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Abstract: We adapt and apply recently developed matching methodologies to improve covariate
balance across treatment groups for the purpose of estimating the causal effect of incumbency in the
US House of Representatives. In doing so we assess a recent finding (Caughey and Sekhon 2011)
that the Regression Discontinuity (RD) design is an invalid approach for estimating this quantity
because of unobserved differences in the ability of parties or candidates to effect or manipulate the
outcome of extremely close elections. We also discuss more generally how covariate matching and
RD designs can be synthesized in future work which RD practitioners may find helpful. 1

1The original authors should be strongly commended for making their full data set and executable code and a
helpful appendix available and easily accessible to the public. The data for the current replication project has been
made available pursuant to the instructions of this replication project. We initially obtained all data used from
Professor Sekhon’s webpage: http://sekhon.berkeley.edu/rep/RDReplication.zip
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I - Two Approaches to Covariate Imbalance: Regression Dis-

continuity and Matching

Covariate Balance in the RD Set-up

Covariate balance is essential for valid causal inference in most settings since imbalance on covari-
ates across treated and control groups will bias estimates if the imbalanced covariate is correlated
with treatment or the outcome under investigation. As a result, achieving balance across treated
and control groups is a central aim of many of the most popular and promising causal analysis strate-
gies. In this paper we examine how two approaches to covariate balancing -Regression Discontinuity
(RD) and matching - can be synthesized to study a particular causal quantity that has long been
of interest to political scientists: the incumbency advantage in the US House of Representatives. 2.
We find that applying a simple matching strategy can significantly decrease imbalance and reduce
model dependence, without reducing statistical power below the threshold required for meaningful
inference. This finding is a significant departure from the most recent literature on this subject
(which we discuss extensively) that asserts that the RD design for this particular data context
will only allow for estimates that rely on the very parametric assumptions that quasi-experimental
designs are intended to avoid.

In an RD design, treatment is assigned as a known and deterministic function of an observed
variable (which is referred to as the “forcing variable”. Under certain assumptions this creates
sharp and observable differences in treatment between units that we would otherwise expect to be
identical or nearly identical on other relevant covariates(Imbens and Lemieux 2008). The archetypal
example of this situation is the (Thistlethwaite and Campbell 1960) analysis of the effect of merit
awards on future academic success, when these merit awards are awarded to students who score
above a certain discrete cut-off on a test. The key and in this case plausible assumption that
allows for the causal effect of the award to be estimated is that those students who barely made
the cutoff for the award are probably similar on their covariates as those students that barely failed
to receive the award. This is the key idea motivating RD designs - units with observed forcing
variable values close enough to a known treatment-determining cutpoint (that is to say within
a specified “bandwidth”) will actually receive treatment (in this case, the merit award) as if by
random assignment as long as these units are unable to precisely control their own values of the
forcing variable in the region around the cut-point Under these conditions, then there is some subset
of units who are are essentially similar on background covariates and -crucially in the context of
causal inference - similar in terms of their potential outcomes under treatment and control Lemieux
and Lee (2009). Note that this implies a key feature of the RD design is that it systematically prunes
observations with “forcing variable” values outside the immediate proximity of the cutpoint.

As with any method of statistical inference, certain assumptions must be true in order for RD to
provide valid estimates. The assumption that has received the most attention in the literature -and
which we focus on presently - is that while treatment probability is discontinuous at the cutpoint
(going from 0 to 1) the values of the relevant covariates should be continuous through the cutpoint.
In the theoretical limit as the forcing variable approaches the cutpoint from either side, covariate
values will be perfectly balanced at the cutpoint in an ideal RD setting. In practice we expect them
to be as good as balanced around some non infinitesimal but small bandwidth around the cutpoint.

If, on the other hand, covariates are discontinuous in the vicinity of the cutpoint, then it isn’t
possible to determine whether any observed variation in outcomes are due to the treatment assign-

2Here we follow the literature we seek to engage with and define as the causal effect of the Democratic party
winning in period t on the probability that the part wins in t+1
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ment or due to the change in the value of the covariates, and there is no way to define a region of
observations containing units that are essentially similar and thus valid candidates for inclusion in
the causal estimation process. Following the literature we refer to the situation where covariates
and outcomes both appear discontinuous around the cutpoint as “sorting”. While such sorting
generally invalidates the use of the sharp RD design, in many contexts there is are strong reasons
to suspect that this dynamic is occurring. 3

For a more thorough discussion of RD considerations, see Lee (2008), Imbens and Lemieux
(2008),Lemieux and Lee (2009), Angrist and Pischke (2008), and Imbens and Kalyanaraman (2012).
4

Similarities and Differences in How Matching and RD Approach Covari-
ate Balance

The importance of balance across treated and control units is of course more general than just the
application of the RD design. Indeed this balance is central to any (or at least most) causal inference
for the same reasons that it is important in RD settings -without identifying units of observation that
are essentially similar on all variables that relate to treatment probability and potential outcomes,
one is left making parametric assumptions about the data generating process which is rarely known
or even knowable. As scholars have recognized this general problem of covariate imbalance in
observational studies and the importance of addressing it for making causal inference, substantial
energy has been devoted to achieving or improving balance through a process called matching.
Matching is essentially a pruning process where certain observations are selected on the basis of
the explanatory variables (either the covariates or the treatment variable) for inclusion or exclusion
in the estimation of the quantity of interest. Generally, scholars seeking to apply matching for
the purpose of making valid causal estimates with observational data will drop observations to the
extent that these observations do not have comparable units that received the alternative treatment
condition (Ho et al. 2007). 5

While we leave the details of the theory and practice of matching to the interested reader, we
note here one central property about matching processes that allows for all that follows: Matching
- and the data pruning inherent to that process - does not introduce bias into causal estimates as
long the matching and pruning is not carried out as a function of the dependent variable. This
point is extremely general and powerful and largely makes the achievement of balance self-justifying
- as long as one’s matched data set is not produced via a function of the outcome variable, then
any method that produces balance on the covariates that effect the probability of treatment and
outcomes is a good one and will lead to estimates that are less biased and model dependent than
estimates based on the original imbalanced data (Ho et al. 2007), (Iacus et al. 2011). (Ho et al.
2007), (Imai et al. 2008).

Clearly there are fundamental similarities between the RD approach and matching -specifically a
shared focus on deriving causal estimates by comparing units with comparable potential outcomes.

3A classic example of sorting is bills in legislative bodies. Those bills that receive a bare majority are very different
then those bills that barely fail to receive a majority, and this is normally due to the majority parties ability to “sort”
which bills receive votes.

4We forego an extended discussion of the theory and general practice of RD and instead recommend to the
interested reader the above articles which are considered to provide the current best practices and theoretical under-
pinnings of the design.

5For example, in assessing the causal effect of a job training program, dropping units who did not receive job
training and have earnings in the top 1 percent of all wage earners would be justified if no one receiving job training
had earnings in the same range (as we would expect).
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Indeed the econometrics literature finds that the former is essentially a particular version of the
latter, specifically “a limit form of matching at one point”(Lemieux and Lee (2009) quoting from
Heckman, LaLonde, and Smith (1999)).

