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1 Introduction

Partisan fairness in modern democracies is defined at the intersection of two grand rere-

sentative institutions – political parties and district-based electoral systems. Whereas par-

ties are mostly defined by voters and candidates, the contiguous geographic districts that

collectively tile a political system’s landmass constitute the playing field on which the par-

ties compete. This intersection is most obvious during legislative redistricting processes,

but it is also crucial for evaluating the fairness of relatively fixed districts, such as for the

US Senate and electoral college.

We clarify the theoretical foundations of partisan symmetry, the most widely accepted

standard of partisan fairness in district-based democratic electoral systems, along with

alternative definitions. Although the literature dates back more than a century, doing so

requires definitions not fully formalized, essential assumptions not previously discussed,

and quantities of interest often left implicitly defined. We also offer empirical evidence

from 70,540 district-level elections, in 963 legislature-election years in the US, to shore

up, or choose among, assumptions with observable implications. (These data, which we

arranged to make public, may be the largest collection of election data ever analyzed at

once; see Klarner 2018.) We use this theory and evidence to build on one of the most

important principles of statistics — defining the quantities of interest rigorously and sepa-

rately from the measures used to estimate them. This enables us to use standard statistical

approaches to evaluate existing measures. Among measures claimed to be estimators of

partisan symmetry, we distinguish between those which are statistically appropriate and

those which are in fact biased, limited, or not measures of symmetry at all. We also

show how measures biased for partisan fairness can still reveal other interesting features

of complicated electoral systems unrelated to fairness.

Section 2 defines the partisan symmetry standard, and Section 3 considers alterna-

tives. Section 4 clarifies assumptions needed for estimating seats-votes curves, and Sec-

tion 5 evaluates existing measures of partisan fairness. We discuss uncertainty estimates

in Section 6 and Section 7 concludes.
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2 The Partisan Symmetry Standard

In this section, we describe the partisan symmetry standard for a single member dis-

trict, where it is easier to understand, and then generalize it to an entire legislature. We

also make explicit required assumptions in this approach the literature has left implicit

or ignored, and characterize different types of symmetry and asymmetry. The concept

of fairness-through-symmetry can be traced to “The Golden Rule” (part of almost every

ethical tradition; Blackburn 2003) and the Bible (Genesis 13:8-9, Matthew 7:12; Wang

and Remlinger 2018).

2.1 Symmetry in a Single Member District

Although all our results generalize to any number of political parties (as in Ansolabehere

and King, 1990; Katz and King, 1999; King, 1990), we use two parties throughout to

simplify exposition. We also assume an odd number of voters to eliminate the possibility

of a tie (or assume a coin flip in that instance). Then denote the Democratic proportion

of the (two party) vote in district d as vd (for d = 1, . . . , L). In one single member

district, denote the plurality voting rule as s(v) = 1(v > 0.5), which takes on the value

1 if v > 0.5 (meaning the Democratic candidate wins) and 0 otherwise (the Republican

wins). In other words, when a political party receives more votes than any other party it

wins the seat. The reason this rule is universally judged as fair is because it is symmetric,

applying the same way to any party, regardless of its name or identity.

We formally express district level partisan symmetry (cf. “neutrality” in formal theory;

May 1952, p.681–682) as s(v) = 1−s(1−v), for all v. In other words, if we swapped the

labels on the parties, nothing would change other than who wins the seat. For example, if

the Democratic party received 0.55 of the vote in a district, it would win the seat, because

s(0.55) = 1, and if (instead) the Republican party received 0.55 of the vote, it would

receive the seat, because 1 − s(1 − 0.55) = 1. The plurality voting rule is thus fair with

respect to the two parties because it is symmetric.

Deviations from partisan symmetry in a single member district, first-past-the-post

electoral system can stem from fraud. For example, if a criminal surreptitiously stuffs
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the ballot box with an extra 0.1 Democratic proportion of the vote, then the Democratic

party will win the seat if it receives more than 0.4 (rather than 0.5) of the votes — that is,

s′(v) = 1(v > 0.4), for all v — which is obviously not symmetric. To see this asymmetry

formally, consider that a Democratic candidate receiving 0.45 of the vote would win the

seat, s′(0.45) = 1, but a Republican candidate who (instead) receives the same proportion

of the vote would lose: 1− s′(1− 0.45) = 0.

2.2 Symmetry in a Legislature

We now show how partisan symmetry applies to fairness for an entire legislature.

2.2.1 The Seats-Votes Curve

We define here the seats-votes curve from its component parts. Denote the populace, P,

the set of all individuals living in a state, including systematic patterns in their electoral

behavior (or nonbehavior); an electoral system, E, all factors that turn the populace’s

votes into seats, including district boundary lines, district level voting rules (such as plu-

rality voting), and whether the rules are followed (Cox, 1997, p.38); and other measured

exogenous influences on voter behavior, X , such as demographic variables (e.g., percent

African American or immigrant), candidate quality (e.g., incumbency status or uncontest-

edness), voter behavior (such as lagged vote), and campaign events. Together {P,E, X}

determine a “permutation invariant” joint probability density from which district-level

vote proportions are drawn, p(v1, . . . , vL | X).1

Next, we aggregate the district vote proportions into the statewide average district vote

V = V (v1, . . . , vL) = meand(vd) and the statewide seat proportion S = S(v1, . . . , vL) =

meand[s(vd)], with s(vd) defined in Section 2.1.2 Electoral systems E, including changes

such as redistricting, are important because sets of district votes that differ, {v1, . . . , vL} 6=
1Because all measures discussed in this paper are invariant to permutations of the district labels, we

only need probablity densities specified up to a permutation of its arguments; e.g., p(v1, v2, v3 | X) =
p(v1, v3, v2 | X) (Wimmer, 2010, p.114). This is less restrictive than assuming that individual districts are
drawn independently from a univariate density (Gelman and King, 1990; King, 1989).

2For set A with cardinality #A, define the mean over i of function g(i) as meani∈A[g(i)] =
1

#A

∑#A
i=1 g(i). When there is no ambiguity, we simplify notation by letting

∑
d ≡

∑D
d=1 and meand ≡

meand∈A.

3



{v′1, . . . , v′L}, but which aggregate into the same average district vote V (v1, . . . , vL) =

V (v′1, . . . , v
′
L), can yield different statewide seat proportions S(v1, . . . , vL) 6= S(v′1, . . . , v

′
L).3

We then define the seats-votes function by taking the expected value of the statewide

seat proportion S(v1, . . . , vL) over the density p(v1, . . . , vL | X), constrained so that V =

mean(vd):

Ep[S(v1, . . . , vL) | X,mean(vd) = V ] = S(V | P,E, X) ≡ S(V ). (1)

The seats-votes function is a scalar property of the electoral system computed from ran-

dom variables {v1, . . . , vL} and V , along with fixed characteristicsX (King, 1989). A co-

herent seats-votes function is defined independently of the observed realizations {vO1 , . . . , vOL }

(and in turn independently of the observed realization of the average district vote V O). We

call this the Stable Electoral System Assumption:

Assumption 1. [SESA: Stable Electoral System] The probability density of district vote

proportions is defined independently of any one set of realized district vote proportions:

p(v1, . . . , vL | X, vO1 , . . . , vOL ) = p(v1, . . . , vL | X).

Assumption 1 can be thought of as Markov independence, such that an election does not

change the electoral system that generates vote proportions (after conditioning on X).

However, the assumption will usually be applied to data from one election in isolation,

at that one time point, with independence applying over hypothetical replications from

the same (stable) electoral system. Violations of this assumption occur when an election

prompts a new redistricting controlled by a different party or group, or if an electoral

realignment changes the coalitions making up the parties (unless encoded in X). This

seats-votes curve would then be incoherent because the electoral system it describes is

not stable as it is defined differently depending on the observed vote. A simple numerical

example of a violation of SESA, and no single seats-votes curve, is if S(0.6) = 0.7 for an

election with V O = 0.6 but S(0.6) = 0.8 following an election with V O = 0.5.

SESA implies that the seats-votes function is single-valued, and not dependent on the

election outcome, so that a complete representation of all values of S(V ) for populace P
3Redistricters often make calculations like these by assuming that individual votes are fixed, at least with

respect to redisticting. Although convenient and often not far off, this assumption is unnecessary.
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and electoral system E, conditional on X , is the set S = {S(V ) : V ∈ [0, 1]}, which

we call the seats-votes curve. If SESA does not hold, then the seats-votes function is not

single-valued and the seats-votes curve is not coherently defined and, as such, concepts

like partisan symmetry cannot even be evaluated. Including sufficiently informative vari-

ables inX can correct for a violation of this assumption. If SESA holds, then we still need

to consider how to estimate it, a subject we address in Section 4. (SESA is related to the

Stable Unit Treatment Value Assumption, SUTVA, commonly made in the causal inference

literature; see Iacus, King, and Porro 2018; Rubin 1991; VanderWeele and Hernan 2012.)

2.2.2 Differential Partisan Turnout Effects

The Supreme Court requires equal population, not equal turnout, across districts (Baker

v. Carr, 369 U.S. 186 (1962)). As such, when turnout rates differ by party, gerryman-

derers can use this fact to their advantage. For example, because turnout is usually lower

in Democratic areas (Leighley and Nagler 2013 and Plener Cover 2018, p.1189ff), Re-

publicans can sometimes maintain their majority in meeting a district’s population quota

by packing in many who prefer the Democrats but are not likely to vote. Similarly,

Democrats may settle for a minority of Democratic voters in a district if favorable de-

mographic changes are on the horizon, such as young Hispanic immigrants aging into the

electorate or older Republicans dying off.

