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LEARNING FROM AGE–​PERIOD–​
COHORT DATA

Bounds, mechanisms, and 2D-​APC graphs

Ethan Fosse, Christopher Winship and Adel Daoud

“The formulation of the problem is often more essential than its solution.”
Albert Einstein

“A problem well put is half solved.”
John Dewey

6.1  Introduction1

Social scientists have long sought to explain social change by using age–​period–​
cohort (APC) models, attempting to estimate the unique contributions of age, 
period and cohort effects on a particular outcome. A major obstacle, however, has 
been the issue of model identification that arises from the linear dependence among 
age, period and cohort. Many solutions have been proposed to the identification 
problem, but none have gained wide acceptance. The lack of consensus, along with 
limited understanding of seemingly complicated models, has greatly hindered both 
methodological development and the application of APC methods to substantive 
analyses of social change.

As the quotes above suggest, solving a problem may require redefining it. In this 
chapter we present a set of related strategies in which the goal is to determine the 
unique contributions of age, period and cohort on an outcome. In doing so, we 
argue that the challenge is to not to achieve point identification but rather to deter-
mine what and how much can be learned from a particular APC dataset. In some 
instances, it may be possible to identify or nearly identify point estimates for APC 
causal effects using weak theoretical assumptions, but in others not. However, even 
if point identification is not possible, a great deal can often be learned from the data.

As we show below, the great advantage of redefining the goal of an APC analysis 
in this way is that it is possible to carry out a series of analyses using techniques 
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that have a solid methodological foundation, something that has eluded the great 
majority of past efforts and arguably is the much more fundamental problem. Our 
claim is not that we have ‘solved’ the APC identification problem, but rather that, 
by changing the definition of the problem, we have developed ways to rigorously 
analyze APC data involving transparent assumptions that can be clearly defended 
using substantive theory.

Central to our approach is the belief that there is an inherent trade-​off 
between theoretical assumptions and what can be learned from data. The fewer 
the assumptions, the less is revealed. More assumptions mean that more can be 
learned, but what is learned will depend directly on the assumptions made. Given 
this trade-​off, researchers need to demonstrate what can be learned with different 
assumptions. This is ultimately no different from any causal inference problem, 
which always requires information external to the data to justify a causal story.

Our suggested strategy for analyzing APC data consists of three general stages, 
each containing more detailed steps. The first stage (Analysis without assumptions) 
consists of two parts: an analysis of the nonlinear effects and different combinations 
of the linear effects.2 As we discuss below, the nonlinear effects are identified under 
the standard assumption that there are no interactions between the APC variables. 
The nonlinearities may be of considerable interest in their own right and worthy 
of detailed analysis. Furthermore, in many cases it may be reasonable to assume 
that the absence of nonlinear effects for one or more of the three APC variables 
implies the likely absence of their related linear effects. We call this the Coupled 
Temporal Effects assumption (CTE).3 If there are no nonlinear effects for one of 
the APC variables and the CTE assumption seems reasonable, identification then 
can be achieved by dropping that variable from the model and standard methods 
can be used.

The second step in the first stage is to carry out an analysis of the linear effects 
that are consistent with the data. This is done using what is called a 2D-​APC graph 
that indicates that set of parameter values for the three APC variables that are con-
sistent with the data. These values always fall on a one-​dimensional line, what we 
term the canonical solution line.

What has not been previously recognized is that the location of the solution as 
determined by the data potentially rules out various combinations of linear effects. 
For example, there might be no point on the solution line where the linear age 
effect was positive and both the linear period and cohort effects are negative. Thus 
even in the total absence of assumptions, the data may rule out certain combin-
ations of effects.

In the second stage (Partial Identification Using Bounds) we propose carrying 
out a bounds analysis. In many cases there may good theoretical reasons for assuming 
that the overall effect (i.e., the combined linear and nonlinear effects) of an APC 
variable is monotonically increasing or decreasing over some range of the variable. 
By monotonically increasing we mean that as the APC variable of interest increases, 
the outcome increases or at least remains constant. By monotonically decreasing 
we mean that as the APC variable of interest increases, the outcome decreases or at 
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least remains constant. For example, there is established biological theory as to why 
immunity to many diseases increases from infancy to childhood to adulthood, but 
then decreases at older ages. Similarly, theories of the human brain with regards to 
the development of the prefrontal cortex imply that an individual’s attraction to risk 
will decrease as they transition from adolescence to adulthood.

Assumptions about whether or not ordered outcome values are monotonically 
increasing or decreasing are important in that they have the potential to bound 
the effects of the APC variables. As discussed below, fixing the value of any one 
APC value determines the values of the other two. Analogously, it is the case that 
bounding one variable potentially bounds the values of the other two variables. For 
instance, depending on the data, a monotonically increasing age effect might imply 
a monotonically decreasing period effect or a monotonically increasing cohort 
effect. The resulting bounds one obtains for each of the three APC variables may 
be wide or narrow. In our experience, it is often possible to achieve quite narrow 
bounds resulting in approximate point estimates for the effects of each of the three 
APC variables.

In the third and last stage (Mechanism-​based models of APC effects), we rec-
ommend incorporating into one’s analysis, when available, measured mechanisms 
(or mediators) of the bundles of causal effects thought to be related to the APC 
variables. As explained below, key here will be the assumption that the mechanism 
is affected by at most two of the APC variables. Mechanisms have the potential to 
explain the effects of the APC variables on an outcome. For example, below we 
examine the potential for educational attainment to explain age-​related differences 
in religious disaffiliation in the United States. Importantly, whether one or more 
mediating variables explains the nonlinear effects of an APC variable is testable. 
If the nonlinear effects of an APC variable are explained and it is reasonable to 
assume that this implies its linear effect is also explained (as discussed in the CTE 
assumption above), then the APC model is fully identified and a full set of point 
estimates for each of the three APC variables can be obtained.

We suggest that researchers learn from APC data by carrying out their analysis 
following the three stages above. Each successive stage represents an analysis built on 
successively stronger assumptions. The first stage involves no assumptions. However, 
a researcher in finding the absence of nonlinear effects for one of the three APC 
variables may drop that variable invoking the CTE assumption, namely, that the 
absence of nonlinear effects of an APC variable implies the same for its linear effect. 
In this case, analyses can proceed using conventional methods. The second stage 
involves carrying out a bounds analysis in which assumptions about whether or 
not an APC variable is monotonically increasing or decreasing over some range 
of an APC variable is used to bound the effects of other APC variables. The third 
stage involves the inclusion of mediators and the assumption that they are affected 
at most by two of the APC variables. This last stage is often the most challenging, 
in that the researcher needs data on mechanisms to estimate the causal pathways.

The remainder of the chapter is organized as follows. In the next section we pro-
vide a very brief history of APC analysis before providing the logic of APC analyses. 
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In the following section we formally discuss how to organize temporal data, the 
relationship between models of temporal effects, and the nature of the identification 
problem. In the next sections we discuss the three stages of APC analysis.4 We focus 
in particular on describing the usefulness of 2D-​APC graphs and the importance 
of theoretical arguments in developing APC models. In each section we illustrate 
how these methods can be used by analyzing changes in religious disaffiliation. 
Specifically, we examine changing patterns of religious intensity from 1977 to 2018 
as measured in the General Social Survey (GSS).

