy variables technique is the mechanism-​based 
approach advocated by Fosse and Winship (2019a), which entails specifying mul-
tiple mechanisms between one or more of the temporal variables and the out-
come (see also Winship and Harding 2008). Using the L-​BAPC model, the proxy 
variables approach implies placing informative priors on the linear and nonlinear 
parameters based on knowledge of specific mechanisms, possibly using estimates 
from previous studies or other datasets.

Second, variable selection priors can be used to encode beliefs that the param-
eter of interest is at or near zero. This is not an uncommon assumption. In fact, 
as noted by Fosse and Winship (2019a: 475), the great majority of studies exam-
ining social change simply drop one of the temporal variables altogether without 
explicitly specifying a full APC model. The variable selection approach using the 
L-​BAPC would entail setting extremely strong priors towards zero on the linear 
and nonlinear effects of age, period or cohort. For example, instead of dropping the 
period variable, one could specify highly concentrated Laplace distributions at or 
near zero for the period linear effect and nonlinear effects.

Third, some priors can be used to smooth the temporal effects. In the frequentist 
tradition, a number of researchers have used age and age-​squared instead of a full set 
of age parameters in an APC model, effectively smoothing the age nonlinearities. 
In terms of the L-​BAPC, a comparable approach would entail, for instance, using 
highly concentrated Laplace distributions centered around zero for the higher-​order 
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age polynomials. Another way of applying a smoothing restriction in the frequentist 
tradition is the equality constraints approach, which typically involves grouping 
some pair of adjacent categories in the C-​APC model. This constraint can be 
interpreted as a kind of smoothing technique in that the overall effects for the 
two adjacent categories are forced to be the same. An equivalent approach using 
the L-​BAPC would involve, for example, specifying a prior for one of the linear 
effects with a distribution concentrated at that particular slope value implied by the 
desired equality constraint (see Fosse and Winship 2019a: 475–​476).

Finally, there are priors that reflect bounding analyses. Using theoretically 
informed sign, size and shape constraints, Fosse and Winship (2019b) demonstrate 
how researchers can “zero out” parts of the parameter space to set upper and lower 
limits on one or more of the temporal effects. An equivalent approach using the 
L-​BAPC would be the specification of uniform priors based on various beliefs 
about the sign, size or shape of the temporal effects. However, a wide range of other 
distributions are possible and in some cases slightly more exotic distributions might 
more closely represent existing theoretical knowledge on a topic. For example, 
instead of using a uniform prior for the age linear effect to encode the belief that 
the slope ranges from zero to positive infinity with equal probability, one could use 
a gamma distribution, reflecting the belief that the slope ranges from zero to posi-
tive infinity with some decreasing probability (Fosse and Winship 2019b: 2001).

8.6.2  Previous Bayesian APC models

The L-​BAPC model presents a transparent parameterization, clarifying which parts 
of the model are identified and which parts are not, with the goal of using the-
oretical considerations to place informative prior distributions over some of the 
parameters. Previous Bayesian APC models have taken a different approach, focusing 
on either developing a more-​or-​less general estimator or using Bayesian models 
for forecasting. By and large, Bayesian APC models have not been widely used in 
sociology and related fields. Nonetheless, two Bayesian approaches have received 
significant attention in the APC literature: the Nakamura model and RW-​1/​RW-​2 
models (for discussions, see Glenn 2005; Smith and Wakefield 2016).22 Both of these 
approaches begin with the C-​APC model as the baseline parameterization.

The Bayesian model proposed by the statistician Takashi Nakamura (1986) 
has been touted as a “mechanical solution” that is applicable in a wide range of 
applied contexts (Sasaki and Suzuki 1989: 761). As Sasaki and Suzuki (1987) have 
claimed: “The Bayesian procedure in Nakamura’s new method can provide a sat-
isfactory explanation for the data almost automatically, without the identification 
specification that has occurred in previous cohort analysis and resulted in misleading 
findings (1063).” The basic idea of Nakamura’s approach is that the temporal effects 
(i.e., deviations from the overall mean) of the C-​APC model change relatively grad-
ually, such that first-​order differences in the successive effects are “close to zero” 
(Fukuda 2006; Nakamura 1986).
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Specifically, let us define first-​order differences α αi i− +1  for age groups 
i I= … −1 1, , , π πj j− +1 for period groups j J= … −1 1, , , and γ γk k− +1  for cohort 

groups k K= … −1 1, , . Nakamura’s method entails minimizing a weighted sum of 
squares of the first-​order differences of the effects, or the following:

