
E.U. Trade Restrictions and Heterogeneity among
Malaysian Palm Oil Farmers

Audrey Tiew∗

November 20, 2023

Abstract

Focusing on the 2017 European Union resolution to phase out palm oil in all biofuels, I consider

the implications of heterogeneity among upstream farmers for equitable and efficient environ-

mental policy. Oil palm producers include both small farms for which oil palm has played a

historical role in poverty reduction and large estates owned by publicly traded corporations.

With respect to equity, differences in production technologies may lead to a persistent shift in

the farm size distribution towards more large estates after a negative demand shock such as the

E.U.’s palm oil import restriction. This shift also has negative implications for policy efficiency,

as evidence suggests that large farms deforest relatively more. Leveraging data on aggregate

regional land use by farmer type from 2006 to 2019 obtained from the Malaysian government

and estimating a dynamic model of land use, I predict counterfactual differences in oil palm

production entry and exit decisions between small and large farms in response to the E.U. pol-

icy and find that smallholders lose $47.9 million USD from lost entry. Using counterfactuals, I

also find that domestic taxes and subsidies can be used to mitigate small farm losses and limit

large farm deforestation.

∗Contact: audreytiew@g.harvard.edu.Results reported are preliminary and/or incomplete.
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1 Introduction

In recent years, the European Union has begun using trade policies restricting imports to com-

bat global deforestation and climate change. Failing to adequately address heterogeneity among

upstream producers in these policies has possible implications for (i) equity in terms of how the

policy’s economic cost is distributed and (ii) efficiency in terms of how much deforestation is

reduced relative to the policy’s total economic cost. With respect to equity, these trade policies

could increase inequality within impacted exporter countries such as Brazil, Indonesia, and

Malaysia, which export large quantities of agricultural goods such as palm oil, cocoa, and rub-

ber to the E.U. In particular, upstream producers of crops such as oil palm are heterogeneous.

Large plantations are often owned by large multinational corporations, and smallholdings tend

to be run by historically rural poor individual families. Additionally, large plantations have

access to better land clearing technologies than small farms, which can generate disparities in

crop entry and exit behavior between small and large farms and decrease the total share of

small farms after the initial negative demand shock. With respect to efficiency, having access

to better technology may also mean that large farms engage in more deforestation and that a

policy with relatively greater restrictions on large farms could be more efficient.

Using Malaysian data on upstream palm oil production, I develop a dynamic structural

model capturing the heterogeneity in farm decisions to enter and exit oil palm production

by farm size. Consistent with large farms having access to better (cheaper) land clearing

technology, I estimate that large farm entry costs are on average 5 times lower than those

of small farms. This translates into potentially large external margin losses to small farms.

Accordingly, I find that the decreased downstream demand resulting from the 2017 iteration of

the E.U.’s trade restrictions on palm oil could substantially decrease the long run discounted

expected flow payoffs of not only small farms remaining in the industry regardless of the import

policy but also the small farms that would have entered absent the policy (“missing entrants”).

I estimate the decrease in long run discounted flow payoffs of the remaining farms to be 2.9

billion USD and the decrease for the missing entrants to be 47.9 million USD in 2017. These

decreased payoffs account for not only the immediate fall in prices faced by farmers due to the

decrease in demand but also long run changes in prices due to shifts in aggregate supply.

The current discussion about policies to address deforestation and climate change largely
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focuses on entire industries or countries. For example, the 2022 iteration of the E.U.’s policy

against deforestation targets a broad class of imported goods associated with deforestation,

including but not limited to cocoa, coffee, palm oil, and rubber. While the E.U. plans to

work with other countries to help them“improve their regulation capacity,” how to do so given

heterogeneity of upstream producers across and within countries is not well defined Radford

(2022).

Similarly, the economics literature focuses on broader policy implementation with a limited

focus on how heterogeneity affects who bears the cost of the policy as well as optimal policy im-

plementation. Souza-Rodrigues (2019), for instance, explores the efficiency of domestic policies

preventing deforestation in the Amazon and the general social benefits from resulting reduced

carbon emissions. Hsiao (2020) examines the efficacy of trade policy as environmental policy,

finding that international cooperation is needed to optimize efficacy. Domı́nguez-Iino (2022)

provides a counterpart to Souza-Rodrigues (2019) by looking at geographic variation in policy

impacts and finds that poorer regions do in fact bear the brunt of the cost of the policy. This

project further adds to the discussion of heterogeneity by looking at the policy cost burden on

different types of farmers within the same geographic region(s).

Farmer heterogeneity within region is important, because the differences in oil palm land

utilization decisions between small and large/corporate farms correlate not only with a po-

tentially unequally distributed cost burden but also inefficient policy implementation. With

respect to equity, a policymaker might hope to mitigate the cost burden on smaller, tradition-

ally poorer farms. Income inequality is already, on average, worse in developing countries than

it is in Europe and the U.S.1 By explicitly modeling land use decisions, my model captures how

the long run expected payoffs to produce palm oil could change differentially across groups post

trade policy and how domestic taxes and subsidies could be used to redistribute payoffs.

In terms of efficiency, some evidence suggests that large firms may contribute more to

deforestation. Lee et al. (2014) find that 88.3% of deforestation in Sumatra, Indonesia from

2000 to 2010 was driven by large-scale oil palm plantations, contrasting the 10.7% attributed

to smallholdings. Moreover, large enterprises convert 16.7 times more peat swamp forests,

which release more carbon than other types of land, into oil palm plantations compared to

smallholdings. Similarly, Gutiérrez-Vélez et al. (2011) find that, in Peru, 75% of oil palm

1https://www.stlouisfed.org/on-the-economy/2017/october/how-us-income-inequality-compare-worldwide
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land expansion by industrial scale plantations involved deforestation, whereas only 30% of

smallholder expansion did. As such, understanding the heterogeneity across groups in oil

palm land expansion choices is important, as policymakers may prefer to more heavily restrict

expansion by groups responsible for more deforestation.

Equity and efficiency are linked together in this setting because different types of farms

have access to different resources and technologies for clearing the land in terms of getting rid

of old trees or preparing new land for planting. In particular, large estates (and organized

smallholders) can more cheaply clear and plant large swaths of land at the same time (Kailany,

2011). Accordingly, I estimate that large estates face lower average entry costs than small farms

and that both groups face low scrap values for their land. This implies that it is easier for large

estates to (re)enter the oil palm market and benefit from higher prices if prices increase again

in the future. This has consequences for equity because a low scrap value can also imply a low

outside option. Thus, under low scrap values, smallholders who exit or fail to enter due to a

negative demand shock are worse off in the sense that they will be “stuck with” their lower

outside options for longer relative to large estates. That large estates have access to better

land clearing resources and technologies also makes it easier for them to deforest. Accordingly,

Gutiérrez-Vélez et al. (2011) find that large farms prefer large concessions in forested regions

whereas smallholders prefer already cleared land. Lee et al. (2014) note that large estates have

capital and expertise to drain and cultivate peat swamps that independent smallholders might

not have access to.

In this project, I study the implications heterogeneity has for equity and efficiency in the

context of the European Union’s 2017 resolution to restrict palm oil imports on the Malaysia’s

upstream oil palm industry. Malaysia is the second largest global exporter of palm oil after In-

donesia, and the European Union has consistently ranked among Malaysia’s top three importers

of palm oil. Moreover, Malaysia’s oil palm farmers are heterogeneous, with small farms of 10

or fewer acres (smallholders) producing about 40% of the country’s oil palm (Ellis-Petersen,

2018). Palm oil’s profitability has historically played an important role in Malaysian poverty

alleviation (Malaysian Farmers Protest Europe’s Push to Curb Palm Oil Imports, 2018). The

government has created multiple programs to help rural farmers gain access to the crop. The

E.U. policy is cause for concern because it correlates with observed slowdowns in land area
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expansions and sometimes even contractions across regions. These slowdowns and contractions

imply that small farms may have to accept lower value outside options post policy than they

would have otherwise. Notably, palm oil’s economic influence extends well beyond Malaysia,

with 3 million smallholders growing oil palm and 2.9 million related downstream jobs globally

(Voora et al., 2020).