6.2  Background of APC analysis

6.2.1  Brief history

The history of APC analysis goes back to at least the 1860s, pre-​dating Wilheim 
Lexis’s introduction of the Lexis diagram in his book Introduction to the Theory of 
Population Statistics in 1875 (for a review, see Keiding 2011). In his well-​regarded 
essay, written in the 1920s, the German sociologist Karl Mannheim demonstrated the 
importance of generations indicating how a population could change without indi-
viduals changing as a result of cohort replacement (Pilcher 1994). Wade Hampton 
Frost’s analysis in the 1930s changes in tuberculous rates marks the modern period 
of APC analysis in epidemiology (Frost 1995). Norman Ryder’s classic (1965) paper 
on cohorts similarly delineates this for demography and sociology.

Over the decades social and behavioral scientists have researched a wide var-
iety of topics using APC methods. Two general types of outcomes have been 
studied. Both epidemiologists and demographers have examined changes in rates 
of: disease and other health-​related behaviors, (Chen et al. 2003; Kerr et al. 2004; 
O’Malley, Bachman, and Johnston 1984; Vedøy 2014), obesity (Diouf et al. 2010; Fu 
and Land 2015), cancer (Clayton and Schifflers 1987; Liu et al. 2001) and mental 
health (Lavori et al. 1987; Yang 2008). Sociologists, demographers and others have 
examined a variety of outcomes related to social change, including verbal ability 
(Alwin 1991; Hauser and Huang 1997; Wilson and Gove 1999), social trust (Clark 
and Eisenstein 2013; Putnam 1995; Robinson and Jackson 2001; Schwadel and 
Stout 2012), party identification (Hout and Knoke 1975; Tilley and Evans 2014) 
and religious affiliation (Chaves 1989; Firebaugh and Harley 1991).

6.2.2  APC effects as bundles of unmeasured causes

In the APC literature, researchers have typically viewed age, period and cohort 
as indicators of distinct sets of unmeasured causes (e.g., see Mason and Fienberg 
1985; Rodgers 1990). The notion that the APC variables are causal variables them-
selves is hard to support since it is not possible through manipulation to change 
an individual’s age, the year they were born, or the current year. To quote Clifford 
Clogg (1982):  ‘age, period, and cohort are merely indicators of other variables 
which actually “cause” the observed variation in the dependent variable under 
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study. The age–​period–​cohort framework is properly interpreted as an accounting 
scheme, not a “causal model” (460). Mason and Fienberg (1985) make the same 
point: ‘these models do not explain so much as they provide categories with which 
to seek explanation. For accounting models to have value, the parameterizations 
of the general framework must be linked to phenomena presumed to underlie the 
accounting categories’ (46–​47).

If age, period and cohort can be understood as indices, what are they indices 
of? Generally, the APC literature describes the ‘effects’ of the three APC variables as 
consisting of a set of underlying causal processes each associated with one or more of 
the three APC variables.5 For example, consider a study examining temporal effects 
in happiness. Age might be an indicator for the stress associated with having children 
of different ages. Period might reflect changes in the employment and political envir-
onment. Cohort might reflect differences in opportunities over the entire life course.

Figure  6.1 represents the general logic of the APC model with each of the 
three APC variables being associated with some underlying causal mechanism (MA, 
MP and MC), which are unobserved. The double-​headed lines denote associational 
linkages between the three time scales and unobserved causal mechanisms. The 
directed arrows indicate causal relations between the unobserved mechanisms and 
the outcome. The logic represented by Figure 6.1 now clarifies what one might 
mean when one says that age, period or cohort have an ‘effect’: such a statement is 
just shorthand for the longer statement that the causal variables associated with each 
of the three APC have a causal effect on the outcome.

If the APC variables are simply indices, what then are the regression parameters 
associated with the three APC variables? The most basic way to understand a 
regression model is as a conditional expectation or conditional mean operator 
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FIGURE 6.1  Graphical models of temporal variables
Notes: Panel (a) shows the simplified APC graphical model for age (A), period 
(P) and cohort (C). The double-​line arrows denote the linear dependence among 
the three time scales. Filled circles denote observed variables, while hollow circles 
denote unobserved variables. Panel (b) shows the graphical model with a full set of 
mechanism variables (MA, MP and MC), which are unobserved. The double-​headed 
lines denote associational linkages between the three time scales and unobserved 
causal mechanisms.
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(Goldberger 1991). That is, a regression equation if properly specified indicates the 
mean of the outcome variable for individuals with fixed values for a specific set of 
X ’s. Thus, under this noncausal interpretation, a regression parameter indicates the 
difference in the conditional means for two groups with equivalent X ’s except that 
they differ by one unit with respect to the X  whose parameter is of interest. For 
example, in a linear regression model where education is the outcome if the regres-
sion parameter for cohort is 0.25, this would indicate that a cohort born one year 
later, all the other X ’s being the same, would have 0.25 more years of education.

6.3  The logic of the APC identification problem

The APC identification problem, as it has become known, is simply the fact that if 
we know a person’s age in years and the year in which their outcome was measured, 
then we know their birth year. That is, we know:

cohort  per od  age= −i 	 (6.1)

Suppose we have collected data on a set of individuals and have measured each 
person’s birth year, age, year of measurement and their value on some outcome. An 
intuitive way to understand this problem is to use age, period and cohort variables 
as inputs in a multiple linear regression model:

Y = + + + +( ) ( ) ( )µ α π γ εage period cohort 	 (6.2)

where Y is the outcome variable to be explained; µ is the intercept; age, period and 
cohort are measured in years; α, π  and γ  are the slopes for age, period and cohort, 
respectively; and ϵ is random error. For simplicity we have dropped the subscripts 
indexing each row (i.e., individual) of the dataset.

In Equation 6.2, we are attempting to estimate the effect of each variable holding 
the other variables constant. What provides information for estimating the effect of 
the variable of interest is the extent to which Y  varies with that variable holding 
the control variables constant (i.e., varies within the levels of the control variables). 
Without loss of generality, assume that we want to estimate the linear effect of  
cohort (γ in Equation 6.2) holding age and period constant. Now consider only 
individuals of a certain age measured at a specific point of time: because of the 
perfect linear dependency among the three temporal variables, these individuals are 
not only the same age at the same period, but they also have the same birth year. 
There is no variance in cohort holding age and period constant, and as such it is 
impossible to estimate its linear effect.

For example, if we know a person was born in 1900 and that person’s outcome 
was measured in 1950, then we know that person’s age is 50. Then we are esti-
mating the following equation for this person:

Y = + ( ) + + − +µ α π γ50 1950 1950 50( ) ( ) ∈	 (6.3)
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Once we control for this person’s age (50) and period (1950), then there is no 
information to estimate the linear cohort effect, γ , because the cohort is just the 
difference between period and age (1950 − 50).6

6.4  Modeling APC effects

6.4.1  Organizing temporal data

Previously in Equation 6.2 we outlined a simple linear regression model based on 
data in which each row is a different individual with columns consisting of the 
variables age, period, cohort and the outcome. More commonly, data on temporal 
effects is arranged in a rectangular age–​period array of observations,7 with age and 
period aggregated into intervals of equal width (Holford 1983: 311–​318; Mason 
and Fienberg 1985: 67–​68).8 For example, Table 6.1 displays the data structure of 
an age–​period array with five age groups and three period groups, both aggregated 
into five-​year intervals. The number of cohort groups equals one less than the sum 
of the age and period groups, so there are 3 + 5 − 1 = 7 cohorts in Table 6.1. The 
number of observations on the outcome equals the number of cells in the array, 
which is simply the number of age groups multiplied by the number of period 
groups. Thus, in Table 6.1 there are 3 5 15× =  observations.