Of course there are important differences as well. RD assumes that covariates an potential
outcomes will essentially be balanced as a function of the convergence of a single forcing variable.
Matching in general however can be applied over any set of covariates - except for those that are
forcing variables. As a result when treatment is determined in an RD type environment (according
to some sharp criterion) it is in fact not possible to balance on the forcing variable, however RD
estimation is designed to take advantage of the information encoded in this variable by looking at
behavior as similarlities on this variable approach the limit for units in the two distinct treatment
groups. The flip side of this is that since probability of treatment as a function of the forcing
variable is either 1 or 0 it isn’t possible to use matching techniques to match on this covariate.
Thus given an RD setting, we are forced to assess not just the balance on the covariates that can
be balanced on but how these covariates vary with the forcing variable in the bandwidth nearest to
the cutpoint.

Both RD and matching are the subject of an extensive and rapidly developing literature in
statistics, econometrics and political science. We will have more to say about features of both
that are relevant to our particular questions in the coming sections but readers should consult the
references for the foundational articles that define the theory and practice of these techniques.

Recent Regression Discontinuity studies of the Incumbency Advantage

The sections to come focus on recent findings (Caughey and Sekhon 2011) regarding the validity
of the RD approach for estimating the effects of the incumbency advantage in elections to the US
House of Representatives. Specifically, Caughey and Sekhon (2011) (which we refer to as CS-2011
for convenience) finds that a previous application of RD by Lee (2008) produces biased estimates of
this quantity because within the data set covariate imbalance worsened as observations approached
the cutpoint - as opposed to the key assumption of the RD design that covariates will converge
over this region. As election margins get tighter, according to CS-2011, certain types of candidates
appear to become more likely to win, thus suggesting that the treatment assignment is not random
for these elections.

The authors go considerably further than merely concluding that standard RD assumptions are
not valid for close US House races. They also assert that “[t]he outcomes of close elections are so
predictable that it is impossible to obtain covariate balance between matched treated and control
observations. Thus, strong and unverifiable assumptions about the functional form of the relation-
ship between treatment, covariates, and outcome must be made. Although covariate adjustment
may be plausible in other applications of RD, it is not in the case of U.S. House elections except
under strong assumptions.”

This stronger claim is what we test in sections 2 and 3 by attempting to use matching to create
a data set that is balanced on the important covariates and which retains enough observations to
allow for valid inferences in reasonably defined bandwidths around the cutpoint. We find that fairly
straight forward matching on only two covariates eliminates the vast majority of imbalance in the
regions around the cutpoint that are considered problematic n the CS-2011 analysis. In sections 4
and 5 we use this matching technique to derive point and uncertainty estimates which we compare
to analagous estimates derived from the raw data.

First though, let us end this introductory discussion by motivating the analysis to come by
placing the use of RD for the study of elections in a slightly broader context. Towards that end we
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note that the robustness and validity of the claims regarding the non-randomness of close elections
in CS-2011 are important for future research not just on the incumbency effect but on elections and
representation more broadly. 6 If election outcomes are as good as random in some situations then
representational outcomes are as good as random as well - and thus such elections offer leverage
on many questions about the causal effect of party representation and electorate-representative
relationships. Additionally, the extreme imbalance noted by CS-2011 remains largely a mystery in
terms of its origins and mechanisms. By examining the outcome of our matching process we hope
that scholars can gain some additional insight into what precisely is driving the observed imbalance
noted in CS-2011 and confirmed by our own replication of their results, and whether this imbalance
applies generally or is for some reason specific to the observations contained in the current data set.

II: Analytic Approach and Matching Strategy

As a starting point for our own analysis, we replicated Caughey and Sekhon’s work and confirmed
their initial findings that obviously relevant covariates are in fact imbalanced for any reasonably
defined region around the cutpoint. Put simply, for the elections in the data, covariates are not
continuous through the cutpoint as they are required to be in a valid RD design.

To develop a strategy aimed at addressing this imbalance we have to think about what assump-
tions are required to hold for valid and efficient analysis in the RD setting, and how matching might
be applied to achieve those goals. In other words we ask, “in order for RD to be useful in analyzing
the causal effect of current interest, what would the US House elections data look like and is it
possible to use matching in a way that doesn’t bias our results or leave us with too few observations
to generate sufficient inferential power?”

The answer to the latter question is entirely an empirical one that we turn to in the next section,
the answer to the former is fairly straightforward, though certainly a departure from traditional
matching routines as we now explain.

To begin to develop our matching routine, we ask what goals matching should achieve in the
context of an RD design. Two main considerations guide our approach:

First, we note that the requirements for obtaining unbiased causal estimates in RD settings do
not require that treatment assignment is as-good-as random across the entire range of observations.
RD essentially imposes no assumptions on covariate behavior outside of some finite, typically small
bandwidth on either side of the cutpoint. Within this cutpoint covariate continuity through the
cutpoint is required (and overall balance on the range of relevant covariates is ideal). 7 Thus we focus
our matching routine only on defined subsets of observations within symmetric and close margins
around the cutpoint. Specifically we will define two matched data sets from which we hope to obtain
estimates that are less biased and model dependent than those obtained using the raw data. The
same matching specifications were employed to create both data sets with the only difference being
that in one case the matching routine was applied to observations where the margin of electoral
victory was less than 1% and in the other case this routine was applied to observations where this
margin was less than 0.5%. The latter specification matches up closest with the perspective of the
original authors who determined that imbalance within this tight region is particularly problematic
and worthy of attention. Thus we primarily will use this data set in evaluating our results and
we refer to it as “matched (0.5%)”. However the results obtained by matching on observations
within a 1% margin are presented in the appendix and referred to periodically as “matched (1%)”

6See Table 1 of CS-2011 for a list of recent articles employing RD to study election related phenomena.
7Determining the precise size of this region is a complicated and important question that we briefly discuss later.
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to demonstrate that our findings are not due to some idiosyncratic irregularity in the 0.5% margin.
The second consideration reflected in our matching strategy is that in an RD setting we do not

need to and indeed are not able to achieve balance on the forcing variable and thus we should not
evaluate our results according to it nor attempt to match on it. The RD design extracts causal
estimates as units’ forcing variable values approach the cut point. Taking the basic premise of RD
as a given then implies that balance on the forcing variable is not a requirement that our matching
process must meet as long as our matched data set meets the criteria for valid RD studies generally.

Finally, we inject some analytic discretion into our strategy by choosing to specifically define our
matching strategy according to the variables that are most commonly thought to affect the observed
covariate imbalance. We focus in particular on achieving balance on the covariates that are most
central to the literature’s current explanations for why the imbalance observed in CS-2011 might
occur. These explanations all center on the capacity of incumbent candidates or parties to control
the mechanisms that determine close elections with greater precision than challengers to these
incumbent parties and candidates. Thus we make achieving balance on incumbent party status as
our top priority, and so our matching routine will be designed to ensure we have precisely the same
number of incumbents winning and losing in the given window of observations over which we are
matching. Additionally, we would not expect that all incumbency strength effecting the outcome of
close elections is created equally across districts and time - and it is reasonable to believe that this
strength is proxied by the closeness of the previous election in terms of the difference in two party
vote proportion. Thus after matching exactly on incumbency status, we then match on the margin
of victory in the previous election using “nearest neighbor propensity score” matching techniques
that have been employed in various contexts in the past (Ho et al. 2007).