1 1 1
2

1

1

1
2

2
1

1

1
2

2
1

1

σ
α α

σ
π π

σα π γi

I

i i
j

J

j j
k

K

=

−

+
=

−

+
=

−

∑ ∑ ∑− + − +� � �( ) ( ) (( ) ,γ γk k− +1
2 	 (8.38)

where σα
2 , σπ

2 and σγ
2  are hyperparameters (Fukuda 2006, 2007, Miller and 

Nakamura 1996, 1997). Given values for these hyperparameters, the parameter 
vector β of the C-​APC model can be estimated by the mode of the posterior dis-
tribution proportional to

p p( | , , ) ( | , , , ),y X β σ β σ σ σ σα π γ
2 2 2 2 2* 	 (8.39)

where β* is the parameter vector β excluding the intercept. To select values of the 
hyperparameters σα

2 , σπ
2 and σγ

2 , Nakamura uses a fit statistic known as the Akaike 
Bayesian Information Criterion (ABIC), which in this case is defined as

ABIC ln * *= − ∫ , +2 22 2 2 2 2�p p d h( | , ) ( | , , , ) ,y X β σ β σ σ σ σ βα π γ 	 (8.40)

where h  is the number of hyperparameters and again β* is the parameter vector β 
excluding the intercept (see Akaike 1998).

As with any APC approach that attempts to separate out all three time effects, 
Nakamura’s technique is only as valid as its theoretical assumptions. There are two 
caveats regarding the Nakamura method (see also the criticisms by Glenn 1989, 
2005). First, it is assumed to be a one-​size-​fits-​all, mechanical estimator by at least 
some of its proponents (e.g., Sasaki and Suzuki 1987). However, only theoretical 
knowledge or additional data can justify the assumptions implied by the model. In 
particular, the claim that the parameters change gradually might be valid for some 
aging processes, but wholly contrary to basic assumptions for period and cohort-​
related processes, where abrupt discontinuities may be expected. Second, the 
technique is based on the C-​APC parameterization and, as such, the flow of infor-
mation is obscured. In light of the fact that only the intercept and nonlinear effects 
are identified, the prior distribution is imposing potentially strong assumptions on 
the linear effects.

A related set of Bayesian models has been developed based on random walk 
smoothing priors (Besag et al. 1995; Berzuini and Clayton 1993; Havulinna 2014; 
Knorr-​Held and Rainer 2001; Schmid and Held 2004; Smith and Wakefield 2016). 
Typically these models have been used for extracting more reliable forecasts from 
APC models, essentially sidestepping the identification issue (e.g., see Bray et al. 
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160  Ethan Fosse

2001; Havulinna 2014; Riebler and Held 2017; Schmid and Held 2007). The first-​
order random walk (RW1) prior penalizes deviations from a constant, stochastically 
shrinking the first-​order differences towards zero, while the second-​order random 
walk (RW2) prior penalizes deviations from a linear effect, stochastically restricting 
the second-​order differences towards zero (Havulinna 2014: 847). The RW1 prior 
corresponds to the following for, say, the age effects:

α α α α σαi i i i I| , , , , , , ,… ∼ ( ) = …−1 1
2 2N for 	 (8.41)

with a uniform prior for the first age effect, α1 . In contrast, the RW2 prior 
corresponds to:

α α α α α σαi i i i i I| , , , , , , ,… ∼ −( ) = …− −1 1 2
22 3N for 	 (8.42)

with independent uniform priors for the first and second age effects, α1  and α2 . 
More generally, the random walk smoothing prior has the following form:

p e
I T

( | ) ,α κ κα α

α κ αα
∝

−





−





1
2

1
2

R
	 (8.43)

where α α α= …( , , )i I
T  is a column vector of age effects; κα  is the precision, or 

inverse of the variance for age (i.e., 1 2/σα ); e  is the well-​known constant; and R 
is a so-​called “structure matrix” of dimension I I×  that reflects some specified 
neighborhood structure depending on whether a RW1 or RW2 prior is desired (for 
examples, see Rue and Held 2005).23 The precision κα  is an estimated parameter 
that determines the degree of smoothing: the higher the precision (i.e., the lower 
the variance), the smoother the corresponding set of estimated temporal effects.

