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SUMMARY

We propose a factor model which allows a parsimonious representation of the time series evolution of
covariances when the number of series being modelled becomes very large. The factors arise from a
standard stochastic volatility model as does the idiosyncratic noise associated with each series. We use
an efficient method for deriving the posterior distribution of the parameters of this model. In addition we
propose an effective method of Bayesian model selection for this class of models. Finally, we consider
diagnostic measures for specific models.
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1. INTRODUCTION
Many financial time series exhibit changing variance and this can have important consequences
in fonnulating economic or financial decisions. In this paper we will suggest some very simple
multivariate volatility models in an attempt to capture the changing cross-covariance patterns
of time series. Our aim is to produce models which can eventually be used on time series of
many 10s or 100s of asset returns.

There are two types of univariate volatility model for asset returns; the autoregressive
conditional heteroskedastic (ARCH) and stochastic volatility (SV) families. Our focus will be
on the latter. The stochastic volatility class builds a time varying variance process by allowing
the variance to be a latent process. The simplest univariate SV model, due to Taylor (1982) in
this context, can be expressed as

Yt = ctt7exp(at/2), aHl = 4>at + 'TIt, (~) '" NID {O, (6 ~~)}. (1)

Here (7 is the modal volatility of the model, while (71/ is the volatility of the log-volatility. One
interpretation of the latent variable Q!t is that it represents the random and uneven flow of new
information into the market; this follows the work of Clark (1973) 1.

Stochastic volatility models are a variance extension of the Gaussian 'Bayesian dynamic
I;np"r mnt1pIQ' rPV'iPUTM ;n WPQt "nt1 H"rMQnn (I QQ7) 2 Tn r""Pnt vp"rQ m"nv pd;mation.

'f-
.

1 The model also represents a Euler discretisation of the continuous time model for a log asset price y' (t),
where w(t) and b(t) are independent Brownian motions, and dy'(t) = O'exp {a:(t)/2} dw(t) where da:(t) =
-.pa:(t)dt + rdb(t). This model was proposed by Hull and White (1987) for their generalisation of the Black-
Scholes option pricing scheme. Throughout the paper we will work in discrete time, however our proposed
multivariate model has an obvious continuous time version.

2 A conjugate time series model for time varying variances was put forward by Shephard (1994a) and generalized
to covariances by Uhlig (1997). Although these models have some attractions, they impose non-stationarity on the
volatility process which is not attractive from a financial economics viewpoint.
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procedures have been suggested for SV models. Markov chain Monte Carlo (MCMC) methods
are commonly used in this context following papers by Shephard (1993) and Jacquier, Polson
and Rossi (1994) which have been greatly refined and simplified by Kim, Shephard and Chib
(1998) and Shephard and Pitt (1997). Some of the early literature on SV models is discussed
in Shephard (1996) and Ghysels, Harvey and Renault (1996).

The focus of this paper will be on building multivariate SV models for asset returns in
financial economics. In order to do this we will need some notation. We refer to (1) as-
"uncentered" as the states have an unconditional mean of O. We generally work with the
"centered" version of (1) with Yt =t exp(at!2) and at+l = tt+ tjJ(at - tt) +'/)t, forreasons of 1

computational efficiency in MCMC estimation, see Pitt and Shephard (1998). We write this as
Y ",ZSV n(tjJ; u'f/; tt), that is the series Y = (Yl, ..., Yn)' arises from a stochastic volatility model,
conditionally independent of any other series.

1.1. Economic Motivation

Multivariate models of asset returns are very important in financial economics. In this subsection
we will discuss three reasons for studying multivariate models.

Asset pricing theory (APT). This links the expected return on holding an individual stock
to the covariance of the returns. A simple exposition of APT, developed by Ross (1976), is
given in Campbell, Lo and MacKinlay (1997, pp. 233-240). The main flavour of this can be
gleaned from a parametric version of the basic model where we assume that arithmetic returns
follow a classic factor analysis structure ( Bartholomew (1987» for an N dimensional time
series Yt = Q: + Bft + Et where (E~, fI)' '" NID (0, D), where D is diagonal, B is a matrix of
factor loadings and it is a K dimensional vector of factors. The APT says that as the dimension
of Yt increases to such an extent that Yt well approximates the market then so Q: ~ Ir + BA,
where r is the riskless interest rate, I is a vector of ones and A is a vector representing the
factor risk premium associated with the factors ft. Typically applied workers take the factor
risk premiums as the variances of the factors. Important Bayesian work to estimate and test the
above restrictions imposed by the theory has included Geweke and Zhou (1996) and McCulloch
and Rossi (1991). Unfortunately unless very low frequency data is used, such as monthly returns,
the N I D assumption is massively rejected by the data which displays statistically significant
volatility clustering and fat tails and so the methods they develop need to be extended.

Asset allocation. Suppose an investor is allocating resources between assets which have a
one period (say a month) arithmetic return of Yt '" N ID. A classic solution to this (Ingersoll
(1987 Ch. 4» is to design a portfolio which minimises its variance for a given level of expected
wealth. Interesting Bayesian work in this context includes Quintana (1992). For high frequency
dataweneedtoextendtheaboveargumentbywritingthatE(YtIFt-d = at and Var(ytlFt-1} =
Et where Ft-1 is the information available at the time of investment.

Value at Risk (VaR). VaR studies the extreme behaviour of a portfolio of assets (see, for
example, Dave and Stahl (1997». In the simplest case the interest is in the tails of the density

of w'YtIFt-1.

1.2. Empirically Reasonable Models

Although factor models give one way of tackling the APT, portfolio analysis problems and VaR,
the standard N I D assumptions used above cannot be maintained. Instead, in Section 2 we ?

propose replacing the (e~, m '" N I D (0, D) assumption by specifying a model which allows
each element of this vector to follow an I SV process.

Diebold and Nerlove (1989) and King, Sentana and Wadhwani (1994) have used a similar
type of model where the factors and idiosyncratic errors follow their own ARCH based process

M K. Pitt and N. Shephard
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with the conditional variance of a particular factor being a function of lagged values of that
factor 3. Unfortunately the rigorous econometric analysis of such models is very difficult nom
a likelihood viewpoint (see Shephard (1996, pp 16-18». Jacquier, Polson and Rossi (1995)
have briefly proposed putting a SV structure on the factors and allowing thet to be N I D.
However, they have not applied the model or the methodology they propose, nor have they
consider the identification issues which arise with this type of factor structure. Their proposed
estimation method is based upon MCMC for Bayesian inference.

Kim, Shephard and Chib (1998) put forward the basic model structure we suggest in this
paper. They allow thet to follow independent SV processes - although this model was not

fitted in practice. In a recent paper, Aguilar and West (1998) have implemented this model
using the Kim, Shephard and Chib (1998) mixture MCMC approach. The work we report here
was conducted independently of the Aguilar and West (1998) paper. We use different MCMC
techniques which we believe are easier to extend to other interesting volatility problems. Further
we design a simulation based filtering algorithm to validate the fit of the model, as well as to
estimate volatility using contemporaneous data.