To estimate the long-run effects of the 2017 E.U. trade policy on smallholders, I obtain

data on aggregate oil palm land flows by farm type from the Malaysian government. In these

data, I observe land areas by administrative region and year for independent smallholders,

organized smallholders, and large estates. Such distinctions are not generally available from

the geospatial satellite data used in other papers (e.g., Hsiao 2020; Domı́nguez-Iino 2022). I

also collect price, quantity, and other data that allow me to estimate aggregate oil palm supply

and demand. Using the land areas, prices, quantities, and other characteristics (e.g., rainfall,

prices of substitutes), I estimate and simulate a model with two key components: 1) static short

run aggregate supply and demand, and 2) dynamic oil palm industry entry and exit decisions.

Aggregate supply and demand are needed to estimate and simulate the dynamic portion of

the model, as they predict equilibrium static profits in different states of the world. I use a

single agent dynamic model of entry and exit decisions similar to Rust (1987) and Scott (2014)

with an additional restriction on agent beliefs over equilibrium price changes. This dynamic

structural model allows me to distinguish between losses to farms remaining in the market and

the forgone profits of farmers exiting or choosing not to enter due to the policy.

I estimate that the discounted stream payoffs from entry that would have occurred absent

the policy could have provided the annual income for 26,362 mean income Malaysian families or

35,455 median income families. Furthermore, large estates recover their former market shares

more quickly than independent smallholders post policy, indicating that: (i) there is a sense in

which smallholders bear more of the burden of the policy in that more smallholders are now

“stuck with” a lower bound outside option due to facing higher entry cost frictions, and (ii) the

policy as implemented was inefficient in that it slowed the entry of the farms associated with

more deforestation by less.

To examine how domestic policy might be used to improve equity and efficiency, I calcu-

late a counterfactual in which the trade policy still occurs but is now coupled with a lump
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sum per hectare tax targeted at large estates. I find that the resulting tax revenues at tax

rates of 1,000RM (approx. 230 USD) and 2,000RM could more than compensate independent

smallholders for their losses under the trade policy. The losses to incumbent large estates are

roughly 50% higher under the 1,000RM tax than they would have been under the trade policy.

Moreover, such a policy significantly reduces entry by large estates, thus targeting the farms

associated with higher rates of deforestation.

While the discussion of optimal environmental regulation and its implications for inequality

in the presence of firm heterogeneity is relatively novel, the literature on firm heterogeneity

and endogenous industry composition is well established. Some of the earlier literature is

theoretical. Hopenhayn (1992) lays a theoretical foundation for equilbirium existence in models

with firm exit and entry. Caves (1998) provides a summary of early theoretical mechanisms

underlying industry turnover. There is also a strand of literature focused on firm innovation

and productivity as endogenous determinants of industry composition (Luttmer, 2007; Melitz,

2003). This project also contributes to this literature by empirically studying endogenous firm

composition in a specific industry.

The rest of the paper is organized as follows: Section 2 provides further background on the

palm oil industry and Malaysia. Section 3 describes the model in detail. Section 4 discusses the

data used. Section 5 presents estimation results. Section 6 discusses counterfactuals eliminating

the trade policy and taxing large estates. Section 7 concludes.

2 Background

Developing countries in Southeast Asia, Africa, and Latin America are the primary sources of

palm oil. In 2022, the estimated value of the global palm oil market was 67.91 billion USD

(Precedence-Research, 2023). Malaysia accounts for roughly 34% of world exports and has been

globally the second largest exporter, after Indonesia, of various forms of palm oil (e.g., crude,

kernel, refined) and its byproducts (MPOC, 2023). Consequently, palm oil plays a large role

in the Malaysian economy, accounting for between 5 and 7 percent of Malaysia’s annual GDP

(Nambiappan et al., 2018).

Palm oil originates from the fresh fruit bunches (FFB) growing on an oil palm tree. The

average bunch weighs between 20 and 55 pounds and must be transported to a mill and pro-
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cessed into oil within 24 to 48 hours of harvesting. As a result, the initial processing of oil

palm into crude palm oil must be done locally. All harvesting of FFB must be done by hand.

Downstream, palm oil can be found in biofuels, retail foods and snacks, as well as cosmetics.

The World Wide Fund for Nature notes that “it’s in close to 50% of the packaged products we

find in supermarkets.”

Heterogeneous Producers Given its large downstream demand, palm oil has come to play

an important role in poverty alleviation for Malaysia since its introduction as a commercial

crop by the French in 1917. Smallholders owning 10 or fewer acres produce about 40% of

Malaysian palm oil (Ellis-Petersen, 2018). There are two types of smallholders in Malaysia,

independent smallholders and organized smallholders who are part of government programs

(e.g., FELDA, FELCRA). Independent smallholders manage approximately 17% of total oil

palm area cultivation in Malaysia. Whereas independent smallholders face market prices, or-

ganized smallholders receive substantial government subsidies and benefit from other market

protections. One of palm oil’s advantages is that its yields are 5 to 10 times that of other

vegetable crops (Voora et al., 2020). This implies that it is a relatively efficient use of land for

small farms.

As such, in addition to growing demand, palm oil’s efficiency has made it a historically

important means of poverty alleviation in Malaysia. The president of Malaysia’s National

Association of Smallholders described the importance of palm oil as

Smallholders rely on palm oil income to buy food and send their children to

school. We have cultivated palm for decades, (and) it has brought development.

The country is rich because of palm oil (Malaysian Farmers Protest Europe’s Push

to Curb Palm Oil Imports, 2018).

Organized smallholders originated from early land resettlement schemes to reduce poverty by

the Malaysian government. The Federal Land Development Authority (FELDA) was one of

the earliest programs of this kind and formed in the late 1950s. Some estimate the program to

have reduced poverty among its participants from 50% in the 1960s to 5% in the present day

(Rahman, 2020).

Large estates produce the other 60% of Malaysian palm oil. Unlike smallholders which are
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often individual family units, large estates are often publicly traded companies with often more

than 2000 acres of land on average. The largest company associated with a large estate is

Sime Darby, which owns roughly 5% of oil palm land in Malaysia (743,854 acres of land) (Sime

Darby Annual Report, n.d.). Notably, while large estates are hundreds of times larger than

smallholdings, no individual large estate produces the majority of market share.

The differences in scale between large estates and smallholdings generate differences in entry

costs and outside options between the two groups. For independent smallholders, replanting

takes place on a small scale. This implies that access to technology for clearing the land in

terms of getting rid of old trees or preparing new land for planting is different from other groups

(organized smallholders, large estates) who can clear and plant large swaths of land at the same

time (Kailany, 2011). This leads to differences in the entry cost of clearing each acre of land

between independent smallholders and other farmers.

Furthermore, differences in landholdings mean that large estates (and organized smallholders

making collective decisions) have different alternative uses of land even though the oil palm

production process is relatively homogenous across farm sizes. Given that oil palm has yields

5-10 times higher than those of other crops, independent smallholders may not own enough

land to profitably produce alternative crops. However, large estates or organized smallholders

pooling land are less likely to face this constraint. Consequently the relevant outside options for

independent smallholders who often consist of individual family groups would be to switch to

subsistence or sell the land and leave for urban areas to find employment Hassan et al. (2018).

This contrasts with the possibility of converting a palm oil plantation into another exportable

cash crop (e.g., rapeseed oil).

Regional Variation Both smallholders and large estates exist across Malaysia. As shown in

Figure 1, Malaysia spreads across two main land masses: Peninsular Malaysia and Malaysian

Borneo. Peninsular Malaysia is divided into 10 administrative regions (i.e., Johor, Kedah,

Kelantan, Melaka, Negeri Sembilan, Pahang, Perak, Pulau Pinang, Selangor, and Terengganu),

and Malaysian Borneo includes two regions (i.e., Sabah, Sarawak). Dispersion in FFB prices

shown in Figure 2 across administrative regions comes from the high cost of transporting

FFB across regional boundaries, which restricts price arbitrage. As such, I define each of the

administrative regions as a separate market.
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Variation in prices across regions and time is driven in part by differences in aggregate

supply. Figure 3 displays how the evolution of total oil palm producing land differs by region.

Figure 4 shows how the composition of farm types (i.e., large estate vs. smallholder) evolves

differently across regions over time. Paralleling regional heterogeneity in land cultivation, there

are also differences in the number of processing mills and access to export ports. This implies

that demand varies across regions, and that each region’s exposure to international trade shocks

may differ.

2017 E.U. Palm Oil Resolution Malaysia exported between 67% and 76% of its palm oil

in 2017.2. Through 2019, the E.U. was generally one of the two largest importers of Malaysian

palm oil, accounting for between 9% and 12% of all exports (Chu, 2023; Tan, 2019). As a result

of its large imports of palm oil, the E.U. resolved to introduce a single certifications scheme for

palm oil entering the E.U. and phase out the use of palm biodiesel by 2020 (Keong, 2017). The

European Parliament cites concerns about the illegal deforestation of rainforests and concerns

about climate change as the main reason behind its import restrictions (E.U., 2017).