Differential partisan turnout is represented in the seats-votes curve, as defined in Sec-

tion 2.2.1. The curve conditions on V — the unweighted average district vote, V =

mean(vd) — and then differential partisan turnout can influence S(V ), changing the shape

of the curve.

For academic purposes, researchers may also be interested in the counterfactual seats-

votes curve we would see if turnout were equalized across districts, a “controlled direct

effect” (Acharya, Blackwell, and M. Sen, 2016). To construct this counterfactual curve,

we switch from the average district vote to the total statewide vote, the weighted average of

district vote proportions: U =
∑

d ndvd/
∑

d nd, with nd, the number of voters in district

d, as weights. The two quantities coincide (i.e., U = V ) when the turnout and votes are
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uncorrelated. To see this, let nd = n̄+ td, where n̄ = meand(nd) and td = nd − n̄. Then,

U =

∑
d ndvd∑
d nd

=

∑
d n̄vd +

∑
d tdvd∑

d nd

= V +

∑
d tdvd∑
d nd

. (2)

The last term of the last equality vanishes when Cov(td, vd) = Cov(nd, vd) = 0.

It may seem paradoxical that weighting by turnout in the vote calculation controls

away the effect of turnout on the seats-votes curve, while ignoring turnout enables its

effect on S(V ) to be seen. Yet, turnout is in part a consequence of the electoral system

E and therefore post-treatment. The quantity S(V ), conditional as it is on V , already

has differential partisan turnout accounted for in its effect on seats (Ansolabehere, Brady,

and Fiorina 1988; Grofman, Koetzle, and Brunell 1997; Gudgin and Taylor 2012, p.56).

Researchers who want to measure all effects of redistricting including turnout use V and

avoid U or they risk post-treatment bias (King and Zeng, 2006, §3.4).

Using U has an unrelated difficulty because of severe measurement error from total

turnout often not being reported in uncontested districts and, even when it is, voters often

skip casting ballots in these pointless “races”. Unfortunately, uncontestedness itself is

quite prevalent in many state legislatures, in part a consequence of redistricting, and thus

another important tool of gerrymanderers that should not be controlled away (LULAC

v. Perry, 548 U.S. 399 (2006)). As such, this measurement error is post-treatment and

may induce even more post-treatment bias in U . (Uncontestedness also affects V , but its

effects are comparatively minor for most applications.)

Thus, although U and S(U) are not of interest for evaluating the total effects of elec-

toral systems or legislative redistricting maps from the point of view of democratic repre-

sentation, they are sometimes important for academic purposes. See Campbell (1996).

2.2.3 Characteristics of Seats-Votes Curves

The most commonly accepted standard for fairness of voting in a legislature is statewide

partisan symmetry (King and Browning, 1987) which we define formally as:

Definition 1 (Partisan Symmetry). An electoral system satisfies the partisan symmetry

standard if S(V ) = 1− S(1− V ) for all V ∈ [0, 1]
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(See Section 5.3 for an alternative representation.) Because of the impact of districting,

even if s(v) = 1−s(1−v) holds for every individual district, statewide partisan symmetry

may not hold.

Any deviation from partisan symmetry is known as the degree and direction of parti-

san bias, which we define formally as follows:

Definition 2 (Partisan Bias). Partisan bias is the deviation from partisan symmetry: β(V ) =

{S(V )− [1− S(1− V )]}/2, for any V ∈ [0, 1].

The quantity β(V ) is the (perhaps negative) proportion of seats that should be taken from

the Democrats (and thus given to the Republicans) to make the system fair. (The division

by 2 makes β(V ) the distance from each party to symmetry, as desired, rather than to

each other.) Thus, special cases of partisan bias include (a) partisan symmetry, where

β(V ) = 0; (a) Democratic bias, where β(V ) > 0; and (c) Republican bias, β(V ) < 0.

Although β(V ) is defined for any V ∈ [0, 1], only half this range is needed, say V ∈

[0.5, 1], because β(V ) = β(1 − V ). (Partisan bias is unrelated to statistical bias, where

the expected value of an estimator is not equal to the population quantity of interest.)

The chosen value of V in a seats-votes function must be a possible result of the elec-

toral system so that there is a defined value of S(V ) ∈ [0, 1]. For example, if one party

would not tolerate the other party winning, so that war would break out and end the

democracy if say V > 0.5, then S(V ) would be undefined for V > 0.5. Similarly, a party

system defined based on fixed ethnic or racial divisions would mean that only slight varia-

tions in V from V O would be possible (due to changes in turnout or demographic change).

This assumption does not require that any outcome be likely. For example, presently, the

state houses in Massachusetts and Utah are 77% and 17% Democratic, respectively. Given

what we know about electoral politics, the probability of either one being controlled by

the opposition party in the near future is very small, but certainly not zero. The election

of an African American as president was seen as highly unlikely only a few years before

the election of Barack Obama, as was the election of Donald Trump before 2016; each

was improbable for some researchers, but not impossible.

The assumption we need formalizes the venerable concept of rotation in office which
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“was a political principle put into the design of new political systems in order to prevent

the corruption of elected officials, check government tyranny, guarantee liberty, enhance

the quality of political representation, and promote widespread service in government,

among other values” (Petracca, 1996). The rotation in office principle says that it is con-

ceivable for both parties to win office, if enough elections are run under the same electoral

system. We formalize this assumption as follows:

Assumption 2. [Rotation in Office] For a given electoral system and “average district

vote victory size” parameter η ∈ [0, 0.5] chosen by the researcher, the range of possible

values for the average district vote is no smaller than V ∈ [0.5− η, 0.5 + η].

This assumption allows the range of possible vote proportions to be asymmetric, so

long as it has as a subset a smaller symmetric range (e.g., [0.4, 0.8] includes [0.4, 0.6], so

that η = 0.1). With the possible victory size parameter set to its maximum, η = 0.5,

any value of V ∈ [0, 1] may be used with S(V ) so that for example the full version

of partisan bias in Definition 2 can be used. We allow η to take smaller values so that

special cases of the partisan symmetry standard can apply in electoral systems where

certain lopsided outcome sizes are inconceivable as long as a symmetric range exists. For

example, for β(0.5), we can use η = 0. In all cases, the range of conceivable values of

V may be larger than [0.5 − η, 0.5 + η]. Although Assumption 2 is defined in terms of

possible electoral outcomes, those that are exceedingly unlikely, such as Washington DC

voting overwhelming Republican, do not violate this assumption but may generate model

dependence in estimation (see Section 4).

2.2.4 Summaries

Partisan bias is sometimes summarized at (a) bias at 0.5, β(0.5) = S(0.5)− 0.5; (b) bias

at another point such as β(0.55) = {S(0.55) − [1 − S(1 − 0.55)]}/2 = β(0.45); (c) an

average over a range of vote values, such as E[β(V )] =
∫ 0.55

0.5
β(V )p(V )dV , where p(V )

is the predictive density of likely votes or a uniform with range based on plausible average

district vote values (Gelman and King, 1994a); or (d) an indicator as in for whether 1(V >

0.5) = 1[S(V ) > 0.5] (Best, Donahue, Krasno, Magleby, and McDonald, 2018).
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These summaries are easier to estimate than the entire curve but are only useful if they

accurately represent partisan bias for all empirically likely values of V . If a summary

differs from the value of partisan bias for other empirically reasonable values of V , then

an electoral system judged to be fair by the summary can instead turn out to be biased

in a real election. This pattern may even be intended by gerrymanderers who sometimes

misjudge their likely average district vote and instead of having an electoral system biased

in their favor, such as by winning a large number of districts by a small amount, they have

one massively biased against them, by losing them all by a small amount.

For competitive electoral systems, (c) can be a reasonable summary if the values of V

we are likely to observe are included in the specified range. In contrast, (a) is best used

with another assumption because, even when β(0.5) = 0, β(V ) may be far from 0 for any

other value of V . Summary (c) will normally be the most statistically stable of the three.

These warnings do not mean that summaries should not be used, only that they come with

an assumption that needs to be understood.

2.2.5 Types of Symmetry and Asymmetry

Partisan symmetry is a minimal and thus flexible standard of fairness which many differ-

ent types of electoral systems satisfy. We first clarify the range of variation of symmetric

electoral systems and then characterize types of biased electoral systems. We order elec-

toral systems meeting the partisan symmetry standard by the size of the bonus going to

the statewide majority vote winner or, in other words, by the degree of electoral respon-

siveness, of S(V ) to changes in votes V , as follows:

Definition 3. [Electoral Responsiveness] Electoral responsiveness, which quantifies how

much the statewide seat proportion is altered by a change in the average district vote, is

ρ(V ) = ∂S(V )/∂V .

Because the number of legislative seats is discrete, seats-votes curves are inherently

discrete, and ρ(V ) is not uniformly continuous. Thus, in practice, the curve is summa-

rized by smoothing via a discrete derivative ρ(V, V ′) = [S(V )− S(V ′)]/(V ′ − V ), given

chosen values V and V ′. We will use the shorthand ρ(V ) to refer to both the theoretical
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continuous quantity and the discrete estimator.

Electoral responsiveness is commonly summarized at (a) ρ(0.5); (b) an empirically

reasonable value such as ρ(V O), where V O is the observed average district vote for a real

election; or (c) an empirically reasonable range, such as ρ(0.45, 0.55).