...'

Although our modelling approach is based around an economic theory for stock returns, in our
applied work we will employ exchange rates, with 4290 observations on daily closing prices of
five exchange rates quoted in US dollars (USD) from 2/1/81 to 30/1/98 4 .

We write the underlying exchange rates as {Rot} and then construct the continually com-
pounded rates Yit = 100 x (log Rot-log Rot-I), fori = 1,2,3,4,5andt = 2,3, ...,4290. The
five currencies we use are the Pound (P), Deutschemark (DM), Yen (Yen), Swiss Franc (SF)
and French Franc (FF). From an economic theory view it would be better to alter the returns
to take into account available domestic riskless interest rates (see, for example, McCurdy and
Morgan, 1991) as well as some other possible explanatory variables. However, neglecting these
additional variables does not make a substantial difference to our volatility analysis as the move-
ments in exchange rates dominate the typically small changes in daily interest rate differentials
and other variables. Hence we will relegate consideration of these second order effects to later
work.

The time series of the five returns are shown in Figure 1 together with the correlograms of
the returns and their absolute values. The correlograms indicate no great autocorrelation in the
returns. The changing volatility of the returns is clearly indicated by the correlogram of the
absolute values. It is clear that there is positive but small autocorrelation at high lags for each
of the returns. The sample mean and covariance (correlations in upper triangle) of the 5 returns

3 We note in passing that there are other classes of multivariate models which have been developed in the

econometrics literature. The literature on multivariate ARCH models has been cursed by the problem of parsimony
as their most general models, discussed in Engle and Kroner (1995), have enormous numbers of parameters. Hence
much of this literature is concerned with appropriately paring down the structure in order to get estimable models.
The focus is, as before, on allowing the one step ahead covariance matriX Var(YtIFt-d to depend on lagged data.
As we will not be using this style of model we refer the interested reader to Bollerslev, Engle and Nelson (1994
pp. 3002-3010) for a detailed discussion of this literature.

4 We use the 'Noon buying rates in New York City certified by the Federal Reserve Bank of New York for customs

purposes...' Extensive exchange rate data is made available by the Chicago Federal Reserve Bank at

www.frbchi.org/econinfo/finance/for-exchange/welcome.htm1

1.3. Data
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Figure 1. Daily returns for P (top left), DM (top right), Yen (second row, left), SF (second row, right)
andFF (third row, left). Correlogramsforreturns (thirdrow, right) andforthe Ilbsolute values ofreturns
(fourth row, left) and the corresponding partial sum of the correlograms (fourth row, right).

.1

(US dollar versus P, DM, Yen, SF, FF in order) are

( 0.00881 ) ( 0.4669 0.7518 0.5068 0.6917 0,7280

)-0.00175 0.3598 0.4906 0.6448 0.8915 0.9454
Y = -0.01086 , E = 0.2263 0.2951 0.4269 0.6235 0.6119 .

-0.00440 0.3779 0.4993 0.3257 0.6393 0.8463
0.00690 0.3427 0.4563 0.2754 0.4662 0.4747

The mean return is close to 0 for all the series. The returns are all strongly positively correlated,
with the SF, DM and FF being particularly correlated. In our applied work we will typically
subtract the sample mean before fitting volatility models, in order to simplify the analysis.
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In this paper we consider the following factor SV (FSV) model,

Yt = 13ft + (.o)t,t = 1,...,n
I ( 01' OIj 01 .) ' N ( )(.o)j'" SVncP3jl71/ j/-L3 ,J=1,.., 2

fi '" ISVn(qJi;l7~ijo),i = 1,..,K,
~

where N represents the number of separate series, K « N) represents the number of factors 6 .
{3 represents a N x K matrix of factor loadings, whilst It is a K x 1 vector, the unobserved factor
at time t. For the moment we shall assume that {3 is unrestricted. The necessary restrictions
will be outlined presently. Jacquier, Polson and Rossi (1995) have briefly discussed a similar
model, but they set c..;t , , N I D rather than allowing each of the N idiosyncratic error terms
of c..;t to follow an independent SV process. Our hope is that this will allow us to fit the data
with K being much smaller than N as we regard the factor structure as sufficient (particularly
if K is reasonably large) to account for the non-diagonal elements of the variance matrix of the
returns, but not sufficient to explain all of the marginal persistence in volatility.

Our choice of model naturally leads to a parsimonious structure as the number of unknown
parameters is now linear in N when the number of factors is fixed. For exchange rates this
model appears extremely plausible. If we consider the returns on various currencies against
the USD, for example, then a single factor model may be sensible. In this case, a large part of
common factor term, It, may account for the part of the return resulting from changes in the
American economy. The idiosyncratic terms could explain the part of the returns which results
from the independent country-specific shocks.

2.2. Identification and Priors

For identifiability, restrictions need to be imposed upon the factor weighting matrix. Sentana and
Fiorentini (1997) indicate that the identifiability restrictions, for the conditionally heteroskedas-
tic factor models, are less severe than in static (non-time series) factor analysis (Bartholomew
(1987) and Geweke and Zhou (1996». However, we have decided to impose the traditional
structure in order to allow the parameters to be easily estimated. Following for example Geweke
and Zhou (1996), we set f3ij = 0, and f3ii = 1 for i = 1, .., K and j > i.

Our model has three sets of parameters: idiosycratic SV parameters {4J"'j; u~j; p,"'j },

factor SV parameters { etA j u4i j f../i} and the factor loading matrix {3. We take priors for all
the SV parameters which are independent, with the same distribution across the factors and
idiosycratics. We do this as we have little experience of how the data will split the variation into

the factor and idiosycratic components. We adopt proper priors for each of the {cf>"'j j u~j j /J"'j}

and { <I/i j O'ti; fLli } parameters that have previously been successfully used on daily exchange

rate data by Shephard and Pitt (1997) and Kim, Shephard and Chib (1998). In particular we
let </> = 2</>* - 1 where </>* is distributed as Beta with parameters (18, 1), imposing stationarity

5 The first multivariate SV model proposed in the literature was due to Harvey, Ruiz and Shephard (1994)
who allowed the variances of multivariate returns to vary over time but constrained the correlations to be constant.
This is an unsatisfactory model from an economic viewpoint. There is a predating literature on informal methods
for allowing covariance matrices to evolve over time in order to introduce a measure of discounting into filtering
equations. Important work includes Quintana and West (1987). These techniques can be rationalised by the
non-stationary variance and covariance models of Shephard (1994a) and Uhlig (1997).

2. MULTIVARIATE FACTOR SV MODEL

2.1. Specification



on the process, while setting J1- rv N( -1,9). Further we set 0"~14>, JL rv Ig(T' ?f), where
Ig denotes the inverse-gamma distribution and O"r = 10 and S" = 0.01 x O"r. The conjugate
Gaussian updating of J1- and conjugate Ig updating of o"~, in each case conditional upon the
corresponding states, is described in Pitt and Shephard (1998) whilst the more intricate (but
very efficient) rejection method used to update 4> is used in Shephard and Pitt (1997) and more
fully outlined in Kim, Shephard and Chib(1998).

