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Growth accounting provides a breakdown of observed economic growth

into components associated with changes in factor inputs and a resid-

ual that re�ects technological progress and other elements. Generally,

the accounting exercise is viewed as a preliminary step for the anal-

ysis of fundamental determinants of economic growth. The �nal step

involves the relations of factor growth rates, factor shares, and techno-

logical change (the residual) to elements such as government policies,

household preferences, natural resources, initial levels of physical and

human capital, and so on. The growth-accounting exercise can be par-

ticularly useful if the fundamental determinants that matter for factor

growth rates are substantially independent from those that matter for

technological change.

The basics of growth accounting were presented in Solow (1957),

Kendrick (1961), Denison (1962), and Jorgenson and Griliches (1967).

Griliches (1997, part 1) provides an overview of this intellectual history,

with stress on the development of the Solow residual. The present paper

begins with a short presentation of these basics in the form of a standard,

primal model of growth accounting.

The analysis then turns to a number of issues that a�ect the in-

terpretation of the Solow residual as a measure of technological change.

The topics covered include dual approaches to growth accounting (which

consider changes in factor prices rather than quantities), spillover e�ects

and increasing returns, taxes, and multiple types of factor inputs.

Later sections place the growth-accounting exercise within the con-

text of two recent strands of endogenous growth theory�varieties-of-

products models and quality-ladders models. Within these settings, the

Solow residual can be interpreted in terms of measures of the endoge-

nously changing level of technology. This technology corresponds, in one
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case, to the number of types of intermediate products that have been

invented and, in the other case, to an index of the aggregate quality of

intermediate inputs. The models can also be used to assess and extend

previous analyses in which the Solow residual is related to outlays on

research and development (R&D). These analyses often use the concept

of an R&D capital stock, and this stock has a clear meaning within the

underlying theories.

1 Standard Primal Growth Accounting

Start with the neoclassical production function

Y = F (A;K; L) (1)

where A is the level of technology, K is the capital stock, and L is the

quantity of labor. Capital and labor can be disaggregated among types

or qualities as in Jorgenson and Griliches (1967).

As is well known, the growth rate of output can be partitioned

into components associated with factor accumulation and technologi-

cal progress. Di�erentiation of equation (1) with respect to time yields,

after division by Y and rearrangement of terms,

_Y =Y = g + (
FKK

Y
) � ( _K=K) + (

FLL

Y
) � ( _L=L) (2)

where FK, FL are the factor (social) marginal products and g�the

growth due to technological change�is given by

g � (
FAA

Y
) � ( _A=A) (3)

If the technology factor appears in a Hicks-neutral way, so that F (A;K; L) =

A � ~F (K;L), then g = _A=A:

The rate of technological progress, g, can be calculated from equation

(2) as a residual,

g = _Y =Y � (
FKK

Y
) � ( _K=K)� (

FLL

Y
) � ( _L=L) (4)
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However, equation (4) is impractical because it requires knowledge of the

social marginal products, FK and FL. Thus, in practice, the computa-

tions typically assume that the social marginal products can be measured

by observed factor prices.

If the factors are paid their social marginal products, so that FK =

R (the rental price of capital) and FL = w (the wage rate), then the

standard primal estimate of the rate of technological progress follows

from equation (4) as

ĝ = _Y =Y � sK � ( _K=K)� sL � ( _L=L) (5)

where sK � RK=Y and sL � wL=Y are the respective shares of each

factor payment in total product. The value ĝ is often described as an

estimate of total factor productivity (TFP) growth or the Solow residual.

The condition sK + sL = 1�or Y = RK + wL�must hold if all of

the income associated with the gross domestic product, Y , is attributed

to one of the factors, restricted here to capital and labor. In an inter-

national context, some net factor income may accrue to foreign owned

factors, and RK+wL would include this net factor income. The equation

of output, Y , to total factor income is consistent with equality between

the factor prices and marginal products if the production function, F (�),

exhibits constant returns to scale in K and L, so that Y = FKK + FLL

holds. Using sK+sL = 1, equation (5) can also be rewritten in intensive

form as

ĝ = _y=y � sK � ( _k=k) (6)

where y � Y=L and k � K=L are quantities per unit of labor.

Jorgenson and Griliches (1967) and Jorgenson, Gollop, and Fraumeni

(1987) demonstrate the importance of disaggregating the inputs by qual-

ity classes. For example, L can be viewed as a vector that speci�es the

3



quantities of labor of various kinds, categorized by school attainment,

age, sex, and so on. In an extended version of equation (5), the growth

rate of labor quantity of type j, _Lj=Lj, is multiplied by the associated in-

come share, sLj . As an example, if the population's average educational

attainment is rising over time, then this procedure attributes a portion of

economic growth to the rise of Lj in categories�such as college-educated

workers�that receive relatively high wage rates, wj. Failure to allow in

this way for improvements in labor quality tends to overestimate the

Solow residual, g, in equation (5).

The treatment of capital quality is analogous. One important ele-

ment here concerns the distinction between short-lived and long-lived

capital. For a given required rate of return on capital, the rental price,

Rj, is higher if the depreciation rate is higher (due to more rapid physical

deterioration or economic obsolescence). Hence, a shift from long-lived

capital (say buildings) to short-lived capital (say machinery) would ac-

count for some part of economic growth. Failure to allow for this rise in

capital quality tends to overstate the Solow residual in equation (5).