Cohort groups are labeled in the cells, calculated by cross-​referencing 
corresponding age and period groups.9 For instance, the cohort interval 1956–​1964 
is derived from the range of possible birth years for those observed during the period 
interval 2000–​2004 and age interval 40–​44. The history of each cohort can be traced 
along the diagonals of the table, moving forward in time from the upper-​left to the 
lower-​right. For example, the shaded diagonal set in Table 6.1 refers to the cohort 
born during the years 1956–​1964. Following from the upper-​left shaded cell to the 
lower-​right shaded cell, we can track the cohort of people born in 1956–​1964 as 
they advance in age from 40–​44 to 50–​54 and move through time from 2000–​2004 
to 2010–​2014.

TABLE 6.1  Structure of a Lexis table with interval values of equal width for age and 
period groups

Age groups 2000–​2004 2005–​2009 2010–​2014

30–​34 1966–​1974 1971–​1979 1976–​1984
35–​39 1961–​1969 1966–​1974 1971–​1979
40–​44 1956–​1964 1961–​1969 1966–​1974
45–​49 1951–​1959 1956–​1964 1961–​1969
50–​54 1946–​1954 1951–​1959 1956–​1964

Notes: Age and period aggregated into five-​year intervals, with corresponding nine-​year cohort 
intervals labeled in the cells. Shaded cells track the history of the cohort born in 1956–​1964.

03_9780367174422c06-07_p84-141.indd   90 01-Sep-20   9:12:28 PM



Learning from Age-Period-Cohort Data: Bounds, Mechanisms, and 2D-APC Graphs  91

6.4.2  Classical APC model

It is common in the APC literature to use index notation to keep track of the 
dimensions of a temporal data structure such as that shown in Table 6.1 (Mason and 
Fienberg 1985: 67–​71). We will let i = 1,…, I represent the age groups, j = 1,…, J  
the period groups, and k = 1,…, K the cohort groups with k =  j − i + 1 and  
K = I + J − 1.10 Using this index notation, temporal effects in an age–​period array 
can be represented using the classical APC (C-​APC) model, also known as the 
multiple classification model (Mason, Mason, et al. 1973: 243) or accounting model 
(Mason and Fienberg 1985: 46–​47, 67), which has the following form (Mason and 
Fienberg 1985: 67–​68; Yang and Land 2013: 61):

Yijk i j k ijk= + + + + ∈µ α π γ 	 (6.4)

where Yijk is the outcome variable to be explained, µ is the intercept, αi 
represents the ith age effect, πj represents the jth period effect, γk represents the 
kth cohort effect, and ε

ijk
 is the error term. To avoid overparameterization, we 

apply the so-​called usual constraints that the parameters sum to zero, such 

that  α πi j kk

K

j

J

i

I
= = =

=== ∑∑∑ γ 0
111

.11

The parameterization shown in Equation 6.4 is very flexible, allowing the age, 
period and cohort effects to be highly nonlinear because there is one parameter for 
each age, period and cohort category (Mason, Mason, et al. 1973: 246). However, 
like Equation 6.2, the C-​APC suffers from a fundamental identification problem 
due to perfect linear dependence in the columns (Yang and Land 2013: 63). The 
linear dependence can be difficult to spot visually, but what it means in practice is 
that at least one of the temporal variables must be dropped.

6.4.3  Linearized APC model

To clarify the nature of the identification problem with the C-​APC, it is useful to 
provide an alternative representation of the C-​APC that orthogonally decomposes 
the linear from the nonlinear components (Holford 1983, 2006). We can accord-
ingly specify a linearized APC (L-​APC) model with the form:

Y i i j j k kijk i j k ijk= + −( ) + −( ) + −( ) + + + + ∈µ α π α π* * *γ   γ 	 (6.5)

where the asterisks denote midpoint or referent indices and are

i
1

j
J

k
K* * *,= +





= +





= +





1
2

1
2

1
2

, and 
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As before, we refer to the linear effects as α, π and γ for age, period and cohort. 
However, we now introduce α , π  and γ  to represent age, period and cohort 
nonlinearities, respectively. The L-​APC model is based on setting up APC data so 
that the linear and nonlinear components are orthogonal to each other (see Fosse 
and Winship 2018).

The C-​APC and L-​APC are equivalent representations of the temporal data 
shown in Table 6.1. As with the C-​APC, each cell in an age–​period array is mod-
eled by a unique combination of parameters under sum-​to-​zero constraints. 
For example, the ith age effect in the C-​APC is represented in the L-​APC by 
the overall linear age effect along with a unique parameter for the ith age non-

linearity:  α α αi ii i= −( ) +*
 . That is, each age effect αi is decomposed into the 

sum of a common parameter α  representing the (linear) age slope for the entire 
array, with a value shifting across rows (or age categories) as a function of the age 
index i, and a unique parameter α  which is a nonlinearity specific to each row 
(or age category) of the array. We can similarly decompose the period and cohort 
effects into linear and nonlinear components.

The importance of the L-​APC model is that, by explicitly separating the slopes 
from their deviations, it clearly shows that the identification problem is limited 
to the linear effects.12 When the nonlinear terms are zero in the population, the 
L-​APC is equivalent to the basic linear model:

Y i i j j k kijk ijk= + −( ) + −( ) + −( ) + ( ) + ( ) + ( )+ ∈µ α π* * *γ 0 0 0

= + ( ) + ( ) + ( )+ ∈µ α πage period cohorti j
k

ijkγ 	 (6.6)

where agei, periodj and cohortk are the midpoint values for each of the categories 
(see Table  6.2), which are simply the indices recentered and rescaled, and the 
nonlinearities are zeroed out.13 A useful way to understand the nonidentifiability 

TABLE 6.2  Structure of a Lexis table with midpoint values for age, period and cohort

Period

Age 2002 2007 2012

32 1970 1975 1980
37 1965 1970 1975
42 1960 1965 1970
47 1955 1960 1965
52 1950 1955 1960

Notes: Age and period values are midpoints of five-​year intervals, while cohort values are midpoints of 
nine-​year intervals calculated by cross-​referencing age and period intervals. Shaded cells track the his-
tory of the cohort with a midpoint birth year of 1960.
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problem is to note that for any particular APC model we can specify the linear 
effects as (Rodgers 1982: 782):

α* = α + ν

π* = π − ν	 (6.7)

γ* = γ + ν

where the asterisk (*) indicates an arbitrary set of estimated slopes from an APC 
model and ν is a scalar fixed to some value. As Equation 6.7 demonstrates these 
parameters are simple additive rescalings of the true unobserved slopes α, π and γ 
shifted by a single arbitrary scalar, ν.

6.5  A three-​stage approach to analyzing APC data

We are now in a position to discuss how to actually analyze APC data using our 
three-​stage approach. We illustrate our approach by examining changes in religious 
disaffiliation from 1977 to 2018 using the GSS. The outcome is religious intensity, 
which measures the respondent’s strength of religious affiliation on a scale from 1 to 4, 
where 1 = no religious affiliation, 2 = not very strong religious affiliation, 3 = some-
what strong religious affiliation, and 4 = strong religious affiliation.14 After subsetting 
to respondents born in the United States, this gives us a sample of 48,598 respondents. 
Age and period are grouped into five-​year intervals. To deal with the complex sam-
pling of the GSS, estimates are adjusted using the appropriating sampling weights.

Because the predicted values of an APC model are identified under any particular 
constraint, we can estimate the expected average religious intensity for various age, 
period and cohort groups using the full linearized APC model.15 These results are 
shown in Figure  6.2. Although it might be tempting to informally ‘eyeball’ the 
unique contributions of the temporal effects from this graph, it is important to note 
that each of the expected averages in Figure 6.2 are based on the combined effects of 
age, period and cohort. The patterns in this graph simply tell us that religious inten-
sity is generally lowest among younger individuals measured during the most recent 
periods who are also members of the most recent birth cohorts, while religious 
intensity is highest among older individuals measured in earlier periods who are 
also members of earlier cohorts. To determine the unique effects of age, period and 
cohort, we need a more formal approach, which we outline below in three stages.

