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A B S T R A C T

A number of human-induced elements contribute to influencing the intensity of tropical cyclones and prolonging their lifetime. Not only do ocean heat content, large-
scale weather patterns, and surface properties affect the amount of release of energy, but the modulation from aerosol particles on cloud properties is also present.
With Hurricane Harvey (2017) fairly isolated over Texas, there was a unique opportunity to study the indirect impact of aerosols on the amount of record-breaking
rainfall over the greater Houston area. Due to the non-linear processes involved in clouds microstructure, aerosol properties and the variability associated with the
atmospheric environment, the quantification of the response of storms to aerosols is complex. To this end, we first reproduce Harvey using the Weather Research and
Forecasting (WRF) model coupled with a 3D-var assimilation framework that incorporates satellites, radio occultation, dropsondes, and surface measurements. We
then study the aerosol indirect impacts using spectral bin microphysics in conjunction with aerosol properties simulated from the Goddard Earth Observing System
(GEOS)-Chem TwO-Moment Aerosol Sectional (TOMAS) model leveraging online aerosol microphysics with anthropogenic emissions (SP) and without ones (SC). In
the vicinity of Harvey's landfall, the number concentration of cloud condensation nuclei at 1% supersaturation using the anthropogenic emissions is found to be one
order of magnitude (855 cm−3) larger than those simulated with only natural emissions (83 cm−3). We observed that a narrow plume of anthropogenic aerosols from
western Texas was transported over the area at the moment when deep convection initiated, accelerating updrafts through releasing more latent heat, which in turn,
resulted in an average enhancement of precipitation by 25 mm (~ 8%) over the greater Houston area. We observed a second peak at the right tail of the distribution
of differences between experiments, which is an indication of the presence of more extreme rainfall over the area. As such, studies on the impact of aerosol emissions
controls on exacerbating severe weather should be more encouraged.

1. Introduction

Hurricanes play an essential part of the Earth's energy balance by
distributing excess energy to higher latitudes. Since year-to-year oscil-
lations in their frequency and intensity are large, adaptation to this
natural hazard has always been a challenge for humans. Due to scarcity
of historical observations of hurricanes before the time when the global
view of the Earth from satellites has been available, little is known
about their overall trends. Nonetheless, having reasonable knowledge
of their dynamical structure and interactions with the atmospheric
environment embedded in numerical weather models permits the
quantification of their responses to a number of variables such as sea
surface temperature (Emanuel, 1986; Lin et al., 2015), greenhouse
gases (Knutson et al., 2010), and aerosols (Khain et al., 2005; Lynn
et al., 2015; Wang et al., 2014b; Yang et al., 2018; Zhao et al., 2018).

Assuming that tropical cyclones follow a Carnot cycle, their ther-
modynamic efficiency can be calculated through the ratio of work done

against friction in the boundary layer to the total heat gain from oceans.
This ratio is proportional to the difference between the temperature at
the surface (source of energy) and that in the upper atmosphere (loss of
heat) (Emanuel, 1987). This indicates that a warmer ocean can increase
the temperature difference, resulting in stronger winds and larger azi-
muthal surface stress, thereby enhancing precipitation (Lu et al., 2018).
For example, using satellite-derived precipitation measurements and a
high-resolution global atmospheric model, Lin et al. (2015) found a
positive slope between the sea surface temperature and the rainfall rate
generated from different tropical cyclones occurring between 1981 and
2005. The radiative forcing induced by greenhouse gases might also
increase the intensity of hurricanes (Knutson et al., 2010; Walsh et al.,
2016), as the principle of Clausius-Clapeyron relation proves that a
warmer air possesses larger water vapor capacity (Hartmann et al.,
2010). The consequences of having a warmer climate, however, are not
limited to having an excess heat content. Kossin (2018) found that, on
average, the translation speed of tropical cyclones decreased by 10%
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between 1949 and 2016, attributed to the reduction of summertime
tropical circulation, which was possibly caused by global warming. In
response, a relatively longer time is given to hurricanes to consume
moisture/latent energy from oceans.

In addition to gas-phase radiative forcing, aerosols can directly af-
fect the solar radiation (Jung et al., 2019; Kochanski et al., 2019), long-
wave radiation (Garrett and Zhao, 2006), and act as cloud condensation
nuclei (CCN) potentially perturbing the thermodynamics associated
with clouds (Albrecht, 1989; Tao et al., 2012). Since explicitly solving
the cloud microstructure is computationally burdensome and the pre-
cise knowledge of aerosol properties is limited, the indirect impacts of
aerosols on the microphysics of hurricanes (or clouds in general) are
relatively less understood. As such, elucidating the response of hurri-
canes to aerosols heavily relies on the assumptions made for the cloud
microphysics scheme and the initial physical/chemical conditions of
the atmosphere. Several studies have investigated the response of tro-
pical cyclones to the penetration of aerosols under different simulations
and found that aerosols might intensify the periphery (Khain et al.,
2008, Khain et al., 2016; Lynn et al., 2015; Wang et al., 2014), or the
inner core of a storm (Shpund et al., 2019). Zhao et al. (2018) provided
observational evidence of an enhancement of precipitation made by

various tropical cyclones by 4% for an increase of 0.1 aerosol optical
depth over the western North Pacific. Lynn et al., 2015 studied hurri-
cane Irene (2011) with the spectral bin microphysics (SBM) scheme
(Lynn et al., 2005), which explicitly calculates the activation of aerosols
according to the Köhler theory under uniform and non-uniform aerosol
distributions. They found that the non-uniform aerosol concentrations
inferred from satellite observations could better reproduce the time at
which the hurricane began to weaken. This underscores the importance
of having reasonable knowledge of characteristics of aerosols including
their concentration, size distribution, and solubility to be able to rea-
listically quantify the aerosol-cloud interaction.