We first use Definition 3 to define a minimal standard for a fair democratic electoral

system, which we call symmetric democracy:

Definition 4 (Symmetric Democracy). An electoral system characterized by symmetric

democracy satisfies (a) partisan symmetry (Definition 1), (b) nonnegative responsiveness,

ρ(V ) ≥ 0 for all V , and (c) unanimity, S(0) = 0.

Conditions (a) and (c) imply also that S(1) = 1. Conditions (b) and (c) imply, for at least

one point in V ∈ [0, 1], that ρ(V ) > 0. Condition (c) is referred to as “unanimity” or the

“Pareto principle” in social choice theory (A. Sen, 1976). (We suggest a modification of

condition (c) in Section 3.2 when one party is unlikely to ever win a majority of votes.)

Four ranges of electoral responsiveness that satisfy Definition 4 are often discussed,

each of which we illustrate with a fair seats-votes curve in the left panel of Figure 1. First,

proportional representation meets the partisan symmetric standard because S(V ) = V

and 1−S(1−V ) = V , or in other words ρ(V ) = 1 and β(V ) = 0 for all V (green line in

the figure). Legislatures with single member, plurality voting systems are not guaranteed

to be proportional by law and tend to be majoritarian by empirical pattern, which means

that they usually give a bonus to the party winning a majority of votes statewide, with

1 < ρ(V ) < ∞ (see blue line). For example, suppose the Democrats receive V = 0.55

proportion of the average district vote statewide and, because of how the district lines are

drawn, receive S(0.55) = 0.75 proportion of the seats. This is not proportional, but it

would be fair according to partisan symmetry if we knew the Republicans, if they had

received 1− V = 0.55 proportion of the vote, would also receive 1−S(1− 0.55) = 0.75

proportion of the seats. Third, a more extreme type of electoral system still meeting

partisan symmetry is winner-take-all (with ρ → ∞), where the majority vote winner

receives all of the seats (solid black line in left panel of Figure 1). A final type of system

that meets partisan symmetry is where the party winning a majority of votes receives a
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negative bonus (0 < ρ < 1), such as if S(0.65) = 0.55 and 1− S(1− 0.65) = 0.55 (red

line).

Winner−take−all

Majoritarian

Proportional

Negative Bonus

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
V

S(
V

)

β(V)
0

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
V

S(
V

)
Figure 1: Types of Seats-Votes Curves. Left panel: Symmetric (fair) curves with differing
levels of electoral responsiveness. Right panel: Asymmetric (biased) curves, including
one consistently biased toward the Democrats (blue) and one with biases favoring different
parties depending on V (red); the inset graph is for β(V ) for V ∈ [0.5, 1] with the vertical
axis scaled to be the same as the main plot, and lines color coded to the seats-votes curves.

Although partisan symmetry is widely viewed as a required standard of any mini-

mally fair electoral system, different levels of electoral responsiveness may reasonably be

chosen as preferable or appropriate for and by different people and governments. Many

would prefer that their electoral system meet partisan symmetry but not be proportional,

winner-take-all, or negative bonus, and so would impose the restrictions of an unbiased

(β(V ) = 0) majoritarian (1 < ρ < ∞) electoral system. Similarly, although no US

state constitution rejects partisan symmetry, the constitutions differ in their requirements

regarding electoral responsiveness. Some state constitutions require their redistricters to

draw highly responsive districts, in order to encourage competitive elections and party

change in office, whereas others encourage their redistricters to draw minimally respon-

sive districts, which protects their incumbents, perhaps to help them gain experience or

seniority and thus power on congressional committees. Brunell (2010) even argues that

less responsiveness (and thus less competitiveness) produces happier constituents; see

also (Gerber and Lewis, 2004, p.1378).
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We also distinguish between two types of electoral systems that deviate from partisan

symmetry — (a) those biased consistently in favor of one party and (b) those that switch

from biased in favor of one party to the other as V changes. The right panel of Figure

1 gives one example of each of these seats-votes curves, in along with an inset graph

at the lower right, with β(V ) plotted by V and color-coded to the corresponding seats-

votes curve. The blue seats-votes curve is biased in favor of the Democratic party for

every value of V , although by different amounts. We can see this by the corresponding

blue line in the inset graph. For example, at V = 0.5, S(V ) = 0.66, and so β(0.5) =

(0.66 − 0.5)/2 = 0.08, which is also the height of the left end of the blue line on the

inset graph (although numbers on the vertical axis of the inset graph have been removed

to reduce clutter, distances from zero are the same as for the main graph). Whereas the

blue β(V ) line in the inset graph is always above zero, indicating consistent bias toward

the Democrats for all V , the red line indicates bias toward the Republicans for V < 0.125

and toward Democrats for larger average district vote values.

Partisan bias that switches parties with V is important to consider when using sum-

mary measures of bias to represent the entire seats-votes relationship. This type of seats-

votes curve can also be the result of a gerrymandering strategy where the party in control

draws district maps biased against it, at values of V it sees as unlikely, so long as the same

map has more bias in its favor at values of V in future elections it sees as likely.

2.2.6 Seat- vs Vote-Denominated Partisan Bias

The seats-votes curve represents seats as function of votes, S(V ), reflecting how electoral

systems work, with partisan bias seat-denominated. A simple case can be seen in the

right panel of Figure 1 as the vertical distance from where the two dashed lines cross

(at S(V ) = 0.5, V = 0.5) to where the red line crosses the (V = 0.5) vertical dashed

line. This vertical distance is β(0.5) = −0.1 — meaning that the Republicans receive 10

percentage points more seats than the Democrats with the same vote proportion.

Yet, deviations from the seats-votes curve can also be votes-denominated (McDonald,

2017). Instead of asking whether a party receives an unfair proportion of seats (more

seats for the same vote proportion than the other party), we could instead ask whether the
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party must earn a larger average district vote than the other party in order to win a given

seat proportion. A simple example is the horizontal distance in Figure 1) from where

the two dashed lines cross (at S(V ) = 0.5, V = 0.5) to where the red line crosses the

(S(V ) = 0.5) horizontal dashed line (see McGhee, 2017, Fig.2). This horizontal distance

is VDB(0.5) = 0.045 — meaning that to obtain 50% of the seats, the Democrats must

earn 4.5 percentage points more in votes than the Republicans. (The blue line in the

right graph is an example where it happens that the vertical and horizontal distances are

the same: β(0.5) = VDB(0.5), in this case 0.08 seats and votes respectively.) Seat- and

vote-denominated partisan biases are analogous to the difference between the usual causal

quantity, e.g. “how much longer exercise twice a week causes a person to live,” and the

alternative quantity, e.g. “the number of days of exercise needed to cause a person to live

one year longer”.

Seats- and votes-denominated biases are different theoretical quantities, but both con-

vey the degree to which an electoral system deviates from partisan symmetry. We formal-

ize this intuition here. Thus, a symmetric electoral system can be represented in the usual

seat-denominated way given in Definition 1, S(V ) = 1−S(1−V ), or equivalently in this

alternative vote-denominated way, with votes as a function of seats: V (S) = 1−V (1−S),

where V (S) is the average district vote the Democratic party needs in order to receive S

proportion of seats in the legislature. We can thus define vote-denominated partisan bias

(in parallel to Definition 2) as a function of seats: VDB(S) = −{V (S)−[1−V (1−S)]}/2,

with the leading negative sign because the Democrats are advantaged when V (S) is

smaller given any S and S(V ) is larger given any V .

3 Other Partisan Fairness Standards

We consider here alternatives to and modifications of the partisan symmetry standard by

studying the effects of two variables that characterize every redistricting — the existence

of partisan gerrymanderers and the competitiveness of the party system. We first show

how the goals of partisan gerrymandering affects electoral systems in terms of bias and

responsiveness, and how these can differ, depending on competitiveness, from the often
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misleading “cracking and packing” stereotype used in the literature (Section 3.1). We then

show how a pure partisan gerrymandering perspective suggests alternative, but ultimately

unsatisfactory, normative definitions of partisan fairness (Section 3.2). And finally, we

consider standards of partisan fairness for noncompetitive party systems (Section 3.3).

3.1 Gerrymandering Goals

Consider an imaginary partisan gerrymanderer focused solely on advantaging their polit-

ical party.4 Partisan gerrymanderers use their knowledge of voter preferences and their

ability to draw favorable redistricting plans to maximize their party’s seat share. Gerry-

manderers do not necessarily care about voter support, the efficiency of the translation of

votes into seats, partisan bias, electoral responsiveness, or differential turnout — unless it

helps them win more seats.

We show that these goals, when mapped into the concepts of partisan bias and electoral

responsiveness, can be either consistent with or the opposite of those commonly described

in the literature. To show this, consider three situations, each of which leads to a different

optimization function, effect on symmetry, and goal for bias and responsiveness (see Cox

and Katz 1999, §3.3, Friedman and Holden 2008, and Puppe and Tasnadi 2009).

First is when the gerrymanderer is running scared (Mann, 1978) and so is worried

about what the statewide vote U may be in future elections (V is not defined without

districts). Here, optimizing means trying to win maximal sets with a safe margin, in

order to insulate the party from potentially unfavorable future partisan swings. In this

case, optimizing means seeking high bias and low responsiveness. Operationally, the

gerrymanderer may do this by “packing” overwhelming numbers of opposition party votes

into a few otherwise unwinnable districts and “cracking” the remaining opposition voting

4This person or entity is imaginary because in practice those actually in control of or involved in redis-
tricting balance numerous other factors in addition to partisan gain. These other factors include optimizing
or balancing the protection or pairing of specific incumbents, changing ideological polarization (McCarty,
Poole, and Rosenthal, 2009) or the legislature’s median voter (Herron and Wiseman, 2008), maintaining or
splitting communities of interest, changing district compactness, not splitting local political subdivisions,
keeping an incumbent’s children’s schools or parents houses in or out of their districts, keeping good chal-
lengers’ homes out of certain districts, state legislators drawing congressional districts for them to run in,
optimizing turnout differentials, swapping populations to hurt or encourage incumbents to retire, and many
others (Hardy 1977, Owen and Grofman 1988, Cox and Katz 2002, p.39ff, and Yoshinaka and Murphy
2009).
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strength across a large number of districts in order to win each by a small number of votes.