This strategy of course leaves out a large number of variables that are known or suspected to
effect both the probability of treatment and the outcomes in the future that we are interested in
assessing (the probability of a Democrat winning in t and t+1.) This could have posed a problem
to our analysis if balancing on only these variables left us with a data set still fundamentally
imbalanced on others and by balancing on these others we ended up with a data set so small that
meaningful inference is rendered impossible. However, as it turns out, balancing on these two (first-
order) variables essentially eliminates almost all of the other imbalances noted in CS-2011 (and the
ones that remain may remain as a result of being post-treatment in nature or because they are
mismeasured, as we discuss later).

In the next section we demonstrate our balancing method and its results in more detail and
then discuss the quality of estimates that can be gleaned from the data set it produces.

III Assessing the Validity of RD Design with Covariate Bal-

ance Metrics

While we define our matching routine in terms of these variables alone, we note that the success of
the routine in terms of creating balance requires that balance is achieved on all of the covariates
that effect treatment and potential outcomes. Thus we will evaluate the results of our matching
using all of the covariates identified as imbalanced or potentially of interest by CS-2011. In fact, we
exactly apply to our matched data sets all of the primary tests and analyses of covariate balance that
CS-2011 conduct on the original data paper. For the sake of making comparisons straightforward
we therefore follow the specifications of the original authors in terms of which tests to run and
which variables to use in these tests. We also supplement and improve their choice of evaluation
metrics with additional tests that we feel are more suited to the task at hand, and we also produce
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graphical summaries that are easier to understand and provide greater insight into the dynamics
determining covariate balance in this setting.

The accepted practice for assessing whether a treatment discontinuity implies “as good as”
random assignment is to examine whether the covariates that effect either the probability of receiving
treatment or the outcomes under treatment or control are continuous on either side of the cutpoint.
If they are then it is taken as a fair signal that for a small enough region about the cutpoint units
are essentially similar in terms of their potential outcomes since they are essentially similar over
the covariates that effect these outcomes (except for the treatment of course). Essentially then,
assessing the validity of a regression discontinuity design is about assessing the balance of relevant
covariates for units around the cutpoint.

CS-2011’s primary assertion is that this require balance in the immediate vicinity of the cutpoint
does not exist, that this imbalance biases the estimates obtained by Lee (2008), and makes the
obtained inferences sensitive to the modeling assumptions that RD designs are intended to obviate.
Their evidence for this assertion focuses primarily on the covariate imbalance they find for elections
decided by less than 2.5 percent and less than 0.5 percent depending on the balance metric employed.

In evaluating whether matching can alleviate these concerns and allow for the causal validity of
the RD design to be recovered, we take the validity of the tests employed by CS-2011 as a given
and see whether our methods can do better on these same tests where the raw data falls short. For
the most part these tests are in fact consistent with what the literature suggests is the best way to
assess covariate balance. However, we do find several areas where the tests employed by CS-2011
are suboptimal and where possible we provide better alternatives.

Graphical Assessment 1: Histograms

The first method that CS-2011 use to present evidence of imbalance is with histograms demon-
strating that far more incumbents just barely win elections than just barely losing them. The
particular matching strategy we used is by definition going to ameliorate this imbalance completely
(or almost completely). For a defined range on either side of the cutpoint we are constricting our
matched sample to contain precisely the same number of incumbents. But for completeness we still
present these histograms and discuss them briefly.

As expected the matched data exhibit virtually no discontinuity at the cutpoint. In addition
to presenting a graph with the identical specifications as used by the original authors, we also
follow the current best practices in assessing RD design validity by subjecting these histograms to
robustness checks by varying the bin size. The size of the bins is essentially arbitrary (though one
can chose bins so as to minimize their bias as estimators of the observed probability distribution
function, or to reduce the bias of local linear regression as we discuss below). If continuity or
discontinuity is based on the position or size of the bins then this (dis)continuity is dependent on
modeling assumptions that will normally lack reasonable justification. This is related to the issue
of bandwidth selection that we discuss below. Presently, we show that different bin sizes and our
different matching specifications all yield similar results in the area of the cutpoint - imbalance in
the original data, balance for the matched data. For the sake of conserving space, we present two
such examples here and two more in the appendix.
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Figure 1: Incumbent Wins at Various Margins of Victory (Bin Size=0.5 %)
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Figure 2: Incumbent Wins at Various Margins of Victory (Bin Size=0.5 %)

Data Matched within 0.5% Margin
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Additionally, we also present the tabular counterpart to these histograms in line with the pre-
sentation of the original authors. Table 1 reproduces Table 2 from CS-2011 and shows that for
various electoral margins the Democratic losers of close elections are for any margin more likely
to be drawn from districts where Democrats lost in t-1 and similarly for the winners in t and t-1.
Table 2 presents the same information but now with our matched (0.5%) data. Not surprisingly, our
matched data shows that Democratic winners and loser in time t are much more evenly distributed
across Democratic winners and losers in t-1.

Tabular Assesments of Covariate Balance

Table 1: Cross Tabulation of Current and Lagged Democratic Victory (Original Data)

Dem. Loss t-1 Dem.Win t-1 Dem % Held
Dem. Loss t( <2%) 107 65 0.38
Dem. Win t (<2%) 73 73 0.50
Dem. Loss t (<1%) 62 23 0.27
Dem. Win t (<1%) 36 44 0.55

Dem. Loss t (<0.5%) 34 8 0.19
Dem. Win t (<0.5%) 17 24 0.59
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Table 2: Cross Tabulation of Current and Lagged Democratic Victory (Matched in 0.5% margin)

Dem. Loss t-1 Dem.Win t-1 Dem % Held
Dem. Loss t( <2%) 91 65 0.42
Dem. Win t (<2%) 73 58 0.44
Dem. Loss t (<1%) 46 23 0.33
Dem. Win t (<1%) 36 29 0.45

Dem. Loss t (<0.5%) 18 8 0.31
Dem. Win t (<0.5%) 17 9 0.35

A final important note about these histograms is that the graphs of the matched data do not
adjust for the fact that we have pruned observations from within a given bandwidth of the cutpoint
and so there is a natural jump as one crosses the threshold into the electoral margins ignored by our
matching process. Such thresholds are denoted by the red lines. Also by definition outside of these
thresholds the original data and the matched data are identical and so the histograms are identical
as well. While obviously creating an artificial appearance of a discontinuity at these points, we note
that the relationship between the “bins” on either side of the cutpoint is not artificial or biased
and since these bins are the ones that determine the estimates of our causal quantities in an RD
design the spurious discontinuity at the margins of our matching region will not effect our primary
estimates. In this particular case, the fact that there is not a major discontinuity on the edges of
our matching margin for the matched (1%) data suggests that most of the imbalance that we are
adjusting for in the matching process is within the region concentrated near the cutpoint. This might
raise flags about about our ability to use the matched data sets for RD style inferences however we
continue to retain a fair number of observations even after pruning within this particularly close
electoral margin, and as we discuss more later, the appropriate region around the cutpoint in which
to evaluate covariate balance is distinct from the region from which it is appropriate to derive point
estimates.

Graphical Assessment 2: Balance Metrics as Functions of Distance From
Cutpoints

As alluded to earlier valid RD designs do not require that covariates be balanced over the entire
range of observations. Instead in an ideal RD setting, covariates must become more balanced as
they approach the cutpoint from either side. Such a trend indicates that units are more and more
similar as values of the forcing variable get closer and closer to the cut point.