The motivation of this study is to investigate the indirect impact of
anthropogenic aerosols on Hurricane Harvey (2017) releasing an un-
precedented amount of rain over the greater Houston area. Studies done
by both Risser and Wehner (2017) and Emanuel (2017) suggested that
the likelihood of occurrence of such a currently rare hurricane will
increase in a warmer climate; therefore, an understanding of the extent
to which anthropogenic aerosols can modulate Harvey's rainfall, which
will provide a basis for regulating air pollution, is critical to mitigating
the devastating impacts of such events. Since the framework of ex-
periments in this study will be designed in a deterministic way, results

Fig. 1. A snapshot of the locations of available observations that were used for the WRFDA at 1200 UTC 25 August 2017: (a) aircraft, (b) GPS radio occultation, (c)
surface marine, (d) microwave satellite radiance, (e) surface land, (f) upper-air, (g) wind profiler, and (h) satellite-derived wind vectors. The central panel shows the
4 spatial domains used in the WRF modeling.
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become inevitably subject to both the initial conditions of the atmo-
sphere and the parametrization used for the cloud microphysics.
Therefore, to better able to reproduce Harvey (i.e., establishing the
ideal initial condition), we will make use of a large suite of observations
including satellite and dropsonde measurements; we will improve the
initial conditions of our simulation using a variational data assimilation
framework. We prefer the SBM scheme over a bulk one because pre-
vious studies suggested that the sensitivity of bulk microphysics
schemes to aerosol is generally low (Fan et al., 2016 and the references
therein; Shpund et al., 2019). Additionally, simulations with a bin mi-
crophysical scheme are considered benchmarks in computing aerosol-
cloud interactions. Aerosol fields will be simulated by a well-established
chemical transport model that will not only provide predictions of ne-
cessary aerosol-related inputs for the microphysics scheme, but it also
allows for more realistic estimates of the sensitivity of hurricanes to
aerosols from different sources (e.g. natural vs. anthropogenic).

In this study, we will i) reproduce Harvey at landfall (i.e., adjusting
initial conditions) using a state-of-the-art weather model coupled with a
numerical data assimilation framework, ii) simulate the aerosols using a
global chemical transport model under different emissions scenarios,
and iii) study the sensitivity of Harvey's rainfall to aerosols.

2. Measurements and modeling

2.1. Measurements used for data assimilation

To improve predictions of the numerical model, we used a broad
spectrum of data that are composed of surface, profile, and satellite
observations. A more detailed description of each will follow:

2.1.1. NCEP ADP global upper air and surface weather observations
The data provide a global set of surface and upper air observations

from several sources including surface land, radiosonde, buoy, radar,
profiler, and aircraft measurements. Additionally, the data have in-
cluded atmospheric motion vectors from geostationary satellite ob-
servations (Bedka and Mecikalski, 2005) from GOES satellites, which
are found to be useful in improving hurricane simulations (e.g., Velden
et al., 2016). A snapshot of the spatial distribution of the data is shown
in Fig. 1. It is worth noting that dropsondes (> 145 at various hours)
near the hurricane (Fig. 1f) have also been included in this dataset.

2.1.2. GPS Radio Occultation (RO) data
Some difficulty in simulating tropical cyclones, particularly the

rapid intensification, originates from a lack of an accurate vertical
structure of governing variables such as moisture in the low to mid
troposphere. Therefore, we complemented the conventional upper air
data with GPS radio occultation (RO) refractivity. During an occultation
event, the ray between a GPS satellite (emitter) and a low Earth-or-
biting one (receiver) is refracted while scanning the atmosphere. The
atmospherically bending angles along the trajectory of the ray path
under the assumption of spherically symmetric refractivity fields are
estimated from the knowledge of precise positions and velocities of the
receiver and the emitter (Kursinski et al., 1997). Subsequently, the
three-dimensional atmospheric refractivity fields are derived by the
Abel transform (Anthes et al., 2008). Since the refractivity is a function
of pressure, temperature, and water vapor pressure, these fields from
the numerical model are modified with respect to GPS RO.

2.1.3. Microwave satellite radiance
To gain more insights into the vertical distributions in temperature

and water vapor mixing ratios at a high spatial coverage, we used mi-
crowave satellite radiance (i.e., brightness temperature) from three
sensors namely as the Advanced Microwave Sounding Unit-A (AMSU-A)
onboard NOAA-15 to NOAA-19, the Microwave Humidity Sounder
(MHS) flying on NOAA-18 and NOAA-19, and the Advanced
Technology Microwave Sounder (ATMS) onboard NPP. Each of these

polar-orbiting sensors are a cross-track scanner measuring several mi-
crowave bands mostly between 89 GHz to 183 GHz at different spatial
resolutions (16–85 km nadir pixel) and swath widths. Because of large
sensitivities of the microwave bands to relatively uncertain surface land
parameters such as soil moisture, we only used the data over water
(Fig. 1d). Several quality-control tests were applied to assimilate only
qualified pixels (some of which had been included in the data). For
instance, we removed those pixels which were contaminated by pre-
cipitation based on thresholds defined in Ferraro et al. (2000). The
satellite radiance measurements are subject to systematic errors which
can induce biases in the final product. Owing to the fact that these
errors can vary from sensor to sensor and under different satellite
geometric and atmospheric conditions, we first used an offline linear
regression (cold start) to mitigate the biases, and then adaptively up-
dated them within a variational minimization known as varBC algo-
rithm (Auligné et al., 2007). Satellite radiance data are spatially cor-
related, which may sound useful to reduce random noises, but
replicates do not enhance the amount of information (i.e., rank of
matrix); accordingly, we used a thinning approach (60 km) to reduce
the redundancy among the data.