Table 1 summarizes estimates of TFP growth rates for various coun-

tries and time periods, using this approach. For the main OECD coun-

tries, the TFP estimates for 1947-73 ranged from 1.4% per year for the

United States to 4.0% for Japan. The estimates shown for 1960-73 are

roughly similar. However, the values shown for 1973-89 re�ect the well-

known �productivity slowdown� and are much smaller than those for the

pre-1973 periods. The range of estimates for the main OECD countries

in the post-1973 period is very narrow, going from 0.3% for Canada and

the United States to 1.4% for France.

Estimates for seven Latin American countries from 1940 to 1990
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ranged between -0.6% per year for Peru to 1.4% for Chile.1 For four

East Asian countries from 1966 to 1990 or 1991, the estimates varied

from 0.2% for Singapore to 2.6% for Taiwan. Because of the stellar

growth performances of these East Asian countries, many economists

were surprised by the low TFP estimates for these cases. Some of these

results will be reexamined in a later section.

An important point about the TFP estimates displayed in Table 1 is

that they represent a direct implementation of equation (5)�extended to

include multiple types of capital and labor�and do not involve econo-

metric estimation. The estimated Solow residual, ĝ, is computed at

each date by using time-series data on _Y =Y; _K=K; _L=L; sK; and sL.
2 In

practice, researchers report an average of the computed ĝ values for a

designated time period.

An alternative approach would be to regress the growth rate of out-

put, _Y =Y , on the growth rates of inputs, _K=K and _L=L, in the form of

equation (2). The intercept then measures g, and the coe�cients on the

factor growth rates measure (FKK
Y

) and (FLL
Y

), respectively. The main

advantage of this approach is that it dispenses with the assumption that

the factor social marginal products coincide with the observable factor

prices, that is, FK = R and FL = w.

The disadvantages of the regression approach are several:

1The estimated TFP growth rates in Latin America are particularly low�typically

negative�from 1980 to 1990. The negative values are hard to understand as tech-

nical regress in the sense of literal forgetting of technology, but they may represent

declining e�ciency of market organization due to policy or other changes.
2With discrete data, the growth rates are typically measured, following Th�ornqvist

(1936), as log di�erences between the levels at dates t + 1 and t, and the factor

shares are arithmetic averages for dates t + 1 and t. Diewert (1976) shows that the

Th�ornqvist procedure is exact if the production function takes the trans-log form,

which was introduced by Christensen, Jorgenson, and Lau (1971).
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�The variables _K=K and _L=L cannot usually be regarded as exoge-

nous with respect to variations in g�in particular, the factor growth

rates would receive credit for correlated variations in unobservable tech-

nological change.

�If _K=K and _L=L are measured with error, then standard estimates

of the coe�cients of these variables would deliver inconsistent estimates

of (FKK
Y

) and (FLL
Y

), respectively. This problem is likely to be especially

serious for the growth rate of capital input, where the measured capital

stock is unlikely to correspond well to the stock currently utilized in pro-

duction. This problem often leads to low estimates of the contribution

of capital accumulation to economic growth when high-frequency data

are employed.

�The regression framework has to be extended from its usual form

to allow for time variations in factor shares and the TFP growth rate.

Given the drawbacks from the regression method, the usually pre-

ferred approach to TFP estimation is the non-econometric one exempli-

�ed by the studies shown in Table 1.

2 Dual Approach to Growth Accounting

Hsieh (1998) recently exploited a dual approach to growth accounting,

whereby the Solow residual is computed from growth rates of factor

prices, rather than factor quantities. This idea goes back at least to

Jorgenson and Griliches (1967).

The dual approach can be derived readily from the equality between

output and factor incomes:

Y = RK + wL (7)

Di�erentiation of both sides of equation (7) with respect to time leads,

6



after division by Y and rearrangement of terms, to

_Y =Y = sK � ( _R=R + _K=K) + sL � ( _w=w + _L=L)

where sK and sL are again the factor income shares. If the terms involv-

ing the growth rates of factor quantities are placed on the left-hand side

of the equation, then the estimated TFP growth rate is given by

ĝ = _Y =Y � sK � ( _K=K)� sL � ( _L=L) = sK � _R=R + sL � _w=w (8)

Hence, the primal estimate of the TFP growth rate on the left-hand side

of the equation�based on �ltering _Y =Y for the share-weighted growth

in factor quantities�equals the share-weighted growth of factor prices

on the right-hand side of the equation. The latter, dual estimate of

the TFP growth rate uses the same factor-income shares, sK and sL, as

the primal estimate, but considers changes in factor prices, rather than

quantities.3

The intuition for the dual estimate on the right-hand side of equa-

tion (8) is that rising factor prices (for factors of given quality) can be

sustained only if output is increasing for given inputs. Therefore, the ap-

propriately weighted average of the growth of the factor prices measures

the extent of TFP growth.