One primary way that CS-2011 assesses whether such a trend is evident is by presenting a graph
of p-values measuring the statistical significance of covariate differences for treated and control
units observed within intervals defined by electoral margins. The p-values they present are the
minimum observed p-value for their selected group of covariates for all elections that were decided
by that particular margin. For instance, for all elections where the margin of victory for the winning
candidate was between 1.75 and 2.25 percentage points, the covariate that was most imbalanced
between winners and losers of such elections was that corresponding to Republican incumbents -
in other words, these incumbents were the most likely to be clustered into one treatment group (in
this case the control group). The p-value for the difference in proportion of Republican incumbents
receiving control compared to those receiving active treatment was about 0.021 and this is the value
on the y-axis that is plotted for this particular margin. Generally then, the “higher” the value on
the y-axis a point is, the more balanced we expect the data to be for this region of observations.
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Under an ideal RD design, the covariate p-values should therefore increase montonicall as values of
the forcing variable approach the cut-off point from either side. 8

We do this first in the same manner as Caughey and Sekhon, using minimum p-values.
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Note that the differences between these two graphs occur only in the regions where our matching
routine was applied - that is elections decided by a 0.5% margin (we present similar graphs for data
matched in a 1% margin in the appendix). Focusing only looking at the data in this matched range
(between 0 and 0.5% on the x-axi)s, it is clear that balance improves substantially by this measure
when using the matched data. This is the first graphical demonstration of the fact that while we
balance on just two variables, balance improves considerably across all of the variables measured
and reported by the original authors.

While the effect of our matching routine is discernible in this the above chart, this graphical
approach is an imprecise way of presenting the imbalance along the range of observations on the
forcing variable. For starters, several papers regarding covariate balance and RD design have noted
that merely comparing difference in means is not a sufficient measure of balance or imbalance. While

8Note that not all the p-values in these figures are derived from exactly the same test statistic. Following the
original authors we use exact Fisher tests for binary variables and Wilcoxon Rank Sum tests for variables with more
than three values.
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certainly an extreme difference in means is a powerful argument that imbalance exists, in taking
the most imbalanced of such differences amongst 11 different covariates at a time, there is a strong
possibility that the difference plotted at any particular point is actually the result of some spurious
correlation rather than a real underlying population difference. Overall, the CS-2011 plot presents
976 points that are the most extreme observation out of 11 covariates at each defined margin of
electoral victory. Thus we should consider what we’d expect to observe as the minimum p-values
if we regressed 11 random variables on an unrelated random binary variable 976 times - certainly,
many of the smallest p-values from the 976 regression would appear to be statistically indicative of
a real imbalance between the values of the “covarates” and the values of the binary variable. We do
not mean to suggest here that the relationship evinced in the original plot is substantially due to
such spurious correlations but instead that presenting one reason why such a plot in the first place
is not the optimal way to summarize discontinuity since at least some of the information it conveys
is almost certainly not related to the underlying reality.

Additionally, by only using a difference in means this graph assumes “that any remaining im-
balance in the matched sample is strictly unrelated to the treatment”. (Ho et al. 2007) That is
the distribution of the covariate not captured by its mean is assumed to be irrelevant. There is no
realistic justification for this assumption in this context. Another issue is that p-values are generally
functions not just of the observed values that go into the function but also of the sample size itself.
As Imai (2008) demonstrates this means that when sample sizes decrease, t-tests become less sig-
nificant and balance appears to improve even if the underlying true balance stays the same. While
sample size is an important consideration in assessing the validity of any point estimates, ideally
we would want to measure balance in a way that is independent of the sample size to separate the
two issues. (Ho et al 2007 and Iacus et al. (2011)

We present one such way to achieve this goal below in the form of an alternative balance
assessment defined by L1 distance scores. This points plotted here are now measures of L1 imbalance
across the entire distribution of the covariate that is most imbalanced for the given margin on the x-
axis. Thus to the extent that one can summarize overall imbalance with the imbalance measured on
a single covariate this graph is superior to the minimum p=values since it conveys more information
with the same amount of graphical complexity.

12
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Interpreting, this figure, again the only variation between the two graphs occurs for values of
the x-axis less than 0.5 (corresponding to observed elections decided by less than 0.5%) . In this
range we see a near complete divergence in terms of the trend. The original data displays increasing
imbalance whereas the matched data stays near the maximum amount of balanced achieve according
to this metric. (Note that L1 scores are multiplied by negative 1 so that the trends evinced by the
L1 graphs can be conveniently compared to those of the p-value plot.)

Still, this specification continues leaves something to be desired in that it only gives us infor-
mation about one covariate at any given electoral margin. Ideally we would be able to summarize
overall imbalance at each margin plotted along the x-axis for this graphical display. Thus, we present
a third graphical specification that summarizes information about all the included covariates. In
order to do so, we sum every each univariate L1 score to get a sense of total imbalance for all the
covariates for every point along the margins. 9

We also created a less easily deciphered plot of multivariate L1 scores analogous to those pre-
sented above. Multivariate L1 is valuable in that it is a comprehensive summary of the imbalance
across all covariates and, crucially the interactions and squared terms of those covariates. As a
result, the multivariate L1 score will overstate the level of imbalance when any of the covariates are

9Note that this is equivalent to the total distributional imbalance for all covariates if there are no interactions
amongst the covariates
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orthogonal to one of the other covariates. In the extreme, when all the covariates are orthogonal
to all other ones, the multivariate L1 score overstates the imbalance by the difference between it
and the average of the univariate L1 scores. In the current case, many of the covariates considered
in calculating the multivariate L1 do not a priori seem theoretically related to the probability of
treatment and thus speculating about the importance of their interaction terms with other terms
is unlikely to lead to much more than that. For example, in our data set, there is little reason
to believe that a legislative candidate’s personal political experience should be interacted with a
dummy for whether the current governor is a democrat, but a multivariate L1 measures matching
on this potential interaction nonetheless. That being said, it still makes sense to compare the rela-
tive multivariate L1 scores within each data set to determine which specification leads to the best
balance. We leave the presentation of this data to the appendix as we feel little sense can or should
be made of this graphic for the above stated reasons.

Given the extreme and seemingly unsystematic variation in the multivariate L1 score, we will
assume that improved balance on other measures provided above represent improved balance for the
purposes of using RD for causal estimates. We present the multivariate L1 score in the appendix.
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Here if we look at the margins between 0 and 0.5%, we see the original data showing increasing
imbalance as observations approach the cutpoint on values of the forcing variable, whereas the
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matched data seems to move in the opposite direction. Clearly this remains consistent with our
contention that matching significantly improves balance according to our specifications.

Graphical Assessment 3: Dot Plots

Another frequently employed method for examining covariate imbalance is to present dot or
balance plots. These plot the imbalacne of each included covariate for a selected set of observations.
Below we present pairs of such plots where in each pair, the upper plot is the balance obtained when
matching whereas the lower plot is the balance obtained within the selected margin. The first pair
shows balance for elections decided by less than a 0.5% margin and our matched (1%) data. The
second pair presents the same plot using our matched (0.5% ) data and looking at elections decided
by 0.5%. Alternative specifications are presented in the appendix.