3. WRF

We simulated Hurricane Harvey using the Weather Research and
Forecasting model (WRF) v3.9.1 (Skamarock et al., 2005) in a nested
setup encompassing a 27-km outer domain, 9-km and 3-km inner fixed
domains for simulation of initial conditions at the landfall, and a 1-km
domain for the sensitivity of precipitation to aerosols. The period of
simulation is from 23th to 28th August 2017. The parent domain con-
sisted of 120 west-east, 120 south-north grids and 30 vertical pressure
sigma levels covering the Gulf of Mexico, Mexico and some portions of
the U.S. The nested domains are centered over the Southeast Texas in
which the hurricane landed and released most of its energy through
precipitation. The initial and lateral boundaries for the parent domain
are provided by the National Centers for Environmental Prediction
North American Regional Reanalysis (NARR) with a 32 km and 3 h
spatial and temporal resolutions (Mesinger et al., 2006), respectively.
The boundary conditions for nested domains are provided by their
outer domains. All domains are shown in the center of the diagram in
Fig. 1.

Since two out of the four domains (d01 and d02 in Fig. 1) are not
spatially fine enough to resolve sub-grid clustered convections through
exchanging moisture, heat and momentum fluxes between clouds and
the environment, we used Betts-Miller-Janic (BMJ) sub-grid cumulus
parameterization (Janjić, 1994). This option was shown to reasonably
simulate precipitation from Hurricane Rita, its landfall time and track
(Nasrollahi et al., 2012). The other domains (d03 and d04) do not re-
quire a sub-grid cloud parameterization, as the fluxes are explicitly
resolved using the microphysics scheme. We used the Yonsei University
(YSU) scheme for the planetary layer fluxes because it produces the
intensity of hurricane relatively better than 1.5 and 2.5 order closures
in the present study. The Noah Land-Surface Model for the surface
physics, and the Rapid Radiative Transfer Model (RRTM) for short- and
long-wave radiation are used. There are two surface layer options in-
tended exclusively for Hurricane studies (Davis et al., 2008). First, the
drag coefficient in the shear stress at the surface over the ocean is set to
a constant value (~0.003) for high wind speeds (Black et al., 2007),
which is lower than the default value in the WRF model. As a result of a
lower drag, we expected to have stronger winds, higher central pres-
sures, and a wider eyewall radius. Second, we consider the ocean
temperature (negative) feedback using a 1-D mixed layer ocean model
(Pollard et al., 1972) with 30 m mixing height and 0.03 K m−1 lapse
rate. Emanuel et al. (2004) suggested that this oversimplified treatment
can still account for the first approximation of this feedback.

The formulation of microphysics plays a central role in most of in-
teractions occurring in cloud hydrometeors in the atmosphere (Khain
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et al., 2015). We choose not to use any bulk microphysical para-
metrization scheme despite their computational efficiency as these
schemes tend not to be as nearly sensitive as the SBM to aerosol con-
centration (Fan et al., 2016 and the references therein; Shpund et al.,
2019); hence, we used the FAST-SBM scheme (Khain et al., 2009),
which rigorously determines the size and number of cloud hydro-
meteors in four size distributions: aerosols serving as CCN, cloud/rain
droplets, aggregates (snow/ice) and graupel/hail. For each group, a
logarithmically equidistant doubling mass grid spectrum containing 33
mass bins (for each hydrometeor) is defined in a way that the mass in
the (i + 1)th bin is twice as large as that in the ith bin. The first and last
bins correspond to 2 μm and 4 mm radius drops, respectively. The
original format of this scheme follows the concentration of activated
CCN from the Twomey activity spectrum equation written as
NCCN=N0Swk, where NCCN (cm−3) is the number of activated CCN
under a particular ambient supersaturation Sw (%); N0 (cm−3) and k are
empirical values indirectly explaining the aerosols properties (Twomey,
1959). Twomey's equation is straightforward because it approximates
the CCN spectrum using two variables; however, it does not explicitly
take into account some physical constraints such as surface tension and
solubility, Thus it is difficult to more specifically specify aerosol char-
acteristics that are dependent on these parameters through setting N0

and k.
Instead, we specified the location-dependent characteristics of

aerosols based on the Goddard Earth Observing System (GEOS)-Chem
(geos-chem.org) global, chemical-transport model with the online sec-
tional aerosol microphysics model, TwO Moment Aerosol Sectional
(TOMAS) (Adams and Seinfeld, 2002). We used GEOS-Chem-TOMAS
v10 with the tropospheric chemistry mechanism (NOx-Ox-HC-Aer-Br)
plus the TOMAS aerosol microphysics scheme in a 2.0o × 2.5o spatial
resolution. The vertical profiles consisted of 47 eta layers from the
surface to 80 km. We used 19 months of simulation prior to the August
2017 for spin-up. The particle phase concentrations were treated in 15
size bins ranging from 3 nm to 10 μm for eight aerosol species, namely
as, sulfate, sea salt, dust, aerosol particle water, black, and organic
carbon (with hydrophilic and hydrophobic populations for each car-
bonaceous type). Our assumed hygroscopic factors and densities for
each species are discussed elsewhere (Kodros and Pierce, 2017). A more
detailed description of the model and its inputs can be found in Kodros
et al. (2016).