For each element of (3 we assume (3ij '" N(l, 25), reflecting the large prior uncertainty we
have regarding these parameters. The updating strategy for (3 is detailed in Section 3.2.

3. MARKOV CHAIN MONTE CARLO ISSUES

3.1. Univariate Models

Before proceeding with multivariate extensions we first estimate the univariate SV model (1)
using the MCMC methods designed by Shephard and Pitt (1997). Extending to the multivariate
case is then largely trivial as the univariate code can be included to take care of all the difficult
parts of the sampling. Computationally efficient single-move MCMC methods (which move a
single state at conditional upon all other states a1. ..., at-I, aH1. ..., an and the parameters)
have been used on this model by Shephard and Pitt (1997) and Kim, Shephard and Chib (1998).

Table 1. Parameter of univariate modelsfor the 5 currenciesfrom 1981 to 1998. Summaries of Figure 2.

20.000 replications of the multi-move sampler. using 40 stochastic knots. M-C S.E. denotes Monte Carlo

standard error and is computed using 1000 lags (except for beta for which 200 lags are used). Ineff

denotes the estimated integrated autocorrelation.

M K. Pitt and N. Shephard
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Mean M-C S.E. Ineff Covariance & Correlation of Posterior

British Pound

uly 0.5992 0.000333 2.4 0.000917 -0.0982 0.0698
uqly 0.1780 0.00251 285 -0.0000625 0.000442 -0.796
t/>Iy 0.9702 0.000672 186 0.0000148 -0.000117 0.0000487

Gennan Deutschemark

0.6325 0.000282 2.3 0.000694 -0.105 0.0868
0.1714 0.00153 153 -0.000048 0.000307 -0.766
0.9652 0.000503 94 0.0000168 -0.0000982 0.0000536

uly
u~ly
,ply

Japanese Yen

uly 0.5544 0.000388 9.5 0.000316 -0.453 0.389
u~ly 0.4470 0.00584 203 -0.000467 0.00336 -0.916
c/>Iy 0.8412 0.00322 192 0.000227 -0.00175 0.00108

Swiss Franc

uly 0.7087 0.00029 2.8 0.000594
uqly 0.1911 0.00199 181 -0.0000587
4>ly 0.9531 0.000787 124 0.0000234

-0.115
0.000437

-0.000171

0.0959
-0.820

0.00010

French Franc

uly 0.6042 0.000240 2.2 0.000522 -0.151 0.108
uqly 0.2342 0.00207 159 -0.0000799 0.000539 -0.802
if>ly 0.9472 0.00076 113 0.0000248 -0.000188 0.000102
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This sampler is then combined with an algorithm which samples the parameters conditional
upon the states and measurements, i.e. from feOla, y), wh~e 0 = (J.L, 1/>, O"~)'. However, the
high posterior correlation which arises between states for typical financial time series means
that the integrated autocorrelation time can be very high. To combat this a method of proposing
moves of blocks of states simultaneously for the density

..
via a Metropolis method was introduced by Shephard and Pitt (1997). An important feature
of this method is that k is chosen randomly for each proposal, meaning sometimes the blocks
are small and other times they are very large. This ensures the method does not become stuck
by excessive amounts of rejection. This is the method which we shall adopt in this paper. An
additional advantage is that the method is extremely general and extendable.

The univariate SV model is estimated, using 20,000 iterations of the above method, for
each of the exchange rates. The simulated parameters and corresponding correlograms are
given in Figure 2. Here, as later in the paper, we report the a parameter, for ease of interpreta-
tion, associated with the uncentred SV model of (I) rather than the unconditional mean of the
log-volatilities in the ISVn(ifJ; af/; /-£) parameterisation. The corresponding Table 1 show the
posterior estimates of the mean, standard error (of the sample mean), covariance and correlation
for the three parameters for each of the series under examination. The standard errors (estimated
using a parzen based spectral estimator) have been calculated taking into accoUnt the variance
inflation (which we call inefficiency) due to the autocorrelation in the MCMC samples. We set
the expected number of blocks, which we call knots, in the sampling mechanism to 40 and use
the centered parameterisation in the computations. Every 10 iterations the single move state
sampler detailed in Shephard and Pitt (1977) has been employed 6 . The entire dataset of 4290

returns on daily closing prices of the five exchange rates from 2/1/81 to 30/1/98 has been
used.

The USDN en return has the least persistence in volatility changes, as we can see by the low
posterior mean for 4> and the high posterior mean for 17,.,. This indicates that there is relatively
little predictive power for the variance of this return in comparison with the other series. The
USD/P return is the most persistent of the series, closely followed by the USD/DM. The USD/SF
and USD/FF returns exhibit similar medium persistence.

The parameter plots on the left of Figure 2 have been thinned out (taking every 20th iteration)
for visibility. The correlograms (forall the sampled parameters) indicate that the MCMC method
works well as the correlograms (over all iterations) die down at or before lags of 500.

In the following section, we shall examine how the univariate SV methodology outlined
aids in estimating the FSV model. In addition, we will see how the estimated volatilities change
under the factor model.

3.2. MCMC Issues/or Factor Models

In this section we consider MCMC issues for the FSV model. The key additional feature of the
approach is that we will augment the posterior to simulate from all of {«I, I, 8, 0:, f31 y} (where
8 includes all the fixed parameters in the model except f3) for this allows the univariate code to
be bootstrapped in order to tackle the multivariate problem. This key insight appeared first in
Jacquier, Polson and Rossi (1995). Most of the new types of draws are straightforward as the
{«It, It 18,0:, y, f3} are conditionally independent and Gaussian (although degenerate).

6 This ensures that even in the presence of very large returns or low state persistence, each of the states will be

sampled with probability close to 1.

log f(a:t, ..., a:t+kla:t-l, a:t+k+l, Yt, ..., YHk, 8)
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0

Figure 2. Parameters for univariate SV model. The simulated parameters (20000 iterations) shown on

left; q (top). q~ and <I> (bottom) together with corresponding acts on right. See Table 1.

The only new issue which arises is updating samples from {.B] I iJJ, j, a, y, 8}. Let us now
consider column i represented by .Bi, i = 1,..., K and the remaining columns by .B\i. Then,
assuming a Gaussian prior N(J-Li, Ei) on each column.Bi we find that.Bil~i' Yt, df, jisGaussian
and can easily be drawn imposing the identification constraints .Bij = 0 for j > i and .Bii = 1,
as suggested in Section 2. We iterate through the columns for i = 1,.., K.