Variable Valid Treated Control

Dem Win t − 1 134 0.45 0.33 ●

Dem % t − 1 134 48 47
Dem % Margin t − 1 134 −4.3 −4.3
Inc's D1 NOMINATE 134 0.02 0.10

Dem Inc in Race 134 0.32 0.26 ●

Rep Inc in Race 134 0.38 0.52 ●

Dem's # Prev Terms 135 1.6 1.3
Rep's # Prev Terms 135 1.4 2.3

Rep Experience Adv 126 0.44 0.62 ●

Dem Experience Adv 126 0.34 0.28 ●

Partisan Swing 134 0.98 1.4
CQ Rating {−1, 0, 1} 103 −0.06 −0.16

Dem Spending % 68 53 45
Dem Donation % 51 58 46

Dem Sec of State 135 0.51 0.46 ●

Dem Governor 135 0.48 0.49 ●

Dem Pres % Margin 127 −0.09 −0.07
Dem−held Open Seat 134 0.12 0.07 ●

Rep−held Open Seat 134 0.17 0.14 ●

Open Seat 134 0.29 0.22 ●

Voter Turnout % 135 39 41
Pct Gov't Worker 124 5.0 4.6

Pct Urban 124 69 63
Pct Black 124 6.9 5.3

Pct Foreign Born 124 4.8 3.7

Dem Win t + 1 135 0.74 0.26 ●

Dem % t + 1 135 53 44
Dem % Margin t + 1 135 9.4 −8.4

0 .05 .1 1
p−value (for obs. in 1% margin)

Variable Cases Treated Control

Dem Win t − 1 165 0.55 0.27 ●

Dem % t − 1 165 50 46
Dem % Margin t − 1 165 1.8 −7.1
Inc's D1 NOMINATE 165 −0.04 0.15

Dem Inc in Race 165 0.44 0.21 ●

Rep Inc in Race 165 0.31 0.59 ●

Dem's # Prev Terms 166 2.0 1.0
Rep's # Prev Terms 166 1.2 2.6

Rep Experience Adv 155 0.36 0.65 ●

Dem Experience Adv 155 0.46 0.23 ●

Partisan Swing 165 −0.31 2.4
CQ Rating {−1, 0, 1} 126 0.12 −0.23

Dem Spending % 82 54 45
Dem Donation % 62 58 46

Dem Sec of State 166 0.51 0.41 ●

Dem Governor 166 0.46 0.45 ●

Dem Pres % Margin 154 −0.08 −0.07
Dem−held Open Seat 165 0.11 0.06 ●

Rep−held Open Seat 165 0.14 0.14 ●

Open Seat 165 0.25 0.20 ●

Voter Turnout % 166 37 39
Pct Gov't Worker 152 4.9 4.5

Pct Urban 152 70 63
Pct Black 152 6.1 5.3

Pct Foreign Born 152 5.0 3.8

Dem Win t + 1 166 0.76 0.24 ●

Dem % t + 1 166 54 44
Dem % Margin t + 1 166 9.9 −8.9

0 .05 .1 1
p−value (for obs. in 1% margin)

Balance Plot For 0.5% Matched (Top) and Original Data
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Variable Valid Treated Control

Dem Win t − 1 52 0.35 0.31 ●

Dem % t − 1 52 44 49
Dem % Margin t − 1 52 −12 −1.8
Inc's D1 NOMINATE 52 0.08 0.12

Dem Inc in Race 52 0.27 0.23 ●

Rep Inc in Race 52 0.42 0.46 ●

Dem's # Prev Terms 52 0.77 1.5
Rep's # Prev Terms 52 1.3 2.1

Rep Experience Adv 51 0.44 0.54 ●

Dem Experience Adv 51 0.24 0.31 ●

Partisan Swing 52 0.93 2.4
CQ Rating {−1, 0, 1} 45 −0.14 −0.17

Dem Spending % 32 50 45
Dem Donation % 23 54 45

Dem Sec of State 52 0.42 0.38 ●

Dem Governor 52 0.38 0.58 ●

Dem Pres % Margin 51 −0.1 −0.13
Dem−held Open Seat 52 0.08 0.08 ●

Rep−held Open Seat 52 0.23 0.23 ●

Open Seat 52 0.31 0.31 ●

Voter Turnout % 52 39 35
Pct Gov't Worker 43 5.4 4.6

Pct Urban 43 68 66
Pct Black 43 5.3 4.8

Pct Foreign Born 43 3.3 4.0

Dem Win t + 1 52 0.65 0.42 ●

Dem % t + 1 52 51 44
Dem % Margin t + 1 52 6.9 −5.9

0 .05 .1 1
p−value (for obs. in 0.5% margin)

Variable Cases Treated Control

Dem Win t − 1 83 0.59 0.19 ●

Dem % t − 1 83 51 45
Dem % Margin t − 1 83 2.9 −8.4
Inc's D1 NOMINATE 83 −0.05 0.21

Dem Inc in Race 83 0.51 0.14 ●

Rep Inc in Race 83 0.27 0.62 ●

Dem's # Prev Terms 83 1.8 0.98
Rep's # Prev Terms 83 0.85 2.7

Rep Experience Adv 80 0.28 0.62 ●

Dem Experience Adv 80 0.50 0.20 ●

Partisan Swing 83 −1.6 4.0
CQ Rating {−1, 0, 1} 68 0.24 −0.29

Dem Spending % 46 53 45
Dem Donation % 34 56 45

Dem Sec of State 83 0.46 0.31 ●

Dem Governor 83 0.39 0.48 ●

Dem Pres % Margin 78 −0.08 −0.10
Dem−held Open Seat 83 0.07 0.05 ●

Rep−held Open Seat 83 0.15 0.19 ●

Open Seat 83 0.22 0.24 ●

Voter Turnout % 83 37 34
Pct Gov't Worker 71 5.2 4.4

Pct Urban 71 69 65
Pct Black 71 4.3 5.0

Pct Foreign Born 71 4.2 4.1

Dem Win t + 1 83 0.73 0.33 ●

Dem % t + 1 83 52 43
Dem % Margin t + 1 83 8.7 −8.0

0 .05 .1 1
p−value (for obs. in 0.5% margin)

Balance Plot For 0.5% Matched (Top) and Original Data

Here the evidence of improved balance is much more dramatic than in the previous section.
In fact, in many ways, one can almost read a valid non-parametric causal estimate from these
charts alone. The three first rows are various parameterizations of the outcome variable - and their
proximity to the y-axis indicates the significnace of the difference in these outcomes for treated and
control groups. The other rows represent the balance of the covariates considered by the original
authors to most completely capture the differences between candidates who won and candidates
who lost elections within the 0.5 percent margin. In the original data, most of the covariates are
like the outcomes, close to the y-axis indicating significant differences between treated and control
groups on these covariates, and thus real challenges to the validity of the unadjusted RD design.
For the matched data however, virtually none of the covariates are close to the y-axis indicating
that they are, post-matching, essentially randomly distributed over treated and control units within
this range.

The exceptions to this characterization - those covariates that remain imbalanced after matching
- require further study before definitive explanations can be given however there are a few observa-
tions to be made here. First, missing data is a bigger concern for these variables than any of the
other observations. No analysis has been performed (either by us or the original authors) to try and
determine the character of this “missingness” (at-random, completely-at random etc.) of this data
however, it certainly bears noticing that the only variables still showing imbalance after matching
are the only variables where there is significant missing information for observations where we have
valid values for the treatment and outcome variables.