It is important to recognize that the derivation of equation (8) uses

only the condition Y = RK+wL. No assumptions were made about the

relations of factor prices to social marginal products or about the form

3This derivation was suggested to me by Susanto Basu. The approach was used

earlier by Jorgenson and Griliches (1967, pp. 251-253), who also extend equation (8)

to allow for changes over time in the relative prices of multiple outputs. In this case,

_Y =Y becomes a share-weighted average of output growth rates, and the right-hand

side of the dual accounting expression subtracts o� the share-weighted average of the

growth rates of the output prices. This last term is zero in the present context (with

a �xed relative price of a single form of output).
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of the production function. If Y = RK + wL holds, then the primal

and dual estimates of TFP growth inevitably coincide. In some cases�

notably when factor prices deviate from social marginal products�the

estimated value ĝ from equation (8) would deviate from the true value,

g. However, the error, g � ĝ, from the dual approach will be the same

as that from the primal approach.4

Hsieh (1998) used the dual approach�the right-hand side of equation

(8)�to redo Young's (1995) estimates of TFP growth for the four East

Asian countries included in Table 1. Hsieh's procedure uses an array of

quality categories for L and K. The results, shown along with primal

estimates that are similar to Young's �ndings, are in Table 2. The most

striking conclusion is that the estimate for Singapore changes from the

primal estimate of around zero to a dual estimate of 2.2% per year. The

estimate for Taiwan is also revised upward substantially, but those for

Hong Kong and South Korea change little. (Hsieh also observes that

dual estimates for the United States are similar to primal estimates.)

If the condition Y = RK +wL holds, then the discrepancy between

the primal and dual estimates of TFP has to re�ect the use of di�erent

data in the two calculations. Hsieh's discussion brings out the general

nature of this data discrepancy for Singapore. The Singaporean national

4This equivalence does not generally hold if the factor-income shares, sK and sL,

are replaced by the marginal-product weights, (FKKY ) and (FLLY ). If these marginal-

product weights are used, then the primal estimate ĝ calculated from equation (4)

correctly measures the TFP growth rate, g. The corresponding dual estimate is

(
FKK

Y
) � ( _R=R) + (

FLL

Y
) � ( _w=w)

It is possible to show that this estimate equals the primal one if the ratios of the factor

prices to social marginal products�R=FK and w=FL�do not vary over time. (It is

not necessary for these ratios to equal unity.) However, the practical signi�cance of

these results is unclear because FK and FL would not generally be observable.
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accounts show remarkable growth of K over time and�given the behav-

ior of Y and wL�a correspondingly sharp decline in the rental price, R.

However, direct estimates of returns on capital in Singapore�based on

observed returns on �nancial markets�are relatively stable over time.

If the path of R implied by the observed rates of return is accurate�

and if information on Y and wL is also viewed as reasonable�then

the implied path of K exhibits much more moderate growth than that

indicated by the national-accounts data. Hsieh argues that the o�cial

statistics have, in fact, substantially overstated the growth of the capital

stock and, hence, that the reduced estimates of capital growth implied

by the observed R values are reasonable.

Hsieh's dual estimate of TFP growth for Singapore�2.2% per year�

is a weighted average of the robust wage-rate growth (for given labor

quality) and a small amount of rental-price growth. However, Hsieh

could just as well have computed a primal estimate of TFP growth based

on the time series for K that is implied by the observed and presumed

accurate time series for R. (With multiple types of capital, Kj, this

calculation would be applied to each type, given the estimated values of

the rental prices, Rj.) Since Y = RK + wL holds here by construction,

the primal estimate would coincide with the dual estimate. Thus, it is

not actually necessary ever to do the dual computation.

3 Problems with Growth Accounting

A key assumption in growth-accounting exercises is that factor prices co-

incide with social marginal products. If this assumption is violated, then

the estimated value ĝ calculated from equation (5)�or the corresponding

dual estimate from equation (8)�deviates from the true contribution,

g, of technical change to economic growth. The next sections illustrate
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these problems for models with increasing returns and spillovers, for en-

vironments with various kinds of taxes, and for settings with di�erent

types of factors.

3.1 An Increasing-Returns Model with Spillovers

A number of authors�including Griliches (1979), Romer (1986), and

Lucas (1988)�have constructed models of economic growth with in-

creasing returns and spillovers. Romer's analysis is a generalization of

Arrow's (1962) learning-by-doing model, in which the e�ciency of pro-

duction rises with cumulated experience. In a simple version of the

Romer model, the output, Yi, of �rm i depends not only on the stan-

dard private inputs, Ki and Li, but also on the economy-wide capital

stock, K. The idea is that producers learn by investing (a speci�c form

of �doing�) to produce more e�ciently. Moreover, this knowledge spills

over immediately from one �rm to others so that each �rm's productivity

depends on the aggregate of learning, as re�ected in the overall capital

stock.

These ideas can be represented with a Cobb-Douglas production

function as

Yi = AK�
i K� L1��

i (9)

where 0 < � < 1 and � � 0. For given K, this production function

exhibits constant returns to scale in the private inputs, Ki and Li. If

� > 0, then the spillover e�ect is present.

In the Griliches (1979) version of the production function in equa-

tion (9), Ki represents �rm i0s speci�c knowledge capital, whereas K

(modeled as the sum of the Ki) is the aggregate level of knowledge in an

industry. Hence, the spillovers again represent the di�usion of knowledge

across �rms. In the Lucas (1988) version, Ki is the �rm's employment
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of human capital, and K is the aggregate (or possibly average) level of

human capital in an industry or country. In this case, the spillovers

involve bene�ts from interactions with smart people.