There are two main advantages to using models with random walk smoothing 
priors. First, smoothing the temporal effects is desirable because the extreme cat-
egories of age and cohort tend to have relatively few observations. As a result, in 
absence of smoothing, the estimated effects can fluctuate wildly. Second, smoothing 
is desirable for the purposes of social forecasting. In general, researchers have found 
that a model with RW2 priors gives more reliable forecasts than one with RW1 
priors (e.g., see Smith and Wakefield 2016). The reason is that the estimated effects 
from the RW2 model tend to be smoother than those from the RW1 model, 
thereby generating projections that are less dependent on local variation in the 
data. The primary limitation of the APC literature on RW1 and RW2 models is 
that there have been few attempts to directly incorporate informative priors for the 
linear effects, which constitute the crux of the identification problem. Moreover, 
most APC studies using random walk smoothing priors have focused on the C-​
APC model rather than a reparameterized version that clearly differentiates those 
parameters that are identified from those that are not (for an exception, see Smith 
and Wakefield 2016: 603–​608).
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8.7  Example: political party strength

For the purposes of illustrating the utility of the L-​BAPC with informative priors, 
I now turn to an examination of APC effects on political party strength (Converse 
1976). The data consists of n = 51 956,  respondents from the U.S. General Social 
Survey (GSS). Age and period are grouped into five-​year intervals. The outcome vari-
able captures political party strength, with higher values indicating greater strength, 
and lower values less strength.24 Specifically, the variable is calculated by assigning 
a numerical value to one of four groups:  0 = independent , 1 = lean independent, 
2 = weak party affiliation, 3 = strong party affiliation. This is identical to the coding 
used by the political scientist Philip Converse (1976: 166). For simplicity of expos-
ition, and to parallel Converse’s analysis, I assume the outcome is continuous.25

The joint estimated effects of age, period and cohort on party strength are shown 
in Figures 8.1 and 8.2. The number in each cell of Figure 8.1 and the surface height 
of Figure 8.2 indicate the predicted average party strength from a C-​APC model 
with an arbitrary equality constraint. Note that the predicted means are identified, 
such that the C-​APC model will generate the same set of predicted values regard-
less of the just-​identifying constraint. The pattern of averages in Figures 8.1 and 
8.2 suggests that all three temporal effects are operating, with age playing a par-
ticularly dominant role. However, these conclusions are tentative at best. Extreme 
care should be taken when interpreting the pattern of effects in Figures 8.1 and 
8.2. Due to the linear dependency of the three time scales one cannot, from these 
visualizations alone, determine the unique contributions of age, period and cohort 
on party strength.

I next estimated the L-​BAPC in Equations 8.31–​8.37 using Markov Chain 
Monte Carlo (MCMC) techniques (for a detailed discussion, see Gelman et  al. 
2014:  275–​292). For all models I  used three chains, which is conventional in 
Bayesian modeling (McElreath 2018:  356–​357). For all results reported here, 
standard diagnostic measures and visual output indicated convergence was achieved 
across chains. For instance, Gelman and Rubin’s potential scale reduction factor, or 
R̂ , was near 1  for all parameters (Gelman et al. 2014: 285). Similarly, traceplots 
showed random scatter around an average value, indicating that the chains were 
“mixing” well. I placed noninformative prior distributions over the intercept and 
variance. For the quadratic, cubic, quartic and quintic polynomial parameters I used 
noninformative normal priors, while for the remaining higher-​order polynomials 
I used Laplace priors concentrated around zero. As discussed previously, this set-​up 
for the polynomials helps to reduce noise in the tails of age and cohort, which tend 
to be quite sparse. To derive informative priors for the linear effects, I considered 
three main sources of information: previously published results, theoretical claims 
in the literature on party strength, and qualitative judgments elicited from one or 
more subject matter experts.

First, regarding previously published results, Dassonneville (2017) examines the 
relationship between aging and party strength. The author fits a hierarchical age–​
period–​cohort (HAPC) model, which tends to fix the cohort linear effect near 
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zero (Fosse and Winship 2019a: 477–​479).26 An equivalent approach using the L-​
BAPC model entails placing a strong prior near zero for the cohort slope and 
noninformative priors for the age and period slopes. Accordingly, I used a highly 
concentrated Laplace distribution centered on zero for the cohort slope and diffuse 
normal priors for the age and period slopes. The results are shown in Figures 8.3 
and 8.4. Figure 8.3 displays the posterior distributions for the linear and quad-
ratic effects, while Figure 8.4 shows the overall estimated APC effects. For each 
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distribution in Figure 8.3, a thick vertical line denotes the mean, and the shaded 
area the 95% credible interval. These results, mirroring the assumptions embedded 
in Dassonneville’s model, reveal that party strength increases dramatically across the 
life course. However, these findings rely on the extremely strong assumption that 
the cohort effects exhibit trendless fluctuation, which may be called into question 
on a priori grounds.