Second, while the other variables are clearly pre-treatment in nature, we are unable to definitively
determine whether the campaign finance variables fall into this category. Given the complexity and

16



intricacy of campaign disclosure rules and regulations, there is ample possibility for post-treatment
effects to creep in. Most basically, the authors’ analysis does not explain precisely what is being
measured in these variables. If annual sums are being counted than candidates who win close
elections may be getting “credit” for donations received after winning such elections (though given
the quality of the data in the original paper we would doubt such an error occurred).

Harder to determine but more likely by our guess, candidates losing close elections have less
of an incentive to accurately report all of the donations received - they have much less to pay in
terms of political cost from the uncovering of any infraction. Additionally candidates who win close
elections have incentives to over count their donations since this projects strength as one goes to
serve in Congress. Since campaigns always file final financial statements after the election - this
could partially explain the persistent imbalance on this metric despite the fact that the others seems
to improve so dramatically.

Balance Implications

Overall, what do we learn from these plots? First, in terms of the graphical display modifications we
make to the presentation in CS-2011, it appears that despite the theoretical concerns regarding the
plotting of the p-values, the general trend they evinced in the original paper holds for more robust
methods. That is, using L1 scores, we also observe that imbalance does not go away for observations
near the cutpoint in the original data, as one would expect to observe if random assignment were
occurring at or approximately at the cutpoint. However, the use of L1 scores also demonstrates that
in both the matched and original data there is significant variation in balance over small windows
of electoral margins both near and far away from the cutpoint. This is not not visible from the
original minimum p-value plot because for all observations at margins greater than approximately
5%, there are covariates that are always extremely imbalanced. In the region beyond 5% the balance
observed is just what one would expect in a valid RD study - at least one or some covariates are
extremely dissimilar across treated and control units at these ranges. The L1 scores however help
to show that the extent of this imbalance appears to vary widely, and this variation occurs even
over observations which are not near the cut-point by any reasonable standard.

Finally we close this important section by noting again what we consider to be its most important
finding: That by matching on just two covariates we essentially eliminate the imbalance on all the
other covariates that are the subject of the original CS-2011 analysis. This means that the number
of observations that we have to discard is fairly small - while of course non-zero - and so we lose
little in the way of statistical power and gain much in terms of our ability to be confident that the
effects we are measuring are unbiased by sorting at the cutpoint.

IV - Estimating Causal Quantities of Interest

Quantities of Interest, Covariate Balance and Optimal Bandwidths in
the RD Design

Given the discussion thus far, it is important to remind readers that assessing covariate balance is
not an end in itself. There is an ultimate quantity of interest that we and researchers are interested
in. In the present context this is the effect of a Democrat winning in t on Democrat’s probability
of winning in t+1.

One of the main advantages of matching according to the approach we have used is that it is
intended and defined to be a “pre-processing” strategy (Ho et al. 2007). That is, the matching pro-
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cess produces a data set that can then be analyzed according to other existing methods - including
traditional RD designs.

While there is no one set way to extract point and uncertainty estimates from an RD design,
one common, particularly straightforward method that is frequently employed is to use local linear
regressions in the bandwidths nearest to the cutpoint on both sides. This is the method we discuss
below. A key feature of this method is its sensitivity to the chosen bandwidth and thus a lot
of attention in the RD literature is given to the choice of bandwidth and how to minimize bias
resulting from this choice. At the same time, econometricians are in agreement that regardless of
the optimal bandwidth, point estimates should be robust to a range of reasonable choices (Imbens
and Kalyanaraman 2012).

This brings up a critical point that is not treated in the CS-2011 work. Specifically, it is
important to separate bandwidth considerations for purposes of making unbiased estimates from
bandwidth considerations for purposes of assessing covariate balance. As CS-2011 points out, the
optimal bandwidth from the point of view of making unbiased point estimates in the current case -
at least according to current best practices - is “an order of magnitude” larger than the bandwidth
over which the covariate imbalance shows up most problematically and thus if one only looks at
balance within the optimal bandwidth then one will miss the imbalance that CS-2011 flags as
problematic.

On the other hand, the original authors appear to make the reciprocal error in evaluating the
sensitivity of point estimates in (Lee 2008) to the imbalance they identify. Specifically, while it
is apparent why imbalance should be checked through the entirety of a bandwidth especially over
observations that define the closest subset to the cutpoint, the authors do not offer an explanation
as to why we would discard the most recent and best prescriptions in the literature for defining the
optimal bandwidth for producing unbiased point estimates, conditional on having balance through-
out that bandwidth, including at the closest ranges. This decision by the authors becomes more
important in the context of the sensitivity analysis discussed in the net section.

Presently however, we turn our attention to the tables below where we present various point
estimates and associated uncertainty statistics for a range of bandwidths, associated both with the
bandwidths where CS-2011 finds significant imbalance and for the optimal bandwidth as defined
by the Imbens Kalyanaraman optimal bandwidth algorithm. Consistent with what CS-2011 report,
the optimal bandwidth for making point estimates is far larger than the bandwidth we have been
considering in the context of assessing covariate imbalance.

In the most conservative specifications - where point estimates are computed using matched data
and the smallest intervals - we find that the lower bound on the 95% confidence intervals are in
fact less than zero. However, we don’t interpret this as evidence that the true causal effect may be
zero since using such narrow intervals makes little sense from the point of view of computing these
quantities. As just discussed, looking at covariate balance in this small window makes sense but
deriving point estimates from it at best suboptimal and inefficient in the sense that it doesn’t use
all available, valid and relevant information (which of course would contribute to wider confidence
intervals then is appropriate), and at worst introduces unnecessary bias into the estimates, which
here is a real concern given that the bandwidth is so far away from the bandwidth derived specifically
to reduce the bias of estimates in this context.

As a result we think that the first set of tables below - which show point estimates derived at the
Imebens-Kalyanaraman optimal bandwidth, double that bandwidth and half of that bandwidth, for
both the original data and the data set produced by matching on observations within a 0.5% margin
- is more informative and a more valid representation of the true causal effect we are considering.
Both for these estimates and all the other point estimates shown here the matched data shows
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slightly smaller effects than the original data, but they are essentially similar in terms of robustness
to specification of different bandwidths. This robustness is of course misleading if, as is the worry in
the case of the original data, it is potentially the result of significant imbalance on covariates across
treatment categories. However as we showed in the previous sections this imbalance is much less
of a concern after applying the matching techniques outlined above. Thus, we feel that the table is
strong evidence that the treatment effects estimated using RD after matching are robust to RD’s
primary modeling assumption (the size of the bandwidth) used in generating point estimates.

Table 3: Point Estimates and 95% Intervals for Matched (0.5%) Data and Original Data

Point Estimates
Bandwidth Matched Data Original Data

IK-Optimal Bandwidth 14.74 15.83
Half-BW 15.69 17.61

Double-BW 16.65 16.95

Matched Data Original Data
Lower Bound Upper Bound Lower Bound Upper Bound

IK-Optimal Bandwidth 10.65 18.83 11.83 19.83
Half-BW 10.12 21.27 12.26 22.97

Double-BW 13.61 19.70 13.93 19.97

Table 4: Point and Uncertainty Estimates of RD Using Matched (0.5%) Data for Different Band-
widths

Band Width=0.5% Bandwidth=IK-Optimal% Bandwidth=.25%

KI-BW Original Data 0.50 8.55 0.25
Matched 0.50 8.89 0.25

Lower Bound CI Original Data 8.24 11.83 0.28
Matched -1.29 10.65 -7.18

Point Estimate Original Data 21.94 15.83 18.52
Matched 15.68 14.74 12.70

Treated Observations Original Data 84.00 1443.00 44.00
Matched 53.00 1472.00 30.00

Robust Standard Errors Original Data 6.99 2.04 9.31
Matched 8.66 2.08 10.14

Bandwidth Considerations and Defining the Estimand

Here we offer a slightly more detailed discussion of bandwidth considerations and the definition of
the effect we are estimating prior to our final section that evaluates the sensitivity of our findings.