Returning to the Romer interpretation of equation (9), each �rm

behaves competitively, taking as given the economy-wide factor prices,

R and w, and the aggregate capital stock, K. Hence, private marginal

products are equated to the factor prices, thereby yielding

R = �Yi=Ki and w = (1� �) � Yi=Li (10)

The factor-income shares are therefore given, as usual, by

sk = � and sL = 1� � (11)

In equilibrium, each �rm adopts the same capital-labor ratio, ki, but

the scale of each �rm is indeterminate. The production function from

equation (9) can be rewritten as

Yi = Ak�i k� LiL
�

where k � K=L. The equilibrium condition ki = k then implies

Yi = Ak�+�LiL
�

which can be aggregated across �rms to get

Y = Ak�+�L1+�

Finally, the condition k � K=L leads to the economy-wide production

function

Y = AK�+�L1�� (12)

This expression relates aggregate output, Y , to the aggregate inputs, K

and L. If � > 0, then increasing returns to scale apply economy wide.
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The right-hand side of equation (12) shows that the correct way to

do the growth accounting with aggregate data is to compute

ĝ = _A=A = _Y =Y � (�+ �) � ( _K=K)� (1� �) � ( _L=L) (13)

Hence, sL = 1 � � is the correct weight for _L=L, but the coe�cient

sK = � understates by � � 0 the contribution of _K=K. This under-

statement arises because�with the assumed investment-based spillovers

of knowledge�the social marginal product of capital, (� + �) � Y=K,

exceeds the private marginal product, �Y=K. (This private marginal

product does equal the factor price, R.) Note also that the weights

on the factor-input growth rates in equation (13) add to 1 + �, which

exceeds one if � > 0 because of the underlying increasing returns to

scale. The increasing returns arise because ideas about how to produce

more e�ciently are fundamentally non-rival (and spill over freely and

instantaneously across �rms).

The interpretation of K�the factor that receives a weight above its

income share in the growth accounting of equation (13)�depends on

the underlying model. Griliches (1979) identi�es K with knowledge-

creating activities, such as R&D. Romer (1986) stresses physical capital

itself. Lucas (1988) emphasizes human capital in the form of education.

It is, of course, also possible to have spillover e�ects that are negative,

such as tra�c congestion and environmental damage.

Implementation of the results from equation (13) is di�cult because

the proper weights on the factor growth rates cannot be inferred from

income shares; speci�cally, no direct estimates are available for the co-

e�cient �. If one instead computes the standard Solow residual within

this model, then one gets

~g = _A=A+ � � ( _K=K) = _Y =Y � � � ( _K=K)� (1� �) � ( _L=L) (14)
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Thus, the standard calculation includes the growth e�ect from spillovers

and increasing returns�� � ( _K=K)�along with the rate of exogenous

technological progress, _A=A, in the Solow residual.

It seems that the separation of the spillovers/increasing returns e�ect

from exogenous technological progress requires a regression approach. In

this approach, the usual Solow residual, ~g, calculated from equation (14)

could be regressed on the factor growth rate, _K=K, that was thought

to carry the spillover e�ects. This method does, however, encounter the

usual econometric problems with respect to simultaneity.

3.2 Taxes

In most cases, taxes do not disturb the TFP calculations. Suppose, for

example, that �rms' net revenues are taxed, wage and rental payments

are tax-deductible expenses for �rms, and wage and rental incomes are

taxed at the household level. In this case, competitive �rms equate the

marginal product of labor, FL, to the wage, w, and the marginal product

of capital, FK, to the rental price, R. The condition Y = RK +wL also

holds (with �rms' net revenue and taxes equal to zero in equilibrium).

Therefore, the formula for ĝ in equation (5) remains valid.

Suppose, instead, that �rms acquire capital through equity �nance,

that wages and depreciation, �K, are tax deductible for �rms, and that

r is the required (gross-of-personal-tax) rate of return on equity. A

competitive �rm still equates the marginal product of labor to the wage

rate, w. The �rm also equates the after-tax net marginal product of

capital, (1� �) � (FK � �), to r, where � is the marginal tax rate on the

�rm's earnings. Therefore, the marginal product of capital is given by

FK =
r

1� �
+ �

The growth-accounting formula in equation (4) implies, after substi-

13



tution for FK and FL,

g = _Y =Y �

"
r

(1� � )
�
K

Y
+
�K

Y

#
� ( _K=K)� sL � ( _L=L) (15)

If taxes on �rms' earnings are proportional, so that � is the average as

well as the marginal tax rate, then rK=(1 � � ) is equal in equilibrium

to �rms' earnings (net of depreciation but gross of the earnings tax).

Hence, the bracketed term in equation (15) equals sK, the income share

of capital, if capital income is measured by �rms' earnings (gross of

earnings taxes) plus depreciation. The usual formula for the TFP growth

rate in equation (5) therefore remains valid.

For a tax on output or sales, competitive �rms satisfy FL = w=(1��)

and FK = R=(1� � ), where R is again the rental price of capital and �

is the marginal tax rate on output. The growth-accounting formula in

equation (4) therefore implies, after substitution for FK and FL,

g = _Y =Y �

"
R

(1� �)
�
K

Y

#
� ( _K=K)�

"
w

(1� � )
�
L

Y

#
� ( _L=L) (16)

If the tax on output is proportional, so that marginal and average

tax rates coincide, the total revenue collected is �Y . Output, Y , equals

factor incomes plus the amount collected by the indirect tax:

Y = RK + wL+ �Y

so that the total factor income, RK+wL, equals (1� �) �Y . Hence, the

bracketed terms on the right-hand side of equation (16) equal sK and sL,

respectively. (Note that these shares are expressed in relation to factor

income rather than gross domestic product.) It follows that the usual

formula for the TFP growth rate given in equation (5) still holds.5

5The analysis is more complicated if �rms are subject to non-proportional tax

schedules (with respect to output or earnings). If marginal tax rates on �rms are
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The standard growth-accounting formula works, for example, with a

proportionate value-added tax that attaches the same tax rate to value

added by capital and labor inputs. However, the usual formula would

be inaccurate if di�erent tax rates applied to the value added by each

factor. If �rms pay the tax rate �K on RK and the rate �L on wL, then

the growth-accounting formula in equation (4) leads to

g = _Y =Y � (
1 + �K
1 + �

) � sK � ( _K=K)� (
1 + �L
1 + �

) � sL � ( _L=L) (17)

where � is the average of the tax rates, as given by

� = sK�K + sL�L

If, for example, �K > �L, then equation (17) indicates that the weight on

_K=K should be raised relative to that on _L=L to compute g accurately.