As the world’s two largest exporters of palm oil, Malaysia and Indonesia interpreted the

resolution with alarm. Skeptical observers worried that these policies were protectionism framed

as environmentalism and noted that the resolution “indrectly favored Europe’s homegrown

products like rapeseed and sunflower oils.” Malaysia and Indonesia have filed separate suits

with the World Trade Organization against the E.U. (Tan, 2019). Discussions of Malaysia and

Indonesia jointly banning all palm oil exports to the E.U. have been on the table from 2017

through 2023 (Chu, 2023). The reaction of crude palm oil futures profits in contrast to that

of soybean oil prices around the time of the announcement captures these concerns that the

policy would result in a large negative palm oil demand shock. Soybean oil is one of palm

oil’s closest and main substitutes. Figure 5 shows that palm oil and soybean oil futures prices

generally move together but diverged around the time of the E.U. Resolution. In particular,

in early 2017, soybean oil futures prices experienced a spike whereas palm oil futures prices

dropped. These price changes are consistent with a projected decrease in demand for palm oil

and increased demand for soybean oil as Europe shifts away from palm oil to other biofuels.

2Range is based off of government data and a crude palm oil refinement rate of 0.88 (https:
//www.edibleoilrefinerymachine.com/FAQ/improve_the_crude_palm_oil_refining_to_edible_oil_

conversion_rate_695.html)
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Oil palm farmers also plausibly took note of the decline in demand implied by the resolution.

In figure 3, a noticeable slowdown in oil palm land expansion starts around 2017 in Sabah and

Sarawak. Moreover, in keeping with the heterogeneity in entry costs and outside options across

farm types, independent smallholders and large estates appear to have reacted differently to the

negative shock. Figure 6 shows that the probability that a unit of land being used to produce oil

palm being no longer owned by a smallholder increased by more as compared to the probability

that a unit of land being no longer owned by a large estate after the resolution. This reflects

that smallholders experienced a larger decline in relative benefit (compared to outside options

or costs of entry) to farming oil palm than did large estates.

Notably, the E.U. resolution is not the only policy to address deforestation and sustainability

concerns in the oil palm industry. Starting in 2004, sustainability certifications have been avail-

able to oil palm farmers such as the Roundtable on Sustainable Palm Oil (RSPO), Indonesian

Sustainable Palm Oil (ISPO), and Malaysian Sustainable Palm Oil. The ISPO was launched

in 2011 by the Indonesian government and the MSPO in 2013 by the Malaysian government.

The roll-out and uptake of these certifications have been gradual and sometimes coupled with

government assistance, making assessing their direct implications on farmer profits difficult.

3 Model

In this section I describe a model rationalizing farm decisions whether to enter or exit oil palm

production within a regional market and how these decisions change with aggregate demand

shocks. Oil palm is a commodity. Moreover, plausibly no market appears dominated by a single

farm owner. For example, Sime Darby is the largest oil palm land owner Malaysia and owned

no more than 30% of total oil palm land in any state in 2019; the land in the region where

Sime Darby holds the largest percentage of land (Selangor) is also spread across 23 separately

managed estates (Sime Darby Annual Report, n.d.). Consequently, I assume that farms are

atomistic price takers and cannot individually influence market prices.

Using this assumption about farmers, I model farm entry and exit as a single-agent dynamic

problem similar to Rust (1987) and Scott (2014). While no individual farm has market power,

aggregate behavior can still affect equilibrium FFB prices in any given period. As such, I adapt

Lee (2013)’s parametrization of beliefs over how payoffs evolve to model farmer beliefs about
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how FFB prices will be evolve given the current state of the world.

3.1 Environment

Agents and Actions Agents in this model include FFB farm(er)s and FFB buyers. In each

period t, a mass of farmers of type f equal to the amount of land τ ft farmed by that farmer

type makes decisions about how much FFB to sell, taking prices as given and whether or not to

exit growing oil palm. I also allow for a mass of potential entrants τ ef,t making decisions about

whether to enter growing oil palm. FFB buyers purchase FFB from sellers. They include

intermediate FFB dealers and processing mills, as farmers sell directly to both. These buyers

are upstream from palm oil exporters. I assume that buyers are also price takers, since there

are many dealers and mills in each region according to the directory of FFB dealers released by

the government. For a given price, buyers choose the quantity of FFB to purchase in a given

period. I abstract away from the details of dealers and mills and assume that they only make

static decisions to focus on farmer behavior.

Market State Space I assume that the state space is discrete. The market state space cap-

tures variables that determine per period equilibrium farmer payoffs and are informative about

next period profits. The market state in a given period t is st = (psoyt , rt, τt, τ
small
t , τ larget , at, dt, eut)

where:

• psoyt ∈ {psoy,1, . . . , psoy,L
soy} are soy prices

• rt ∈ {r1, . . . , rL
r} is rainfall

• at ∈ {a1, . . . , aL
a} are common marginal cost (supply) shocks

• dt ∈ {d1pre, . . . , d1post, . . . , dL
d} are common demand shocks. This would include the effects

of a trade policy cutting international demand (i,e., the evolution of demand shocks will

be allowed to differ before and after the official announcement of the trade policy).

• τt ∈ {τ 1, . . . , τL
total,τ} is the total land area devoted to palm oil.

• τ smallt ∈ {τ small,1, . . . , τLsmall,τ} is the total smallholder land area devoted to palm oil.

• τ larget ∈ {τ large,1, . . . , τLlarge,τ} is the total large estate land area devoted to palm oil.
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• eut ∈ {0, 1} is an indicator for whether the 2017 EU trade policy to phase out palm oil is

in effect.

I separately specify total land τt, smallholder land τ smallt , and large estate land τ larget because

τt helps determine equilibrium payoffs and τ smallt , τ larget help determine how τt evolves. Addi-

tionally, it must hold that τt ≥ τ smallt + τ larget .3 Let Lτ be the total number of combinations of

τt, τ
small
t , τ larget that satisfy τt ≥ τ smallt +τ larget . Then there a total of Lsoy×Lr×Lτ×La×Ld×2

possible market states.

Each market state variable evolves according to one of three processes: 1) an exogenous

process fixed over time, 2) an exogenous process that changes after the E.U. trade policy,

and 3) an endogenous process depending on agent actions. I distinguish between exogenous

processes that do and do not depend on the E.U. trade policy to highlight how this policy

affects farm composition through endogenous farmer entry and exit decisions that differ across

farm types.

The following state variables evolve according to some exogenous process that does not

depend on E.U. policy:

sAR(1) = {psoy, r, a}

I will assume that this process is an AR(1). Since the E.U. trade policy ultimately affects FFB

demand, I assume the demand shock dt evolves according to an exogenous process that does

depend on the E.U. policy:

dt+1 = ϕ0 + ϕ1dt + ϕ2dteut + νt (1)

where νt is mean zero and independent and eut ∈ {0, 1} is an indicator variable denoting

whether the policy is in place (eut = 1) or not (eut = 0). This parametrization allows demand

shocks to evolve according to a different AR(1) process after the EU trade policy is realized.

Land τ ft belonging to farm type f evolves such that:

τ ft+1(st) = Pr(δφfit ≤ V Cf
t (st))× τ ft︸ ︷︷ ︸

incumbents remaining

+Pr(κfjt ≤ V Cf
t (st))× τ ef,t︸ ︷︷ ︸

entrants

(2)

3I write this as an inequality to account for how a small fraction of land belongs to organized smallholders
not included in either τsmall

t or τ larget . I will assume that the land farmed by organized smallholders is constant
over time. This is consistent with the data and how the related land was allocated.
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where φfit is a farm type specific random scrap value, κfjt a farm type specific random entry cost,

and V Cf
t is the type specific discounted flow payoff from entering or remaining in the market

(defined below). δ is the discount rate.

As a result of how the state variables evolve, the market state space evolves according to

following first-order Markov process:

F (st+1|st) =Fsoy(p
soy
t+1|p

soy
t )× Fr(rt+1|rt)× Fa(at+1|at)

× Fd(dt+1|dt, eut)× F small
τ (τ smallt+1 |st)× F small

τ (τ larget+1 |st) (3)

Since the amount of land that does not belong to independent smallholders or large estates is

fixed, how τt changes is completely determined by τ smallt+1 and τ larget+1 .