High bias helps the party in control of redistricting and low responsiveness protects their

incumbents by locking in these gains for future elections.

Second is the opposite situation where the gerrymanderer is confident of a statewide

majority of votes and so tries to make each district a microcosm of the entire state (i.e.,

vd = V for all d), producing a winner-take-all outcome overall Cox and Katz (2002). In

other words, the goal is an electoral system with low bias and high responsiveness. The

“low bias” result is merely the consequence of optimizing primarily for high responsive-

ness, without preparing for in the situation where V = 1− V O, since they do not think it

will happen. This situation involves neither packing nor cracking: If a Democratic gerry-

manderer thinks his or her party can count on a statewide vote of U = 0.55, then packing

to give the Republicans a few seats is out of the question and cracking, to win any seats

by 50% plus a few votes, is irrelevant. Instead, the goal would be to win with vd = 0.55

for all d. (Of course, if the gerrymanderer turns out to be overconfident and wrong about

the partisan swing, optimizing in this way may cause their party to lose all the districts.)

Also worth mentioning is where a partisan gerrymanderer must reach agreement with

the other party. The result is a bipartisan gerrymander, which winds up optimizing for

low bias and low responsiveness. Bias would be low because it is a zero-sum compromise

between the parties, and low responsiveness reduces uncertainty in future elections by

locking in the deal and protecting incumbents in both parties.

3.2 Gerrymandering-Based Fairness Standards

We offer here two ways of deriving a normative standard of partisan fairness from a purely

partisan gerrymandering perspective. First, consider (as a thought experiment since im-

plementation may be infeasible) letting the same person or group control redistricting

but preventing them from using knowledge of where their party’s supporters live. This

idea, which is equivalent to randomly permuting party labels on voters or on the ger-

rymanderer’s voter forecasts, clearly removes intent to do harm. This step alone may

be of value, since human psychology and most judicial systems judge intentional harm

more severely than accidental harm (Greene, 2009). However, since plans drawn without
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knowledge of party support are drawn randomly with respect to party, any plan can be

selected regardless of the degree of bias, responsiveness, or any other feature. In other

words, gerrymandering without knowledge of party removes intent but does not remove

harm. In fact, one possible districting plan that can occur is the identical plan that would

be drawn by a partisan gerrymanderer with full knowledge of where its party’s voters live.

At the end of the day, the absence of intentional unfairness is not the same as fairness.

Second, we compare the efficiency of each party’s translation of votes into seats. In

one observed election, the Democratic party receives S(V O) seats given V O votes and

the Republican party receives 1− V O votes and 1− S(V O) seats. Which of these parties

has a better or more efficient translation of seats into votes? Unless it happens that V O =

1 − V O = 0.5, this is an apples to oranges comparison because of the two different

starting points. The only way to make the vote comparison between the two parties in any

one election meaningful is by imposing a counterfactual assumption. We consider two

possibilities for this assumption.

In one, we could make an assumption that enables us to estimate what would happen

if the parties switched their vote proportions, so that the election result was 1−V O rather

than V O (we describe these assumptions in Section 4). Then, we would be able to estimate

the unobserved seat proportion 1− S(1− V O) and compare it to S(V O). This of course

leads exactly to partisan symmetry.

In the other, we could try assuming away the differential meaning of all, or some

particular type of, votes cast for each party (e.g., “wasted votes,” which are those cast

for losing party in a district or above 0.5 plus one vote in winning districts; see Section

5.6). However, although all votes are observed, asserting that all or any subset has the

same meaning for each party, when the parties have different expected vote proportions,

requires an assumption with the same ontological status as assumptions imagining parti-

san swings that lead to partisan symmetry. For example, suppose the Democrats receive

V O = 0.6 and are confident of a statewide majority in subsequent elections under the same

redistricting plan. Then, the votes cast for each party in specific districts (and the resulting

characteristics of the electoral system like bias and responsiveness) have markedly differ-
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ent meanings for Democrats than for Republicans now in the minority, with 1−V O = 0.4

votes. The Democrats in this scenario would benefit by having votes distributed so that

each district is a microcosm of the state, but Republicans would benefit most by packing

and cracking (see Section 3.1), and so assuming that these votes have the same meaning

would be a stretch at best. This does not seem like a promising direction for developing a

new standard for partisan fairness.

3.3 Noncompetitive Party System Fairness Standards

We address here standards of fairness for electoral systems when one party has an over-

whelming majority and is likely to keep it. In this situation, the partisan symmetry promise

to a minority party of eventually receiving a controlling seat proportion, when in a future

election the party has more voter support, seems empty. Put in the context of our frame-

work, when the rotation in office assumption (Assumption 2) does not hold, questions

about the partisan symmetry standard may be meaningless. When Assumption 2 does

hold, but counterfactual estimation is highly uncertain or model dependent, the questions

are coherent but efforts to determine the answer may be fruitless.

Fortunately, the political science literature on constitutional design for ethnically or

racially divided societies can be used to define standards of fairness composed of the

basic concepts introduced in this paper. Thus, to protect minority parties, and to prevent

them viewing the electoral system as illegitimate, political scientists advise adding consti-

tutionally mandated power sharing to electoral rules (Lijphart, 2004). Exactly how much

protection and in what form can be derived from first principles, but this precision often

comes at the price of model dependence (King, Bruce, and Gelman, 1996). Yet, since the

direction needed is clear, we describe two specific ways improving the situation.

First, we could require redistricters to follow a strategy opposite to that of a parti-

san gerrymanderer confident of a statewide majority (see Section 3.1). Thus, instead of

creating each district as a microcosm of the state, and giving the majority a winner-take-

all victory, we would pack minority party voters into a small number districts and thus

ensure them at least some seats. This is indeed what happens with protected racial mi-

norities in US legislatures covered by the Voting Rights Act. The way to do this within
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our framework is to require low levels of electoral responsiveness, which thus makes it

more difficult for the majority party to wipe out the minority. This requires, at a minimum,

particularly low levels of ρ(V ) for V near V O.

Second, we can adapt an alternative and surprisingly common approach to mandated

power sharing in constitutional design — formally reserving legislative seats for the mi-

nority party to guarantee that their views will at least be heard in the legislature (Reynolds,

2005). In this case, we can restate the symmetric democracy standard in Definition 4 by

replacing the unanimity condition (c) with a minority protection provision:

Definition 5 (Symmetric Democracy with Minority Party Protection). An electoral sys-

tem characterized by symmetric democracy with minority party protection satisfies (a)

partisan symmetry (Definition 1), (b) nonnegative responsiveness, ρ(V ) ≥ 0 for all V ,

and (c) minority protection, S(V ) = c > 0 for V ≤ τ � 0.5, where τ is the protection

vote threshold for a political party and c is the party’s guaranteed seat proportion.

Conditions (b) and (c) ensure that S(V ) is monotonically increasing over its entire range.

4 Assumptions for Estimating Seats-Votes Curves

We show here, under different types of assumptions, how to estimate the full seats-votes

curve, from which we can easily compute partisan bias, electoral responsiveness, or other

electoral system features. We begin with values of the curve that can be ascertained with-

out assumptions and then discuss estimation under functional form assumptions using

statewide averages, partisan swing assumptions using district-level data, and forecasting

assumptions when no elections under the redistricting plan in question have been held.

We conclude with a brief discussion of how models of individual voters.

4.1 No Additional Assumptions

In what is usually the best case, where we have five elections occurring between the

decennial censuses and thus which we could consider (close to being) under the same

electoral system, we observe five data points {Ŝ(V O
t ), V O

t : t = 1, . . . , 5}, where the
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observed statewide seat proportion Ŝ(V O
t ) is an estimate of the expected value S(V O

t ) in

election t.

From these data, two unusual circumstances enable us to compute a summary measure

of partisan bias with no modeling assumptions. In the first, if we happen to observe an

election with a tied average district vote, V O = 0.5, then one quantity of interest, β(0.5) is

estimated simply by the observed seat proportion. In the second, which is an even luckier

situation (encompassing the first), two elections are observed under the same electoral

system and happen to have average district vote proportions symmetric around 0.5. For

example, in Wisconsin State House elections run under the same redistricting plan, the

average district vote was approximately V O = 1 − 0.48 in 2012 and V O = 0.48 in

2014 and where, as a result, statewide seat proportions were observed in each election.

In this particular case, the results indicate severe bias favoring the Republicans because

of the dramatic seat proportion differences: 1 − Ŝ(1 − 0.48) = 0.6 but Ŝ(0.48) = 0.36

(approximately), and so β̂(0.48) = −0.12. (This election was the subject of the Supreme

Court case, Gill v Whitford, 585 U.S. (2018).)