6.6  Stage 1: analysis without assumptions

The APC literature has generally failed to recognize that data are informative 
about the three APC effects, even in the absence of any assumptions.16 The data are 
informative in two ways. First, as discussed previously, the nonlinear APC effects 
are identified. This means that they can be estimated and graphed. Furthermore, 
it is possible to test whether or not these effects are zero. If various tests or visual 
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inspection suggest that it is reasonable to assume that one or more of the APC 
nonlinear effects are zero, then it may reasonable to assume that there is no linear 
effect as well (the CTE assumption) and drop these variables from the model, thus 
suggesting a fully identified analysis is appropriate.

Second, particular combinations of linear effects are identified, which define a 
set of solutions. Moreover, as discussed in detail below, because the set of solutions 
lie on a line, certain combinations of effects are ruled out. This means that particular 
theories may be shown to be inconsistent with the data. In general, the data are 
likely to be consistent with multiple patterns of effects, but not all combinations of 
APC effects. As such, the data, in the absence of any assumptions, may well provide 
evidence against certain theoretical claims.

6.6.1  Nonlinear effects: no assumptions needed

Because the nonlinear effects are identified, we can get point estimates of their 
values. The corresponding figure shows the nonlinear effects for age, period and 
cohort on religious disaffiliation.

Age

Pe
rio

d

R
eligious Intensity

2.5

3.0

3.5

FIGURE 6.2  3D Lexis histogram of religious intensity
Notes: Results are based on a full linearized APC model with the period linear 
effect fixed to zero. Each cell gives the expected average religious intensity on a 
scale from 1 to 4, where 1 = no religious affiliation, 2 = not very strong religious 
affiliation, 3 = somewhat strong religious affiliation, and 4 = strong religious affiliation. 
Estimates are adjusted using appropriate sampling weights. Estimates based on 59,573 
respondents in the United States GSS.
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As can be seen in Figure 6.3, there are clear nonlinear fluctuations in the data 
for all three temporal variables.17 In Table 6.3 we present a set of tests for helping 
to ascertain whether or not the nonlinear effects for age, period or cohort should 
be dropped. For example, the AP Model in Table 6.3 refers to a model in which 
the nonlinear effects for cohort have been dropped. Both visual inspection of the 
graphs for the nonlinear effects as well as these results allow the researcher to deter-
mine whether or not –​ in terms similar to those outlined by Yang and Land –​ all 
three APC dimensions are operative. If, based on these tests, one is willing to assume 
that one or more effects are not operating, one can drop the corresponding non-
linear components. Accordingly, one can fit the sub-​model rather than the full APC 
model.18 Table 6.3 includes the model log-​likelihoods, AIC and BIC fit statistics, as 
well as chi-​square statistics from Wald tests comparing the candidate model with 
the full APC model. The AIC favors the model with period and cohort nonlinear 
effects, suggesting that it might be reasonable to favor a model in which the age 
linear effect is zero. In contrast, BIC, which prefers parsimonious models, suggests 
one should just fit a model with period nonlinear effects, implying that the age 
and cohort linear effects could be fixed to zero. In this case, we would want to be 
careful about making assumptions about any of the effects, because model results 
(not shown here) indicate that they are all statistically significant at conventional 
levels, notwithstanding the imprecision of the estimates for the cohort effects due 
to the unbalanced nature of the data.19

6.6.2  Constraints on linear effects absent assumptions

Without data, the age, period and cohort parameters can take on any combin-
ation of values in a three-​dimensional space. The data, however, constrains all of 
the effects to lie on a line determined by the unidentified linear parameters. This 
implies that if we fix anyone of the three linear effects, the values of the other two 
are determined.

6.6.2.1  The canonical solution line

To appreciate how the data constrains the linear effects, one needs to understand 
the geometric representation of the linear dependence problem. Let θ1 = α + π 
and θ2 = γ + π. Figure 6.4(a) shows the age–​period plane defined by the identi-
fied quantity for hypothetical data where θ1 = 3, while Figure 6.4(b) shows the 
period–​cohort plane defined by the identified quantity θ2 = −2. Intersecting these 
two planes defines a line, as shown in Figure 6.4(c) and Figure 6.4(d). This is what 
is known as the canonical solution line as all points on it represent parameter estimates 
for α, π and γ that are equally consistent with the data.20 As such, this visually 
represents the APC identification problem. If the age, period and cohort parameters 
were identified, the planes would intersect at a single point in the parameter space. 
Here the intersection consists of all points along a line. The scalar ν in Equation 6.7 
essentially moves the possible estimates up and down the canonical solution line.
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What is important to appreciate is what is accomplished when data are used in 
an APC model. If there are only linear effects, the data has taken us from a situation 
where all parameter values in a three-​dimensional space are possible to one where 
only estimates lying on a one-​dimensional line are consistent with the data. This same 
reduction also occurs if our model has nonlinear effects as they are fully identified. 

TABLE 6.3  Fit statistics for various APC models: religious intensity

Log-​likelihood AIC BIC Chi-​square P-​value

Full APC Model 56,343.81 56,466,78 56,818,63
PC Model 56,403.80 56,452,78 56,698,78 16.70 0.213
AC Model 56,403.80 56,505.65 56,785.81 39.86 <0.0001
AP Model 56,411.18 56,474.52 56,647.26 49.59 0.0004
A Model 56,482.29 56,524.13 56,622.24 97.24 < 0.0001
P Model 56,440.18 56,467.81 56,528.50 67.46 0.0005
C Model 56, 425.38 56,491.92 56,666.70 57.31 < 0:0001

Notes: All models include the same set of linear effects, which are estimated under the constraint that 
the period linear effect is zero. Chi-​square statistics and p-​values based on Wald tests comparing the 
full APC model with the specified candidate model.
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FIGURE 6.4  Geometric derivation of the canonical solution line
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As Fosse and Winship (2018) demonstrate, the solution line always sits in a three-​
dimensional subspace of the overall space of possible parameter values. Thus, the data 
has substantially reduced the possible estimates for the linear effects of age, period and 
cohort to values that lie on a single one-​dimensional line. The data are quite inform-
ative about parameter values, just not informative enough to give us point estimates 
for the linear effects. That said, the data, by constraining values to a single line, contains 
considerable information about the possible values of the APC parameters.

6.6.2.2  2D-​APC graphs

There is a useful way to simplify the representation of the solution line in the pre-
vious section.

Because of the linear relationships α + π = θ1 and π + γ = θ2, our three-​dimensional 
representation can be reduced to just two. A way of doing this is by having the hori-
zontal axis represent the period slope, the left vertical axis the age slope and the right 
vertical axis the cohort slope. Fosse and Winship (2019) call this a 2D-​APC graph.