4.1. MCMCAna/ysis

We now concentrate on the fit of a single factor (K = 1) FSV model to the 5 series already
considered in our univariate SV analysis. We used 4018 returns by discarding the last year of
data for later model checking purposes. We apply the above MCMC approach to the data. We
used 80 knots (average block size about 50) for the block sampler for both the states of the
factor and the five sets of idiosyncratic states. However, after an initial short run we introduced
an additional sweep (for each overall MCMC iteration) for the parameters and states associated
with the OM and FF idiosyncratic errors. For this additional sweep we increased the knot size
to 160. For all our states, we also performed the single-move method of Shephard and Pitt
(1997) every 4 iterations (of the overall sampler) to ensure that our sampler made local moves
with high probability. We ran our sampler for 100,000 iterations.

The results for the three parameters of the factor f and the four unrestricted elements of
/3 are given in Table 3. The corresponding plots are given in Figure 3. As for the univariate
analysis the plots of the samples have been thinned out, only displaying every 1O0th iteration.
The correlograms are calculated using the entire sample. It is clear that our MCMC method
is reasonably efficient as the correlograms for the elements of /3 (from unlikely initial values)
become negligible before lags of 1000 in each case. Similarly, the correlogram for the factor
parameters dies down rapidly. Given the multivariate and high time dimension of our model

M. K. Pitt and N. Shephard
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4. SINGLE FACTOR MODEL FOR FIVE SERIES
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Table 2. Parameters for idiosyncratic multivariate SV processes. Summaries of Figure 4, 100000
replications of the multi-move sampler, using 80 stochastic knots (discarding first 1000). 1neff are the
integrated autocorrelation estimates. M-C S.E. denotes Monte Carlo standard error, using 2000 lags for

all parameters except a where it is 1000.

,

.:;

Table 3. Factor parameters and elements of {3. Summaries of Figure 3, 100,000 replications of the

multi-move sampler, using 80 stochastic knots (discardingfirst 1000). M-C S.E. denotes Monte Carlo

standard error, computed using 1000 lags.

uly 0.5045 0.000347 20 0.000584 -0.0723 0.0591
uqly 0.1674 0.000850 221 -0.0000313 0.000320 -0.756
<Ply 0.9696 0.000248 131 0.00000971 -0.0000919 0.0000462

DM i32ly 1.240 0.000780 359 0.000166 0.455 0.851 0.971
Yen .8aIY 0.710 0.000503 97 0.0000937 0.000255 0.400 0.452
SF /341y 1.298 0.000813 275 0.000168 0.0000979 0.000235 0.851
FF .8sIY 1.190 0.000761 364 0.000156 0.0000903 0.000162 0.000156

this is reassuring, particularly as the factor parameters and {3 may well be regarded as the most
interesting part of the model.

Mean M-C S.E. Ineff Covariance & Correlation of Posterior

British Pound. WI

ultl 0.3508 0.000143 8.6 0.00245 -0.019 -0.089
u~ltI 0.3369 0.00169 312 -0.0000286 0.000921 -0.815
t/Jitl 0.9358 0.000541 224 -0.0000506 -0.000284 0.000132

Gennan Deutschemark, ""2

uly 0.0666 0.000178 53 0.00555 0.679 -0.907
u~ly 0.1248 0.00164 563 0.00154 0.000926 -0.800
4>ly 0.9907 0.000141 238 -0.000497 -0.000179 0.0000541

Japanese Yen, (U3

crl y 0.4083 0.000162 14 0.00192 -0.164 0.167
cr~ y 0.3840 0.00198 275 -0.000276 0.00147 -0.866
4>ly 0.8988 0.000810 210 0.000130 -0.000587 0.000318

Swiss Franc, ""4

U l y 0.2490 0.000130 22 0.00331 -0.000418 0.041
u~ y 0.3342 0.00210 449 -0.000000760 0.000998 -0.838
t/>Iy 0.9180 0.000858 341 -0.0000344 -0.000390 0.000216

French Franc, <Us

U ly 0.0848 0.000217 128 0.00527 -0.563 0.0952
Uq Y 0.7479 0.00441 564 -0.00291 0.00510 -0.656
<Ply 0.9075 0.000923 421 0.0000920 -0.000672 0.000206

Mean M-C S.E. Ineff Covariance & Correlation of Posterior

Factor parameters

Beta elements
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The posterior covariance matrix for the parameters {u, u", <p} of the factor f in Table 3
is similar in magnitude to that for the univariate parameters for the P and DM of Table I.
The posterior correlation between these parameters is also similar. As we would expect for
the factor parameters, u is not highly correlated with <p or u". This is due to our centred
parameterisation. The elements of (3 are all tightly estimated and are positively correlated. /32,

!33 and (35 (representing the factor ofDM, SF and FF respectively) are all particularly strongly
correlated. This is not surprising as the correlation between the returns is reflected in the
posterior correlation of the factor weights. However, it emphases the importance of sampling
all the elements of each column of (3 (in this case there is only one) simultaneously.

Table 2 shows the results of the MCMC analysis for each of the 5 idiosyncratic errors. The
samples (thinned out) together with the correlograms for the three parameters associated with
each idiosyncratic error are given in Figure 4. The correlograms do not die down as quickly
as for the factor parameters but still indicate reasonable efficiency in our MCMC method. The
correlograms for the parameters of the DM error are the slowest to decay. Apart from the
DM error, the parameters of the remaining errors indicate far less persistence than the factor
component of Table 3 and than their univariate counterparts of Table 1. For all but the DM, the
factor part of our model is isolating the persistent volatility movements whilst the idiosyncratic
error terms pick up the more temporal volatility features.

1.5

J

.s

Figure 3. Elements of{3 antifactor parameters. The simulated parameters (/00000 iterations) shown

on left; 4 unrestricted elements of{3 (top) andfactor parameters (bottom) together with corresponding

acfs on right. See Table 3.

The relative importance of the factor for each of the returns considered can be shown by
considering the unconditional variance estimated from the model. This may be compared with
the corresponding sample variance given in Section 1.3. The Bayesian mean of the unconditional
variance from our model is

ShephardM K. Pitt and N.
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{ , 2 . ( 2 2 )}E=E {3{3(1f+dzag(1"'l,...,(1"'N = Ef+E""



TIme- Varying Covariances

~

Figure 4. Parameters for "'. The simulated parameters (100000 iterations) shown on left; 17 (top). <I>
and 17q (bottom) together with corresponding acfs on right. See Table 2.

( 0,2570 0.3186 r-f = 0.1824

0.3335

0.3059

small relative to the corresponding marginals of the factor part. This is particularly the case for
the DM, SF and FF where the contribution of the idiosycratic is term tiny. This interpretation
suggests the factor is basically a DM, SF, FF effect, while the P and Yen are influenced but not

wholly determined by this factor.
The addition of these two matrices gives us (with the correlations in italics),

0.7514
0.4008
0.2263
0.4135
O.

The corresponding

( 0.4781 0.3752 S = 0.2360

0.3950

0.3574

557

0,7266
)0.9530 0.5674 .