3.3 Multiple Types of Factors

Suppose now that the production function is

Y = F (A;K1; K2; L1; L2) (18)

One interpretation of equation (18) is that K1 and K2 represent di�erent

types or qualities of capital goods, whereas L1 and L2 represent di�erent

types or qualities of labor. Then the usual growth-accounting exercise

goes through in the manner of Jorgenson and Griliches (1967) if each

type of factor is weighted by its income share. That is, _K1=K1 is weighted

by R1K1=Y , and so on. The usual Solow residual generated from this

increasing, there is e�ectively a penalty on large �rms. Hence, in the present setup

with constant returns to scale, �rms would be of in�nitesimal size in equilibrium.

Non-proportional tax schedules can be admitted in models in which the establishment

of a �rm requires a �xed cost and in which span-of-control or other considerations

eventually create diminishing returns to �rm size.
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procedure accurately measures the contribution of technological progress

to growth, g, as long as all factors are paid their social marginal products.

Problems arise if the factor categories cannot be distinguished in

the data, for example, if _K1=K1 and _K2=K2 are each associated with

the overall capital share, (R1K1 + R2K2)=Y . One source of this kind

of problem is that newer, and typically better, types of capital goods

might be aggregated with the older types. Similarly, di�erent categories

of labor may be aggregated in the data.

Another interpretation of equation (18) is that K1 and L1 repre-

sent factor employments in sector 1�say urban manufacturing�whereas

K2 and L2 represent employments in sector 2�say rural agriculture.

Changes may occur over time in sectoral composition, for example, as

a shift from agriculture to industry. Such shifts cause no trouble for

the growth accounting if the various growth rates of factor quantities�

distinguished by their sector of location�are weighted by their income

shares. However, errors occur if capital or labor is aggregated across sec-

tors and if the growth of these aggregates is weighted by overall income

shares of capital or labor, respectively.

To illustrate, suppose that the TFP growth rate is incorrectly esti-

mated as

~g = _Y =Y � (
R1K1 +R2K2

Y
) � ( _K=K)� (

w1L1 + w2L2

Y
) � ( _L=L) (19)

where K = K1+K2 and L = L1+L2. This estimate compares with the

appropriate formula,

ĝ = _Y =Y�(
R1K1

Y
)�( _K1=K1)�(

R2K2

Y
)�( _K2=K2)�(

w1L1

Y
)�( _L1=L1)�(

w2L2

Y
)�( _L2=L2)

(20)

Equation (20) correctly estimates the contribution to growth from ex-

ogenous technological progress�that is, ĝ = g� if all factors are paid

their social marginal products.
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The expression for ~g in equation (19) can be shown from algebraic

manipulation to relate to true TFP growth, as estimated accurately by

equation (20), in accordance with

~g�ĝ = (
K1

K
)�(

K2

K
)�
K

Y
�(R1�R2)�(

_K1

K1

�
_K2

K2

)+(
L1

L
)�(

L2

L
)�
L

Y
�(w1�w2)�(

_L1

L1

�
_L2

L2

)

(21)

Hence, if R1 6= R2 and _K1=K1 6= _K2=K2 or if w1 6= w2 and _L1=L1 6=

_L2=L2, then ~g 6= ĝ. Speci�cally, if R1 > R2, then _K1=K1 > _K2=K2 leads

to ~g > ĝ and similarly for labor.

With the interpretation of the factor types as quality classes, the

result is that measured TFP growth overstates true TFP growth if the

composition of factors is shifting over time toward types of higher qual-

ity (and such shifts are not allowed for in the estimation). This problem

is the one emphasized and resolved subject to data limitations by Jor-

genson and Griliches (1967).

One sectoral interpretation of the results involves the migration of

labor from rural to urban areas. The urban wage rate, w1, may exceed

the rural wage rate, w2, for various reasons, including minimum-wage

legislation and requirements of union membership for the city jobs. In

this case, a shift of labor from the rural to the urban sector represents a

gain in economy-wide productivity. The term involving labor in equation

(21) re�ects the economic growth generated by this change in the sectoral

composition of labor, for a given growth rate of aggregate labor, _L=L.

This type of growth e�ect, applied to movements of labor from low-

productivity agriculture to high-productivity industry, was discussed by

Kuznets (1961, p. 61), who derived an expression analogous to equation

(21).

From the perspective of growth accounting, the terms that involve

sectoral shifts should appear somewhere in the calculations. If the
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changes in labor quantities in each sector are weighted by labor-income

shares for each type of labor, then the growth contribution from the

sectoral changes appears in the part accounted for by changes in fac-

tor quantities in equation (20). If the weighting is done instead in the

manner of equation (19), then the contribution appears in the estimated

TFP growth rate.