4.2 Functional Form Assumptions

To estimate the entire seats-votes curve without more data requires assumptions. One

type of assumption is to specify a class of parametric functional forms for the seats-votes

relationship and to estimate the parameters of that form with (usually up to about) five

data points. Two examples of this form are linear (Tufte, 1973),

S(V ) = α0 + α1V, (3)

and (reusing parameters α0 and α1) bilogit, (King and Browning, 1987):

S(V ) =
1

1 + exp
[
−α0 − α1 ln

(
V

1−V

)] , (4)

In each equation, α0 and α1 are related in different ways to partisan bias and electoral

responsiveness, respectively (and since S(V ) in each expression is an expected value, real

data need not fit either form exactly). For example, we drew the fair seats-votes curves in

Figure 1 with α0 = 0 for all four and α1 = {0.5, 1, 3, 10, 000} (10,000 being a sufficiently

close approximation, for our figure, to winner-take-all, which is α1 →∞).
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Once we estimate the seats-votes curve, we can then read off the point estimate of

S(V ) (along with its uncertainty) given any chosen V . This method works well, and en-

ables one to compute partisan bias or any quantity of interest from the resulting estimated

curve, along the appropriate level of uncertainty.

Unfortunately, the few available observations from one redistricting plan means that

the result is often quite uncertain and model dependent (and nonparametric approaches are

not reasonable options). As such, this strategy tends to be used more often for academic

study of broad patterns across many electoral systems than for practical use evaluating

individual redistrictings shortly after or before they take effect.

4.3 Partisan Swing Assumptions

An alternative approach is to use as inputs the set of district-level vote proportions in at

least one election held under the redistricting plan of interest. From this, we can compute

a easily estimate a single point on the seats-votes curve, S(V O), at the observed statewide

vote V O. To estimate other points, we need an assumption to generate other hypothetical

elections from the same electoral system, for different points V .

To develop an assumption we note that patterns in electoral data throughout the US and

most parts of the world can be decomposed into (a) the absolute average partisan swing

from one election to the next that tends to affect almost all districts and (b) the relative

positions of district votes within any one election. The relative district vote positions

tend to remain highly stable over time and so are quite predictable, whereas the statewide

swings over time are more volatile and harder to predict. Fortunately, the relative positions

are more important for evaluating redistricting than the absolute swings.

A simple and remarkably accurate assumption that identifies S(V ) for any V is uni-

form partisan swing:

Assumption 3. [Uniform Partisan Swing (Butler, 1951)] When the average district vote

swings between elections under the same electoral system from V to V ′, every district

vote proportion moves uniformly by δ ≡ V ′ − V , so that {v1, . . . , vL} from one election

becomes {v1 + δ, . . . , vL + δ} in the next (with elements truncated to [0,1] if necessary).
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Given Assumption 3, we can use the observed district-level votes from one election,

{v1, . . . , vL}, and a chosen swing δ to estimate the seat proportion in the new election

under the same electoral system: Ŝ(V + δ) = meand[s(vd + δ)], which is single-valued.

We also study the empirical accuracy of estimates of the seats-votes function under

uniform partisan swing. Our quantity of interest here is the out-of-sample error rate for

the statewide seat proportion using uniform partisan swing for one election that is iden-

tical in all respects to the previous one — including candidates, the campaign, spending,

weather on election day, patterns of incumbency, etc. — except for the statewide partisan

swing and the usual random uncertainties in voter preferences. Finding pairs of observed

elections like these is obviously impossible, and so we instead use successive elections

within the same redistricting regime. The consequence of this decision is that our esti-

mated out-of-sample error rate is an upper bound on the actual errors of uniform partisan

swing-based predictions. To be specific, we begin with all data from all regular elections

to the lower house and state sentate in US state legislatures 1968–2016. We narrow these

to the 646 elections for legislatures with all single member districts, at least 20 districts,

with at least half the seats contested, and where no redistricting has occurred between this

election and the one before.5

Thus, for each of 646 elections, we use the district-level vote proportions in election

1, the statewide swing to election 2, δ = V O
2 − V O

1 , and the uniform partisan swing

assumption to predict the expected statewide seat proportion for election 2, S2(V
O
2 ). We

do not observe this expected value and so use the observed election 2 seat share Ŝ2(V
O
2 )

(as a model-free estimate of the expected value) for validation. The error metric for the

prediction Ŝ1(V
O
2 ) is then simply Ŝ2(V

O
2 )− Ŝ1(V

O
2 ).

The left panel of Figure 2 gives a histogram of these out-of-sample prediction errors

from uniform partisan swing. As expected, results reveal highly accurate predictions, with

a median error of 0.0000, a mean error of−0.001 (one tenth of one percentage point), and

an interquartile range of only [−0.025, 0.021]. And recall that these numbers are upper

bounds.
5Following Gelman and King (1994b), we impute uncontested districts at 0.75 for Democratic wins and

0.25 for Republican wins, although this has no material impact on our results.
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Figure 2: Error rates of out-of-sample statewide seat proportion predictions based on
the assumption of uniform partisan swing: histogram of errors (left panel) and errors by
statewide partisan swing, δ, from the observed election to the next where we are predicting
the seat proportion.

We also use these data to study how fast uniform partisan swing-based predictions

degrade as we extrapolate farther from the original data, that is when the statewide vote

swing is larger. Thus, the right panel of Figure 2 plots the prediction error by the size of

the statewide vote swing, δ. Remarkably, the graph shows that predictions do not seem

to degrade at all for larger swings (i.e., as δ deviates from zero). The implication is that

uniform partisan swing is a relatively fixed feature of elections, with the more difficult-

to-predict component mostly relegated to statewide voter swings, which happen not to be

important for studying partisan symmetry.

In our data, and in many elections all over the world, the uniform partisan swing

assumption is a reasonable first approximation, especially for theoretical purposes like

ours. What Assumption 3 ignores is that the world is stochastic and so is less useful for

some empirical purposes. The simplicity can also generate inefficiency due in part to

discreteness (Nagle, 2015, p.351). We can thus generalize the deterministic uniform par-

tisan swing assumption either directly via stochastic modeling (King, 1989) or statistical

modeling:

Assumption 4. [Stochastic Uniform Partisan Swing (Gelman and King, 1994a)] Hypo-
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thetical (denoted “(hyp)”) district-level vote proportions, under the same electoral sys-

tem, are generated as

v(hyp)
d = Xdθ + γd + δ(hyp) + ε(hyp)

d , (5)

where Xd is a vector of covariates describing the districts, candidates, voters, and lagged

vote; θ is a vector of effect parameters; γd is an independent random normal district

effect that is constant over hypothetical elections but varying over districts; δ(hyp) is the

researcher-chosen uniform swing; and ε(hyp)
d is a stochastic normal error term, indepen-

dent of γ and over d.

Assumption 3 is a special case of Assumption 4 and is thus less restrictive, more realis-

tic, and more statistically efficient, and so should be used whenever it makes a difference,

such as in most substantive or applied work. For our theoretical and methodological pur-

poses, we will usually use the simpler Assumption 3 in this paper to ease exposition, in

part because we analyze so many districts that inefficiency is a minor issue and because

relevant empirical patterns of voter behavior are extremely regular across most elections

in most countries (King, Rosen, Tanner, and Wagner, 2008, p.952).

4.4 Forecasting Assumptions

Political scientists, redistricters, legislators, and those involved in redistricting litigation

are often in the position of having to evaluate one or more redistricting plans before any

elections have been held under the plan. To do this, the underlying data are forecast at the

precinct level, the lowest level at which electoral data are observed, and aggregated into

the new districts. Fortunately, the relative positions of the districts are the most important

and also the most predictable, and so these are what we focus on.

The creation of these forecasts typically involves two steps. First, influential district-

level variables measuring candidate characteristics, such as incumbency advantage and

uncontestedness, are corrected for. This is typically done by estimating the effects of these

variables in a simple district-level analysis (such as by estimating θ in Equation 5) and then

subtracting them out from the raw precinct-level variables. And second, several years of

these corrected precinct-level variables are forecast, typically using simple autoregressive

23



models, which are quite accurate. After aggregating, the methods in Section 4.3 can be

used directly.

4.5 Models of Individual Voters

Throughout most of the literature, researchers condition on the district vote proportions

and treat them as fixed quantities. Understanding the motivations of voters that give rise

to these vote proportions, and building the models useful for understanding them, turn out

to be unnecessary to the definition, standard, or measures of partisan symmetry. However,

the aggregate patterns, such as (stochastic) uniform partisan swing, are so stable and pre-

dictable over time and across jurisdictions that they ought to be of use for building models

of individual voters and their motivations and, at the same time, verified models of in-

dividual voters may well turn out to further inform the study of fairness in district-level

democracies. Further research in these areas is surely warranted. See Ansolabehere and

Leblanc (2008), Ansolabehere, Leblanc, and Snyder (2012), Coate and Knight (2007),

and Cox and Katz (1999).

5 Evaluating Fairness Measures

We now evaluate several measures of partisan fairness in district-based electoral systems.

For each, we identify the corresponding estimand and implied notion of fairness.

5.1 Estimation from Seats-Votes Curves

A straightforward way to estimate a feature of the seats-votes curve is to begin with an

estimate of the entire curve, using one of the assumptions in Section 4. With the full

curve, partisan bias β(V ), electoral responsiveness ρ(V ), and other quantities are easy

to compute appropriately for any relevant V ∈ [0, 1], ensuring that Assumptions 1 and

2 hold. A few of the important articles computing bias and responsiveness in this way

include Brunell (1999) and Jackman (1994), which use Assumption 4; Erikson (1972),

using the functional form assumption in Equation 3; Gilligan and Matsusaka (1999) and

Niemi and Jackman (1991), using the functional form assumption in Equation 4; and
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Brady and Grofman (1991) and Garand and Parent (1991), which uses a combination of

the functional form assumption in Equation 4 along with Assumption 3.