0.8775

0.3952

( 0.4481 0.3185 E = 0.1824

0.3334

0.3058

o..

0.
0.
0.
0.

.4474 0.6920

.5868 0.9075

.3711 0.5404

.2369 0.5179
.3793 .2173 0.3970

sample variance and correlations for the data (4018 returns) is given below,

0.5275
0.6604
0.4188
0.3333
0.2810

007445

)0.9434 0.6254 .

0.8450

0.4820

0.7688
0.4981
0.3016
0.5090
0.4622

0.7069
0.8925
0.6375
0.6529
0.4740



The two matrices are similar. However, the diagonal elements from our model are smaller
in each case than those of the sample variance. This may indicate that there is more volatility
in the data than the model accounts for (for instance, heavy tailed measurement densities).
The unconditional correlations are very similar to those of the data. It is therefore clear our
parsimonious model is nevertheless rich enough to model the unconditional properties of the
model. The factor part of our model accounts for 57%, 99%, 35%, 84% and 92% of the marginal
variance of the P, DM, Yen, SF and FF respectively. This is what we might expect as the factor
appears to explain European movements whereas the Yen may move more independently against
the USD, being influenced by other factors (which also affect other Asian countries).

Table 4. Posterior means of the factor parameters and idiosyncratic terms for 2 factor model. 100,000

replications of the multi-move sampler, using 80 stochastic knots (discarding first 2000).

We estimated a two factor model on the same dataset. The results of this analysis are
summarized in Table 4. The factor and idiosyncratic components of the unconditional variance
of Yt for the two factor model are given below. It is clear that the results do not alter very much
with the inclusion of an additional factor. This suggests a certain robustness in these models

generally.

( 0,2605 0.2747 'E, = 0.1607

0.2885

0.2643

4.2. One-Step-Ahead Testing

We are going to use filtering to examine the model residuals and to assessing the overall fit.
To motivate and simplify our discussion we shall delay the outline of our filtering method until
Section 4.4. We shall regard our time-invariant parameters 0 as fixed and known for the moment.
We shall assume we can evaluate and simulate from the density f(Ytlat; 0) for t = 1, ..., n.
These assumptions clearly hold for our FSV model for which at = (a"", at)'. Let us also
assume that we can easily obtain samples from f(at+lIFt; 0), the prediction density, where as
usual Ft = (Yl, ..., yd. This last assumption results from our filtering method of Section 4.4.
It is clear that with these assumptions in place a whole army of residuals can be constructed.
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...
0.3490
0.2005
0.3647
0.3350

and0.1155
0.2096
0.1925
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0.3502

.



TIme-Varying Covariances 559

However, we focus only on four for assessing overall
have substantial influence on the fitted model.
Log likelihood. lHl = log f(Yt+lIFti 6). We have

Hence we use Monte Carlo integration as

where a~+l '" !(at+1IFti 9). Since we can evaluate the density !(Yt+1IFti 9) we can calculate
the likelihood of the model M, say, at the Bayesian mean (j M via the prediction decomposition.
Evaluating the likelihood allows model comparison.

Normalised log likelihood. If. We take S (100 are used in the next section) samples of

zj, j = 1,.., S, where zj '" f (Yt+1IFt ; 9) evaluating for each sample l1+ 1 using the above

method. We then construct Jt~+1 and 0-:+1 as the sample mean and standard deviation of these
quantities, respectively. The normalised log likelihood at time t is therefore computed as
If+1 = (It+1 - Jt~+1) 10-:+1' If the model (and parameters) are correct then this statistic should
have mean 0 and variance 1. Large negative values of course, indicate that an observation is
less likely than we would expect. Under the WLLN we expect 'L,f=1lf IT -+ 0 as T -+ 00.

Uniform residuals. Ut+1 = F(lt+1IFtj8). This quantity is estimated as Ut+1 = F(lt+d =
k 2:1=1 I (l{+1 < It+1) where the l{+ l's are constructed as above. If we assume that we
know the parameter vector 8, then under the null hypothesis that we have the correct model
Ut+1 '" UID(0,1). In addition, the reflected residuals (Kim, Shephard and Chib (1998»
21Ut - 0.51 '" UID(O, 1), t = 1, ..., n. The former has been used by, amongst others, Smith
(1985) and Shephard (1994b) to see if their fitted models were well calibrated.

Distance measure dt. We can compute Et+l = Var(Yt+1IFtj8) == ir 2:i'!:1 Var(Yt+ll
0:+1) where 0~+1 '" ot+1IFtj8. Then at each time step t we compute dt = y~EtlYt = a~at,
where at = E;-1/2Yt consisting of N independent elements each with mean 0 and variance 1. It

is therefore the case, if the model 'and parameters are correct, that dt~x'fv, so L:~=l dt '" X;N'
We can now identify outlying data and can also fonD overall tests of fit easily. The difficulty

is that in practise we do not know () but the posterior density becomes tighter around the true
value of course. We therefore simply use 8, the Bayesian mean, in our calculations.

4.3. One-Step-Ahead Testing and Filtering Results

We ran the auxiliary filter, see Section 4.4, over the entire data setting M = 10,000. For
evaluating Ut and If, S the number of simulations from the prediction density for Yt, is set to

100 at each time step.
In Figure 5, the residuals together with the corresponding average returns over the period of

interest are plotted against date. The two large values of dt, occur at around the end of 1981 and
the beginning of 1983. These two.9IWI~ers appear in the plots of It and If. Whilst the abnormal
returns at the beginning 1983 are clear from the plot ofretums, the outlier at the end of1981 is
not. In addition it appears, from the plot of It and If that there is an unlikely return around the

model.fit, outliers and observations which

J!(Yt+1IO:t+l; 8)dF(O:t+lIFti 8).!(Yt+lIFtj8) =

-1M.J(Yt+lIFt;9) = M EJ(Yt+1lo:+1;9),
i=l
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Figure S. One step ahead residuals against date. Top row: d(t) (left), u(t) (right).
standardised In(t) (left), l(t) (right). Last row: returns/or five series.

Figure 6. Residual analysis. Top row: quantile plot for u, (right), histogram for u, (left). Second row:

correlogramfor residual Ut {left),for reflected u, (right). Bottom row: correlogramfor residual (l,)n

(left), for distance measure d, (right).

middle of 1991. Again this is not obvious simply by examining the returns. The log-likelihood
was computed as -6,206.9 for the overall single factor model computing using the posterior
mean of the parameters. "
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From each of the univariate ISV models estimated we obtain log-likelihoods of -3, 863
(P), -4,042 (DM), -3,663 (Yen), -4,539 (SF) and -4,050 (FF). The overall log-likelihood
for all the series is -20,157. Clearly the log-likelihood is far smaller than for our FSV model
since the correlation between returns is not accounted for by this model. Further, the mean of
resulting dt was 5.1911, indicating that the distance is not much greater than we would expect
were the model to be operating. The mean of the if is 0.00255, close to zero (not significantly
different) as we would expect under the model. The variance of if is 1.6678, larger than we
would expect indicating that there are a lot of either very likely or very unlikely observations
(but less in between) than expected.