3.2 Static Farmer Payoffs

Each farmer’s payoffs in a given period are a function of state variables st. Since farmers

are price takers, I first express the individual farmer’s payoffs as a function of costs, effort,

and observed prices. These individual payoffs also motivate the FFB quantity a farmer will

produce for a given price, costs, and other exogenous determinants of yield (primarily rainfall).

As such, I use the individual farmer’s implied production to derive aggregate supply. I then

model aggregate demand for FFB, which, combined with aggregate supply, gives an expression

for equilibrium prices as a function of st.

Individual Farm(er)’s Problem Since all farmers are atomistic, they take FFB prices pt

in each period t as given. Thus, for each farmer j static per period profits are:

πjt(q) = ptqt(e)− TCjt(e) (4)

where e is the farmer’s endogenous amount of effort, qt(e) = rβrt e is quantity as a function

of farmer effort and rainfall, and TCjt(·) is the total cost function. I assume the following

parametrization of total costs as a function of effort to reflect an upward sloping supply curve:

TCjt(e) =
1

1 + b
expat+(1+b) ln(e) +FCjt (5)
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where at is a constant marginal cost shock faced by all farmers in period t, the supply elasticity

is a constant b across all periods, and farmers are allowed to differ only in terms of per-period

fixed costs FCjt. This total cost implies the following marginal cost:

MCjt = MCt = expat+b ln(e) (6)

Since the production technologies are similar across different types of farm, I currently assume

that marginal costs across different types of farms are the same.4 Taking the FOC of the

profit function ptr
βr
t = MCt, this parametrization implies that each farmer will exert the same

amount of effort each in equilibrium.

ptr
βr
t = expat+b ln(e)

ln pt + βr ln rt = at + b ln e

e∗ = exp(
1

b
(ln(pt) + βr ln rt − at)) (7)

Then, in equilibrium each farmer (equivalent to a unit of land) produces:

q(e∗) = rβrt exp(
1

b
(ln(pt) + βr ln rt − at)) (8)

Aggregate Supply In any given period, the total amount of land devoted to palm oil is τt

but that only a fraction of that land τβτt , 0 ≤ βτ ≤ 1 actually contributes to FFB yield. This

could be due to patterns of replanting and tree aging, for instance. Palm trees need to be

replanted roughly every 30 years and young trees take a few years to begin producing FFB.

Taking into account that not all land always contributes to yield, the aggregate supply curve

is:

Qt = τβτt q(e∗) = τβτt rβrt exp(
1

b
(ln(pt) + βr ln rt − at)) (9)

lnQt =
1

b︸︷︷︸
=α1

ln pt + βτ︸︷︷︸
=β11

ln τt +
2βr
b︸︷︷︸

=β12

ln rt +
at
b︸︷︷︸

=γ1t

(10)

4 I plan to relax this assumption in the future, since there is some evidence of productivity differences.
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Aggregate Demand Since FFB buyers are atomistic, I can express aggregate demand for

FFB as the following:

ln(Qt) = α2ln(pt) + β2p
soy
t + dt (11)

where psoyt is the price of soy oil, the main downstream substitute for palm oil products, and

dt represents aggregate demand shocks such as an overall reduction in palm oil imports to the

EU.

Per Period Equilibrium Prices The per-period equilibrium prices are determined by the

intersection of aggregate supply and demand:

Supply: ln(Qt) = α1ln(pt) + β1X1t +
at
b

(12)

Demand: ln(Qt) = α2ln(pt) +X ′2tβ2 + dt (13)

where X2t = ln(psoyt ) is the log price of soy, and X ′1t = [ln(τt), ln(rt)] contains log rainfall and

log total land area in t. Then equilibrium price and total quantity as a function of the state

variables st are:

p∗t =exp(
X ′2tβ2 + dt − β1X1t − at

b

α1 − α2

)

Q∗t =exp(
α1

α1 − α2

(X ′2tβ2 + dt)−
α2

α1 − α2

(β1X1t +
at
b

))

Substituting p∗t into equation 4 yields equilbrium farmer payoffs for a given state of the world

st.

3.3 Single Agent Problem with Consistent Beliefs

Since farmers are atomistic, each farmer’s problem is a single agent dynamic problem. Conse-

quently, farmers need only observe variables that directly informative about their static payoffs

described in equation 4 and the corresponding expected discounted flow payoffs. This implies

that they need not observe and form expectations over all market state variables in st. In par-

ticular, I assume that farmers only observe and form beliefs about equilibrium prices pt, cost
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shocks at, and rainfall rt. Farmer beliefs about equilibrium prices change with the E.U. policy,

but they experience the policy as an unforecasted shock. I assume that farmer fixed costs

FCjt are fixed by farmer type over time. As a result, Variables at, rt, pt alone are sufficient to

determine each farmer’s optimal quantity in equation 8 and payoffs in equation 4. In addition

to at, rt, pt, farmers condition their expectations of future payoffs on eut, as the policy state

could imply a different evolution of equilibrium prices.

Timing Farmer actions and payoffs occur in the follow order in each period t:

1. Farmers who exited the previous period collect their previous period scrap values φfit−1.

2. All incumbents and potential entrants observe state variables s̃t = {pt, at, rt, eut}, where

pt is the equilibrium price implied by the market state st.

3. Incumbents j choose quantities to supply and collect current period profits πjt.

4. Potential entrants and incumbents make the following decisions simultaneously:5

(a) Mass τ ef,t of each type of potential entrants observe a type-specific private entry cost

κfj,t and decide whether or not to enter. If they enter, they pay the entry cost this

period t but are not active until the next period t + 1. If they decide not to enter,

they disappear forever.

(b) Mass τ ft of incumbent farmers of each type observe a type-specific private scrap value

φfit and choose whether to continue producing oil palm FFB or exit.

Assuming farmers make simultaneous entry and exit decisions is consistent with individual

farmers having to make their own entry and exit decisions before observing other farmers’

decisions. Given that land purchases, sales, and conversions to oil palm take time to process

legally and publish publicly, this is a plausible assumption.

Farmer Beliefs I assume that farmers have rational beliefs about the evolution of at, rt, and

pt and experience a change in eut as an unforecasted shock. Farmers believe marginal cost

5 A practical reason I have entry/exit decisions occur simultaneously at the end of the period is because I
only observe aggregate land flows per year. Thus, if I have farmers choose quantities after entry/exit decisions
are made, I will not have the correct amount of land for aggregate supply. I will not be able to see how much
palm oil land remains in the same period after exit decisions are made.
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shocks and rainfall evolve according to distinct AR(1) processes Fa(at+1|at) and Fr(rt+1|rt).

These reflect, on average, the “true” evolutions of these state variables.

Following Lee (2013), I assume a parametric form for farmers’ beliefs about how equilibrium

prices evolve. In particular, farmers believe equilibrium prices evolve in a manner correlated

with marginal costs and rainfall as follows:

pt+1 = λ1pt + λ2eut × pt + λ3at+1 + λ4rt+1 + ηt (14)

where ηt is an iid random variable with mean zero and with a variance reflecting uncertainty

in agent beliefs. The variance of ηt captures some of the variation in equilibrium prices caused

by variables in the market state variables st but not the farmer state variables s̃t (e.g., demand

shifters). Including the E.U. indicator eut allows the mean of expected prices to differ pre- and

post- E.U. trade policy.

E[pt+1] = λ1pt+λ2eut×pt+λ3at+1+λ4rt+1 is the agents’ expected next period price. These

beliefs are consistent with the actual evolution of price but may not necessarily be consistent

with the underlying static equilibrium model determining prices (the errors are not necessarily

independent). They also reflect that farmers’ realization that rainfall and costs will affect prices.

Assuming that the E.U. policy occurs as a surprise to farmers means that they do not have

expectations over its evolution and play different equilibria under eut = 0 and eut = 1.

Combining beliefs about at, rt, pt, farmers believe that their payoff-relevant variables s̃t =

{pt, eut, at} evolve as follows:

Fs̃(s̃t+1|s̃t) = Fr(rt+1|rt)× Fa(at+1|at)× Fη(pt+1|pt, eut, rt+1, at+1) (15)

Farmer Value Function Since s̃t determines farmer payoffs and farmers hold beliefs over

only variables in s̃t, I define an incumbent type f farmer’s expected discounted flow payoffs as

a function of s̃t:

V f (s̃t) = πit(s̃t) + Eφ
[
max

{
δφfit, V C

f (s̃t)

}]
(16)
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where δ is the discount rate and the continuation value V Cf (st) is:

V Cf (s̃t) = δ
∑
s̃t+1

V f (s̃t+1)P (s̃t+1|s̃t) (17)

Similarly, since a potential entrant enters if V Cf (s̃t) ≥ κfjt, the entrant’s discounted flow payoff

is:

max{V Cf (s̃t)− κfjt, 0} (18)

where κf is that entrant’s idiosyncratic entry cost.