As an illustration, we estimate partisan bias and electoral responsiveness using data

from 963 legislatures (those 1968–2016 with all single-member districts, at least 20 seats,

and at least half of the seats are contested) via uniform partisan swing (Assumption 3).

Figure 3 plots bias vertically by responsiveness horizontally, both for V ∈ [0.45, 0.55].

The scatterplot shows that bulk of bias results is in [−0.1, 0.1] and responsiveness is in

[1, 3]. The two quantities are uncorrelated in these data, but not independent in that as ρ

increases, |β| declines. This pattern is consistent with the scenario from Section 3.1 where

the redistricter is confident of a statewide majority and so seeks high responsiveness and

is left with low bias.
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Figure 3: Estimates of Partisan Bias and Electoral Responsiveness, both evaluated in the
range V ∈ [0.45, 0.55] in 963 Legislatures

5.2 Proportional Representation

We now discuss several individual measures that do not first estimate the entire seats-votes

curve. For expository reasons, we begin with the simple deviation from proportional

representation measure, PRD(V O) = S(V O) − V O, which is easy to understand and

turns out to fail as a measure of partisan fairness. We explain why and then show how it

is useful for other purposes.
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Under this approach’s standard of fairness, PRD(V ) = 0, we first solve for expected

seats as a function of votes, S(V O) = V O, and then swap V O with V , yielding, S(V ) =

V . This is a coherent seats-votes curve because each value of V produces one value of

S(V ), if we also add Assumptions 1 and 2. This curve appears as the green line in Figure

1, a symmetric electoral system with ρ(V ) = 1, for all V . By writing partisan bias as

β(V ) = {S(V ) − [1 − S(1 − V )]}/2 = {PRD(V ) + PRD(1 − V )}/2, we can see that

the proportional representation standard is a special case of partisan symmetry (because

PRD(V ) = PRD(1− V ) = 0 implies β(V ) = 0 for all V ), but partisan symmetry is not

a special case of proportional representation (because β(V ) = 0 whenever PRD(V ) =

PRD(1− V ), even if PRD(V ) 6= 0; see the other lines in Figure 1).

Although the proportional representation standard of PRD(V O) = 0 is theoretically

coherent, PRD(V O) is inadequate as a measure of partisan symmetry. The problem is that

V O and S(V O) produce only a single model-free estimate of a point on the seats-votes

curve, which is insufficient for estimating the entire curve or partisan symmetry, because

the second term in β(V O) = [PRD(V O) + PRD(1 − V O)]/2 is unobserved without

further assumptions. For example, the election outcome S(0.6) = 0.6 is consistent with

the proportional representation standard because it falls on the line S(V ) = V , which is

proportional and symmetric. However, the same observed point is also consistent with

the flat line S(V ) = 0.6 (for all V ) or with 1 − S(1 − 0.6) = 0, neither of which are

proportional, symmetric, or fair.

Although the deviation from proportional representation in one election is thus not

a general measure of partisan symmetry, it can be informative about its more specific

standard (β(V ) = 0 such that ρ(V ) = 1): Although PRD(V O) = 0 offers no information

one way or the other, PRD(V O) 6= 0 implies that this specific standard should be rejected.

This may be useful on its own, but to go further requires estimating relevant points on the

seats-votes curve via the assumptions from Section 4.

However, even when completely uninformative about partisan symmetry, PRD(V O)

is still an interesting and politically relevant summary of the outcome of an election.

Certainly, small minority parties will want to know whether they receive at least some
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seats and so may compare it to their vote proportion as at least a benchmark. A forecast

of PRD(V O) would likely influence whether a small minority party would even compete

in many districts or be likely to attract significant campaign contributions.6

5.3 Mean-Median

The mean-median measure summarizes skewness in the distribution of district votes via

an easy-to-calculate difference: MM = V O−M , where V O is the average district vote and

M is the median district vote, implicitly defined as 1
L

∑
vd>M 1 = 1

2
. Fairness according

to this measure is when MM = 0. The measure is claimed “to reliably assess [partisan]

asymmetry in state-level districting schemes” (Wang, 2016a, p.367). Essentially the same

claim appears in Wang (2016b), Krasno, Magleby, McDonald, Donahue, and Best (2018),

and McDonald and Best (2015), among others. Although no proof of this claim has

appeared in the literature, we show that it is correct in different ways for two distinct

theoretical quantities, vote- and seat-denominated partisan bias. In the first, we prove that

MM provides important but limited information about β(V ); in the second, we show that

MM is a more generally useful measure of the alternative theoretical quantity VDB(S)

from Section 2.2.6.

A Limited Measure of Seat-Denominated Partisan Bias. We begin by showing, under

Assumptions 1, 2, and 3, that MM = 0 if and only if β̂(0.5) = 0. Formally,

β̂(0.5) = Ŝ(0.5)− 0.5 (by definition) (6)

=

∑
vd>V O 1

L
− 0.5 (Assumption 3)

=

∑
vd>M 1

L
− 0.5 (Assuming MM=0) (7)

= 0.5− 0.5 = 0

As an estimate of β(0.5), the mean-median measure has two limitations (in addition

6In practice, single member district, first-past-the-post electoral systems rarely turn out to be approxi-
mately proportional (see Figure 3). Paradoxically, even many electoral systems that impose proportional
representation at the statewide level wind up with considerable asymmetry, given how they are applied in
complicated multiparty contexts (see Grofman and King, 2007, fn.37). In the US, the Supreme Court has
been explicit: “the Constitution provides no right to proportional representation” as a standard for American
elections (Vieth v. Jubilerer, 541 U.S. 267 (2004)).
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to the effects of discreteness; Nagle 2015). First, although our proof shows that MM is a

useful indicator for whether β(0.5) is zero, and so could be used for a hypothesis test, it

is not a general measure of β(0.5), as we have no proof that it is an unbiased or consistent

estimator since the magnitude is not known to be correct when other than zero.

Second, if the electoral system is biased at a point other than V = 0.5, the mean-

median measure will not necessarily reflect overall partisan symmetry (see right panel,

Figure 1). Consider an election with 10 districts and the following vote proportions:

{.48, .49, .49, .49, .59, .61, .65, .65, .65, .90}.

From these data, and the assumptions above, MM = β̂(0.5) = 0, which would enables us

to conclude that an aspect of the electoral system is fair. However, without any additional

assumptions, we can show that in fact other aspects of the electoral system can be biased.

For example, if the Democratic party receives an average district vote of V O = 0.6 (the

observed value of these district proportions), they would win a Ŝ(V O) = 0.6 seat pro-

portion but, when the Republicans receive the same 1 − V O = 0.6, they would win a

remarkable 1− Ŝ(1− V O) = 0.9 of the seats, which is a 30 percentage point difference.

This means that β̂(0.6) = −0.15. In this example, the mean-median measure indicates

that the electoral system represented is fair, but it is instead quite unfair. How often β(0.5)

differs from other values of β(V ) is an empirical question that is worth further study and

not necessarily a problem for the mean-median measure, which is still a valid measure of

one important quantity of interest, β(0.5).

A Better Measure of Vote-Denominated Partisan Bias. More interestingly, we can

prove that MM is a valid estimator of the quantity VDB(0.5). With Assumptions 1, 2, and

3, we have:

VDB(0.5) = −{V (S)− [1− V (1− S)]}/2 (by definition)

= 0.5− V (0.5)

= V −M (Assumption 3)

≡ MM
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If we use the more realistic Assumption 4 in place of Assumption 3, it is easy to show that

MM is a statistically consistent estimator of VDB(0.5). Either way, this proof is important

because, although the magnitude of MM has no clear relationship to β(0.5), it is correct for

the alternative quantity VDB(0.5), making the mean-median measure an easy-to-calculate

and accurate estimator of this unusual but still coherent theoretical quantity.

5.4 Lopsided Outcomes

Wang introduces the lopsided outcomes test and claims it can be used “to reliably assess

[partisan] asymmetry in state-level districting schemes,” (Wang, 2016b, p.1263), or “to

detect. . . ” or “identify partisan asymmetry” (Wang, 2016a, p.368). We show here that

this claim is false, and along the way describe other more productive uses of the measure.

Begin by denoting the average Democratic vote in Democratic-won districts as D =∑
d s(vd)vd/

∑
d s(vd) and the average Democratic vote in Republican-won districts as

R =
∑

d[1 − s(vd)]vd/
∑

d[1 − s(vd)] which implies R < 0.5 < D. Then we write an

accounting identity with the average district vote as a weighted average of Democratic

and Republican seat shares, V = S(V O)D + [1 − S(V O)]R, and solve for the generic

seats-votes relationship, all without assumptions:

S(V O) =
V O −R
D −R

. (8)

Equation 8 is true by definition, but swapping V O for V is not sufficient to define a coher-

ent seats-votes curve because S(V ) is not single-valued. The presence of R and D on the

right side, which are functions of V , means that we need more constraints to ensure S(V )

has only one value. Only at that point can we add Assumption 2 and evaluate the claim

that the resulting seats-votes curve meets the partisan symmetry standard. So the question

for any measure is whether it imposes these sufficient constraints.

The lopsided outcomes measure is defined as the simple party difference in the average

win size:

LO = D − (1−R). (9)

This measure seems intuitive because packed districts is sometimes a characteristic of

successful partisan gerrymandering but, as Section 3.1 shows, the intuition is often wrong
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because packing (and cracking) can be counterproductive. The measure deserves credit

as a fine measure of the skewness of the vote proportion distribution, since nonskewness

implies that the center of mass on either side of vd = 0.5 will be equidistant from this

midpoint. A forecast of this measure may indeed be useful to partisans or others trying to

understand the competitive playing field, and what it takes on average to win a district for

their party.