From Figure 6 it is clear that the residuals Ut are not quite uniform but are overdispersed.
This again suggests using a heavy tailed SV model. The autocorrelations of all the residuals
displayed are not significantly different from zero. This is particularly reassuring as it indicates
we have accounted for the persistence in volatility.

The filter we apply delivers samples from CttlFt which we can compare to the draws from the
MCMC smoothing algorithm CttlFn. The average (over time) of the difference is -0.000487
whilst its variance is 0.0665. For Figure 7, we have transformed the samples to give the
smoothed mean and filtered mean factor standard deviation. It is clear that the two mean
standard deviations move together, the filtered mean delivering a coarser plot than the smoothed
mean. The difference between the two is also displayed together, and varies around 0, as we
would expect. Finally the filtered mean standard deviations for the idiosyncratic terms are

shown in Figure 8.

4.4. A Simulation Filter

The methodology outlined above presupposes that we can simulate from the one-step ahead
density !(Ctt+lIFti 8). We employ the auxiliary sampling-importance resampling (ASIR) par-
ticle filtering method of Pitt and Shephard (1997) to carry out this non-trivial filtering task. We
use the notation ! (Ctt+ 11 Ctt) to denote the evolution of the unobserved log-volatilities over time.

The particle filter has the following basic structure. The density of CttlFt = (Yb ..., ytY is
approximated by a distribution with discrete support at the points Ctf, ".,Ctf/. Then we try to
produce a sample of size M from

M
~ '" k
!(Ctt+1IFt+l) ex !(Yt+1ICtt+l) L.,,!(Ctt+1ICtt). (3)

k=1

This provides the update step of the ASIR filter. This is carried out by sampling kj with
probability proportional to !(Yt+1I/lof+1)' where /lof+1 = E(Ctt+1ICt~), and then drawing from

a1+1 roJ Ctt+lICt~j. This is carried out R times. The resulting population of particles are given

weights proportional to

Wj = !(Yt+1Ia1-i:l), 7rj = :j, j = 1, "., R.
!(Yt+1I/lof::-l) L:i=1 Wi

We resample this population with probabilities {7rj} to produce a sample of size M. In this
way we update at each time step. The efficiency of this method is analysed in Pitt and Shephard

(1997).
In practice when we applied the auxiliary SIR particle filter in this paper we have taken

M = 10,000. At each time step we set R* = 200 and went forward a single time step
computing our resample probabilities w. We then went back and set the value of R (the
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Figure 7. Factor log volatilities. Top row: smoothed mean offactor standard deviation. Second row:

filtered mean of factor standard deviation. Last row: filtered mean, filtered 90% quantile. filtered 10%

quantle - smoothed mean.

number of prior sample) to be min(lO x M,INEFFxM) where at each step we computed the
INEFF=lj {I + Var(R*w)}, using an approximate result ofLiu (1996).

5. OPEN ISSUES

Risk premium. The use of a factor structure for our model suggests that we should add a risk

premium to the mean of the returns. In a simple one factor model the structure would be that

Yt = n+ .BCov(ftlat)1I" + .Bft + !.&It.

where T is a riskless interest rate, 7r is some (very small) unknown parameter vector. Such a
model predicts higher expected returns in periods of high volatility and is in keeping with the

APT.
The presence of quite a sophisticated mean term in the returns model does not change our

MCMC calculations very much. As the information is quite small we propose ignoring it in
our proposal density and adding the implied density from the above residual to the Metropolis

acceptance rate.

Leverage effects. Unlike exchange rate data, stock price falls are often associated with increases
in volatility (Nelson, 1991). In the contextofSV models this can be achieved by allowing Et and
1/t to be negatively correlated. The presence of this correlation does not make the multivariate
model anymore complicated, but it does mean the analysis of the univariate models has to
become slightly more sophisticated. However, the method of Shephard and Pitt (1997) goes

through in that case.
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Figure 8. Idiosyncratic volatilities. Filtered mean standard deviations for Pound, DM, Yen, SF and FF.

More general dynamics. In this paper we have assumed a very simple AR(l) dynamic structures
for the volatility process. However, our analysis would allow these processes to be generalized

to be any Gaussian process.

Heavy tailed densities. An empirically important generalisation of the model is to allow for
heavier tails. In particular each of the basic SV models can be generalised to allow

'>t r::;:-7, (p 1)ct= ..,fKivp-2, where '>t""NID(O,l) and K.t""IQ 2'2 .

This has generalised {Ct} from being iid normal to scaled iid Student's t with p degrees of
freedom but still a unit variance. This style of model also requires us to specify a proper prior

for p constrained so that p > 2.

6. CONCLUSION
The factor model attempts to model both the correlation and the time varying variances of returns.
It is an appealing model from an economic perspective, its roots being in finance theory. Simple
multivariate factor models for SV processes have been suggested, but not applied, by Jacquier,
Polson and Rossi (1995) and extended into an empirically reasonable form by Kim, Shephard
and Chib (1998). As the number of asset returns considered.becomes large, our preferred factor
SV model allows the possibility of a fairly parsimonious model with a small number of factors.
The residuals for the one factor model suggest that the volatility process of the returns considered

is captured by the model.
There is a great deal of work to be carried out in this area. Applying these methods to very

large datasets, with many tens or hundreds of assets, is theoretically possible but computationally

:~ ~~~85 90 959585 90
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challenging. Using the fitted models in terms oftesting APT and carrying out optimal portfolio
choice should be interesting. Further, exploiting the models in order to accurately measure VaR

is a useful topic.
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DISCUSSION

SIDDHARTHA CHIB (Washington University at St. Louis, USA)
It is a pleasure to congratulate the authors on an authoritative and wide ranging analysis of

a class of factor stochastic volatility models for multivariate high frequency data. On the basis
of this paper one can expect that the huge potential of these hitherto intractable models will now

be realized.
The model discussed in this paper has two key components. One component is concerned

with the modeling of the contemporaneous correlation amongst the N time series. This corre-
lation is achieved by writing the observation model as Yt = f3 It + ""'t, where It is a K vector

oftime varying factors and ""'t is an error vector. The second component is concerned with the
modeling of the one-step ahead (i.e., conditional) variance of It and ""'t. Letting at denote the

state vector at time t one assumes that independently

fit 'V N(O, exp(a')); ClJjt 'V N(O, exp(aj't))

where the (unobserved) conditional variances are allowed to evolve according to the stationary

stochastic volatility processes

f - f A.f( f f ) f fDlit - J1.i + 'l'i Dlit-l - J1.i + u1/irht

~ DI'jt = J1.'j + rP'j(DI'jH - J1.j) + U~jTJ'ft,

where the 17'S are standard nonnal.
The first contribution of the paper is in the development of a practical MCMC scheme for

estimating the model. The paper deals with an example involving five time series with at most
two factors. The authors in their usual fine style report all the key steps in the algorithm and
summarize the MCMC output in considerable detail. The output analysis, in particular the
autocorrelation plots and the inefficiency factors, reveals that the algorithm requires retuning.
First, one can adopt a different scheme for sampling the conditional variances {a~} and {ajt}.



