Topological Phases with of Bosons with Short Range Quantum Entanglement

Ashvin Vishwanath
UC Berkeley

Acknowledgements

YuanMing Lu (Berkeley)

T. Senthil (MIT)

Xie Chen (Berkeley)

REVIEW: arXiv:1301.0330

arXiv:1205.3156 (PRB 2012)

`Integer' topological phases in 2D: A Chern-

Simons approach

Yuan-Ming Lu, AV

arXiv:1209.3058 (PRX 2013)

Physics of 3D bosonic topological insulators:

AV, T. Senthil

arxiv:

SPT phases from decorated domain walls:

Xie Chen, Y.M. Lu, AV.

Beyond Topological Band Insulators. Ari Turner, AV

Fiona Burnell, Lukas Fidkowski, Tarun Grover.

Other collaborators:

OUTLINE

Introduction

2. Field theory of Bosonic Topological Phases in 2+1 Dimensions.

3. Field Theory of Bosonic SPT in 3+1 Dimensions

4. Intuitive Description from Decorated domain walls.

Introduction - Free Fermion Topological Insulators

3D Topological Insulators

(Fu, Kane, Mele; Moore, Balents; Fu, Kane; Roy; Hsieh, Hasan, Cava et al.; Xia et al.; Chen et al.; Qi, Hughes, Zhang)

- Bulk gapped. Gapless surface states, not realizable in a 2D system
- Protected by Time reversal and charge conservation symmetry.

Break time reversal *only* at the surface. Unusual insulating state. " σ_{xy} =1/2"

One chiral mode on surface domain walls

OR Quantized Magneto-electric polarizability.

Similarly 3D Topological Sc. – Thermal analog κ_{xy}

Interacting Analogs of Topological Insulators

- New T. I. like phases that require interactions?
 - Bulk gapped and has no exotic excitations. (Short Range Entangled)
 - \(\) Laughlin Fractional Quantum Hall
 - Focus on T.I.s of bosons/spins require interactions.
 - Realization in cold atoms/quantum magnets?
 - 1D Example AKLT/Haldane spin-1 chain. Eg. Y₂BaNiO₅

`Ising model' of interacting topological phases – new insights. Eg. `Impossible' Topological order on the surface of 3D Topological phases.

Short Range Entangled Topological Phases of Bosons in D=2,3

- A. Kitaev: E_8 state in d=2. No symmetry.
- Chen, Gu, Liu, Wen (2011): Symmetry protected topological phases.
 - Symmetry group G -> set of topological phases related to group cohomology.

Symmetry → Dimension ↓	Time Rev. ${\mathcal T}$	Charge Consv. U(1)	Charge Consv. +Time Rev. U(1) x T
d=1	Z_2	Z_1	Z ₂
d=2	Z ₁	Z	Z ₂
d=3	Z ₂	Z ₁	Z ₂ xZ ₂

Physical properties? Nature of surface states?

Bulk gapped

Field Theory Approach to 2D Symmetry Protected Topological Phases

2D Topological Phases: Chern-Simons Approach

K-matrix description of topological phases.
 (eg. Hierarchy quantum Hall states, bilayer states etc.).

Theoretically `cheaper' method than cohomology.

Physical properties are transparent.

2D Topological Phases: Chern-Simons Approach

K-matrix directly related to edge states:

$$\mathcal{L} = \sum_{I,J} \frac{K_{IJ}}{4\pi} a^I \cdot \nabla \times a^J \qquad \longrightarrow \qquad \mathcal{L}_{edge} = \frac{1}{4\pi} K_{IJ} \dot{\phi}_I \partial_x \phi_J$$

- K: symmetric integer matrix.
- | Det K | = torus degeneracy. Demand:
 - | Det K | = 1 (no topological order)
 - 2. Diagonal entries are even. (only bosonic excitations)

K=1 not allowed.

'Bosonic' Topological Superconductor in d=2.

- Bosonic 'topological Sc.' (like p+ip)
 - chiral state, no symmetry.

MIN Dimension: 8x8

- 8 chiral edge modes.
- K matrix (E₈ Cartan matrix)
- Kitaev E₈ state.

$$K^{E_8} = \begin{pmatrix} 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 2 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$

No Symmetry.
 Z classes. Chiral Edge States.
 Quantized Thermal Hall Conductivity

Bosonic Integer Quantum Hall Phase

Simplest non-chiral state:
$$K = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\mathcal{L} = \frac{1}{2\pi} a_1 \cdot \nabla \times a_2$

- 2. Bosonic 'Integer Hall' state: U(1) symmetry. Charge vector: q= (1 n)
 - Quantized $\sigma_{xy}=2n$ (q²/h).
 - EVEN Integers only! (Lu-AV 2012, Senthil-Levin)

Edge States and Symmetry

Edge - 1D Luttinger Liquid
 But Symmetries act in a way that is impossible in 1D. (Lu-AV, Chen-Lu-Wen.)

$$\frac{1}{2\pi}a_1 \cdot \nabla \times a_2 \qquad \mathcal{L}_{edge} = \dot{\phi}_1 \frac{\partial_x \phi_2}{2\pi}$$

 ϕ_1 Boson phase,

$$ho=rac{\partial_x\phi_2}{2\pi}$$
 Boson density.