Unfortunately, lopsided outcomes is not necessarily related to partisan symmetry. To

show this, we now study how Equation 9 is constrained by the measure’s notion of fair-

ness, LO = 0. Thus, by substituting D = 1−R into Equation 8, we have:

S(V O) =
V O −R
1− 2R

. (10)

Unfortunately, after substituting V O with V , we are still left with multiple values of S(V )

for any one V , because of the presence of R on the right side which indicates the lack

of a coherent seats-votes curve. This means that the lopsided outcomes test, and the

implied set of multiple seats-votes curves it considers “fair”, can be consistent with either

symmetry or asymmetry. As a result, LO does not imply particular values of β(V ) and is

not a measure of (the deviation from) partisan symmetry.

Thus, to construct an example, we add information the framework omits in the form of

Assumption 3. We then construct examples of votes from three hypothetical legislatures:

{.15, .15, .15, .65, .65, .65, .65, .65, .65, .65, .50, .70} (11)

{.18, .18, .28, .43, .43, .53, .53, .78, .78, .88., .50, .50} (12)

{.40, .40, .40, .40, .40, .60, .60, .60, .60, .60., .50, .50} (13)

and then compute partisan bias and LO for each. The inconsistency is apparent: Legisla-

ture (11) is judged fair by the lopsided outcomes test but is in fact asymmetric (LO = 0,

β̂(V O) = β̂(0.5) = 0.2). Legislature (12) is judged unfair by lopsided outcomes but is

in fact symmetric (LO = 0.08, β̂(V O) = 0). And Legislature (13) is also judged fair by

lopsided outcomes and is in fact symmetric (LO = 0, β̂(V O) = 0).
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5.5 Declination

Warrington (2018a, p.2) introduced a measure called declination and claims it “is a mea-

sure of partisan symmetry” (or “a new measure of partisan asymmetry”; Warrington

2018b). We prove that this claim is incorrect, but along the way convey the measure’s

intuition and potential descriptive uses.

Warrington found a clever geometric interpretation of his measure, intuitive from the

perspective of his field of mathematics, by defining it as DECLINATION = 2(θD − θR)/π,

where θD = arctan[(2D − 1)/S(V O)] and θR = arctan{(1 − 2R)/[1 − S(V O)]}. For

our intended audiences (mostly in social science and statistics), the measure is easier

to understand without the arctan transformation or constant normalizations, which only

adjust the scale. We thus define the un-normalized declination,

DEC =
D − 0.5

S(V O)
− 0.5−R

1− S(V O)
. (14)

Equation 14 (which can be thought of as a normalized version of lopsided outcomes; cf.

Equation 9) is similar to the difference in the magnitude of electoral responsiveness on

each side of V = 0.5. This is important because under partisan symmetry the difference

in (actual) responsiveness is zero. The problem is that responsiveness is a change in votes

divided by a change in seats (see Definition 3), whereas each of the two terms in DEC is

a change in votes divided by an absolute seat proportion. That means that DEC is not an

unbiased measure of partisan symmetry, but is closely related and also serves as another

measure of the skewness of the distribution of district vote proportions.

To formally prove the connection between declination and partisan symmetry, we con-

sider how its notion of fairness, DEC = 0, constrains the generic Equation 8. The result

is:

S(V O) =
D − 0.5

2D − 0.5− V O
. (15)

As with lopsided outcomes, even after swapping V O for V , S(V ) is not a single-valued

function of V and so, even under its notion of “fairness”, is not a coherent seats-votes

curve. That is, we can try to adjust V to see how S(V ) changes, but how D changes with

V is left unspecified which leaves many possible values of S(V ). The proposed standard
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is thus consistent with both symmetric and asymmetric seats-votes curves and, as such,

declination not a measure of partisan symmetry.

In parallel to Section 5.4, we now offer examples of these inconsistencies with three

hypothetical 10-district legislatures:

{.30, .30, .40, .40, .40, .45, .65, .65, .65, .80, .50, .40} (16)

{.33, .33, .48, .48, .48, .53, .53, .56, .63, .63, .50, .50} (17)

{.33, .33, .48, .48, .48, .53, .53, .56, .63, .63, .50, .50} (18)

As in Section 5.4, we add missing information in the form of Assumption 3 and compute

partisan bias and DEC. We find that Legislature (16) is judged fair by declination but is in

fact asymmetric (DEC = 0, β̂(0.5) = −0.1, β̂(V O) = −0.05). Legislature (17) is judged

unfair by declination but is in fact symmetric (DEC = −0.36, β̂(0.5) = β̂(V O) = 0). And

Legislature (18) is also judged fair by declination and is symmetric (DEC = 0, β̂(0.5) =

β̂(V O) = 0).

5.6 Efficiency Gap

Stephanopoulos and McGhee (2015) introduce the efficiency gap and claim it is “a new

measure of partisan [a]symmetry” (quote repeated on pages 831, 834, 838, 849, and 899).

We prove that this claim is false, and also convey the intuition and productive uses of the

measure.

The efficiency gap redefines the classic definition of “wasted votes” from all votes

cast for losing candidates (Campbell, 1996) to votes for losing candidates plus those for

winning candidates above the 50%-plus-one-vote threshold. The article then claims that

partisan symmetry is satisfied when these wasted votes are equally divided between the

parties. We show that this claim is incorrect. Although the efficiency gap is controversial

(Chambers, Miller, and Sobel, 2017; Cho, 2017; Tapp, 2018), it comes with important

intuition worthy of further study and the authors deserve substantial credit for bringing

many, including the U.S. Supreme Court, back to this venerable field (see Gill v. Whitford,

585 US (2018); see Stephanopoulos and McGhee 2018).
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The intuition for the efficiency gap works best in highly competitive situations, when

one party is in control of redistricting and running scared (Section 3.1). Here, redistricters

will often try to pack and crack and thus often reduce wasted votes. In other situations,

such as when confident of a statewide vote majority, packing is against the redistricter’s

interests. At this point, the efficiency gap becomes confused; for example, if a party

receives 80% of the votes and all the seats, the measure indicates that the electoral system

treats it unfairly (see also Veomett, 2018).

To formalize, denote the proportion of wasted votes in district d for Democrats as

wd = vd − s(vd)/2 ∈ [0, 0.5] and Republicans as (0.5− wd) = (1− vd)− [1− s(vd)]/2.

Then define the efficiency gap as:

EG(V O) =

∑
d nd(0.5− wd)−

∑
d ndwd∑

d nd

(19)

= S(V O)− 2V O + 0.5− C, where C = 2

∑
d tdwd∑
d nd

(20)

where td = nd −meand(nd) (see McGhee 2017).

We can solve this expression as S(V O) = 2V O − 0.5 + C. However, because C

is a function of V , a single-valued seats-votes function does not result, which violates

Assumption 1. Stephanopoulos and McGhee (2015, p.853) tried to remove the problem

by assuming turnout is constant, which implies C = 0 but, because this claim is always

observable, making it an “assumption” does not make sense. A minimally necessary

condition for which C = 0 is Cov(td, wd) = 0, but this too does not solve the problem

since this covariance is rarely zero.

This result means that the claims for the efficiency gap are mistaken: it is not a measure

of partisan symmetry. The slope of the implied seats-votes curve is not 2 since it does not

imply a coherent seats-votes curve. The claim that the efficiency gap and partisan bias

“are mathematically identical in the special case in which both parties receive exactly 50

percent of the vote” (p.856) is incorrect. The claim that “a party can win more than half

the seats with half the votes only by exacerbating the efficiency gap in its favor” (p.856)

is also untrue.
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5.7 Corrected Efficiency Gap

We give the efficiency gap idea the benefit of the doubt here with the same simplicity

sought in Stephanopoulos and McGhee (2015) by computing a corrected efficiency gap

(CEG). This measure involves moving C to the left side of the Equation 20, and defining:

CEG(V O) ≡ EG(V O) + C = S(V O)− 2V O + 0.5 (21)

(cf. McGhee 2017, p.427ff). We study this measure’s standard of fairness CEG(V O) = 0

by solving Equation 21 for S(V ), adding Assumptions 1 and 2, and writing what turns

out to be a coherent (single-valued) seats-votes curve:

S(V ) = 2V − 0.5. (22)

The assumed fair seats-votes curve in Equation 22 meets the partisan symmetry stan-

dard in Definition 1 because S(V ) = 2V − 0.5 = 1− [2(1− V )− 0.5], but it is a special

case because of the additional constraints of a slope of ρ(V ) = 2 for V ∈ [0.25, 0.75] and

ρ(V ) = 0 for V 6∈ [0.25, 0.75]. For intuition, we plot this seats-votes curve as the red line

in Figure 4; note that all four symmetric electoral systems in Figure 1 would be judged

unfair according to this standard. Equation 22 is a restrictive and unpopular normative

standard (e.g., Chambers, Miller, and Sobel 2017, p.16 and McGann, Smith, Latner, and

Keena 2015, fn.1), but it is coherent and so meets Assumption 1.

We move now from the fair seats-votes curve assumed under the efficiency gap frame-

work to estimation. Unfortunately, an estimated CEG in one election is insufficient to de-

termine whether the electoral system is symmetric. In particular, β(V O) = [CEG(V O) +

CEG(1 − V O)]/2 equals zero only when CEG(V O) = −CEG(1 − V O). However, an

election with 1− V O is unobserved and so CEG(1− V O) is not identified, nor is β(0.5)

or β(V ).