Recently, significant progress on the question of optimal bandwidth for RD analysis has been
made thanks to Kalyanaraman and Imbens who derive an optimal bandwidth equation that is
specifically designed for the RD setting 10. In the traditional RD setting this has simplified the pro-

10Previous work on optimal bandwidth took as the main goal estimating unbiased local linear regression or prob-
ability distributions over an entire range of data which is obviously less relevant in the RD setting where estimates
are made using data from only a small region
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cess of choosing the appropriate bandwidth considerably. Simply plug in the appropriate observed
features of your data set into your software program and the optimal bandwidth is returned.

One could imagine this would make decisions about matching in the RD context easier as well.
As with the selection of a bandwidth, the determination of any matching process also faces the
classic bias-variance tradeoff. If one knew the optimal bandwidth for the post matched data set
ahead of time, then one could match on the observations in that margin and leave untouched others.
However, the particular features of RD and the inherent tendency of matching to alter the size of the
data set means that one can’t hold constant the optimal bandwidth of a data set for the purposes
of matching in that bandwidth. The act of matching creates a new data set which in turn has a new
optimal bandwidth and so on. Whether this process converges to a theoretical limit is one which
we commend to future researchers.

However, this is not entirely pertinent to our immediate question because while the optimal
bandwidth is important for making optimal estimates, any estimate should be robust to the different
bin width specifications. Thus we can side step this theoretical concern at least partially, by testing
our estimates for different bandwidths.

To examine the question of sensitivity to bandwidth specification, we derive average treatment
effects and 95% confidence intervals for the original and matched (1%) data for bandwidths ranging
from 0.25% up to 8.5 which is approximately the bandwidth indicated by the Imbens-Kalyanaraman
optimal bandwidth algorithm, in 0.25% intervals. The results are presented below in both graphical
and a tabular format. They indicate that both the matched data and the original data show similar
and fairly consistent results for reasonably specified bandwidths. However, given the sorting at the
cutpoint observed by CS-2011, the results found using the the original data are likely biased. The
matched data on the other hand, while estimating a different quantity of interest, does so in a way
that is far less susceptible to bias or modeling assumptions.

The graph shows that the consistency of the estimates across different bandwidths is fairly
striking. Given that we have considerably less concern about the biasedness of those from the
matched data, there does appear to be a a fairly well defined range for the causal quantity we are
considering - and that quantity appears almost certainly to be greater than 0 - which is a conclusion
that CS-2011 fails to reach. Overall, there appears to be fairly strong evidence that incumbent party
candidates are likely to have an advantage around 15% relative to what that party would receive if
they weren’t the incumbent party - at least in districts where it is reasonably possible for either of
the two parties to win.
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Table 5: Local ATE and Confidence Intervals for Matched and Original Data at different bandwidths

BW LATE.Full Full.LB Full.UB Full.pvalue LATE.Match Match.LB Match.UB Match.pvalue
1 0.250 18.523 0.279 36.767 0.047 23.446 -3.532 50.424 0.088
2 0.500 21.935 8.238 35.633 0.002 24.145 4.987 43.303 0.014
3 0.750 19.687 8.205 31.168 0.001 20.215 4.881 35.548 0.010
4 1.000 19.713 9.610 29.817 0.000 20.022 6.578 33.466 0.004
5 1.250 19.955 10.762 29.148 0.000 20.401 8.523 32.279 0.001
6 1.500 19.565 11.037 28.094 0.000 19.785 9.068 30.502 0.000
7 1.750 19.505 11.556 27.454 0.000 19.580 9.857 29.303 0.000
8 2.000 19.252 11.701 26.802 0.000 19.229 10.176 28.283 0.000
9 2.250 18.969 11.752 26.186 0.000 18.899 10.389 27.408 0.000

10 2.500 18.641 11.721 25.561 0.000 18.488 10.446 26.529 0.000
11 2.750 18.218 11.558 24.879 0.000 17.955 10.312 25.597 0.000
12 3.000 17.968 11.599 24.337 0.000 17.646 10.429 24.864 0.000
13 3.250 17.989 11.881 24.098 0.000 17.689 10.838 24.540 0.000
14 3.500 17.989 12.108 23.870 0.000 17.704 11.170 24.237 0.000
15 3.750 17.980 12.286 23.674 0.000 17.699 11.424 23.974 0.000
16 4.000 17.871 12.338 23.404 0.000 17.577 11.524 23.630 0.000
17 4.250 17.647 12.276 23.017 0.000 17.322 11.487 23.158 0.000
18 4.500 17.379 12.153 22.605 0.000 17.021 11.373 22.669 0.000
19 4.750 17.172 12.064 22.280 0.000 16.790 11.291 22.289 0.000
20 5.000 16.949 11.945 21.952 0.000 16.536 11.166 21.906 0.000
21 5.250 16.791 11.882 21.699 0.000 16.366 11.111 21.621 0.000
22 5.500 16.650 11.836 21.465 0.000 16.218 11.076 21.359 0.000
23 5.750 16.581 11.855 21.307 0.000 16.158 11.123 21.193 0.000
24 6.000 16.541 11.895 21.187 0.000 16.133 11.195 21.072 0.000
25 6.250 16.449 11.881 21.017 0.000 16.044 11.198 20.889 0.000
26 6.500 16.371 11.878 20.865 0.000 15.968 11.211 20.726 0.000
27 6.750 16.314 11.889 20.738 0.000 15.916 11.239 20.592 0.000
28 7.000 16.226 11.874 20.578 0.000 15.828 11.236 20.421 0.000
29 7.250 16.103 11.818 20.388 0.000 15.700 11.183 20.217 0.000
30 7.500 16.067 11.844 20.290 0.000 15.674 11.227 20.120 0.000
31 7.750 16.044 11.878 20.209 0.000 15.662 11.280 20.043 0.000
32 8.000 16.009 11.897 20.120 0.000 15.635 11.315 19.956 0.000
33 8.250 15.923 11.864 19.983 0.000 15.549 11.287 19.811 0.000
34 8.500 15.847 11.836 19.857 0.000 15.472 11.264 19.679 0.000

Returning to the issue of what precise quantity is actually being estimated by RD or RD with
matching within the bandwidth. This is a bit of a technically complicated issue. There is some
disagreement in the literature about the appropriate characterization of the external validity of the
point estimates obtained above. On the one hand Imbens and Lemieux (2008) characterizes the
estimand as at best “the average effect for a subpopulation, namely the subpopulation whereXi = c”
where c is the cutpoint and Xi represents the forcing variable. On the other hand, Lemieux and
Lee (2009) suggests that the effect can be characterized as “a particular kind of average treatment
effect across all individuals, a weighted average treatment effect where the weights are directly
proportional to the ex ante likelihood that an individual’s realization of X will be close to the
threshold.”