To translate the GEOS-Chem-TOMAS aerosol information to the
FAST-SBM microphysics, we applied several modifications to the FAST-
SBM as follows: i) to account for coarser particles from the chemical
transport model, we expanded the largest dry particle size from 2 μm to
10 μm, ii) we transferred three dimensional variables of solubility, dry
radius grids, aerosol-specific mass and total number of aerosols at each
bin from GEOS-Chem-TOMAS to the scheme, and iii) we redesigned the
nucleation subroutine to be able to compile the aforementioned in-
formation. These modifications removed the dependency of the model
on the empirical Twomey's equation. Under the assumption that the
particles in each size bin are internally mixed, we calculated the critical
saturation ratio at the lower (Slow⁎) and upper (Sup⁎) boundaries of each
bin based on Köhler theory. We then compared the ambient super-
saturation from the WRF (Sw) to Slow⁎ and Sup⁎. Under the criteria of
Sw > Slow⁎, all aerosol particles are instantly converted to cloud dro-
plets. Under the criteria of Sw > Sup⁎, we used the following equation
(Gao et al., 2016):

= ×
−

−

∗

∗ ∗
N N

lnS ln S
ln S ln SCCN k

low

up low (1)

Where Nk is the number of aerosol particles at specific grid cell. If Sw
was smaller than the critical saturation ratios, no nucleation was done.
All the information transferred from GEOS-Chem-TOMAS to the SBM
was predefined across all the domain, meaning that GEOS-Chem-
TOMAS is decoupled from the SBM (i.e., one way). Within the SBM, the

predefined aerosols fields were updated with time and space through
the activation cloud droplets, diffusion growth/evaporation, and ad-
vection. We assumed that the source of aerosols only came from the
time-varying boundaries in the largest domain (d01).

3.1. Data assimilation

To improve our high-dimensional numerical representation of
Hurricane Harvey, we used an hourly cycling assimilation. We used the
WRF model with 3D variational assimilation (3Dvar) (Barker et al.,
2004, 2012). This model is originally decoupled from the WRF model;
thus, we implemented a shell-file coupler to be able to bridge these two
components. WRF-3Dvar seeks to solve the following cost function
under the assumption that i) both observation and background error
covariances follow Gaussian probability density functions with a zero
bias, ii) the observation and background error covariances are in-
dependent and iii) the relationship between observation and back-
ground can be approximated linearly:

= − + − + − −
− −x y x y x x x xJ H HE F x B( ) ( ) ( ) ( ) ( ) ( )T b T b1 1 (2)

where x is the analysis (the a posteiori) given two sources of data: the
background (xb) and observations (y). F, the representative error cov-
ariance matrix, denotes the errors induced by H used to transform the
analysis space into the observation space. E and B are the error cov-
ariance matrices of the observations (instrument) and the background
(model). The first term of the Eq. (2) attempts to reduce the distance
between observations and the estimated values. The second term in-
corporates some prior understandings and expectations about the true
state of the atmosphere, that is, it does not allow the analysis to deviate
largely from the background (forecast), even though the observations
could be far from estimated. The weight of each term is dictated by its
covariance matrix. If B is too large compared to E, the analysis will be
independent of the prior knowledge (background) and, conversely, if E
dominates, the final solution will consist mostly of the a priori. While
the instrumental errors are rather well-characterized, a precise knowl-
edge of errors in the background, which is domain-dependent, is un-
known. We carried out the 24 and 12 h forecast for every day of the
month of August to approximate B using the National Meteorological
Center (NMC) method (Parrish and Derber, 1992). To be able to effi-
ciently use the approximated B for the variational data assimilation
system, four control variables (v) including zonal and meridional
winds, temperature, surface pressure, and relative humidity were de-
fined through the relationship x-xb = Uv. The U transform represents
several stages of covariance modeling that has been fully described
elsewhere (Barker et al., 2004). Given a reasonably defined U, UUT

estimates B values that can directly be used for the system. The cost
function, which is a quadratic equation, is iteratively minimized in an
hourly window through the conjugate gradient method. On an hourly
basis, we re-initialized the data assimilation 5 times and minimized
iteratively the cost function with a maximum number of iteration of
200 using the coagulate gradient method.

4. Brief description of Hurricane Harvey

Similar to the majority of Atlantic tropical cyclones, Hurricane
Harvey originated from a westerly wave over Africa passing through to
the east of Windward Island under favorable synoptic conditions
(Fig. 2). Harvey was not believed to pose a noticeable threat to coastal
areas due to the poorly organized structure until late August 23, when it
rapidly intensified mainly as a result of excessive heat ocean capacity in
the Gulf of Mexico (Trenberth et al., 2018), weak wind shear, high mid-
level moisture, and favorable synoptic conditions. At this stage, official
forecast models including National Hurricane Center forecast, the
ECMWF, and UKMET, all well-predicted the track within margins of
error significantly lower than those for the 2012–2017 period; on the
other hand, they severely underpredicted the Harvey's intensity by a
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factor of two (Blake and Zelinsky, 2018). Harvey reached its maximum
intensity at 0030 UTC 26 August and made landfall on Rockport, Texas,
with sustained winds of ~ 59 m/s, and a minimum central pressure of
937 hPa.

After it made landfall, the northwestward motion of the hurricane
slowed and stalled for more than a day. At this point, the hurricane was
sustained by continual moisture flux from the Gulf acting as an effective
convective storm generator producing record-breaking rainfall over
Houston.