To be more specific, we add to the left panel of Figure 4 a real election outcome, the

1996 state house in Kansas (a black diamond). In this election V O = 0.44 and S(V O) =

0.39. Because the data indicate that CEG(V O) ≈ 0, it falls on the red line. Yet, this does

not indicate that the electoral system in Kansas treated the two parties equally. To see this,

compare it to the full seats-votes curve estimated via the highly accurate uniform partisan
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Figure 4: Seats-Votes Curves based on assumptions from the efficiency gap and uniform
partisan swing

swing (Assumption 3). We add this (blue) line to the left panel in Figure 4. The results

demonstrate that the 1996 Kansas election with CEG(V O) ≈ 0 was in fact substantially

biased in favor of the Republicans: β(0.5) = −0.08. Thus, the Kansas electoral system

in 1996 was highly unfair, even though the (corrected) efficiency gap measure indicated

that it was fair.

We also study whether this measure happens to work empirically. We do this in the

right panel of Figure 4, which plots CEG(V O) horizontally by β(0.5) (computed by as-

suming uniform partisan swing) vertically for 963 legislatures. This panel does indi-

cate a positive correlation between the two measures, as we might expect, but with re-

markable error in CEG around the prediction for any observed vote. For example, when

CEG(V O) ≈ 0, β(0.5) varies over [−0.2, 0.2].

More generally, the partisan symmetry standard requires estimating β(V ) = 0 for all

V .7 In contrast, the standard of fairness according to the corrected efficiency gap is a more

demanding inferential task requiring one to verify that β(V ) = 0 for all V , ρ(V ) = 2 for

7Although Stephanopoulos and McGhee (2015, p.854) claim that an advantage of the efficiency gap
is that it “does not require any counterfactual analysis” (p.854), but on the same page and elsewhere they
require counterfactuals even before they encourage counterfactual sensitivity testing. Moreover, almost any
evaluation of fairness, including even the basic plurality voting rule in a single member district, requires a
counterfactual analysis.
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V ∈ [0.25, 0.75], and ρ(V ) = 0 otherwise. Thus, this framework typically requires data

from more elections, or more assumptions, than other approaches. With one data point

falling on the red line from the left panel of Figure 4, one cannot determine whether the

election is fair or not; if the point falls off the red line, then this standard is not met but

the election may still be treating both parties equally.

6 Inference: Uncertainty Estimates and Simulation

We now discuss uncertainty estimates (such as standard errors, confidence intervals, hy-

pothesis tests, and posterior distributions) for existing measures, and then turn to ap-

proaches to uncertainty based on simulating distributions of possible redistricting plans.

Since the seats-votes curve as we have conceptualized it is a conditional expected

value, classical uncertainty estimates can be easily computed for measures based on func-

tional form assumptions (Section 4.2), stochastic uniform partisan swing (Assumption

4), or stochastic forecasting-based methods (Section 4.4). Classical uncertainty estimates

can be computed for the mean-median as an estimate of vote-denominated bias; for seats-

denominated bias, it can only be used as a hypothesis test with a null constructed via

bootstrapping. Other proposed measures either are deterministic (Assumption 3) or are

not defined separately from the quantity of interest and so implicitly have no uncertainty,

but their actual uncertainty could be computed by switching to a similar method that re-

spects uncertainty (such as from uniform to stochastic uniform partisan swing), by boot-

strapping, or by identifying some quantity of interest that they estimate.

An alternative approach, called “simulation”, “outlier”, or “ensemble” analysis, at-

tempts to compare an actual redistricting plan to an enumerated list of all possible redis-

tricting plans constrained to fit the geography of the state and sometimes other criteria

such as contiguity, compactness, and not splitting local political subdivisions (Chen and

Rodden, 2013; Chikina, Frieze, and Pegden, 2017; Duchin, 2018; Magleby and Moses-

son, 2018). Because the number of possible plans is unmanageably large, the goal of the

literature has been to approximate the full list by random sampling (in contrast say to dis-

tributions of actual plans from other states that do not retain the constraints Wang 2016b).
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Unfortunately, drawing maps purely randomly is also an unsolved problem for realistic

sized legislatures (Fifield, Higgins, Imai, and Tarr, 2018). If this sampling problem is

eventually solved, or if we restrict applications to very small legislatures such as a small

city council, there remains the question of how to interpret the results. We discuss four

options.

First, sampling can be used for “producing a large set of legally viable maps with

respect to multiple criteria” (Cain, Tam Cho, Liu, and Zhang, 2017, p.1538), which can

be useful for conveying what is possible, such as examples of plans with de minimis levels

of partisan bias while also meeting other criteria. The approach would also be useful to

demonstrate that plans with certain characteristics are impossible to draw given the state’s

geography, which can be compelling in applications (e.g., Chen and Rodden 2013, §5 and

Duchin, Gladkova, Henninger-Voss, Klingensmith, Newman, and Wheelen n.d.).

Second, some seek to use this approach to compute how extreme a proposed plan

is to all possible plans, without any probabilistic structure. One issue here is that the

measure is not defined separately from the fairness standard, which is thus invulnerable

being to being proven wrong or improved. Another issue is that extremity, as a purely

relative indicator, is of dubious value: Should we judge a plan to be fair if it is at the

50th percentile of all possible plans (i.e., not extreme) but, when the parties split the vote

equally, the Republicans receive 85% of the seats? Should we judge a plan to be unfair

if it was more extreme on partisan bias than 99.99% of other plans but, when the parties

split the votes equally, they split the seats equally?

Third, some uses of this approach implicitly put a probabilistic structure over ran-

domly drawn plans, most often by imposing a uniform probability distribution. Although

this imputed distribution has been compared to estimating the “cone of uncertainty” in

hurricane predictions (Brief for Amicus Curiae Eric S. Lander in support of Appellees,

Gill v Whitford, 585 US (2018)), the analogy does not hold. The cone of uncertainty is a

posterior distribution of probable outcomes based on informative data, whereas the uni-

form distribution in this case is a prior without justification or evidence regarding what is

likely, desirable, or fair (based on something like Laplace’s discredited “Principle of In-
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sufficient Reason”). A uniform distribution of locations for hurricane predictions would

encompass the entire globe. In real redistricting cases, naive judges or special masters

sometimes propose drawing plans randomly, or arbitrarily like a checkerboard, at which

point experts on all sides object strenuously because of the likelihood of unintended con-

sequences.

Fourth, a better use of this approach would be to try to follow the logic of hypothesis

testing, for which we require a null probability distribution, such as the distribution of

β̂(0.5) given β(0.5) = 0. If we could draw plans in this way, we would have a proper

hypothesis test and a measure of extremity with substantive meaning. However, this dis-

tribution is not identified, and so cannot be estimated, from random uniform draws. Re-

jection sampling to ensure that all draws have β̂(0.5) would be useful to show what is

possible, but it would not be a null distribution given β(0.5) = 0.

Finally, we construct a coherent probabilistic interpretation that could be used in this

setting for a specific purpose. Suppose a redistricter claims that the only criteria used

in selecting a plan was (say) contiguity, compactness, and equal population. The choice

among plans that meet these criteria, then, is by definition random (formally because all

plans that meet the three criteria are exchangeable). That then imposes a known prob-

ability distribution on the set of all possible plans that meet the criteria, giving equal

probability to each (and 0 to any other). We then have a coherent hypothesis test: Choose

a criterion that was not one of the original three, such as partisan bias. Then under the null

— which is that no information was used in drawing the plan other than the three criteria

— the probability of observing partisan bias as or more extreme is where estimated parti-

san bias in the proposed redistricting plan falls on the percentile of this distribution. This

is then a coherent hypothesis test that gives meaning the claim that a plan is “extreme”.

Such an observation might be of use where redistricters were required to only use a spe-

cific set of delineated criteria, or they were defending themselves by claiming they did not

use political variables. In most contexts, however, redistricting works in the opposite way,

with the legislature retaining full discretion to draw any plan it chooses, using whatever

criteria it chooses, so long as it does not violate the state constitution, state and federal
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law, or judicial rulings. The choice among plans that satisfy these rules is explicitly left to

the legislature. The hypothesis test might be useful in a court case if a redistricter makes

an (ill-advised) comment that he or she did not use any criteria other than some specific

set, but other than that it is hard to see the use of this.

7 Concluding Remarks

The literature on partisan fairness in district-based electoral systems dates back more than

a century, which spans the invention of most of modern statistics. This time period even

includes the invention of what is now a fundamental principle of statistical inference —

having separate notation and conceptualization for the estimator and the quantity of in-

terest being estimated — and all the ways of using this principle to evaluate and improve

statistical estimators. We update the venerable partisan fairness literature by applying

this statistical principle. We reveal essential assumptions not discussed or formalized

and shore them up with extensive empirical evaluations when observable implications are

available. We also prove that some ideas claimed to be measures of partisan symmetry

are in fact measures of this concept or are biased or otherwise limited.

Our main goal has been to build a more solid foundation for this literature so that the

progress that has been made will continue. We hope that as future researchers develop new

measures of partisan fairness they are better able to evaluate them given our framework.

This may include simple measures that are easy to compute, more sophisticated statistical

models that push forward the frontier of statistical estimation, and other types of concepts

such as those which are process-oriented (e.g., nonpartisan redistricting commissions) or

those which adjudicate trade offs between partisan fairness and other goals such as racial

fairness, representing communities of interest, compactness, and others.
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