A second source for constructing informative priors is sociological or political 
theory. Converse (1976) outlines a cognitive-​behavioral argument for why parti-
sanship is likely to increase with age (see also Converse 1969). In essence, he argues 
that partisan strength increases monotonically with age because people accumulate 
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164  Ethan Fosse

particular patterns of voting. The act of voting for one party more than another, 
even if initially by chance, will develop over time into a sustained preference for one 
party over another. Based on Converse’s theory, the aging effect is approximated by 
a minimum monotonically increasing quadratic curve (see Figure 8.2 in Converse 
1976: 44). To derive a prior for the age slope, I first ran the L-​BAPC model with arbi-
trary priors on the slopes and noninformative priors on the remaining parameters. 
Next, I estimated the age nonlinear effects using only the quadratic term, reflecting 
the smoothness of Converse’s hypothetical age curve. Finally, I used a monoton-
icity constraint to find the age slope corresponding to the minimum monotonic-
ally increasing set of age effects, where the effects are based only on the linear and 
quadratic terms (for details, see Fosse and Winship 2019b: 1989–​1994). I then used 
the resultant age slope ( 0 234. ) as the mean in a normal prior for age in the full L-​
BAPC model, with the variance set to an arbitrarily small value.27 The findings are 
shown in Figures 8.5 and 8.6. As with the previous example, Figure 8.5 displays the 
posterior distributions for the linear and quadratic effects, while Figure 8.6 shows 

Cohort Quadratic

Period Quadratic

Age Quadratic

Cohort Slope

Period Slope

Age Slope

−0.2 0.0 0.2 0.4 0.6
Parameter Value

FIGURE 8.3  Posterior distributions for linear and quadratic effects of APC, from L-​
BAPC model with a strong zero prior for the cohort slope     
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the corresponding overall estimated APC effects. Most strikingly, these findings 
reveal that, given Converse’s cognitive-​behavioral theory, there has been a steep 
decline in partisan affiliation across cohorts.

Finally, I  elicited expert knowledge to extract a range of values for the age 
linear effect (Gill and Walker 2005; Kadane and Wolfson 1998; Meyer and Booker 
2001). I used a graphical approach to elicit the requisite information, which has 
been shown to be superior to numerical-​based methods of elicitation (Casement 
and Kahle 2018; Jones and Johnson 2014). Specifically, I recruited a subject matter 
expert who was knowledgeable on the aging process and life course theory. Next, 
I showed this expert a set of estimated age effects with the age slope fixed to zero. 
I then varied the slope parameter, asking the expert to report the most likely age 
curve. For example, Figure 8.7 shows a set of different age curves, where the only 
difference is that the age slope is fixed to a different value. The expert was not 
shown graphs of the period or cohort effects during elicitation. Once the expert 
selected a particular curve as the most likely one, I set upper and lower limits of 
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Age Quadratic

Cohort Slope

Period Slope
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2.00.02.0−
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FIGURE 8.5  Posterior distributions for linear and quadratic effects of APC, from  
L-​BAPC model with age constrained to monotonically increase
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increasing size around it. For each set of limits I asked whether or not the interval 
contained 95% of the theoretically possible age slopes. From this graphical elicit-
ation I obtained an implied prior on the linear age effect. The estimated APC effects 
are shown in Figure 8.8. These findings reveal that party strength has declined pri-
marily due to cohort replacement, although there is a somewhat smaller negative 
period effect as well. Analyses also indicate that as people age they become more 
partisan, consistent with Converse’s claim that younger people in general have not 
yet formed strong partisan attachments.

8.8  Conclusion

This chapter outlined a Bayesian perspective on APC modeling, illustrating how 
a transparent reparameterization can clarify the underlying, sometimes implicit, 
assumptions of many temporal models. The Bayesian framework can be viewed as 
a generalization of the constraint-​based approach commonly used by APC analysts 
coming out of the frequentist tradition. In many cases, a Bayesian model using 
concentrated prior distributions will provide virtually the same point and interval 
estimates as constraint-​based methods. Notwithstanding this, the advantage of the 
Bayesian framework is that one can arguably use a much more diverse set of prior 
distributions than those implied by the frequentist approach.