Equilibrium The relevant equilibrium concept is First Order Markov Perfect with additional

restrictions on farmer beliefs. This means that in equilibrium, omitting the farm type supersript

f :

1. Farmers are playing optimal entry and exit strategies given their beliefs over the evolution

of s̃t. In particular, incumbent i chooses exit if max{δφit, V C(s̃t)} = δφit and to stay

in the market if max{δφit, V C(s̃t)} = V C(s̃t) where V C is defined as in equation 17.

Entrant j chooses entry if max{V C(s̃t)−κjt, 0} = V C(s̃t)−κjt and not to enter otherwise.

2. Farmer beliefs over the evolution of s̃t are consistent with the true first-order Markov

evolution of st (i.e., on average correct about the evolution of prices, marginal cost, and

rainfall implied by the evolution of the market state space).

Computing an equilibrium requires iterating between the policy functions implied by agent

beliefs over the evolution of s̃t and the implied total palm oil land and equilibrium prices

until beliefs about the evolution of prices are on average correct about the evolution of prices

consistent with farmer entry and exit behavior. I provide a fixed-point algorithm for computing

an equilibrium of this game in Appendix A.

4 Data

My main data source is the Ministry of Plantation Industries and Commodities (MPIC). They

provide me with annual total palm oil land area by administrative region and farmer type from
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2006 to 2019. Figure 3 displays aggregate land flows by region over time, and Figure 6 shows

changes in land use by farm type. In contrast to satellite geospatial data, these data differentiate

land use by farmer type. This allows me to study implications of aggregate demand shocks

within a specific country and industry for inequality. In particular, I can observe compositional

change of types of farmers growing oil palm unlike work focusing primarily on the external

margin of land use (Hsiao, 2020; Domı́nguez-Iino, 2022). All additional data are similarly

collected for 2006 to 2019, since my main goal is to rationalize changes in the composition of

farm types over time.

The Malaysian Palm Oil Board (MPOB) is a sub-agency under the MPIC that collects and

reports information on monthly prices and yields at different stages of the domestic palm oil

supply chain.6 I combine yield and land area data to calculate monthly quantities of FFB

for each administrative region. Figure 2 shows the range of FFB prices across administrative

regions over time. While there is variance in the range of prices, there does not appear to be

consistent upward or downward trends over time.

Lastly, I collect data on key palm oil supply and demand shifters. From the World Bank,

I collect monthly Malaysian rainfall data. Since FFB yields and quantities depend greatly on

having the right amount of rainfall, these are important shifters of the FFB supply curve (and

consequently the palm oil supply curve) in any given period. With respect to demand shifters,

I collect monthly world soy bean oil prices from the International Monetary Fund and MPIC.

Soybean oil is one of the most common substitutes for palm oil (Hinrichsen, 2016). The two

sources reflect different commodities exchanges but are highly correlated. Given how closely soy

bean and palm oil prices move together, as shown in Figure 5, I also collect monthly rainfall

in major soybean oil producing countries (i.e., Brazil and the U.S.) as plausibly exogenous

demand shifters.

5 Estimation and Identification

Estimating the key parameters of the model takes place in two stages. First, I estimate the

parameters underlying aggregate supply and demand. These allow me to predict farmer payoffs

6They also collect and report other industry characteristics such as conversion rates of FFB to crude palm
oil and processing mill counts and capacities.
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in different states of the world. Second, using the payoffs recovered in stage 1, I use a method of

simulated moments to estimate parameters of the scrap value and entry cost distribution. I rely

on panel variation in my data across over region and over time to identify my key parameters.

5.1 Static Payoffs

I modify the market-specific aggregate supply in equation 12 and aggregate demand in equa-

tion 13 to generate estimation equations that allows me to use panel variation to identify

α1, α2, β1,β2 as follows:

Supply: ln(Qmt) = α1ln(pmt) + β1X1,mt + γ1,t + I1,m + ε1,mt (19)

Demand: ln(Qmt) = α2ln(pmt) +X ′2,mtβ2 + +γ2,t + I2,m + ε2,mt (20)

Equation 19 assumes that prices, rainfall, and total oil palm land have the same effect on

quantity supplied across regions and months but that there are different average cost shocks

by month and region. Similarly, equation 20 assumes that prices and soy prices have the same

effect on quantity demanded across regions and months but that there are different average

demand shocks by month and region. This reflects that global soy prices affect each region

similarly. The month fixed effects in both equations control for seasonality. ε1,mt and ε2,mt

capture the variance in cost and demand shocks, respectively.

Given estimates of the supply and demand parameters, I can calculate the equilibrium

prices and quantities corresponding to each market state st by solving the system of equations.

Substituting prices and quantities into the farmer payoff equation 4 yields farmer payoffs by

month for each state st. I sum over months to calculate annual farmer payoffs π(st) as a

function of st.

Identification Since quantities and prices are jointly set in equilibrium, I use instrumental

variables to identify the price coefficients in equations 19 and 20. In the supply equation 19, I

use rainfall in large soybean producing countries (i.e., U.S. and Brazil) as instruments. Rainfall

in the U.S. and Brazil exogenously affects palm oil demand by shifting the price of palm oil’s

closest substitute. More rainfall, barring extremely heavy rain, correlates with more soy supply,

lower soy prices, and less demand for palm oil.
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In demand equation 20, soybean oil prices are potentially endogenous in addition to palm

oil prices because palm and soy being close substitutes means prices of both oils are highly

correlated. Consequently, I use regional Malaysian rainfall as an additional instrument to

identify the palm oil price coefficient and U.S. and Brazilian rainfall to identify the soybean oil

price coefficient. Rainfall serves as a supply shifter independent of demand for both types of

oils.

5.2 Dynamic Parameters

I use a 2-step method to estimate θ = (µφ,µκ), where µφ is a vector of parameters character-

izing distinct exponential distributions from which each type of incumbent farmer draws scrap

values and µκ is a vector of parameters characterizing distinct exponential distributions from

which each type of potential entrant farmer draws entry costs.

Similarly to the CCP methods described in Hotz et al. (1994), I first calculate payoffs as a

function of the farmer state space s̃t and estimate farmers’ believed transition probabilities of

s̃t using data. I specify that the transition probabilities are “farmers’ believed transition prob-

abilities,” because I use equation 14, which parametrizes farmers’ beliefs over the evolution of

equilibrium prices, to calculate price transition probabilities. Taking the payoffs and transitions

over s̃t, I recover continuation values for guesses of θ, use these continuation values to simulate

land totals by farmer type over time and for each region, and match these simulated land totals

to those observed in the data. Appendix B fully details the estimation process.

The advantage of using the farmer state space over the market state space is that equilib-

rium prices are more likely to be bounded than total land and demand in a growing industry.

In particular, increases in equilibrium prices resulting from increases in demand are likely to

correlate with expansions in land which increases supply and limits the equilibrium price in-

crease. The opposite also to applies to decreases in demand and decreases in supply limiting

the extent to which equilibrium prices will fall over time. With respect to palm oil, Figure 2

shows that prices generally fluctuate within the same range even when land and supply are

generally expanding in most regions (Figure 3)

Identification Parameters θ are identified by variation in land flows by farm type across

regions over time. Specifically, the net land changes across all regions by farm type will identify
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either the mean of the relevant scrap value distribution or the mean of the relevant entry cost

distribution. I can separately identify scrap value and entry cost means because, as shown

in Figure 6, I observe both net decreases and net increases across regions for each farm type.

The variation from negative to positive values of percentage net land changes identifies the

difference between the means of the distributions. Intuitively, the difference in scrap value and

entry cost means acts as a variance term for the dispersion in net land changes observed across

regions.

I use the following instruments to generate enough moments to identify the four parameters

in θ: 1) constant, 2) marginal cost and rainfall supply shocks, 3) soy price and other demand

shocks, and 4) land in use at start of the period. The last three correlate with variation in

static payoffs by state and emphasize changes in land flows due to either increases or decrease

in payoffs.