However regardless of the interpretation of this particular debate - in any RD design, the majority
of treated and control observations will be dropped and this leaves researcher with an altered
quantity of interest. Matching on the subset of units that is left after dropping the units outside the
immediate vicinity of the cutpoint therefore does not seem to fundamentally change the quantity
being estimated - that is it will still be a local average treatment effect - just one that is unbiased by
sorting. This is also consistent with the philosophical framework of the matching strategy we use
- that it is appropriate to “pre-process” and then proceed with an analysis strategy as one would
have without matching. This is an area where the authors would benefit from the input of of better
informed readers.
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V - Sensitivity Analysis

A primary purpose of the original paper is to demonstrate that there are potentially problematic
covariate discontinuities in very close elections that indicate sorting around the cut-point. The
preceding charts and tables are the authors’ primary means of making their point on this score.
An equally important claim is that the discontinuity in the covariates is extreme enough such that
researchers might have reason to doubt that any causally related discontinuity exists at all. In other
words, not only are there significant discontinuities, but previous findings are in fact sensitive to
these discontinuities. To conduct this sensitivity analysis, the authors undertake some fairly simple
tests. The general framework for these tests is to measure to what extent treatment assignment
departs from randomized treatment at the cut point. We do not go into great detail about these
tests because we track exactly the steps taken in the CS-2011 appendix. For more detail readers
can consult that appendix or the text that first defined these calculations as they are used here,
(Rosenbaum 2002).

The specific test statistic employed is derived by considering two observationally equivalent
units, one receiving treatment and one not, and then determining by how much the odds ratio of
treatment would have to depart from random assignment in order to render a result statistically
insignifcant at some given confidence level.

This value is denoted as Γ and is an upper bound on how great the odds ratio of receiving
treatment can be amongst two observationally equal units, while statistical significance is still
retained. It is defined as follows:

1

Γ
<
πj(1 − πk)

πk(1 − πj)
≤ Γ

Where the π’s represent the probability of treatment for two different units.
Unfortunately we are constrained in using the original authors’ specifications to test our matched

data set in at least one way. As we previously note, in the matched (0.5%) data set, the causal
effect estimated is not significant at a 95 percent confidence interval. We have noted why this does
not cause us to doubt that the true causal incumbency affect is greater than zero. Most importantly
though and worthy of repeating is the issue of bandwidth. Looking at covariate balance within very
close bandwidths is a statistically rigorous practice that the original authors should be commended
for. However, estimating causal effects with this bandwidth makes little sense when every suggestion
in the literature is that a much larger bandwidth is likely to be unbiased. (For example, the optimal
bandwidth according to the standard Imbens-Kalyanaraman method for our matched(0.5%) data
is a margin of about 8.5 percent.) If the optimal bandwidth from the point of view of obtaining
unbiased point estimates is at least several times larger than the one used to test the sensitivity of
results to imbalance, the sensitivity will tend to be overstated. Also as alluded to above optimal
bandwidth estimates presented previous are derived from an algorithm specifically designed to
eliminate bias (Imbens and Kalyanaraman 2012), and so using a bandwidth to calculate effects that
is much different than this optimal bandwidth is likely to lead to avoidable bias being introduced.
Thus we would suggest that sensitivity tests over such a narrow interval are not an ideal sensitivity
test.

As a happy medium between the recommended bandwidth for computing causal estimates and
the bandwidth investigated by the original authors we will examine the sensitivity of our results
using the tests in the original article for a 4% margin around the cutpoint. Note that we use our
matched (1%) data and so we are leaving much of the margin in which we are testing sensitivity
unchanged from the original data.

Under this assumption we find that the matched (1%) data would have to be confounded at a
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level of Γ equal to 5.75 in order for the estimated effect of treatment to have an insignificant effect
on the outcome - where we can think of Γ as “an upper bound on the coefficient Œ ≥ relating
an unobserved covariate unit to i’s log-odds” of being treated given an unobserved covariate that
is almost perfectly correlated with the outcome. So in the current case this corresponds to the
difference in the log-odds of candidates winning close elections based on unobserved variables.

The way that CS-2011 utilitize this test statistic is to use an imbalanced covariate as a proxy
for unobserved confounding, assume that the unobserved confounding is perfectly correlated with
the outcome and see if this would produce levels of Γ approaching that of the test statistic. They
use the Following their procedure, we find that the Democratic party was the incumbent party in
262 of the 572 observations in this range ( 0.458) but they made up 0.513 of the treated units (that
is Democratic incumbents won more than half of the seats won by Democrats despite making up
less than 46 percent of the sample.

The probability that a Democrat wins a Republican district was 132/(132+178)=0.42 while the
probability that a Democrat won a Democrat district was 139/(139+123) =0.53. The difference in
these conditional probabilities is .11, and the natural log of their odds ratio is

log

(
0.53X0.58

0.47X0.42

)
= 0.4429177, which under the methods outlined in the CS-2011 appendix

gives a maximum value of Γ equal to e.443=1.526382.
This calculation of a possible Γ proxy, is by the original authors’ standard, an unrealistic over-

estimate which they then adjust downward according to the actual observed difference in treatment
probability between incumbent parties. Clearly however for these observations the effects that we
estimate are not sensitive to any realistic estimate of confounding based on the process outlined in
the original paper.

This is not surprising given the balance that we have shown we achieved and the strength of the
causal effect that remains even after this balancing process. Thus it is consistent with the overall
thrust of the preceding sections - that achieving a level of covariate balance that allows for valid
causal inferences is not beyond the reach of current matching methods, and that by doing so we
can generate more robust causal estimates.

VI - Conclusion

Overall, we find that significant covariate imbalance is indeed present in close races for the US
House of Representatives in the post-war period. However, we also find that, contrary to the most
recent prominent work on this subject, simple matching techniques can pave the way for valid
RD estimation. By applying these techniques ultimately we end up with causal estimates that are
marginally lower than those we would estimate with the raw original data, but which are still robust
to any reasonable specification check.

We also present additional graphical and analytic methods of assessing the covariate imbalance
which we believe scholars will find easier to make sense of and which we also believe convey a more
accurate and more complete summary of the covariate balance across the range of observations that
researchers are interested in.

Possible future extensions of work in this area are numerous. First, one can obviously test the
results obtained here and by previous authors with the wealth of data on elections to other legislative
bodies. Indeed we believe that such work is likely forthcoming in the near future. Another area for
future research relates to the theoretical issues associated with matching RD and optimal bandwidth.
As far as we know, there has not been any significant effort to lay a theoretical framework for the
joint application of matching techniques and RD. Specifically a way to identify the appropriate

24



bandwidth within which one should test for covariate continuity and the relationship between this
bandwidth and the bandwidth appropriate for the calculation of causal quantities would help when
a regression discontinuity design might be fruitful but is potentially confounded by self-selection
around the cutpoint. Without more theoretical scaffolding, there is likely to remain significant
difficulty in parsing out whether observed measures of differences are the function of sample size
changes as one approaches the cutpoint or legitimate changes in the behavior of subjects.

Generally, we think our findings should be taken as good news for scholars of elections and
representation. With important adjustments and rigorous checking of those adjustments it appears
that outcomes from close elections can in fact be taken to be as good as random and thus the
window such elections provide into politically central outcomes remains open.
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