5. Experiments

We first reproduced Hurricane Harvey at landfall and then began
our forecasts with two aerosol scenarios. To provide reasonable initial
values for the forecasts, we first assimilated the observations in an at-
tempt to prevent the model from diverging from the truth, and second,
we nudged the meteorological fields toward a well-characterized large-
scale model (here NARR). We conducted four experiments to in-
vestigate to what extent deploying assimilation and grid nudging is
helpful at reproducing the hurricane properties, namely, as CTRL
(neither assimilation nor nudging), SN (only nudging), SDA (only as-
similation), and SNDA (both assimilation and nudging). The simulation
starts at 0000 UTC 23 August, the time when the tropical cyclone was
formed and ends at the landfall at 0030 UTC 26 August. A summary of
these scenarios is listed in Table 1.

To quantify the response of Hurricane Harvey to anthropogenic-
derived aerosols, we continued performing the simulation from the
landfall to 1200 UTC 27 August in all four domains including the high-
resolution 1-km domain. We detached the model from the observational
constraint but left the nudging on for the first domain (d01). We named

the two scenarios with anthropogenic emissions on/off as SP(polluted)/
SC(clean).

6. Results and discussion

6.1. Experimental results from Hurricane Harvey

As noted above, Hurricane Harvey had an observed maximum wind
speed of 59 m/s and a minimum pressure of 937 hPa at 0030 UTC 26
August. The left panel of Fig. 3 displays the performance of the model at
the 3-km domain resolution (d03) at the observed landing time from
CTRL, SN, SDA, and SNDA. To ascertain the structure of the hurricane,
we qualitatively used the outgoing longwave radiation (OLR) (a proxy
for clouds/convection) and the radar reflectivity. The right panel de-
picts the best track along with the radar reflectivity in Corpus Christi,
Texas. Starting from 0000 UTC 23 August, the CTRL experiment pre-
dicts the hurricane landing time one day early. The spatial distribution
of track was scattered indicating that the structure of the hurricane is
poorly modeled. The intensity of the hurricane in terms of maximum
low-level wind speeds and the sea-level pressure barely reached above
25 m/s and falls below 1000 hPa, respectively. In this simulation, the
initial and boundary conditions are far too undefined to reproduce the
observations of Hurricane Harvey.

We reran the model with nudging toward the NARR reanalysis data
(the SN case) given that the data were constrained by observations. The
errors in movement and landing time were much reduced. However,
the use of reanalysis data results in a large underestimation of the in-
tensity, consistent with Zick and Matyas (2015) who validated the
performance of the NARR data in reproducing> 65 tropical cyclones
that made landfall in the U.S. during 1998–2012. The underprediction
of intensity of those storms were found to be large, mainly as the result
of the insufficiency of the NARR spatial resolution to be able to resolve
non-hydrostatic components.

We then assimilated the aforementioned observations by numeri-
cally solving the cost function in a full-cycle hourly framework.
Although the cost function varies by time, on average, the highest va-
lues belong to the sounding data suggesting that the largest discrepancy
between the model and the observations occurs in the vertical structure
of the atmosphere (not shown). During the entire period of simulation,
the initial cost function was roughly being reduced by>50% de-
pending on the availability of observations. After incorporating the
observations, certain aspects of the hurricane were more realistically
captured. For instance, the vortex structure was fairly well simulated
according to the OLR and the radar reflectivity. The severe under-
representation of Harvey's intensity from the former scenarios was
substantially reduced. The biases of maximum wind speed and
minimum sea level pressure were found to be 13 m/s and 23 hPa. The
track on the other hand was inferior compared to that of the SN case (~
100 km). It seems that the relatively small size of our domain under-
mined the WRF-3Dvar ability to accurately represent the large-scale
atmospheric environment. To compensate for the above limitation, we
nudged the model toward the NARR for the parent domain (d01). The
last panel of Fig. 3 demonstrates that SNDA, which benefited from the
combination of the observations and the reanalysis data, beats all

Fig. 2. Best track (determined by the National Hurricane Center) of Hurricane
Harvey during the period of 18th August to 31st August 2017. The hurricane's
minimum pressure and maximum low-level winds were seen as 937 hPa and
59 m/s at 0030 UTC 26 August. The initial time for the numerical modeling of
this phenomenon is 0000 UTC 23 August in our study.

Table 1
The experiments designed to reproduce Harvey at landfall and conduct the sensitivity test in respect with aerosols, namely, as CTRL (neither assimilation nor
nudging), SN (only nudging), SDA (only assimilation), SNDA (both assimilation and nudging), SP (with anthropogenic emissions on), and SC (without anthropogenic
emissions).

Experiment Period (UTC) Grid Nudging (d01, d02, d03, d04) DA (d01, d02, d03, d04)

CTRL 08/23 00:00-08/26 03:00 off, off, off, N/A off, off, off, N/A
SN 08/23 00:00-08/26 03:00 on, on, on, N/A off, off, off, N/A
SDA 08/23 00:00-08/26 03:00 off, off, off, N/A on, on, on, N/A
SNDA 08/23 00:00-08/26 03:00 on, off, off, N/A on, on, on, N/A
SP/SC 08/26 03:00-08/27 12:00 on, off, off, off off, off, off, off
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individual experiments. The results obtained in this study suggest that
the low spatial coverage (i.e. a regional domain) of the model may have
precluded the determination of optimal results, even when ample ob-
servations are assimilated in nested domains.

