

Two Pillars of NLP

Representation

• How to represent language to machines?

Modelling

How to model language statistically?

Simultaneously solved by DL models, e.g. transformers

Models have different emphases

BERT

Openaiembedding

GPT

ChatGPT

Representation: Words

• Unlike pixel, meaning of word are not explicitly in the characters.

- Word can be represented as number index
 - But indices are also meaningless.
- List of feature attributes (dictionary entry)
 - {Part of Speech, description, usage,...}
 - What are those features, how to design those?

Words in a sentence I love cats and dogs.

Token Index 328, 793, 3989, 537, 3255, 269

See synonyms for cat on Thesaurus.com

noun

- 1 a small domesticated carnivore, Felis domestica or F. catus, bred in a number of varieties.
- 2 any of several carnivores of the family Felidae, as the lion, tiger, leopard or jaguar, etc.
- 3 Slang.
 - a a person, especially a man.
 - b a devotee of jazz.

SEE MORE

verb (used with object), cat·ted, cat·ting.

- 15 to flog with a cat-o'-nine-tails.
- 16 Nautical. to hoist (an anchor) and secure to a cathead.

verb (used without object), cat-ted, cat-ting.

17 British Slang. to vomit.

Representation: Word as Vectors

- Represent words in a vector space
 - Encode features in a distributed way.
 - Vector distance ⇒ similarity
 - Vector geometry ⇒ relation.
- Desirable features
 - Part of speech / usage (Noun)
 - Relation to other words (cat cats kitten)
 - Perceptual feature (for object.) (cats are cute)

Word as Vectors:

Vector space geometry captures semantic relationship

Arseniev-Koehler, Alina. "Theoretical foundations and limits of word embeddings: what types of meaning can they capture?." *Sociological Methods & Research* (2021)

Word Vector in Context: RNN / Transformers

- Meaning of word depends on context.
 - "I can buy a can of fish."
- Word vectors should depend on context, not just word itself.
- Transformers / RNN let each word "absorb" influence from other words to be contextualized

Word Representation can help ...

- Text classification / understanding
 - Sentiment analysis (happy or angry)
 - Text similarity assessment
 - Information retrieval (find most similar text)
 - Machine translation

What type of training leads to good representation?

Language model

- LM predicts the likelihood of any sequence of words, for a given language corpus*.
 - $p(\text{"This is a fluffy dog."}) = p(w_1w_2w_3w_4w_5) = 0.132 \dots$
 - $p("This are a purple flying dear.") = p(w_1w_2w_3w_4w_5w_6) = 0.0002 ...$

Note:

Each person / author has their individual LM. English marginalize over those.

LM of Shakespeare LM of Trump

Language model

- Given such model, we can use conditional probability to
 - Guess missing words
 - "This _ a fluffy dog."
 - $\arg \max p(w_2|w_1w_3w_4w_5) \to "is"$
 - Predict next words
 - "This is a fluffy ...
 - $arg max p(w_5|w_1w_2w_3w_4) \rightarrow "cat"$
 - Answer questions
 - "The Vatican locates in the city of ...
 - $arg \max p(w_7|w_1w_2w_3w_4w_5w_6) \to "Rome"$

Remark:

By modelling statistics, language model implicitly learns grammar, semantics, common sense, factual knowledge...

Language model can help

- Text generation
 - Code completion
 - Chat bot
 - Text summary
 - Text correction
 - Machine translation

- Text classification
 - Detect spam
 - Authorship attribution
 - (per likelihood comparison of two language models)

E.g. Github Copilot, ChatGPT

```
sentiment.ts
                             parse_expenses.py
                                                 ddresses.rb
               co write_sal.go
 1 import datetime
 3 def parse_expenses(expenses_string):
        """Parse the list of expenses and return the list of triples (date,
       Ignore lines starting with #.
       Parse the date using datetime.
       Example expenses_string:
            2016-01-02 -34.01 USD
           2016-01-03 2.59 DKK
           2016-01-03 -2.72 EUR
       for line in expenses_string.splitlines():
           if line.startswith("#"):
                continue
           date, value, currency = line.split(" ")
           expenses.append((datetime.datetime.strptime(date, "%Y-%m-%d")
                             float(value),
                             currency))
       return expenses
    ⊞ Copilot
```

Write a poem about intelligence in the style of Donald Trump speech Intelligence, it's really tremendous, folks, Believe me, nobody's smarter than I, no jokes. I have a huge brain, the biggest you'll ever see, I'm a stable genius, you can ask anybody. My IQ is through the roof, off the charts, I've got a mind like a steel trap, it's really smart.

Given a text collection, how to learn language model?

$$p("This is a fluffy dog.") = p(w_1w_2w_3w_4w_5)$$

- Joint density of a sequence is hard to model...
- Autoregressive LM: Sequential factorization $p(w_1w_2w_3w_4w_5) = p(w_1)p(w_2|w_1)p(w_3|w_1w_2)p(w_4|w_1w_2w_3)p(w_5|w_1w_2w_3w_4)$
 - Model next word probability given all previous words.
- Classic example: Bi-gram / N-gram model $p(w_1w_2w_3w_4w_5) \approx p(w_1)p(w_2|w_1)p(w_3|w_2)p(w_4|w_3)p(w_5|w_4)$
 - Assume next word only depends on the last word

Masked LM:

$$f(M|w_1w_2w_4w_5) \propto p(w_1w_2Mw_4w_5)$$

• Model the probability of a missing word given all contexts.