From a modeling perspective, a Bayesian analysis is often not that different from 
a frequentist approach, but there are some important issues that have prevented 
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FIGURE 8.7  Age curves under different slope constraints, as shown to a subject 
matter expert
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Bayesian methods from gaining wider use. For example, to estimate the normalized 
posterior distribution one needs the unconditional distribution of the data, which 
typically requires evaluating a high-​dimensional integral. In all but the simplest 
cases, the unconditional distribution of the data has no tractable closed-​form solu-
tion.28 As a result, Bayesian inference focuses extensively on the appropriate use 
of computational procedures, most commonly MCMC methods. This can entail 
a fairly high upfront cost for the researcher in terms of time and effort. Besides 
computational issues, additional considerations in the Bayesian framework include, 
for example, eliciting relevant information for the prior distribution from subject 
matter experts, choosing an appropriate likelihood function and succinctly sum-
marizing the posterior distribution.

However, in the case of APC data, additional care is required because of the 
underlying identification problem. As I have demonstrated, the choice of the prior 
distribution in APC models typically has a very strong influence over the pos-
terior distribution, because only one part of the data, in fact, induces variation in 
the likelihood function. Moreover, the influence of the prior on the unidentified 
parameters does not diminish as the sample size increases. This issue is complicated 
by the fact that the influence of the prior is often “hidden” due to the way in which 
APC models are conventionally parameterized, which fails to separate the iden-
tified from the unidentified components. Consequently, there is a real danger of 
researchers using a Bayesian APC model mechanically without fully understanding 
the extent to which the results rely critically on potentially strong assumptions 
encoded in the prior distribution.

The recovery of the true, unknown APC effects is only as reliable as the social, 
biological or cultural theories on which one’s assumptions are based. Theories of 
underlying processes may be fundamentally flawed, thereby leading to mistaken 
conclusions about APC effects. There is, in this sense, no ultimate resolution of 
the APC identification problem. Yet, the Bayesian framework is a powerful engine 
for incorporating additional information, or what I have called primary information, 
into an APC analysis. Future work should consider more carefully the various ways 
in which such primary information, encoded as prior distributions, can be more 
effectively elicited and incorporated into APC models.

Notes

	1	 Following the convention in the APC literature, I use the shorthand of “effects” when 
referring to age, period and cohort processes (e.g., Fienberg et al. 1979; Glenn 1981; Mason 
et al. 1973;). These “effects” need not refer to causal effects in the sense of parameters with 
well-​defined potential outcomes or (counterfactuals) (see Morgan and Winship 2014).

	2	 For excellent technical overviews, see Gelman et  al. (2014:  3–​28); Gill (2008:  1–​71); 
Jackman (2009: 3–​48); Lynch (2007: 47–​76); and Wang et al. (2018: 3–​18).

	3	 It is important to remember that ( | )θ y  is not a probability distribution for the param-
eter θ  given the data y . Rather, it is a function that expresses how probable a given set 
of observations is for different values of the parameter, with the uncertainty deriving not 
from the fixed (albeit unknown) quantity θ  but from the random variable  y .
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	 4	 For mathematical convenience, instead of a likelihood function, researchers will often use 
a log-​likelihood function, denoted by ( | ) ( ( | ))θ θy y= log  . However, conceptually 
the log-​likelihood function presents no additional complications.

	 5	 Even though the parameters are treated as random variables in the Bayesian approach, by 
convention they are still denoted using Greek letters because they are unknown quantities.

	 6	 Sometimes the denominator is also referred to as the marginal likelihood or the prior pre-
dictive distribution (Gill, 2008: 44).

	 7	 The product p p( | )y θ θ( )  can be interpreted as the unnormalized posterior distribu-
tion. Often a researcher can focus on estimating an unnormalized posterior distribution 
because, in many but not all cases, the posterior can be renormalized in the final step of 
the analysis (Gill 2008: 43–​44).

	 8	 So far I have focused on inference for a single parameter, but the discussion extends easily 
to a vector of parameters. Define θ θ θ= …( , , )1 k

T , where k  is the number of parameters. 
With multiple parameters, we can simply refer to a joint prior distribution p θ( ), joint 
likelihood p( | )y θ  and joint posterior distribution p( | )θ y , with p p p( | ) ( | )θ θ θy y∝ ( ) .

	 9	 With diffuse or flat priors, the Bayesian credible interval is similar to a 95%  confidence 
interval in the frequentist perspective.