4 TFP Growth and R&D

Growth accounting is often viewed as a �rst step in explaining the TFP

growth rate, g, as estimated in equation (5). For example, the research

program summarized by Griliches (1973) focuses on R&D spending as a

determinant of the TFP growth rate.6 Recent theories of �endogenous

growth� have implications for the modeling of the relationship between

technological change and R&D outlays. The following sections explore

these relationships for models that involve increases in the number of

types of products and improvements in the quality of existing products.

4.1 Varieties Models

The product-varieties framework was applied to technological change by

Romer (1990) and Grossman and Helpman (1991, Ch. 3). In a simple

formulation, output, Y , is given from a Spence (1976)/Dixit and Stiglitz

(1977) production function as

Y = AL1��
NX
j=1

x�j (22)

where A is an exogenous technology factor, L is labor input, xj is the

quantity employed of intermediate input of type j, N is the number of

varieties of intermediate products that are currently known and used,

6Earlier contributors to this literature include Terleckyj (1958), Minasian (1962),

Griliches (1964), and Mans�eld (1965).
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and 0 < � < 1. In some versions of this model, xj is treated for sim-

plicity as non-durable. However, durability of the intermediates can be

admitted, in which case xj represents the service �ow from the jth type

of capital good.

The output stream, Y , can be consumed, used as intermediate inputs

to production (on a one-for-one basis for each type of input), or allocated

to R&D. In particular, in this model, measured output is gross not only

of outlay on intermediates but also of R&D expenditures.

In the formulation considered in Barro and Sala-i-Martin (1995, Ch.

6), each of the j types of non durables is priced (by the monopoly

holder of the rights to the production of intermediates of type j) at

the monopoly level, which turns out to be 1=� > 1. In equilibrium, each

intermediate is employed at the same level, x. Hence, equation (22) can

be expressed as

Y = AL1��N1��X� (23)

where X = Nx is the total quantity of intermediate inputs. For the

case of durable inputs, X corresponds to the �ow of services from the

aggregate capital stock.

Technological progress occurs through R&D outlays that raiseN over

time. Hence, the variable N represents the current state of the endoge-

nously determined technology. In this model, the leading technology�

that is, the one that employs allN varieties that have been discovered�is

used by all producers. Therefore, this speci�cation �ts best for general-

purpose technologies (David [1991], Bresnahan and Trajtenberg [1995]),

which have broad application in the economy.

Competitive producers of output, Y , equate the marginal product of

labor to the wage rate, so that

w = (1� �) � (Y=L)
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Hence, the share of labor income is, as usual,

sL = wL=Y = 1� � (24)

Competitive producers also equate the marginal product of each type

of intermediate input to the (monopoly) price of intermediates, 1=�.

This condition can be expressed as

1=� = � � (Y=X)

Therefore, the share of income expended on the N intermediates is

sx = (1=�) � (X=Y ) = � (25)

For durable inputs, the �ow (1=�) � (X=Y ) would correspond to the

monopoly rentals charged for capital services.

The growth rate of output can be computed from equation (23) as7

_Y =Y = _A=A+ (1� �) � ( _N=N) + sL � ( _L=L) + sx � ( _X=X) (26)

where the formulas for sL and sx from equations (24) and (25) were

used.8 Therefore, the usual approach for computing the TFP growth

rate yields, in this model,

ĝ = _Y =Y � sL � ( _L=L)� sx � ( _X=X) = _A=A+ (1� �) � ( _N=N) (27)

Hence, despite the monopoly pricing of the intermediate inputs, the

Solow residual correctly measures the sum of the contributions to pro-

ductivity growth from exogenous technological change, _A=A, and en-

dogenous expansion of varieties, _N=N .

7The underlying model of changing N assumes _A=A = _L=L = 0. However, equa-

tion (26) is valid as long as the marginal products of L and each of the xj are equated

to their factor prices.
8This approach treats N as a continuous variable. Probably it is best to think

of N as a metaphor for the overall state of the technology, rather than literally the

number of intermediate products that have been discovered.
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Note from equation (27) that the endogenous-growth part of the

Solow residual re�ects only the fraction 1� � of the growth rate of the

number of varieties, _N=N . The remaining part, � � ( _N=N), is picked up

as part of the term sx �( _X=X) = � �( _N=N+ _x=x) on the left-hand side of

equation (27). For a �xed quantity x of intermediates of each type, the

discovery of new types of products at the rate _N=N induces an increase in

the aggregate of intermediates at the same rate. The contribution of this

expansion of intermediates to growth�which involves the coe�cient �,

the income share of payments to intermediates�is attributed to growth

of factor inputs, rather than to the underlying technological progress. In

e�ect, part of the technological advance from discoveries of new types of

intermediate goods is embodied in the intermediates that use the new

technology.

In the simplest varieties model, _N is proportional to the amount of

output devoted to R&D, _N = (1=�)�(R&D), where � is a cost parameter

that represents the amount of R&D required to achieve a unit increase in

N . (In the present framework, this R&D cost is assumed to be constant.)

Hence, the growth rate of N is given by

_N=N = (R&D)=�N

The term �N is the capitalized value of all past R&D outlays�the num-

ber N multiplied by the reproduction cost, �, for each invention. There-

fore, the measured TFP growth rate in equation (27) satis�es

ĝ = _A=A+(1��) � (current R&D flow)=(market value of past R&D)

(28)

In the varieties model, the chosen quantity x is proportional to L,

so that the value Y=L computed from equation (23) is proportional to

N . Since the denominator of the �nal term on the right-hand side of
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equation (28) equals �N , this �nal term ends up proportional to the

ratio of R&D to per worker output, Y=L. Thus, ĝ in equation (28)

can be expressed as a linear function of the ratio (R&D)=(Y=L). This

result is similar to speci�cations used by Griliches (1973) and Coe and

Helpman (1995), among others, except that R&D outlays enter in the

varieties model in relation to per worker output, Y=L, rather that the

level of output, Y . The source of the di�erence is that knowledge of the

varieties of products, N , is non-rival in the varieties framework. For this

reason, the model features a scale bene�t from increases in L. (If R&D,

Y , and L all rise in the same proportion, then g increases.)