The 2D-​APC graph clarifies an important, unrecognized fact in the APC litera-
ture that, by fixing the location of the solution line, the data also determines which of 
the eight combinations of positive and negative age, period and cohort linear effects 
are empirically possible. Because the offset between the age and cohort slopes must 
be either positive or negative as determined by the difference between the θ’s, only 
six combinations can exist. Then, depending on the location of the canonical solu-
tion line, as few as two and as many as four remaining combinations may be possible. 
Figure 6.5 shows an example of a 2D-​APC graph using simulated data, where θ1 = 3 
and θ2 = −2. There are six regions of the parameter space defined by the signed com-
binations of the slopes (α, π, γ). In the figure these are labeled as regions I (+,−,+), II 
(+,+,+), III (+,−,−), IV (+,+,−), V (−,−,−) and VI (−,+,−). Note first that there is 
no region representing either the (−,+,+) or (−,−,+) patterns of effects. This is due to 
the fact that θ2 − θ1 < 0. Thus, any theory that posits a negative age slope and positive 
slopes for period and cohort can be ruled out by the data alone. Similarly, we can rule 
out any theory that assumes that age and period have negative slopes while cohort has 
a positive slope. Furthermore, the canonical solution line runs through only four out 
of the six regions, so we can also rule out any social or biological theory that posits 
that the linear age, period and cohort effects are all positive (region II) or all nega-
tive (region V). Thus, despite the linear dependence problem, the data can eliminate 
a number of possibilities based on theorizing just about the direction of the slopes.

Turning to our empirical example, Figure 6.6 shows the bounding regions in 
the 2D-​APC graph for religious intensity. The data, via the values of θ1 and θ2, 
determines the location of the solution line in the parameter space. The estimates 
of these parameters for religious intensity are displayed in Table 6.4. Also note that 
the data determines which of the signed plotting regions are even possible. This 
graph shows the various signed plotting regions: I (+,−,+), II (+,+,+), III (−,−,+), 
IV (−,+,+), V (−,−,−) and VI (−,+,−). Unlike the previous example with simulated 
data, with the religious disaffiliation data there is no region representing either the 
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(+,−,−) or (+,+,−) patterns of slopes. We can rule out any theory that makes the 
assumption that the age slope is positive while both the period and cohort slopes 
are negative. Likewise, we can rule out any theory that entails claims that the cohort 
slope is negative while both the age and period slopes are positive. Furthermore, note 

−6

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

π*

α* γ*

I

III

II

IV

V VI

FIGURE 6.5  Example of a 2D-​APC graph
Notes: This graph shows the various signed plotting regions: I (+,–​,+), II (+,+,+), 
III (+,–​,–​), IV (+,+,–​), V (–​,–​,–​) and VI (–​,+,–​). Note first that there is no region 
representing either the (–​,+,+) or (–​,–​,+) patterns of linear effects.

TABLE 6.4  Intercept and combined linear effects: religious intensity

Parameter Est. SE t-​ratio P-​value

Intercept 2.8307 0.0129 219.49 < 0.0001
θ1 or (α + π) 0.1538 0.0351 4.38 < 0.0001
θ2 or (γ + π) –​0.4760 0.0377 –​12.6379 < 0.0001
θ1 –​ θ2 or (α + γ) –​0.6298 0.0308 –​20.46 < 0.0001
θ2 –​ θ1 or (γ + α) 0.6298 0.0308 20.46 < 0:0001

Notes: Coefficients and standard errors based on the full linearized APC model.
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that the canonical solution line does not go through regions III or V. In other words, 
we can reject any theory that assumes that the cohort slope is positive while both the 
age and period slopes are negative; additionally, we can reject any theory that assumes 
that all three slopes are negative. Another way of stating the above is that only the 
combinations of slopes in regions I, II, IV and VI are consistent with the data.

6.6.2.3  Combining the linear and nonlinear effects

If we had estimates of both the linear and nonlinear effects we could combine these 
to get the total effects of the three APC variables. Understanding how to do this 
is a useful preliminary to understanding how to combine point estimates of the 
nonlinear effects with bounds on the linear effects. We show how to do so using a 
hypothetical example.

Previously we have outlined how the C-​APC model is related to the L-​APC 
model. The advantage of using the L-​APC is that we can focus on those parts of the 
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FIGURE 6.6  2D-​APC graph: religious intensity
Notes: This graph shows the various signed plotting regions: I (+,–​,+), II (+,+,+), 
III (–​,–​,+), IV (–​,+,+), V (–​,–​,–​) and VI (–​,+,–​). Note first that there is no region 
representing either the (+,–​,–​) or (+,+,–​) patterns of linear effects. Solid points 
denote zero-​slope models, while hollow dots denote the age-​period and cohort-​
period origins (i.e., where the age and period slopes are both zero as well as where the 
cohort and period slopes are both zero).
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APC effects that are not identified in the standard model –​ that is, the linear effects. 
Once we use a 2D-​APC graph to obtain a range of values for the linear effects, we 
can combine these effects with the nonlinear effects to obtain the overall effects. 
To illustrate how we can use the separate linear and nonlinear effects to obtain the 
overall effects, see Figure 6.7.

It is relatively simple to determine the total effects: we just need to add the 
nonlinear and linear effects together. In this hypothetical example, we have a set 
of nonlinear period effects that are identified: π1 = −0.20, π2 = 0.65, π3 = −2.00, 
π4 =  2.85, π5 = −1.30. We also have a set of linear effects that are not identi-
fied, which can be represented generically as π(j − j*). With J = 5 period groups 
and π = 1.5, assume the following values for the period groups: π(1 − 3) = −3,  

(a)

O
ut

co
m

e

−6

−4

−2

0

2

4

6

1 2 3 4 5

π~4 = 2.85

(b)

−6

−4

−2

0

2

4

6

1 2 3 4 5

π( i i*) = 1.50

(c)

Period Group

O
ut

co
m

e

−6

−4

−2

0

2

4

6

1 2 3 4 5

π( i i*) = 1.50

π~4 = 2.85

(d)

Period Group

−6

−4

−2

0

2

4

6

1 2 3 4 5

π( i i*) + π~4 = π4

1.50 + 2.85 = 4.35

FIGURE 6.7  Combining linear and nonlinear APC effects
Notes: Panel (a) shows the nonlinear effects for a period variable (solid line). Panel 
(b) shows the assumed value of the period slope (dashed line). Panel (c) visualizes the 
combination of the linear and nonlinear effects as a solid line. Panel (d) shows the 
combined linear and nonlinear effects, resulting in the overall effects (solid line).
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π(2 − 3) = −1.5, π(3 − 3) = 0, π(4 − 3) = 1.5, π(5 − 3) = 3. Adding the linear 
and nonlinear effects together gives us the overall effects: π1 = −3.20, π2 = −0.85,  
π3 = −2.00, π4 = 4.35, π5 = 1.70. Figures 6.7(a) and (b) show the overall effects and 
how they are the simple sum of the linear and nonlinear effects. For example, the 
fourth period group has an overall effect of π4 = 4.35, which is simply the sum of 
the period linear and nonlinear effect for that group, or 1.50 + 2.85.

The above illustration is vital for understanding our overall approach to APC 
models. By splitting the unidentified temporal effects of the C-​APC into identified 
and unidentified linear effects, we can focus on that portion of these effects that can 
be estimated from the data. This idea of combining the linear and nonlinear effects 
extends easily to actual data. In Figure 6.8, we examine religious disaffiliation effects 
under the assumption that the age linear effect is zero. Specifically, these results are 
based on first estimating the nonlinear effects, assuming that the age linear effect is 
zero, and then using the estimated values of θ1 and θ2 to calculate the values of the 
period and cohort linear effects. Because we have obtained a single set of estimates, 
we have achieved what is called point identification. However, in practice one will 
want to specify a range of values of the effects, reflecting the inherent uncertainty 
of the linear effects, thereby achieving partial identification. We cover this topic in the 
next section on bounding analyses of APC effects.