	10	 Note that I  is added to j i−  so that the cohort index begins at k = 1 . This ensures that, 
for example, i j k= = = 1  refers to the first group for all three temporal measures. One 
could just as easily index the cohorts using k j i= − , but this identity would be lost.

	11	 This model assumes we have aggregated data in a Lexis table. If we have individual-​level 
data, we may also want to index the individuals in the data using n n= …1, , , where n  is 
the sample size. This would lead to a model specified as Yijkn i j k ijkn= + + + +µ α π γ  . 
For simplicity in the rest of this chapter I assume we are using aggregated data, such that 
the data has I J×  rows.

	12	 For the rest of this chapter, I  will assume that sum-​to-​zero constraints are specified, 
with the last category of each temporal variable dropped. However, a number of other 
constraints are possible. For example, one could fix the parameters at one of the levels to 
zero (e.g., α π γi j k= = == = =1 1 1 0 or α π γi I j J k K= = == = = 0).

	13	 Both β̂MLE and β̂OLS give unbiased estimates of the true parameter vector β. However, 
unlike OLS, maximum likelihood estimation will generate a biased estimate of σ 2 , thus 
requiring a bias correction (Wang et al. 2018: 40).

	14	 Before the widespread availability of powerful computing, it was especially important 
to specify what is called a conjugate prior (Gill 2008: 54, 111–​116). A conjugate prior 
refers to a prior in which the posterior has the same probability distribution family. 
Accordingly, there is an analytical solution  –​ an explicit formula  –​ for the posterior 
distribution expressed in terms of the prior parameters and the data. The main limita-
tion of using conjugate priors is that analytical solutions are typically only feasible for 
quite simple models (Gelman et al. 2014: 35–​36). However, with modern computing 
techniques there is considerably greater flexibility in modeling choices.

	15	 All priors are informative in the sense that the analyst is introducing some kind of infor-
mation into the model.

	16	 I use the terms “unidentified” and “nonidentified” interchangeably. Gustafson (2015: 4) 
prefers the phrase “partially identified” to underscore that even when a model is not iden-
tified there is often some information to be gleaned from the unidentified parameters.

	17	 The linear dependence is reflected in the null vector (i.e., the eigenvector with a zero 
eigenvalue) of the design matrix, which has non-​zero elements (e.g., Kupper 1985: 829).

	18	 Fosse and Winship (2019b) show how the canonical solution line can be visualized using 
what they call a 2D-​APC graph (1984–​1987).
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172  Ethan Fosse

	19	 Note that the identified parameter vector length is one less than that of the full param-
eter vector, reflecting the fact that the full design matrix of X  is rank deficient one after 
applying sum-​to-​zero constraints.

	20	 It is common in the APC literature to use a non-​transparent parameterization, which can 
easily lead analysts astray. Two researchers analyzing the same APC data may inadvertently 
impose different conditional prior distributions on the unidentified parameter, thereby 
generating divergent findings.

	21	 For an excellent overview of the three main kinds of priors used in Bayesian analysis 
(conjugate, noninformative and informative), see Gill (2008: 135–​189).

	22	 Due to space limitations I do not cover here the hierarchical age–​period–​cohort (HAPC) 
model, which has an implicit Bayesian interpretation due to the hierarchical structure of 
the model. For an explicitly Bayesian implementation of the HAPC, see Yang (2006). For 
an overview of the assumptions of the HAPC, see Fosse and Winship (2019a: 477–​479).

	23	 Note that the structure matrix is of rank I −1  for the RW1 prior and rank I − 2  for 
the RW2 prior. The RW1 and RW2 priors are both prominent examples of intrinsic 
Gaussian Markov random fields (GMRF) (for details, see Rue and Held 2005).

	24	 Converse (1976:  10–​11) distinguishes between the direction of party choice (e.g., 
Democratic vs. Republican) and strength of party identification regardless of party 
choice (e.g., “strong” vs. “weak”).

	25	 I obtain similar results treating the outcome as an ordered categorical variable.
	26	 See Table 7.2 and Figure 7.4 in Dassonneville (2017: 153–​154), which indicate a near-​

zero linear effect for cohort.
	27	 Unfortunately, Converse’s theory does not suggest a spread for the age slope prior 

distribution.
	28	 A special case occurs when the prior distribution is a conjugate prior, which enables 

a relatively simple analytical solution. With a conjugate prior, the prior distribution is 
chosen so that the likelihood and prior combine to generate a posterior distribution in 
the same family as the prior distribution.
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