To make an assessment of the overall capability of simulating a set
of key aspects of the hurricane, we plotted the time series of maximum
wind speed, SLP and track errors for each experiment, shown in Fig. 4.
With regard to the wind speed, CTRL and SN cases have relatively
constant values. The SDA and SNDA experiments underwent a more
rapid intensification after August 25 at a rate of 0.5 m/s per hour re-
sulting in the simulation a major hurricane. Similarly, the middle panel
shows that SDA and SNDA consistently performed better than the
others with respect to minimum SLP. Concerning the track errors, SDA
and SNDA gradually approached closer to the best track after August
24. The reasonable performance of SNDA is promising; judged over all
mentioned variables combined it outperformed all individual experi-
ments; therefore we initialized our SC and SP experiments using the
physical conditions from this scenario from the landfall.

6.2. Characteristics of aerosols before the landfall

Fig. 5 shows the spatial distribution of daily-averaged mass con-
centration of five major aerosols on the August 26th over the surface,
namely as sulfate, sea salt, black carbon (BC), organic aerosols (OAs)
and dust. In general, the less soluble aerosols (e.g., BC, OA and dust)
reduce surface tension by reducing the surface curvature. In addition to
reducing the curvature effect, soluble aerosols such as sulfate and sea
salt, act to reduce the equilibrium vapor pressure of water above the
activating droplet, which in turn, can significantly increase the water
droplet radius (i.e., the solution effect) (Tao et al., 2012).

The natural sources of sulfate are predominantly from volcanic ac-
tivities and oceanic dimethyl sulfide (Bates et al., 1992). Therefore, we
observe the enhancements of sulfate over the ocean and active volcanos
in Central America (box B). The sources of sulfate mainly originate from
the oxidation of the S(IV) family through OH, dissolved O3 and H2O2

(e.g., Souri et al., 2017). The model captured a hemispherically trans-
ported plume from East Asia (box A) (Park et al., 2004). The highest
concentrations of sulfate close to Harvey are seen in box C mainly from

anthropogenic sources in the western Texas. The data suggest that
global anthropogenic-derived sulfate was more than twice as large as
the natural sulfate. The simulation shows a large mass of sea salt on the
path of Harvey (box D); but sea salt contributes proportionally to few
CCN due to its larger mass per particle. Biomass burning activities oc-
curring in Canada contributed largely to BC and OA (box E). Relative to
total aerosol mass, negligible BC concentrations are seen close to Har-
vey's landfall. Simulated dust concentrations remained constant under
the two scenarios. A dust plume coming from Africa (box F) did not pass
through the Gulf of Mexico. Overall, as Fig. 5 shows, the global an-
thropogenic emissions contributed mainly to more sulfate and organic
aerosol mass in Texas.

To generally understand to what extent aerosols can potentially
become cloud droplets, we estimated the CCN spectra using the em-
pirical equation (i.e., NCCN=N0Swk) using the analysis presented in
Kodros and Pierce (2017). Fig. 6 shows the spatial distribution of CCN
concentrations at 1% supersaturation with and without global anthro-
pogenic emissions on the August 26th. Additionally, the bottom panel
of the figure shows the CCN spectra within all grid cells over the surface
in the 3-km domain (d03). Elevated CCN under the scenario of no an-
thropogenic emissions appeared over wildfires in Canada. In addition to
the release of several inorganic aerosol precursors (Souri et al., 2017), a
large number of organic compounds were emitted from biomass
burning into the atmosphere (Wiedinmyer et al., 2011). The ratios of
CCN concentrations in the scenario with anthropogenic emissions to
those without anthropogenic emissions varied from one (over fires) to
two orders of magnitude (over Ohio River Valley with high emissions
from power plants and industry). The CCN spectra averaged over the 3-
km domain, under the 1% supersaturation ratio, suggest that the an-
thro-off scenario (SC) only builds up to 80 cm−3. The number of CCN
hardly increased above 0.5% supersaturation because of a few number
of smaller particles (k of 0.2). On the other hand, the anthropogenic
sources (mainly sulfate) largely contributed to CCN concentrations (~
850 cm−3 at 1% supersaturation) with a relatively higher k value
(0.26).

Fig. 3. The left panel shows the simulated sea level pressure (SLP), the wind speed at 10 m (WSP10), the track, outgoing long radiation (OLR) and radar reflectivity
on 26th August 2017 at 0300 UTC, when Harvey made a landfall. The right panel demonstrates the best track and the observed radar at the landfall. The SNDA
depicted the properties of Harvey more realistically than the other scenarios.
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6.3. Response of Harvey to anthropogenic aerosols after the landfall

Harvey's record-breaking rainfall was interwoven with two main
elements i) a stall over a region inland not too far from the Gulf, and ii)

high ocean heat content present in spite of the negative feedback of the
storm on the Gulf (Trenberth et al., 2018). The unusual track of Harvey
triggered by a low wind shear permitted the release of excess moisture
from the Gulf over Houston. Given the atmospheric conditions from

Fig. 4. Time series of the track error (bottom), the maximum wind speed (middle), and the minimum sea level pressure (bottom) for the CTRL, SN, SDA and SNDA
experiments from the formation of the storm to the landfall.

Fig. 5. The mass of five major aerosols simulated by the GEOS-Chem-TOMAS without (first row) and with (second row) global anthropogenic emissions over the
surface on 26 August 2017.
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both GEOS-Chem-TOMAS and WRF-DA, we continued the simulation
by including the 1-km spatial resolution domain (d04) under the two
experiments (SC and SP). We identified a negligible difference between
the tracks from SC and SP experiments (not shown), as the tracks were
mostly driven by large-scale atmospheric conditions. Both scenarios
fairly follow the best track within a radius consistently< 50 km.