The empirical literature described by Griliches (1973) uses a regres-

sion approach to assess the e�ect of an R&D variable on the TFP growth

rate. Thus, as in regression approaches to growth accounting, the anal-

ysis can be confounded by reverse-causation problems. In this case, the

di�culty is that R&D spending would respond to exogenous changes in

productivity growth�the variable _A=A in equation (28)�so that the

estimated coe�cient on the R&D variable would proxy partly for ex-

ogenous technological progress. Satisfactory instrumental variables to

avoid this problem may not be available. Possible instruments include

measures of government policies toward R&D, including research subsi-

dies, legal provisions such as the patent system, and the tax treatment

of R&D expenditures.

Within the theory that underlies equation (28), it might be possible

to extend the usual growth-accounting procedure to assess the contribu-

tion from R&D. That is, a modi�ed Solow residual could be computed

that subtracts from the growth rate of output, _Y =Y , not only the contri-

butions from the growth of factor inputs, sL �( _L=L)+sx �( _X=X), but also

the term
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(1 � �) � (current R&D flow)=(market value of past R&D). How-

ever, the computation of this term entails knowledge not only of the

labor share, 1� �, and the current �ow of R&D spending, but, in addi-

tion, the measure of the cumulated stock (or capitalized value) of past

R&D.

It should also be recalled that the underlying model contains a num-

ber of restrictive assumptions. First, the R&D outlays appear directly

in the measure of gross output. Second, the technological change, _N=N ,

applies uniformly across the economy. Third, no technological forgetting

applies.

4.2 Quality-Ladders Models

The other prominent model of technological change in the recent endogenous-

growth literature is the quality-ladders formulation due to Aghion and

Howitt (1992) and Grossman and Helpman (1991, Ch. 4). In this frame-

work, technological progress consists of improvements in the quality of

intermediate inputs (or, equivalently, reductions in the cost of providing

inputs of given quality). The number of varieties of products is usually

assumed to be �xed in this setting, although changes in this number

could again be admitted.

One simple speci�cation, explored in Barro and Sala-i-Martin (1995,

Ch. 7), uses the production function

Y = AL1��
NX
j=1

(q�jxj�j )
� (29)

where A is the exogenous level of technology, L is labor input, 0 < � < 1,

and N is the �xed number of varieties of intermediates. The parameter

q > 1 is the proportionate spacing between rungs on a given quality

ladder. Technological progress occurs through R&D outlays that allow

movements up the quality ladder, one step at a time. The variable �j is
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the highest quality-ladder position currently achieved in sector j. The

variable xj�j is the quantity employed of the jth type of non-durable

intermediate.

The key element of the quality-ladders framework is that di�erent

quality grades of intermediate inputs within a given sector are modeled

as perfect substitutes. Higher ranked inputs are simply better than

lower ranked ones. For this reason, lower quality intermediates of type

j (at the rungs �j � 1; �j � 2, ...) are driven out of the market in

equilibrium. This technological obsolescence�or creative destruction�

distinguishes the quality-ladders model from the varieties framework.

In that framework�explored in the previous section�no technological

obsolescence occurred, and new varieties of products worked along side

the old ones to produce goods. (To some extent, this result depended

on the additive separability of the quantities xj in equation [22].)

Units of xj�j are again priced at the monopoly level, 1=� > 1, in each

sector. Given the way that the quantities xj�j are determined (to equate

the marginal product of each intermediate to the monopoly price), the

production function in equation (29) can be rewritten as

Y = AL1��X� Q1�� (30)

where X �
NP
j=1

xj�j is the total spending on intermediates and Q is an

aggregate quality index, given by

Q �
NX
j=1

q�j�=(1��) (31)

Equation (30) implies that the standard growth-accounting approach

would yield in this model

ĝ = _Y =Y � sL � ( _L=L)� sx � ( _X=X) = _A=A+ (1� �) � ( _Q=Q) (32)

where sL = wL=Y and sx = (1=�) � (X=Y ). Therefore, in this model,

the Solow residual measures the sum of exogenous technological progress,
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_A=A, and the growth rate of overall quality, _Q=Q, weighted by the labor

share, 1 � �.9 This result is similar to equation (27) from the varieties

model, except that the measure of technological change is _Q=Q, rather

than _N=N . Again, a portion of the contribution from technological

change (the part � � _Q=Q) is embodied in the growth of inputs ( _X=X),

and only the remainder appears in the Solow residual.

Some new results arise from the relation of _Q=Q to R&D expen-

ditures. In the version of the quality-ladders model explored in Barro

and Sala-i-Martin (1995, Ch. 7), _Q is proportional to aggregate R&D

spending. The growth rate of Q can be expressed as

_Q=Q = c � (current R&D flow)=(market value of past R&D) (33)

where 0 < c < 1 is a constant. In contrast to the varieties model, the

constant c is less than one because of the obsolescence of the old types of

intermediates in the sectors that experience quality enhancements. The

constant c is higher the larger the ratio of the productivity of a newly

discovered grade of intermediate input to the productivity of the next

lowest grade, which just became obsolete. If this ratio is higher, then

creative destruction is more creation than destruction and, hence, the

contribution of the current R&D �ow to the overall quality index, Q, is

attenuated to a lesser extent. In the model, the key determinant of the

productivity ratio is the parameter q, the proportionate spacing between

quality grades.10 A higher value of q implies a higher value of c.