6 Results

6.1 Aggregate Supply and Demand

Table 1 displays the estimated aggregate demand and supply parameters. Column 1 shows

that short run FFB demand slopes downward with respect to FFB prices and is increasing

in the price of soybean oil. The latter is consistent with soybean oil being a close substitute

for palm oil. Column 2 shows that short run FFB supply is upward sloping with respect

to price, increasing in the amount of rainfall, and increasing in the total oil palm land area.

The estimated price coefficients indicate that supply is much more price-inelastic relative to

demand. This is consistent with the observation that farmers have little short run control over

monthly yield. They can only pick FFB that are already ripe, as unripe FFB do not produce

oil. Moreover failing to pick ripe fruit harms the tree’s ability to produce more fruit, and

disposing picked FFB (instead of transporting and selling them to a mill) can be costly. That

the coefficient of total land area is < 1 reflects how most but not all of the land dedicated to

oil palm produces yield.

State Variables Using the estimated supply and demand parameters, I recover the demand

shocks and supply shocks implied by the residuals and fixed effects in equations 20 and 19,
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respectively. Examining the residuals confirms inward shifts of the demand curve correlate with

the slowdown in land expansion across regions. Figure 7 shows demand shocks averaged across

all regions on Peninsular Malaysia and Sabah/Sarawak with linear trends for years up to 2016

(i.e., before the policy announcement) and 2017 onwards (i.e., after the policy announcement).

These trends indicate that demand expanded on average prior to 2017 and contracted post 2017.

Demand contracted more severely in Sabah/Sarawak as compared to Peninsular Malaysia. This

helps rationalize why, as shown in Figure 3, the slowdown in land expansion in Sabah/Sarawak

post policy was much more pronounced.

Furthermore, contrasting the evolution of demand shocks with the other state variables helps

motivate contractions in demand from the E.U. policy as a main reason behind the slowdown

in land expansion. Figure 8 displays trends in observed FFB prices and highly correlated CPO

realized and future prices7 pre and post 2017. Notably, the break in trend for the demand shocks

explains the break in equilibrium price trends; decreased demand would decrease equilibrium

prices. Trends in the other state variables shown in Figure 9 imply offsetting effects. The

continued decrease in soybean oil prices would have caused decreases in equilibrium prices even

prior to 2017. Decreasing average annual rainfall would imply decreasing yields over time and

a contraction in supply and corresponding equilibrium prices before the E.U. policy. Increasing

marginal costs would similarly have decreased supply.

Payoffs Table 2 displays the means and ranges of equilibrium prices and variable profits across

market states for each region. Variable profits are annual and per hectare of oil palm land.

The ranges of prices predicted are slightly larger than those observed in the data (see Figure 2)

but are generally of similar magnitudes. The prices and profits show that the estimates yield

regional variation in static payoffs.

6.2 Entry Costs and Scrap Values

Table 3 shows the parameters defining the exponential distributions for entry costs and scrap

values separately for each type of farm. These parameters represent the means of unconditional

distributions. The magnitudes of such parameters are usually large in the literature. That the

mean of the smallholder entry cost distribution is approximately five times that of the large

7For years affected by the pandemic
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estate distribution reflects how independent smallholders have much more limited access to

land clearing and planting technology. They cannot afford the machines or services generally

available to large estates. The scrap value means are much smaller than the entry cost means,

which is consistent with the alternative uses for the oil palm land being relative limited.

I solve the dynamic model using these estimated parameters and estimated AR(1) proceses

of the exogenous state variables to recover farm continuation values by type. Since the market

state space includes regimes with and without the negative demand shocks implied the E.U.

trade policy, I can calculate how much the policy impacted continuation values. Table 4 shows

the changes in continuation value for smallholders in the market states observed each region

right before the policy realization. There is a range of effects across regions with losses as high

as $20,610 USD. A rationale for why some regions experience increases in continuation values

is that they are exposed to positive demand shocks from China and India that more than offset

decreased E.U. demand. Appendix C discusses model fit at the estimated parameters.

7 Counterfactuals

The benefit of explicitly modeling entry and exit decisions is being able to estimate changes in

farm profits from changes in the external margins of oil palm land cultivation. In particular,

persistent changes to static profits can impact farmers in the long run and influence their

decisions whether to remain in the oil palm industry. As such, the negative demand shocks

implied by the E.U. trade policy lead to losses not only for farmers choosing to remain in the

market but also for those who would have entered otherwise and for those who would not have

exited otherwise. A policymaker might be concerned that a decrease in profits pushes farmers to

accept outside options lower than they would otherwise. Since scrap values and entry costs also

theoretically capture opportunity costs, estimates of these parameter distributions facilitate

calculating farm long run relative decreases in payoffs from lost profit opportunities from the

E.U. trade restriction.

Table 5 describes aggregate discounted long run losses in payoffs to smallholders and large

estates who would have continued to produce oil palm with and without the E.U. trade policy.

653 thousand hectares of land would continue to be cultivated by smallholders and 3.42 million

hectares by large estates regardless of E.U. policy status. These smallholders in aggregate
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experience losses of 2.9 Billion USD, and large estates experience total loses of 10.7 Billion

USD. Absent a model of entry and exit decisions, I would not be able to calculate the number

of farmers choosing to remain in the industry.

Similarly, I would not be able to estimate counterfactual entry and exit as shown in table

6. I find that reductions in land expansion by smallholders is due primarily to reduced entry

instead of increased exit. Right after the policy implementation in 2017, 18,700 fewer hectares

of land were converted to smallholder oil palm cultivation due to the trade policy. Notably, the

reduction in smallholder entry is persistent; there were 800 fewer new hectares cultivated in

2018 and 700 fewer new hectares cultivated in 2019. The large initial slowdown in smallholder

expansion coincides with a small initial decrease in land exit of 19 hectares before exit increases

(relative to what is would have been otherwise) in 2018 and 2019.

Entrants who would have entered absent the trade policy but do not under the policy ex-

perience a decrease in discounted flow payoffs of 47.9 Million USD in 2017, 6.4 Million USD

in 2018, and 6.3 Million USD in 2019. These values net out the expected entry costs of this

group of potential entrants. I focus on estimating smallholder losses over large estates because

the parties receiving profits across these two groups differ. On one hand, since smallholdings

are usually owned by family groups, smallholding profits go to the families owning them. On

the other hand, large estates are more often owned by large corporations whose primary ben-

eficiaries are shareholders, and plausibly much less of the profits contribute family incomes of

median income households. With respect to Malaysian median incomes, these external margin

losses are potentially nontrivial. In 2019, Malaysia’s Department of Statistics reports that the

mean income was 7,901 RM (1,817 USD) and the median income was 5,873 RM (1,351 USD)

(Mahidin, 2020). Consequently, lost payoffs from entry in 2017 could have provided one year’s

worth of income for 26,362 mean income Malaysian families or 35,455 median income families.

Figure 10 indicates that the trade shock could also lead to compositional change, as large

estates begin to recover their pre-policy share of total land areas more quickly than do small-

holdings. In turn, this implies that smallholders as a group could suffer persistent lost entry

beyond 2019 as large estates reenter the industry more quickly.

One potential domestic policy intervention to help both ameliorate losses to smallholders

and decrease large estate expansion would be to charge large estates a lump sum tax per
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hectare of oil palm land owned. These taxes would be sunk at the beginning of each year before

supply decisions are made, and consequently should not distort short-run supply decisions. The

resulting tax revenues could then be redistributed as lump-sum transfers to low and median

income family groups independent of oil palm industry participation. The main concern about

smallholders is that they potentially represent individuals and families on the lower end of the

Malaysian income distribution. Such a redistribution method targets the relevant segment of

Malaysia’s population without directly distorting oil palm production behavior by that group.

Table 7 displays the effects of 1,000 RM per hectare and 2,000 RM per hectare annual taxes

on large estates. Notably, this tax benefits the smallholder demographic through increased

prices in addition to through redistributed tax revenues. Increased prices occur through the

supply reduction from decreased large estate entry. Both tax amounts yield sufficient revenues

to compensate smallholders for their losses under the E.U. Trade policy. They are also sufficient

to completely deter larger estate land area expansion. In particular, taxes of these magnitudes

lead to a reduction in large estate plantation area that is large enough to offset expansions by

small estates.