A number of studies have analyzed the response of precipitation to
anthropogenic aerosols (e.g., Khain et al., 2004, 2005; Tao et al., 2007;
Fan et al., 2016; Wang et al., 2014; Khain et al., 2015; Khain et al.,
2016). Combining the results from former studies suggests that there is
no clear correlation between precipitation amounts and aerosols unless
we classify the atmospheric environment into moist (i.e., abundant
moisture and low wind shear) and dry (i.e., limited moisture and high
wind shear) regimes (Tao et al., 2012; Khain et al., 2008). The regimes
with Harvey varied with time and space because of the interaction of
different environmental scales (from large-scale synoptic conditions to
small-scale eddies) governing the dynamic of hurricanes. Likewise,
aerosols, along with the physical and chemical processes involved in
their formation and loss, changed spatially and temporally.

Fig. 7 shows the simulated water vapor mixing ratio at 2 m, OLR,
and the aerosol concentrations at 2 km altitude from the SP experiment
in the 1-km domain (d04) starting from 03 UTC 26 August. The largest
amount of rainfall over the greater Houston, shown by box G, began
shortly after 00 UTC 27 August (~ 20 h after the initial time in the
figure). In the first hours of the simulation, we observe that the water
mixing ratios in the eyewalls did not differ largely from those over the
Gulf. As the eye departed from the Gulf, however, the more moisture it
lost. Thick clouds gradually dissipated over the eyewall because of a
drier air and mainly mid-level westerly winds (wind shear). The
counterclockwise circulation, however, provides a mechanical

mechanism that feeds and prolonged the occurrence of rainbands over
Houston. Thus, the atmospheric conditions (shown over box G) were
generally moist.

Under dry conditions dictated by either high wind shear or lack of
moisture, we expect that enhanced aerosol numbers will generate
smaller cloud droplets, resulting in less efficient collision-coalescence
that suppresses rainfall. On the other hand, if abundant moisture/latent
heat fluxes and low wind shear are present, enhanced aerosol numbers
can release the latent heat from water vapor resulting in stronger up-
drafts and downdrafts. Additionally, a high number of aerosols reduces
the size of raindrops at the lower atmosphere causing a stronger eva-
porative cooling, which in turn, strengthens convergence because of a
larger thermal gradient (Tao et al., 2012 and the references therein).
The last set of panels within Fig. 7 demonstrates how the aerosol con-
centrations evolved gradually at 2 km altitude. The anthropogenic
aerosol concentrations originating from western Texas near Harvey
were carried by a counterclockwise movement of spirals to Houston at
the moment when deep convection activity initiated. The concurrent of
events underscores the significance of having a chemical transport
model accounting for a timely distribution of aerosols.

We computed the differences between the two scenarios with re-
spect to several atmospheric variables including total precipitation (i.e.,
the amount of rainfall), the liquid water content (LWC), vertical winds
(W), and rain mixing ratios. In contrast to previous studies focusing on
analyzing this sensitivity in a snapshot, we found that a radial-basis
comparison was better able to distinguish the differences between
model simulations. We defined an annulus with a fixed thickness of
150 km expanding from the center of the hurricane to beyond 400 km.
This annulus scanned the atmospheric fields in increments of 1-km on
the right side of the hurricane. We then computed the difference be-
tween the two experiments based on the grid cells that fall into the
annulus. Fig. 8 shows the radial differences of the aforementioned
variables. Around 10 h after the landfall near to the eyewall, we ob-
served an enhancement in vertical winds as strong as 0.05 m/s at 4 km,
longer liquid paths, and a higher rain mixing ratio by 0.1 gkg−1 at
2 km. These results potentially imply an increase in the release of latent
heat attributed to the anthropogenic aerosols passing through the
eyewall (the last panel in Fig. 7). Interestingly, the same level of en-
hancement occurred later at the time in which a narrow band of pol-
lution from the western Texas was transported over the greater Houston
(20–24 h after the landfall). The anthropogenic aerosols contributed to
the invigoration of deep convection over box G which was associated by
an increase in vertical winds and a larger amount of precipitation.
However, we noted a reverse trend at those regions located out of box
G. This indicates that the enhanced vertical mass flux over Houston
dampens convection in further rainbands surrounding the area of most
intense convection, mainly a response to the competition between these
two regions in the use of moisture/latent fluxes. Therefore, the total
amount of precipitation remained unchanged over the entire domain
(~ 0.7% difference); but the SP resulted in a heavier rainfall over the
greater Houston area on average (~ 25 mm).

Fig. 9 shows the spatial distribution of rainfall in the SC and SP
experiments between 0300 UTC 26 August and 1200 UTC 27 August.
Not surprisingly, the model and observations indicated a higher amount
of rainfall over the land than the ocean because of a larger surface drag
coefficient over land that leads to a stronger frictional convergence (i.e.,
Ekman pumping). Assuming a constant drag coefficient over land, one
would expect a higher amount of precipitation on the right side of a
hurricane in the Northern Hemisphere because of stronger background
winds. Indeed, we observed a larger precipitation amount in the greater
Houston area from SP. We attribute this enhancement to an aerosol
plume arriving from western Texas at the moment that deep convection
initiated over Houston. The average accumulated rainfall during the
period over the region of interest was 297 and 322 mm for SC and SP
experiments, respectively. In addition to quantifying changes in the
simulated Hurricane Harvey precipitation, examining the probability