One question is why one should not use the method of Kim, Shephard and Chib (1998) which
can be applied easily to the class of models discussed in this paper. Second, Pitt and Shephard
could have considered alternative blocking schemes, specifically in the sampling of f3 and {It}.
Some initial work has revealed that dramatic reductions in the serial correlation are possible by

sampling (3 marginalized over {It}.
The second contribution of the paper is the nice work on modeldiagnostics and model fit

issues. This is an important area in general and the ideas described here are likely to prove useful.
There is, however, the open question of detennining the number of factors in the model. This
issue needs to be addressed in future work. It is possible that the computation of the marginal
likelihood of the model may be feasible using one of the methods that have appeared in recent
years (for example, see Chib (1995». Typically in finance applications a considerable amount
of data is available and some of that data can be used to build the prior distribution. Marginal
likelihoods also penalize complexity which is important in evaluating large multivariate models.

DANI GAMERMAN (lnstituto de Matematica - UFRJ, Brazil) and

AJAX R. B. MOREIRA (IPEA-RJ, Brazil)
Introduction. This is a very nice and well written paper that discusses many interesting

points concerning modeling of covariance structure for multivariate time series. In addition to
the novel models proposed, it goes into details about the MCMC implementation, applies the
results to multivariate exchange rate data and discusses some model fit issues. The main thrust
driving the paper is the application to financial data but the ideas can be usefully applied in other

contexts.
This discussion will thus be concentrated on some comments about possible extensions

and/or generalizations rather than criticism about the content of the paper. We will therefore
structure the discussion on a few general comments about: (i) Relation with GARCH models, (ii)
Stationarity, (iii) Hierarchical priors, (iv) Doubly dynamic models, (v) Updating and sampling

and (vi) Data analysis

Relation with GARCH models. The basic model used for returns assumes that Yt '" N(J-Lt, (1f)
and, usually, J-Lt. = O. In stochastic volatility (SV) models, log (1[ = 4>0 + <PI log (1[-1 + Ut.
Another important class of volatility model is given by the GARCH models where (1[ =
4>0 + Ef=1 <Pi(1[-i + Ej=1 'l/Jj(Yt-j - J-Lt-j)2. We think it is important for a paper presented
at a general Bayesian meeting (rather than a specialized finantial time series meeting) that
some comparative comments about SV x GARCH are provided to make a broader audience
aware of the choices available in this area. In particular, Ng, Engle and Rothschild (1992)
use a similar approach with factor models to multivariate time series but model the volatilities
through the GARCH route. They also used a single factor, which they refer to as the market and
is observable. More recently, Aguilar and West (1998) used a similar model with unobserved
factors and SV.
Stationarity. The transformed beta prior for <P ensures stationarity for the log volatilities of
factors and error terms. It is important that this assumption is justified if it is to be used.
Jacquier, Polson and Rossi (1994) used a different prior in the normal form and did not restrict
the range of values for <p. This seems to tie in more naturally with hierarchical priors discussed
below. In any case, we wonder how crucial the stationarity assumption is. For the analysis
reported, in particular, the value of <p for the DM seems very close to 1. It would be nice in this

case at least to have the posterior histogram.
Hierarchical priors. The analysis of multivariate time series inevitably leads to a profusion of
parameters. The factor approach is specifically designed to reduce the parameter dimensionality
in a very elegant and potentially meaningful fashion. Even then, many parameters are still left
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in the models and they may represent similar aspects across the series. A typical example
concerns the </>'s across the idiosyncratic terms. In the paper, a reasonably strong assumption
with independent Beta(18,1) priors was made. An alternative prior assumption in line with
comments above could take </>i '" N«/>, O"~), i = 1, ..., N and the prior can be completed with a
(possibly vague) normal prior for </>. The same idea could also be used for parameters associated
with factors.
Doubly dynamic models. These are models with dynamic structure on mean and variance given
in the case of normal observations by

~

Observation equation: Yt rv N(J-tt, u~)
Mean link: 91 (J-It) = "1t = X:13t

Variance link: 92(U~) = {t == Zht

Mean system equation: I3t = Gltl3t-l + WIt

Variance system equation: "Yt = G~"Yt-l + W2t.

In SV models, J-£t = 0, 92 = log and the system evolution is in AR( I) fonn with G2t containing
unknown hyperparameters.

This idea has been partially used in similar models with GARCH (static) variance evolution
by Valle and Migon (1998) and Harvey, Ruiz and Sentana (1992). The first one used a Bayesian
approach and solved the required integrals with Gaussian quadrature while the second one used
a maximum quasi-likelihood approach. Aguilar et at. (1998) proposed some models with a
dynamic structure on the mean and AR(I) variance evolution.

Dynamic modelling allows both mean and variance to be described by dynamic components
such as: trend (eg in AR(1) fonn), seasonality (with free fonn or harmonics), cycles and
explanatory variables (lagged or not). As an example consider the presence of seasonal variation
on volatilities. In this case, one possible model for this component could be

logu~ = {t = {u + {St
{u = ,.,. + 4J(.L,t-l + ULt

{St = -({S,t-l + ... + {S,t-PH) + U~t,

where p is number of trading days in the week, for daily data. The Brazilian stack market is
sometimes affected by the black thursday effect where unconfirmed alarmist news are leaked to
the operators usually on this day of the week causing an excess volatility. This is just an example
and many other possibilities for seasonal modelling and for more general model components
can be accommodated into this flexible structure.

Updating and sampling. The marginal likelihood for any given model M, given by

can be used to assess model fit. The densities however must be estimated.
Consider state parameters a = (aI, ..., an) and hyperparameter (}. Then,

.
f(YtIDt-b M) = ! ! f(YtIOit, 0, Dt-b M)f(at, °IDt-b M)dOitdO

M. 1 '" (j) (j)= M L..J(YtIOit , (J , Dt-b M)

j=l

n
f(Yl, ..., YnIM) = n f(YtIDt-l, M),

t=l
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where (et~~),O(j) '" f(ett,OJDt-l,M). Once sampling from this distribution is achieved,
it would provide means for on-line model updating which can be very useful for real-time
applications. Instead, the authors used (et~j), B) where et~j) '" f(ettIB, Dt-I, M) disregarding
uncertainty about O. It would be nice to extend their SIR scheme for updating ett'S by including
0 as well.

Data analysis. It would be nice to be able to compare between models with K = 1 factor and
K = 2 factors. In particular, f (Yt I Dt-I , K = j) could be evaluated and displayed.