8 Discussion

Deforestation and climate change are undeniably pressing issues that need to be addressed, and

there are many policy tools, both domestic and international, to consider. International trade

policy has tended to focus on entire industries or whole regions. This paper explores (i) how

heterogeneity might affect the implications of these policies for equity and efficiency, and (ii)

how a combination of domestic and international policy could be used to address environmental

concerns in the presence of upstream producer heterogeneity. Further research considering the

interaction between climate policy and global inequality would be useful going forward in order

to prevent inefficient policies fir which the agricultural poor in developing nations bear the

brunt of the cost.
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9 Figures

Figure 1: Map of Malaysia

Source:https://www.orangesmile.com/travelguide/malaysia/country-maps.htm

Note: Peninsular Malaysia is the land mass to the left.
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Figure 2: Dispersion in FFB Prices Over Time

Note: Minimum price is the minimum regional FFB price reported by the MPOC for the year, and maximum
is the maximum. Average is the average price across all regions.
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Figure 3: Oil Palm Land by Region, 2006 to 2019

Source: Malaysian Palm Oil Council
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Figure 4: Change in Oil Palm Land by Farmer Type Region, 2006 to 2019

Source: Malaysian Palm Oil Council

Note: “Smallholder” includes only independent smallholders.
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Figure 5: Palm Oil vs. Soybean Oil Futures Prices, 2006 to 2019

Source: Datastream

Note: 1 Tonne= 2205 lbs, 1 USD ≈ 4.15 RM. July 2016 coincides with announcement of EU
Strategy for low-emission mobility. Futures prices are from DataStream.
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Figure 6: Change in Land Use by Farm Type

Source: Malaysian Institute of Plantation Industries

Note: Exit in this graph is the probability that a unit of land is no longer a part of a given
type of farm (i.e., smallholder, large estate).

Figure 7: Average Aggregate Demand Shocks dt, Peninsular Malaysia and Sabah/Sarawak
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Figure 8: Average FFB and CPO Futures Prices, All Regions

Figure 9: Average Values of Other State Variables, All Regions
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Figure 10: Change in Land Expansion from E.U. Policy, by Farm Type

(a) Smallholder

(b) Large Estate

Note: This graph shows the difference between counterfactual predictions of smallholder and
large estate land expansion with and without the negative demand shock resulting from the
E.U. policy.
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10 Tables

Table 1: Short Run Aggregate Supply and Demand Estimates

(1) (2)

Demand Qt Supply Qt

ln pt -0.359∗∗ 0.00425

(0.110) (0.0638)

ln psoyt 0.145∗∗

(0.0538)

ln rt 0.370∗∗

(0.0618)

ln τt 0.895∗∗

(0.0298)

cons 8.145∗∗ -1.903∗∗

(0.404) (0.412)

month fe X X

state fe X X

year fe

instrument supply shifters demand shifters

N 1944 2016

r2 0.978 0.984

fs 16.45 37.49

Standard errors in parentheses

+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01
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Table 2: Static Prices and Variable Profits (2010 RM)

Prices Variable Profits

Region Mean Min Max Mean Min Max

Johor 469 145 1,255 9,046 2,968 23,155

Kedah 464 130 1,316 8,949 2,654 44,712

Kelantan 552 104 2,410 10,694 2,136 44,712

Melaka 392 113 1,070 7,563 2,301 19,726

Negeri Sembilan 389 110 1,029 7,509 2,236 18,979

Pahang 519 146 1,498 10,014 2,975 27,661

Perak 527 155 1,479 10,180 3,160 27,294

Pinang 496 151 1,258 9,602 3,085 23,269

Selangor 479 153 1,222 9,237 3,133 22,558

Terengganu 510 157.76 1,286 9,868 3,133 23,774

Sabah 559 160 1,691 10,792 3,275 31,215

Sarawak 885 93 5,177 17,155 1,905 96,189

Note: Summary statistics are calculated over the distribution of states. Variable profits are
annual.

Table 3: Entry Cost and Scrap Value Parameter Estimates

θ̂ Smallholders Large Estates

Entry Cost µ̂κ 107,910,000 RM/hectare 22,595,000 RM/hectare

(24,819,000 USD/hectare) (5,196,000 USD/hectare)

Scrap Value µ̂φ 6,581 RM/hectare 3,082 RM/hectare

(1,514 USD/hectare) (709 USD/hectare)

Note: Estimates assume that total possible land area devoted to oil palm is 88% of total land
area. The percentage estimate is taken from Shevade and Loboda (2019).
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Table 4: Changes in Smallholder Continuation Values with E.U. Trade Policy

Region Continuation Value Before Policy ∆ Policy ∆

(RM) (RM) (USD)

Johor 181,160 2,404 553

Kedah 485,750 -19,724 -4,537

Kelantan 892,400 -2,274 -523

Melaka 394,360 -60,878 -14,002

Negeri Sembilan 379,560 -316 -73

Pahang 179,990 5,116 1177

Perak 537,250 -89,609.00 -20,610

Pinang 465,290 -355 -82

Selangor 451,150 -18,507 -4,257

Terengganu 475,000 -19,581 -4,507

Sabah 65,510 -5 -1

Sarawak 55,290 -6,600 -1,518

Note: Continuation values are reported for market state right before policy was announced
(i.e., in 2016). Continuation values are per hectare of land.

Table 5: Losses in Discounted Flow Payoffs to Farms by Farm Type, Internal Margin

Counterfactual Units Smallholders Large Estates

No Trade Policy (Billion RM) 12.5 46.6

(Billion USD) 2.9 10.7

Note: The internal margin of farms in this setting are the farms who remain in the oil palm
industry both with and without the E.U. trade policy. Numbers are changes relative to the
base case of the trade policy being implemented. Conversions assume 1RM = 0.23USD.
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Table 6: Losses in Discounted Flow Payoffs to Smallholders, 2017-2019 External Margin

Units 2017 2018 2019

∆ Total Land Area (1,000 Hectares) 18.7 19.4 20.2

∆ Entry Land Area (1,000 Hectares) 18.7 0.8 0.7

∆ Exit Land Area (1,000 Hectares) .019 -.014 -.015

∆ Entrant Payoffs (Million RM) 208.3 27.8 27.4

(Million USD) 47.9 6.4 6.3

∆ Exit Payoffs (Million RM) -.04 .04 .04

(Million USD) -.008 .009 .009

Note: This table compares under the trade policy to a counterfactual under which the trade
policy did not occur, and reports how much land expansion and payoffs would have increased
absent the trade shock (∆ = no E.U. policy value - E.U. policy value). ∆ Entrant Payoffs nets
expected entry costs from expected values of entry; these capture the discounted payoffs of the
net number of entrants that would have entered absent the trade policy and their continuation
values. ∆ Exit Payoffs nets expected continuation values from scrap values; these capture
the net number of incumbents who would not have exited absent the trade policy and their
continuation values. Regions with positive changes in either of these groups net out from those
with negative changes.
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Table 7: Large Estate Land Tax Counterfactual

Units Smallholder Large Estate

1,000RM per Hectare Large Estate Tax

∆ Total Land Area (1,000 Hectares) .02 -9.80

∆ Entrant Land Area (1,000 Hectares) .02 -9.75

∆ Exit Land Area (1,000 Hectares) .001 -.05

∆ 2017 Entrant Payoffs (Million RM) .004 -96

(Million USD) .001 -22

∆ 2017 Exit Payoffs (Million RM) .0002 -.27

(Million USD) .00004 -.06

∆ 2017 Incumbent Payoffs (Million RM) 146 -67,700

(Million USD) 33 -15,600

Tax Revenue* (Million RM) - 86,313

(Million USD) - 19,852

2,000RM per Hectare Large Estate Tax

∆ Total Land Area (1,000 Hectares) 0.12 -30.90

∆ Entrant Land Area (1,000 Hectares) 0.11 -18.92

∆ Exit Land Area (1,000 Hectares) .007 -11.98

∆ 2017 Entrant Payoffs (Million RM) 0.097 -363.32

(Million USD) .022 83.6

∆ 2017 Exit Payoffs (Million RM) .007 -77.74

(Million USD) .002 -17.88

∆ 2017 Incumbent Payoffs (Million RM) 358 -136,010

(Million USD) 83 -31,282

Tax Revenue* (Million RM) - 161,060

(Million USD) - 37,044

*Tax revenue takes into account land expansion and an increasing number of large estates over time. I calculate
this using siumlated land.