6.7  Stage 2: partial identification using bounds

Bounding analyses entail restriction on the parameter space of the 2D-​APC 
graph (or, equivalently, fixing a constraint). With bounding analyses, no direct 
measures of UA, UP or UC are included in the model. Rather, constraints are added 
that entail assumptions about the effect of these underlying causes on the out-
come of interest. One new approach is to specify bounds based on the sign, size 
or shape of one or more of the temporal effects. It is crucial to underscore that 
in many cases by constraining the direction of one temporal slope we can make 
conclusions about the direction and magnitude of at least one of the other slopes. 
To illustrate this, consider Figure 6.9(a)–​(d). The graphs show various bounds on 
the canonical solution line using data on religious intensity.21 Figure 6.9(a) shows 
that we can reject any theory that claims that the age and period slopes are both 
negative; this is easily falsified by the data. In other words, either age or period 
has a positive linear effect. Likewise, Figure 6.9(b) illustrates that it is impossible 
for there to be a positive age slope and a negative cohort slope. There is no point 
on the canonical solution line in which this combination of linear effects exists.

The above discussion mirrors our previous overview of the signed regions of 
the parameter space in a 2D-​APC graph. However, we can go a step further and 
use a 2D-​APC graph to obtain finite bounds (i.e., bounds that do not entail posi-
tive or negative infinity). In general, any particular APC dataset should have at 
least two combinations of slopes that, with a minimal assumption about the direc-
tion of the slopes, should result in finite bounds. Figure 6.9(c) shows that we can 
obtain narrow bounds by assuming that the age and period slopes are both positive. 
This assumption results in a relatively narrow bound on the cohort slope. Similarly, 
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Figure 6.9(d) illustrates the bounds, assuming that the age slope is negative and the 
cohort slope is positive. Given these assumptions, we can conclude that the period 
slope must be positive within a relatively narrow range of values.

The above bounds are based only on assumptions about the sign (or direction) 
of the linear effects. This is overly restrictive, because in practice we have data not 
only on the linear effects but the nonlinear effects as well. As a result, we can restrict 
not just the sign but the size of the slope by making assumptions about the shape 
of the temporal effects. For example, assume that we have strong theoretical reasons 
to believe that the overall set of effects in age is monotonically increasing. A  set 
of simulated age nonlinear effects is displayed in Figure  6.10. As can be seen in 
Figure 6.10(a), the set of effects is at some groups increasing and at other groups 
decreasing. We want to specify a value for the linear age effect that ensures that, 
between any two adjacent age categories, the pair of effects is flat. To do so we 
need only find that pair of age adjacent categories in which the downward trend 
is most negative. This can be computed using the following equation: αm.i. = (−1) 

× min(∆αI−1). The ∆ notation indicates forward differences (i.e., αi+1 − αi), and the 
subscript m.i. indicates the linear effect is monotonically increasing. We can use this 
equation to calculate the lower bound for a monotonically increasing set of effects. 
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FIGURE 6.9  2D-​APC graphs: examples of bounding strategies
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The forward differences for the age nonlinearities are ∆αI−1 = {5,2,1,−1,−2,−1.5,  
−1.5}. The minimum of these differences is −2, which is between ages 35 and 40. To 
counter this downward deviation, the parameter value for the linear age term must 
be greater than or equal to +2. In Figure 6.10(b) we show what happens to the set 
of age effects when the slope is set to +2, which is illustrated by the solid line. As can 
now be seen the overall set of age effects is monotonically increasing. Any slope less 
than +2 will result in an overall effect that is neither monotonically increasing nor 
decreasing over the full set of age groups. Alternatively, any slope greater than +2 
will be monotonically increasing; +2 is the minimum monotonically increasing age 
slope consistent with our data.

By incorporating nonlinearities, we are able to make weaker assumptions about 
the sign of the slopes. For example, for the age slope we can specify the range as −∞ 
≤ αm.d. ≤ 0 ≤ αm.i. ≤ +∞. The range αm.d. ≤ 0 ≤ αm.i. is a weaker version of assuming 
a zero slope for age, since it takes into account some deviations above and below 
so long as the deviations are neither monotonically increasing nor decreasing. 
Similarly, instead of assuming the age slope is positive, we can say that αm.d. ≤ 0 ≤ +∞.  
Finally, rather than assuming the age slope is negative, we can say that −∞ ≤ 0 ≤ αm.i., 
which allows for any set of effects except those that are monotonically increasing.

Turning to our empirical example, we can consider placing bounds over one 
or more of the temporal effects using monotonicity constraints. Based on the fit 
statistics presented earlier, we might assume not that the age linear effect is zero, but 
rather that the age effects are neither monotonically increasing nor decreasing for 
some set of age groups. In Figure 6.11, we display the upper and lower bounds for 
the APC effects under the assumption that the age effects are neither monotonically 
increasing nor decreasing during middle age, defined here as the age groups 28–​32 
to 63–​67. These constraints restrict the age linear effect within the range −0.4536 
to 0.2772. We can conclude that, under this assumption, the great decline in reli-
gious intensity is mainly attributable to cohort effects.
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FIGURE 6.10  Specifying monotonicity constraints
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To summarize, we can restrict the range of plausible estimates using a variety 
of bounding strategies, especially those about the sign, size and/​or shape of the 
temporal effects. These should, at a minimum, reflect social or biological theories 
about the true causal effects thought to underlie the temporal variables. Although 
just-​identified models fit the data equally well (and are thus observationally equiva-
lent), some parameter values can be deemed as more plausible than others based on 
sociological or biological theory.

6.8  Stage 3: mechanism-​based models of APC effects

Bounding analyses are based on the idea that we do not have measured mechanisms 
linking the APC variables to the outcome. However, in many instances we have 
causal mechanisms available. Such mechanisms can greatly aid in the identification 
of temporal effects. The mechanism-​based approach identifies the causal effect of 
APC variables on an outcome by specifying at least one of the pathways between 
the temporal variables and the outcome (Winship and Harding 2008).

6.8.1  Incorporating observed mechanisms in an APC analysis

The first instance of the mechanism-​based approach is Duncan’s (1985) model 
shown in Figure 6.12, but it is relatively undeveloped and the causal assumptions 
are not fully specified. However, we present Duncan’s example here because it helps 
to reveal the nature of the assumptions. In Duncan’s basic model, M is a mechanism 
linking cohort, denoted by C, to the outcome, given by Y. In Duncan’s particular 
instance, M is education and the outcome Y is a measure of generational attitudes.22 
This model identifies the putative effect of C on Y as long as M is the only mechanism 

A

P

C

M

Y

FIGURE 6.12  Duncan’s basic model of APC effects
Notes: This figure displays Duncan’s graphical model in which there is a mechanism 
between cohort and the outcome. Unobserved idiosyncratic causes of the mechanism 
and outcome are omitted for simplicity. The double-​headed, double-​lined arrows 
denote the inherently deterministic relationship among the three temporal variables. 
Filled circles indicate observed variables.
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associated with C. The model also assumes that neither A nor P are associated with 
M. These assumptions are visualized as dashed lines in Figure 6.13(a).

It is worth emphasizing that a richer, more detailed set of data can deal with 
expected violations of these assumptions. Figure 6.13(b) shows the same graph-
ical model except M is now labeled M2 and we have included two additional 
mechanisms, M1 and M3. As indicated in Figure 6.13(b), one can specify the pathway 
between P and M directly and then include an additional mechanism, M1, between 
A and M2. Likewise, if it is thought there are additional pathways not modeled 
by M2 between C and Y, one can include them in the model. Here we weaken 
the assumption that the relationship between C and Y is entirely mediated by M2 
by including an additional mechanism, M3. Even when these mechanisms are not 
available in a given dataset, theorizing about likely omitted pathways is helpful for 
orienting what new variables should be measured in future data collection efforts 
(Winship and Harding 2008).