9This analysis treats Q as a continuous variable. In fact, Q moves discretely over

time corresponding to the e�ects of the discrete changes in the �j in equation (31).

The continuous formulation is a reasonable approximation if the number of sectors

is large and the stochastic changes in the various �j have a substantial amount of

independence.
10The relation is c = 1 � q��=(1��), where q > 1 is the spacing between steps on

the quality ladder.
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The quality index, Q, can be viewed as a measure of the R&D capital

stock. However, it is incorrect in this model to follow the common

practice by which this stock is constructed. In the usual perpetual-

inventory approach, the change in the R&D capital stock equals current

R&D spending�the counterpart to gross investment�less depreciation

on the existing R&D capital stock. The last term, often modeled as

a constant fraction of the existing stock, is thought to correspond to

obsolescence of old technologies. In the quality-ladders framework, the

correct procedure is to discount current R&D expenditure by the factor

c < 1 to allow for the contemporaneous obsolescence of lower quality

intermediate inputs. Then this discounted R&D spending enters one-

to-one as the net investment �ow that changes the R&D capital stock

(that is, the quality index, Q). The depreciation rate on this stock is

zero, because no technological forgetting takes place in the model.

The growth-accounting formula can be written from equations (32)

and (33) as

ĝ = _A=A+c�(1��)�(current R&D flow)=(market value of past R&D)

(34)

This result parallels equation (28), except for the presence of the co-

e�cient c < 1. Thus, in the quality-ladders model, the contribution

of the variable (current R&D flow)=(market value of past R&D) to

TFP growth is less than one-to-one partly because of the multiplication

by the labor share, 1 � �, and partly because of the obsolescence co-

e�cient, c. Since the coe�cient c would not be directly observable, a

non-regression approach to assessing the growth e�ects from R&D seems

not to be feasible within the quality-ladders framework.

As in the varieties model, the market value of past R&D is propor-

tional to output per worker, Y=L. Hence, g can again be expressed (from
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equation [34]) as a linear function of the ratio (R&D)=(Y=L). The ef-

fect of R&D on the TFP growth rate can therefore be assessed from

a regression approach using this form of an R&D variable. In princi-

ple, the results could be used to estimate the obsolescence coe�cient, c.

However, this approach requires satisfactory instruments for the R&D

variable. Possible candidates again include government policies with

respect to R&D, including subsidies, legal provisions, and tax rules.

5 Conclusions

Standard growth-accounting exercises generate a Solow residual, which

is typically viewed as a measure of technological progress. Recent theo-

ries of endogenous growth allow for a sharper perspective on this resid-

ual. Speci�cally, the residual can be clearly interpreted within settings

that allow for increasing returns and spillovers or in models in which

technological progress is generated by purposeful research. These inter-

pretations provide guidance for explaining the residual in terms of R&D

outlays, public policies, and other factors.

Two general conclusions are that standard growth-accounting exer-

cises provide useful information within the context of modern theories of

endogenous growth and that the recent theories can be used to extend

the usefulness of traditional growth accounting. Hence, the older and

newer approaches to economic growth are complementary.
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Table 1

Estimates of TFP Growth Rates

OECD 1947-73 1960-73 1973-89

Country TFP growth rate TFP growth rate TFP growth rate

Canada 0.018 0.011 0.003

France 0.030 0.023 0.014

Germany 0.037 0.026 0.009

Italy 0.034 0.040 0.006

Japan 0.040 0.058 0.011

Netherlands 0.025 � �

United Kingdom 0.019 0.019 0.007

United States 0.014 0.008 0.003

Latin America, 1940-1990 East Asia, 1966-1990*

Country TFP growth rate Country TFP growth rate

Argentina 0.005 Hong Kong 0.023

Brazil 0.008 Singapore 0.002

Chile 0.014 South Korea 0.017

Colombia 0.008 Taiwan 0.026

Mexico 0.011

Peru -0.006 *Hong Kong value is for 1966-91.

Venezuela 0.001

Notes: OECD estimates for 1947-73 are from Christenson, Cum-

mings, and Jorgenson (1980). OECD estimates for 1960-73 and 1973-89

are from Dougherty and Jorgenson (1997, Table 3). Latin American

estimates are from Elias (1990), updated with unpublished notes from

Victor Elias. East Asian estimates are from Young (1995, Tables V-

VIII).
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Table 2

Primal and Dual Estimates of TFP Growth Rates

Country Primal Estimate Dual Estimate

Hong Kong, 1966-1991 0.023 0.027

Singapore, 1972-1990 -0.007 0.022

South Korea, 1966-1990 0.017 0.015

Taiwan, 1966-1990 0.021 0.037

Notes: These estimates are from Hsieh (1998, Table 1). The primal

estimates are computed from data on growth rates of quantities of factor

inputs, using factor income shares as weights. The dual estimates are

computed from data on growth rates of prices of factor inputs, using the

same factor income shares as weights. The lack of coincidence for the

primal and dual estimates of TFP growth rates is discussed in the text.
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