Note: ∆ Entrant Payoffs nets expected entry costs from expected values of entry. This compares how much
adding a dixed per hectare tax on large estates to the trade policy shock would have changed welfare by farm
type relative to just the policy shock alone (tax and policy value - policy value). Annual tax revenues are
assumed to be redistributed elsewhere. Tax revenues exceed large estate entrant and incumbent losses, because
entrant losses are only for farms that could have entered in 2017 but did not and tax revenue allows for continued
large estate land area expansion into the future.
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A Equilibrium Algorithm

The following fixed-point algorithm will solve for an equilibrium:

1. Choose some starting distributions for farmer beliefs over price transitions G0
p(pt+1|s̃t)

and beliefs over the evolution of the trade policy G0
eu(eut+1|s̃t). Using these transition

probabilities, calculate a Markov transition matrix M0 giving the transitions over farmers’

sufficient state variables s̃t.

2. Take M l (where l is the algorithm iteration number) as fixed in the following value

function iteration

(a) Update continuation value:

V C l,k+1 = M l(π + δP l,k
x µφ + δV C l,k)

(b) Calculate the new policy function (probability of exit).

P l,k+1
x = 1− (1− exp(− 1

µφ
V C l,k+1)) = exp(− 1

µφ
V C l,k+1)

(c) Update the value function.

V l,k+1 = π + δ(P l,k+1
x µφ + V C l,k+1)

(d) STOP when ||V l,k+1 − V l,k|| < εk.

(e) Call the V l,k+1 that satisfies this condition V l and the corresponding continuation

value and exit policy function V C l,P l
x, respectively.

3. Calculate the implied entry policy function P l
e.

4. Using the farmers’ entry and exit policy functions, calculate the resulting conditional

state transition probabilities F l(st+1|st).

(a) sAR(1) = {psoy, r, a} evolve according to exogenous AR(1) processes.
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(b) Land will evolve as follows:

τt+1(st) = (1− P l
x(pt(st), eut, at))× τt︸ ︷︷ ︸

incumbents remaining

+P l
e(pt(st), eut, at)× Le︸ ︷︷ ︸

entrants

(21)

Note that for each state st, we can calculate a unique equilibrium price p(st). Thus,

all states with the same equilibrium price, EU policy, and marginal cost will have

the same land transition probabilities.

(c) The EU policy eut evolves such that:

eut+1 = max{1(τt+1 ≥ τ eu), eut} (22)

(d) The demand shock dt evolves such that:

dt+1 = ϕ0 + ϕ1dt + ϕ2dteut + νt (23)

5. Calculate the distribution of equilibrium price transitions p(st)→ p(st+1) that correspond

to the transitions of the actual state variables.

6. Recover farmer beliefs over price evolution Gl
p(pt+1|s̃t) consistent with the actual evolution

of prices using equation 14 (and beliefs Gl
eu(eut+1|s̃t) over EU policy evolution).

7. Repeat steps 2-6.

8. STOP when implied policy functions converge according to some tolerance.

B Estimation Steps

1. Define observed next period land for a given state st as:

τ̂t+1(st) = τt+1(st) + ζt+1 (24)

where ζt+1 is some mean-zero measurement error.
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2. Calculate equilibrium prices for each market state st and use these prices to relabel each

state according to the farmer state variables s̃t.

3. Calculate farmer static profits π(s̃t) for each s̃t.

4. Estimate the farmer’s Markov transition matrix (this will also be held constant while

searching over dynamic parameters) from the data:

Fs̃(s̃t+1|s̃t) = Fr(rt+1|rt)× Fa(at+1|at)× Fη(pt+1|pt, rt+1, at+1)

(a) Using the data, estimate te AR(1) processes underlying Fr(rt+1|rt) and Fa(at+1|at).

(b) Using data, estimate the belief parameters λ in equation 14 and the variance σ2
η of

the random in certainty in beliefs η + t ∼N(0, σ2
η).

(c) Calculate Fη(pt+1|pt, rt+1, at+1) using (λ, σ2
η).

Call the resulting Markov transition matrix M̂.

5. Estimate the continuation value using M̂ and fixed-point iteration for a guess of param-

eters θ:

ˆV C(θ) = M̂(π + δPx( ˆV C(θ))µφ + δ ˆV C(θ))

where π is a vector of state-specific payoffs calculated from the static portion of the model

and

Px( ˆV C(θ)) = exp(− 1

µφ
δ ˆV C(θ)) (25)

Note, I cannot calculate Px( ˆV C(θ)) from the data, since I only observe net flows. However,

using the contraction mapping theorem (appendix claim 1), equation 25 identifies a unique

ˆV C for a given θ. The contraction mapping will also provide a percentage of available

land that enters which is the following under an exponential distribution.

Pe( ˆV C(θ)) = 1− exp(− 1

µκ
δ ˆV C(θ)) (26)
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6. If estimating parameters for multiple types, repeat the previous step to recover ˆV C
f
(θ)

for each type.

7. Calculating the model-implied land transitions using ˆV C
f
(θ)

τ ft+1 = Pr(φfit ≤ V Cf,l
t )× τt︸ ︷︷ ︸

incumbents remaining

+Pr(κfjt ≤ V Cf,l
t )× τ ef,t︸ ︷︷ ︸

entrants

(27)

8. Use the objective function similar to the CCP one where τ̂ f and τ f( ˆV C
f
(θ);θ) are

vectors of type-specific land flows observed in the data and predicted by the model,

respectively and Z are the current period state variables used as instruments:

θ̂ = argmin
θ
||(τ̂ f − τ f( ˆV C

f
(θ);θ))Z|| (28)

C Model Fit

The following graphs display the ratio of model-predicted land flows by region for the estimated

parameters to the observed land flows for each type of farm. The ratios are generally bounded

between 0.2 and 3. The fit is different by region and does not systematically over or underpredict

land flows by region or farm type. Differences in fit across regions come from assuming that

all farms of the same type across all regions draw from the same scrap value and entry cost

distributions but experience different static profits. Allowing for regional variation in these

distributions would help improve fit. Fit gets worse over time, since errors are cumulative;

error predicting land areas in time t also affect the predicted land area in period t+ 1.
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Figure 11: Smallholder Land Area Fit

Note: This graph displays the ratio of model-predicted land flows by region for the estimated
parameters to the observed land flows.
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Figure 12: Large Estate Land Area Fit

Note: This graph displays the ratio of model-predicted land flows by region for the estimated
parameters to the observed land flows.

D Counterfactual Change in Land Flows by Region

Figures 13 and 14 break down changes in fraction of total land and total land area by smallhold-

ers and large estates, respectively. These figures demonstrate regional heterogeneity in terms

of compositional change. While large estates seem to regain their fraction of total oil palm land

in more regions relative to smallholders, there are also regions in which both large estates and

smallholders continue to lose share relative to organized smallholders (e.g., Region 10 - Sabah)

and regions in which smallholders increase in their share of total land (e.g., Region 7 - Perak).

Heterogeneity in this setting potentially comes from the trade shock affecting different regions

differently, depending on how much they export to the E.U. relative to China and India (where
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demand continued expanding during the study period).

Figure 13: Change in Smallholder Land Expansion from E.U. Policy, by Region

Note: This graph shows the difference between counterfactual predictions of smallholder and
large estate land expansion with and without the negative demand shock resulting from the
E.U. policy. The “*” markers correspond to the left y-axis, and the “o” markers to the right
y-axis. “Diff. Frac.” refers to the difference in how much of total oil palm land each type
consists of.
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Figure 14: Change in Large Estate Land Expansion from E.U. Policy, by Region

Note: This graph shows the difference between counterfactual predictions of smallholder and
large estate land expansion with and without the negative demand shock resulting from the
E.U. policy. The “*” markers correspond to the left y-axis, and the “o” markers to the right
y-axis. “Diff. Frac.” refers to the difference in how much of total oil palm land each type
consists of.
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Table 8: Beliefs (Sabah and Sarawak) over change in land (thousand hectares)

(1) (2)

delta hectaresTOTAL delta hectaresTOTAL

annual price 0.111∗∗ 0.111∗∗

(0.0183) (0.0187)

annualxpolicy -0.0948∗∗ -0.0704

(0.0205) (0.0714)

policy -11.25

(32.66)

N 26 26

r2 0.642 0.642

Standard errors in parentheses

+ p < 0.10, ∗ p < 0.05, ∗∗ p < 0.01

NOTE: Prices are a sufficent statistic without a constant term. Lack of significance in second
specification is probably due to very small sample size...

Note, Sarawak prices are generally higher and correlated with there being less land as well

as a higher growth rate at lower levels of land, which is consistent with farmers in both regions

having the same beliefs.
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