Two points are worth emphasizing about the mechanism-​based approach. First, 
the Duncan model is relatively simple in that it includes just one mechanism. 
However, as discussed by Fosse and Winship (2019) as well as Winship and Harding 
(2008), the mechanism-​based approach is compatible with a very diverse set of 
models with multiple mechanisms. Second, so far we have said little about linear 
and nonlinear effects in a mechanism-​based analysis. The nonlinear effects can be 
estimated directly, because they are identified. That is, one can specify the full set 
of nonlinear effects for the outcome as well as all mechanisms. In practice, we rec-
ommend controlling for all of the nonlinear effects when estimating the linear 
effects. Under the CTE assumption mentioned previously, the idea is that one can 
be relatively confident that the linear effect is zero if the corresponding nonlinear 
effects are zero after adjusting for one or more mechanisms. In our example, this 
would mean that, if the nonlinear effects of C on Y on A and M are zero, then 
we can be confident under the CTE that the linear effects of C on Y as well as A 
on M are zero. In those cases in which the CTE assumption is not met, then we 

A

P

C

Y

M

(a)
A

P

C

Y

M1

M2

M3

(b)

FIGURE 6.13  Omitted pathways in mechanism-​based models
Notes: Panel (a) shows an extension of Duncan’s APC model with omitted pathways 
A → M and C → Y. Panel (b) shows the same model with the pathway P → M 
specified and mechanisms added for the other omitted pathways.
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recommend specifying bounds on the linear effects using the procedures outlined 
in the previous steps.

6.8.2  Mechanism-​based analysis of religious intensity

To illustrate the mechanism-​based approach, we use years of education (ranging 
from 0 to 20)  as a mechanism between the age linear component and the out-
come, religious intensity. This reflects the argument that attaining higher levels 
of education will cause, in general, individuals to turn away from organized reli-
gion. We also posit that education is associated with the cohort linear component. 
Because they are identified, we assume that the nonlinear components for all three 
variables are associated with years of education as well as religious intensity. The 
corresponding graphical model is visualized in Figure 6.14. Note that this graph-
ical model represents our assumptions about the linear components only. Because 
the mechanism and outcome are both continuous, we can use the product rule to 
obtain the estimated APC effects (Winship and Mare 1983). The mechanism-​based 
models produce point estimates of α = 0.010, π = 0.144 and γ = −0.620.

We could stop our analysis here. However, it is likely that several mechanisms 
are missing from our models (Chaves 1989; Firebaugh and Harley 1991). For 
example, we do not include variables that capture one’s political identity, life course 
transitions or subjective health, all of which are likely associated with age and might 
cause religious disaffiliation. Under the CTE we would expect the nonlinear effects 
of age on the outcome to be zero after adjusting for education. However, statistical 
significance tests indicate that the CTE is not satisfied: specifically, after adjusting 
for education, there are still statistically significant nonlinear cohort effects on the 

A

P

C

M

Y

FIGURE 6.14  Mechanism-​based model of religious intensity
Notes: This figure displays the graphical model used in the analysis of religious 
intensity. Unobserved idiosyncratic causes of the mechanism and outcome are 
omitted for simplicity. The double-​headed, double-​lined arrows denote the inherently 
deterministic relationship among the three temporal variables. Filled circles indicate 
observed variables. It should be noted that this graphical model applies to the linear 
components. All nonlinear components are included in the corresponding regression 
models.
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outcome. Accordingly, we proceed to conduct a bounding (or sensitivity) analysis. 
To do so, we assume that the estimate of the mechanism-​based age linear effect is 
an underestimate. Specifically, we assume that the influence of a set of unobserved 
mechanisms is no greater in absolute value than 20 times the size of the estimated 
age linear effect operating through education (denoted as the pathway from A to Y 
via M in Figure 6.14). This assumption is equivalent to claiming that the age linear 
effect is no less than −0.1857 and no greater than 0.2053. The bounds from this 
assumption are shown in Figure 6.15. These results reveal that cohort effects dom-
inate in explaining changes in religious disaffiliation, with relatively minor effects 
of age and period.

6.9  Conclusion

Over a century ago, the sociologist Karl Mannheim attempted a reformulation 
of the problem of generations. In doing so, he outlined a distinctly sociological 
approach to the problem, rather than one based on what he termed ‘positivist’ or 
‘humanist’ formulations, neither of which he thought were entirely satisfactory. In 
this chapter we have attempted a similar reformulation of the problem in its con-
temporary form, namely, APC analysis. Rather than using a just-​identifying con-
straint to achieve a particular set of APC estimates or advocating for a particular 
statistical model, our goal has been to outline a general three-​stage procedure for 
conducting APC analysis focused on examining what can be learned from the 
data without assumptions, using theory to specify bounds and, when variables are 
available, modeling mechanisms. Our approach is inherently sociological in that it 
requires thinking about theoretical assumptions at every stage of the analysis.

To summarize our approach, we recommend the following three stage process 
when conducting an APC analysis, each of which involves a set of smaller steps:

•	 Stage 1 (Analysis without assumptions): Learn as much as possible from the data 
without making assumptions. Determine whether all three APC variables are 
operative.

	 1.	 Linearized APC model:  Separate the linear from the nonlinear components 
using the L-​APC model. Using the L-​APC, fit a model with the period linear 
effect fixed to zero.

	 2.	 Nonlinear effects:  Report the full set of nonlinear effects (e.g., α, π and γ). 
Because the nonlinear effects are point-​identified, they can be visualized 
using traditional graphical techniques. Conventional significance tests and fit 
statistics can be applied. If it seems reasonable to conclude that the nonlinear 
effects for one of the three APC are zero and the CTE assumption seems rea-
sonable, then that variable may be dropped from the model and analysis can 
proceed using conventional methods.

	 3.	 Linear effects: Report the identifiable combinations of linear effects θ1 = α + π  
and θ2 = γ + π that determine the location of the canonical solution line in 
the parameter space. Visualize the canonical solution line using a 2D-​APC 
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graph. Consider what combinations of linear APC effects are ruled out by the 
2D-​APC graph and the location of the canonical solution line.

•	 Stage 2 (Partial identification using bounds): Specify a series of bounds using 
explicit theoretical assumptions about the size, sign and/​or shape of the temporal 
effects. In specifying bounds, one should ask whether there is value in making 
stronger assumptions to obtain more precise estimates. If not, one is done and 
should proceed to the next step.

	 1.	 Constrained 2D-​APC graph: Using the 2D-​APC graph, analyze the effects of 
one’s theoretical assumptions on the constraints imposed on the solution line. 
Are a broad set of parameter effects still plausible? If so, are there additional 
assumptions that can be defended that might be used to narrow the bounds? 
Note that it is possible for a set of assumptions to be inconsistent, leading to 
the whole solution line being excluded.

	 2.	 Bounds on overall effects:  Plot the bounded total effects for the three APC 
variables. Are the bounds sufficiently narrow to draw meaningful substantive 
conclusions? Are additional assumptions needed for this to be the case?

•	 Stage 3 (Mechanism-​based models of APC effects):
	 1.	 Mechanism-​based models:  Using the observed measures of causes, fit one or 

more mechanism-​based models to obtain point estimates of the temporal 
effects. Test whether any of the remaining nonlinear effects for the three APC 
variables are zero.

	 2.	 Sensitivity analyses: After fitting mechanism-​based models, one should consider 
conducting a sensitivity analysis with a 2D-​APC graph to assess the robustness 
of findings in the presence of unobserved causal pathways.