Fig. 6. (top panel) the number of activated aerosols to cloud droplets (CCN) at
1% ambient supersaturation with and without anthropogenic emissions over
the surface on August 26. (bottom panel) the fitted CCN spectra based on
Twomey's formula on aerosols in the yellow box. Red and blue lines denote
cases without and with anthropogenic emissions, respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

A.H. Souri, et al. Atmospheric Research 242 (2020) 104965

8



distribution of the difference between SP and SC experiments over the
greater Houston area is beneficial. Fig. 10 shows the distribution of the
differences between SP and SC experiments over the box G, overplotted
with a fitted Gaussian function (r2 = 0.95). The fitted function is
shifted by 27 mm toward more positive values suggesting that the
number of grid cells with high precipitation amounts were enhanced by
the anthropogenic-derived aerosols. In addition, we found a second
peak at the right tail of the distribution indicating an increase in the
number of grid cells with extremely high rainfall.

7. Summary

Predominantly high ocean heat content and a lack of strong wind
shear resulted in a fairly isolated Hurricane Harvey (2017) in Texas
(Trenberth et al., 2018). Harvey provoked spatially-compact deep
convection over the greater Houston area, producing a national record-
breaking rainfall (Emanuel, 2017; Risser and Wehner, 2017). Not only
were atmospheric conditions favorable but an abundance of anthro-
pogenic particles that modulated the spatial and temporal distribution

of moisture release was also present. To study these effects, we set up a
high-resolution model that is relatively responsive to aerosols, along
with a chemical transport model that is capable of accounting for the
chemical and physical processes involved in the formation and loss of
gases/particles.

Motivated by the need for the quantification of the impact of an-
thropogenic-derived aerosols on the magnitude of precipitation pro-
duced by Harvey, this study rigorously i) reproduced both the chemical
and the physical conditions of the atmosphere at landfall, ii) calculated
the activation of aerosols explicitly using a spectral bin microphysics
scheme, and iii) investigated the changes in precipitation with and
without anthropogenic emissions.

In order to reproduce Harvey's properties from when it was formed
on 0000 UTC 23 August 2017 up to the time it made a landfall on 0030
UTC 26 August, we assimilated a wide range of data encompassing
dropsondes, microwave satellite radiance, GPS refractivity, surface and
aircraft observations, into a parent domain (27-km), along with two
nested domains (9-km and 3-km) in a full-cycle hourly 3-D variational
framework. We found that the cost function derived from Bayes'

Fig. 7. First row: the simulated water mixing ratio at 2 m, starting from 03 UTC 26 August for the SP experiment. Second row: OLR for detecting the cloud location.
Third row: the aerosol concentrations at a 2 km altitude.

Fig. 8. The radial-basis comparison of the SC and SP experiments for 35 h from the landfall. Total precipitation was estimated by the sum of precipitation at a given
radius of the scanning ring. The delta (Δ) denotes the difference between SP and SC for the target variable.

A.H. Souri, et al. Atmospheric Research 242 (2020) 104965

9



theorem used for the assimilation was large for sounding measure-
ments, indicating that the model had a poor performance at the vertical
structure of the atmosphere which was improved by the data. We found
that the assimilation of the data (for all domains) in conjunction with
the NARR reanalysis data (only the parent domain) led to a reasonable
performance with regard to track error (48 km), SLP (953 hPa) and
maximum wind speed (50 m/s) variables.

To examine the properties of Harvey after landfall, we used the si-
mulated anthropogenic and natural aerosol fields from GEOS-Chem-
TOMAS, a chemical-transport model with online aerosol microphysics.
Sulfate was the major compound formed from the anthropogenic
emission sources in the vicinity of Harvey. Close to Harvey's landfall,
the number concentration of CCN with anthropogenic emissions in-
cluded was found to be an order of magnitude (855 cm−3) larger than
those simulated with only natural emissions under 1% ambient super-
saturation. We modified the SBM microphysics to nucleate aerosols
based on their dry sizes, solubility and concentrations provided by
GEOS-Chem-TOMAS under an assumption of the internally-mixed
aerosol. A comparison of the simulations with and without anthro-
pogenic emissions showed that precipitation amounts were sensitive to
the aerosol loadings; the simulation with anthropogenic aerosols led to
stronger vertical winds, the invigoration of deep convective clouds, and
heavier rainfall at times when polluted airmasses passed through.
Specifically, at the peak of precipitation over Houston, a narrow band of

elevated aerosol was transported over the region from western Texas,
which accelerated updrafts/downdrafts thereby enhancing the cata-
strophic rainfall by 8% (25 mm) on average. Although directly com-
paring the amount of changes in precipitation from this study to that of
former ones might not be feasible because of the differences among
microphysics scheme used, properties of aerosols, and the dynamical
aspects of the target (e.g., hurricane, squall lines, super cells and etc.),
the 8% increase in box G precipitation is in good agreement with a
study done by Li et al. (2009); they found a 13% enhancement in
precipitation in for a squall line under a polluted scenario (~
2000 cm−3) using a two-moment bulk microphysical scheme. We ob-
served a second peak at right tail of the distribution of differences be-
tween SP and SC experiments which is an indication of having more
extreme rainfall over Houston. We speculate that the additional rainfall
due to aerosol incursion can have important implications for flood risk
management.

The findings from this study demonstrate that human-made parti-
cles, predominantly in the form of sulfate, partly dictated the dis-
tribution of heat and the release of moisture during the event. State-of-
the-art weather and chemical models used suggest that atmospheric
pollutants made by human can be partly responsible for the severity of
weather.
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