Usual Tomonaga-Luttinger Liquid

$$(\varphi) \quad \phi_1 \to \phi_1 + \epsilon$$

$$(2\theta)$$
 $\phi_2 \rightarrow \phi_2$

 Δ L=Cos ϕ_2 (can be gapped)

Edge Tomonaga-Luttinger Liquid

$$\phi_1 \to \phi_1 + \epsilon$$

$$\phi_2 \to \phi_2 + \epsilon$$

No gapping term

Topological Phase with Z₂ symmetry.

- Edge theory can be used to extract all universal properties.
 - Eg. Z $_{\mathrm{2}}$ symmetry (Levin-Gu). $\Psi(lpha)=(-1)^{N_{\mathrm{domain-wall}}}$

Pi-fluxes. End points of Z2 domain walls.

Or – end domain wall at edge

$$\phi_{1,2} \to \phi_{1,2} + \pi$$

$$D(x) = e^{i\pi \frac{\int^x dx \left[\partial_x \phi_1 + \partial_x \phi_2\right]}{2\pi}}$$

$$= e^{\frac{i}{2}(\phi_1(x) + \phi_2(x))}$$

$$D(x)D(x') = i\operatorname{Sign}(x - x')D(x')D(x)$$

Field Theory of 3D Symmetry Protected Topological Phases

3D BOSONIC 'TOPOLOGICAL INSULATORS'

 Surface: 2D Bosons but symmetries act in a special way.

- Bulk paramagnet.
- Surface: 2D XY model BUT unusual symmetry action.
- Describe two SPT phases:
 - PHASE 1: break U(1) on surface.
 Vortices are Kramers pairs. T² = -1
 - PHASE 2: break T on surface. Insulator with σ_{xy} =1

$$\langle S^{+} \rangle = e^{i\phi_{1}}$$

$$\text{vortex} = (\psi_{\uparrow}, \psi_{\downarrow})$$

3D BOSONIC `TOPOLOGICAL INSULATORS' & Magneto-electric Effect

- Phase 2: Consider [U(1) x U(1)] x T
 - − Break U(1). XY order.
 - Vortices transform under: U(1) x T
 - Boson-Vortex duality:
 - Vortices coupled to gauge field `a'.

$$\frac{\nabla \times a}{2\pi} = n$$

– `External' Fields: A, A

$$\mathcal{L}_{ ext{edge}} = |(\partial - ia + irac{\sigma}{2}A)\psi_{\sigma}|^2 + rac{
abla imes a}{2\pi} \cdot A + \mathcal{L}_a$$

Condense: ψ_{\uparrow} then $a = rac{1}{2}A$ and $\mathcal{L}_{em} = rac{1}{4\pi}A \cdot
abla imes A$

 $\sigma_{xy} = 1 \ (\Theta = 2\pi)$

Two U(1)s needed to obtain fermionic vortices – `framing'.

Xu and Senthil

A PHYSICAL PICTURE of *SOME* SPT phases from DECORATED DOMAIN WALLS

Physical Picture – Condensate of Decorated Defects

- 1D topological phase with G = Z₂xZ₂ symmetry.
 - Two Ising models. Rotn. by 180 degrees about X,Y,Z.
 Analog of Haldane phase.

Condense domain walls of \mathbb{Z}_2 with \mathbb{Z}_2 charge.

$$H = -\sum_{i} (\sigma_{i}^{z} \tau_{i+1/2}^{x} \sigma_{i+1}^{z} + \tau_{i-1/2}^{z} \sigma_{i}^{x} \tau_{i+1/2}^{z})$$

Topological Phase from Condensing Decorated Defects

Sum of commuting projectors

$$H = \sum_{i} (\tilde{\tau}_{i+1/2}^{x} + \tilde{\sigma}_{i}^{x})$$

Unique Ground state with periodic boundary conditions

4 fold edge degeneracy with open boundary conditions. $\{\sigma_0^z,\ \sigma_0^x au_{1/2}^z\}$

Condensate of domain wall&spin flip =string order parameter:

$$\langle \tau_{1/2}^z \left[\prod_{i=1}^N \mu_i^x \right] \tau_{N+1/2}^z \rangle$$

3D Bosonic Tis from Condensing Decorated Domain Walls

- Symmetries: Z₂xZ₂
- Domain walls of eg. Z₂ in an SPT phase protected by Z₂ symmetry.

1. Wave-function: superposition over domain wall configurations with:

$$\Psi = (-1)^{N_{\text{dw-intersect}}}$$

- 2. Domain walls on surface carry symmetry protected edge modes.
- 3. Classification phases labeled by excluded symmetry: $\mathbb{Z}_2 \times \mathbb{Z}_2$

3D Bosonic Tis from Condensing Decorated Domain Walls

- Symmetries: Z₂xZ₂
- Domain walls of eg. Z_2 in an SPT phase protected by Z_2 symmetry.

- 4. Topological termination gapped and fully symmetric state with topological order. Laughlin m=2 state which transforms projectively under Z_2xZ_2 (like S=1/2).
- 5. Gauging Z_2 : π -flux carries gapless mode. (Z_2 Symmetry enriched topological phase).

Conclusions and Future Directions

Symmetry Dimension	Time Rev. ${\mathcal T}$	Charge Consv. U(1)	Charge Consv. +Time Rev. U(1) x T
d=1	Z_2	Z_1	Z ₂
d=2	Z_1	Z	Z ₂
d=3	Z_2	Z_1	Z_2xZ_2

 XZ_2

- Physical description of bosonic topological insulators.
- New topological phase beyond group cohomology. Surface related to Kitaev E8 state.
- Simple physical realizations in magnets/Bose-Hubbard models?
- New topological phases of interacting fermions?