The goal of our approach is to clarify what can be learned from the data itself 
and what can be concluded from data with the incorporation of various theoretical 
assumptions about the temporal effects. Mechanism-​based models are promising 
in that they can be tested against the data and in many cases are overidentified. 
We view our approach as an attempt to redefine the problem of APC analysis 
away from a single identifying constraint to learning as much as possible using the 
weakest assumptions possible.

The approach outlined here is general, flexible and renders transparent many of 
the otherwise hidden assumptions of conventional APC models. As is generally the 
case with new methodologies, there is the question as to whether past substantive 
findings will be sustained or overturned. This is a critical task for future APC ana-
lysis given that many of the methods used have often rested on untested or untest-
able assumptions. We conjecture that the results will be mixed: when analyses have 
been driven by strong theory and/​or conclusions are primarily based on nonlinear 
effects, new methods are likely to sustain old findings; when theory is lacking and/​
or conclusions are based on linear effects then it will be little more than luck if 
previous findings are not overturned. The important point, however, is that with 
the ongoing development of new methods, a broad set of new empirical analyses 
are needed.

03_9780367174422c06-07_p84-141.indd   112 01-Sep-20   9:12:30 PM



Learning from Age-Period-Cohort Data: Bounds, Mechanisms, and 2D-APC Graphs  113

Notes

	 1	 A Shiny program that allows replicating this work and analyzing new data can be found 
at https://​github.com/​adeldaoud/​WhatIfAPC

	 2	 A linear effect refers to a straight-​line relationship, while a nonlinear effect refers to any 
deviation around this straight-​line relationship. For example, a nonlinear effect might 
appear as an upside-​down ‘U’ shape. The combination of linear and nonlinear effects we 
refer to as the total effect.

	 3	 We have yet to identify a compelling case where CTE is unlikely to hold, that is, a case 
where there are linear effects, but no nonlinear effects. The converse situation –​ in which 
there is a nonlinear effect, but no linear effect, or what might be called ‘trendless fluctu-
ation’ –​ does seem possible.

	 4	 As noted above, numerous solutions to the APC identification problem have been offered 
over the years. These are not a concern of the present chapter. Detailed discussions can be 
found in Fosse and Winship (2018; 2019) as well as O’Brien (2015).

	 5	 This conceptualization is close to that of Sen and Wasow’s (2016) idea of race (and also 
gender) as a bundle of underlying causal processes.

	 6	 Critical, although it has been under appreciated in the literature, the APC identifica-
tion problem is restricted to the linear effects. As Fienberg (2013) has stated: ‘The APC 
problem is a linear effects problem (1982).’ We provide intuition for this point below. For 
a formal proof, see Fosse and Winship (2018).

	 7	 For detailed reviews on the variety of temporal data structures and their associated 
problems, see the chapters by Yang and Land (2013:  15–​53) as well as Mason and 
Fienberg (1985: 59–​67).

	 8	 Additional complications arise when the age and period intervals are not equally spaced, 
since this can generate artifactual cyclical patterns. For approaches to estimating temporal 
effects when age and period intervals are unequal, see Holford (2006).

	 9	 Note, however, that calculating the cohorts from an age–​period array introduces some 
ambiguity, since adjacent cohorts will overlap partially (Holford 1983: 311–​312). This 
ambiguity is present even when the age and period groups are of equal width. For 
example, in Table  6.1 the 1956–​1964 cohort overlaps partially with the cohort born 
during 1961–​1969. Narrower age and period intervals will produce a finer grid of cells 
in the age–​period array, but neighboring cohorts will nonetheless overlap to some extent. 
For instance, if age and period are tabulated into two-​year intervals (Tarone and Chu 
1996), then those in age 31–​32 and period 2000–​2001 will be in cohort 1968–​1970, 
while those in age 30–​31 and period 2000–​2001 will be in the adjoining cohort 1969–​
1971. The inexactness can be mitigated when all three temporal variables are measured 
at the individual level, since this will allow for aggregation into nonoverlapping groups, 
but few datasets include all three variables.

	10	 Note that 1 is added to j−i so that the cohort index begins at k = 1. This ensures that, 
for example, i = j = k = 1 refers to the first group for all three temporal measures. One 
could just as easily index the cohorts using k = j −i, but this identity would be lost.

	11	 Alternatively, one could fix the parameters at one of the levels to zero. By conven-
tion researchers typically fix the first set of levels (e.g., αi=1 = πj=1 = γk=1 = 0) or the 
last set (e.g., αi=I = πj=J = γk=K = 0), although another set could be chosen to satisfy the 
constraints.

	12	 This is reflected in the null vector of the L-​APC, which consists of [1, –​1, 1] for the 
age, period and cohort slopes, respectively, and a set of zeros for the nonlinearities. In 
fact, the basic linear model of Equation 6.2 is just a special case of the L-​APC model. 
Referring to our example, note that we can replace the intervals in Table 6.1 with single 
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values, such as the midpoint of each category, to obtain the array shown in Table 6.2. For 
example, we can replace the 30–​34 age interval with the midpoint 32, the 2000–​2004 
period interval with the midpoint 2002, and the 1966–​1974 cohort interval with the 
midpoint 1970.

	13	 A simple linear transformation can be used to convert agei to i − i∗, since i − i∗  =  
(agei − age∗)/​(∆age), where age∗ is the midpoint for all age groups and ∆age is the fixed 
difference between the midpoints. For example, referring to Table 6.2 we have age1 = 32, 
age2 = 37, age3 = 42, age4 = 47 and age5 = 52. The midpoint across all age groups is 
42 and the fixed difference for the groups is 5.  Thus, for example, we can calculate 
that for age1 =  32, the transformed age1 =  (32 − 42)/​5 = −2 which is equivalent to  
i − i∗ = 1 − 3 = −2.

	14	 For simplicity of exposition we treat this as a continuous variable and thus our estimates 
are based on classical linear regression models. We obtain similar results using ordinal or 
multinomial logistic regression models.

	15	 We fix the period linear effect to zero when estimating the predicted values of the 
outcome.

	16	 We note that there are, in fact, assumptions involved regarding sum-​to-​zero constraints 
and the additive nature of the classical APC model. However, these assumptions are 
relatively minor.

	17	 For visualization purposes we have dropped the first two cohort groups and last 
cohort group from the graphs. These groups are sparse, each consisting of 120 or fewer 
respondents.

	18	 Note that there is still an identification problem in the sense that one must assume, based 
on the principle of CTE, that the linear effect of the dropped variable is not opera-
tive. This assumption about the linear effects cannot be tested due to the identification 
problem.

	19	 Note that the cohort categories are unbalanced in two senses:  first, there are fewer 
individual-​level observations in the tails of the cohort categories; second, there are 
fewer age-​period categories in the corners of the Lexis table. Both of these can result 
in greater imprecision of the cohort categories despite relatively large effect sizes of the 
nonlinearities.

	20	 The same dataset of APC variables can have any number of solution lines depending on 
how the variables are coded (Fosse and Winship 2018). However, in general these various 
solution lines can be expressed in their most basic form in terms of three dimensions, or 
what we call the canonical solution line.

	21	 Note that this discussion provides another way of thinking about the signed regions 
described in the previous section.

	22	 The question is as follows: “Which statement do you agree more with?” The answer 
consisted of two choices. The first choice is: “The younger generation should be taught 
by their elders to do what is right.” The second choice is:  “The younger generation 
should be taught to think for themselves even though they may do something their 
elders disapprove of.”
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