A nice feature of the similar paper by Aguilar and West (1998)is the consideration of
different portfolio allocations. In that paper, comparison in terms of cumulative returns between
different allocations and different models are provided. This kind of comparison based on the
variable users are most interested on is one of the main concerns in this area. This exercise
could be performed here with the filtered distributions, instead of the smoothed ones by Aguilar
and West (1998).

Another practical issue concerns modeling major currency devaluations. One possibil-
ity is provide by the fat-tailed (eg t-Student) distribution. Another one is the use switching
regimes (Hamilton and Susmel, 1994). In the SV context, it would mean taking logo} =
<Po + f/>Ilog ul-I + ktlit + Ut where lit could be the indicator of a major devaluation of a given
currency, subject to a Markov chain form, and kt is the size of the volatility jump. This can be
tied in with the model suggested by Merton (1990, ch. 9) to cope with jumps in asset prices.
His model however does not lead to a multiplicative effect on the volatilities as indicated above.

THOMAS LEONARD (University of Edinburgh. UK)

I would like to add my congratulations to the authors for an excellent advance. Dur-
ing the discussion it was also brought to my attention that my multivariate normal model for
log-variances (Leonard, 1975) which specifically in~udes dynamic random walk models si-
multaneously on the means and log variances, has since and much later been termed "stochastic
volatility" by the economists. I am delighted. I am pleased that this paper has now been made
even more famous by Steve Fienberg's after dinner speech, where it was cited three times!

When I extended my more general ideas to the matrix logarithms of covariance matrices
(Leonard and Hsu, 1992, Chiu 1994, Chiu, Leonard and Tsui, 1996) I found that the dynamic
models were similarly flexible. The authors have an alternative generalisation of stochastic
volatility, which would certainly be worth comparing with my generalization and which directly
addresses the log-variances. However a model of the form

At At-I ct
"'= '" +'"

on the log-covariance matrices, where the upper triangular elements of the symmetric matri-
ces ~ possess independent multivariate normal distributions, provides an obvious multivariate
definition of stochastic volatility. Why get more complicated?

REPLY TO THE DISCUSSION

We would like to thank Professors Chib, Gamerman, Moreira and Leonard for their comments
on our paper. Here we will respond to their discussion in that order.

Siddhartha Chib argues principally for two points: that a more efficient MCMC sampling
scheme can be constructed for this problem and that one could use Bayes factors for determining
the number of factors in the multivariate SV model. We completely agree with the latter point
and no doubt this will be a prominent feature of our later work on this model. We are currently
developing the so called "fully adapted" particle filter for the multivariate SV model which

M K. Pitt and N. Shephard
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should deliver reliable estimates of f(yI9, M), which are smooth in 9.
as part of the Chib(1995) method as

f( 1M ) = f(yI9*,M)f(9*IM)
y f(9*ly, M) ,

where the denominator is evaluated using a kernel density estimation procedure based around
posterior draws of (J and (J* is usually taken as the posterior mean. However, if a fairly large
amount of initial data is used to construct the prior, as Professor Chib suggests at the end ofhis
comment, then it may be that a simple Monte Carlo estimate of

;

may be efficient, depending upon the relative information content of the prior and posterior
for (J.

On the former point, Professor Chib argues that the Kim, Shephard and Chib( 1998) (KSC)
MCMC method could be used in this context, and properly implemented this method may
deliver a sampler which is much faster at converging than the one we develop. We agree that
this is an interesting avenue to develop (as KSC themselves point out) and it would be very
interesting to perform an in-depth comparison of the KSC sampling method with our own in
this context. We do mention here, however, that the KSC method does have the drawback that
it does not seem able to easily deal with the generalisation of the SV model to the case where
there is leverage (correlation betweent and'T]t). This is more or less straightforward in our
approach. Further, we have been working on refining the approach we advocate in the paper
and it does seem that by appropriate modification it is possible to improve the performance of
our method quite significantly. We will report on these improvements in the literature shortly.

Professor Gamerman's and Professor Moreira's comments are quite wide ranging and stim-
ulating. Their points cover: GARCH models, stationarity, priors, doubly dynamic models,
updating and data analysis. We will take them in order.

Of course there is an extremely large literature on ARCH models which we did not mention
due to space limitations - although we pointed the readers towards reviews of the relevant

papers. The so called factor ARCH model they mention is important and it is helpful to read
Sentana( 1998) and the references contained within that paper, for he compares the properties
of our type of model structure to the one proposed by Ng, Engle and Rothschild (1992). In
addition, we did discuss the relationship between our work and that of Aguilar and West( 1998)
in our paper.

Professor Gamerman and Professor Moreira argue that we should provide more information
about the possibility of unit roots in the posterior. In this paper, as elsewhere, we have imposed
stationarity in our prior for </>, in each of the state equations. This is the only parameter that we
imposed a strong prior upon. We have argued elsewhere that if there is evidence for unit roots in
these types of models then this indicates some type of structural break in the process rather than
evidence to believe that the log-variance is really a random walk or an explosive autoregression.
If a unit root really drives log-variance then, in the long term, we would observe either infinitely
large variances or variances of O. This is logically and empirically inconsistent with financial
theory and data respectively. Hence we disagree with the implication of the comment on this
point. They also express a wish that the univariate graphical summaries of the persistence
parameters be included. Unfortunately, restrictions on space meant that we were unable to do
that in this paper.

The point on hierarchical priors is an interesting one and we hope that some other researchers
will explore the usefulness of this in practice for these types of models.

.

This can then be used

Jf(yIM) = f(yIO, M)f(OIM)dO
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We agree that the doubly dynamic models are interesting. We would refer the reader to
the papers by Carter and Kohn(1994) and Shephard(1994b) who discuss them in some detail.
Particular the second of these references points out the possibility of having SV models and
dynamic linear models linked together. Of course from a finance theory viewpoint it would also
be useful to allow the time varying mean to depend on the changing covariance matrix - as we

point out in the paper.
The discussion about on-line learning for both the parameters and states is important. We

simply do not know how to do this at the moment - hence we condition on some estimate of the
parameters before carrying out the calculations via a particle filter. This is clearly unsatisfactory.
The only work we know which is close to being able to carry out the required calculation is
Gerlach, Carter and Kohn( 1996). However, we have not tried this method out in practice on our

problem.
Finally, we agree that carrying out an asset allocation exercise using filtering would.be

informative, but we have not done that yet. Also the generalisation to fat tails is important as we
mention in the paper. Discrete Markov chains are always interesting, but we have not attempted

to fit them in our context.
We would like to thank Professor Leonard for the references to previous work. We have

now had the chance of reading his early Technometrics paper which is indeed very impressive
given it was written two decades ago. Although one can see connections to SV models with
the types of models he was advocating in those days, we think that the discussion was far from
explicit. Further, other earlier informal discussions of these types of models exist. An example
of this is the highly influential paper on subordination by Clark (1973) which many refer to
as the first general paper on SV models. Our reference to the Taylor(1982) paper is the first
reference we know of a discrete time SV model written explicitly down for speculative prices

in the modern form.
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