Quiz:

How to train a bi-gram language model?

Learning Word Vectors via Language Modelling BERT, GPT & CLIP

Output

- Self-supervised learning of word representation
 - **Autoregressive language modelling:** predict next word (GPT)
 - Masked language modelling: predict missing words (BERT)

 Multimodal Contrastive Learning: matching image and text. (CLIP)

Why language modelling learns good word representation?

"You shall know a word by the company it keeps"

Firth, J. R. 1957:11, A Synopsis of Linguistic Theory

Similar words have similar statistical effect on context

- "I love jogging, so __""I like running, so __"

Similar text may follow ...

- The meaning of a word manifests in its effect on its companion...
 - If two words (A, B) are interchangeable in all context

$$p(w_1w_2Aw_4w_5) = p(w_1w_2Bw_4w_5) \ \forall w_1, w_2, w_4, w_5$$

A and B have the same meaning.

So they should have similar word vector.

Interim Summary:

• Final goal :

- A language model
- A good contextual representation of words, sentence, paragraph.

Learning objective:

- Self-supervised learning (SSL), i.e. Language modelling
 - Predict missing words / next words
- Multi-modal supervision.

Model architecture

• RNN (LSTM, GRU), Transformer, etc.

Part II Attention & Transformer

Origin of Attention: Machine Translation (Seq2Seq)

Use Attention to retrieve relevant info from a batch of vectors.

How to retrieve relevant information?

From dictionary to feature based attention.

From Dictionary to Attention Dictionary: Hard-indexing

- Dictionary maps keys to values
 - 'dic = $\{1: v_1, 2: v_2, 3: v_3\}$ '
 - Keys 1,2,3
 - Values v_1, v_2, v_3
- Query retrieves information related to a key
 - `dic[2]` Query 2
 - Find 2 in keys
 - Get corresponding value.
- Retrieving values as matrix vector product
 - a is one hot vector over the keys
 - Weighted sum the value vectors.

From Dictionary to Attention Attention: Soft-indexing

- Soft indexing
 - a as a distribution over the keys, represents how much information I want from this key.
 - Matrix vector product, weighted combines the values.
- How to compute *a*?
 - Feature based attention: based on similarity of query and key.

Set up

Original sentence

«J'adore» to be

 h_i

- e_i vector of target of attention
 - (encoder hidden state, English)
- h_i vector of source of attention
 - (decoder hidden state, French)

Paying attention (query)

French

translated

to be

Retrieve info

QKV attention

- h_i vector of source of attention
 - (decoder hidden state, French)
- e_i vector of target of attention
 - (encoder hidden state, English)
- Query: what source need
 - (J'adore: "I want subject pronoun & verb")
- **K**ey: what the target provide
 - (I: "Here is the subject")
- Value: the information to be retrieved
 - (information related to Je or J')

QKV attention

- QKV are linear projections of "word vector"
 - Query $q_i = W_q h_i$
 - Key $k_j = W_k e_j$
 - Value $v_j = W_v e_j$

QKV attention

• Compute attention weights a_{ij} by similarity of query and key

Attention Weight a_{ii}

QKV attention

- Use attention weights a_{ij} to weighted sum values $oldsymbol{v}_j$
- The output of attention should contain more useful information, and it's added to the original h_i

Attention matrix

• The attention weights a_{ij} describes the information flows from target to source.

Target of attention e_i

Self-attention input #1 input #2 input #3

Summary: Attention mechanism

- Compute linear projection q, k, v
- Compute the inner product (similarity) of key $m{k}$ and query $m{q}$
- SoftMax the normalized score as attention distribution.

$$a_{ij} = \operatorname{SoftMax}\left(\frac{\boldsymbol{k}_{j}^{T}\boldsymbol{q}_{i}}{\sqrt{len(\boldsymbol{q}_{i})}}\right), \sum_{j} a_{ij} = 1$$

• Use attention distribution to weighted average values v.

$$\mathbf{z}_i = \sum_j a_{ij} \mathbf{v}_j$$

- Note:
 - Learnable weights: linear matrix W_q , W_k , W_v

Multi-head attention

- Often, q, k, v share the same head dim
- Outputs of each head is concatenated back.
 - Often assume head dim × #head = embed dim
- Linear **projected** by W_O for mixing.

Summary: Multi-head attention

- Each head performs a scaled dot-product attention.
- Output of each attention head z_i (weighted sum of value) is concatenated and then linear projected.
- Learnable parameter
 - W_Q , W_K , W_V
 - An output projection matrix W_O (maybe bias b_O)

Note for setting the dimension

- General principle:
 - Vectorized operation is much faster than loops.
 - When weight matrices have the same shape, it's easier to batch them together and vectorize matrix multiplication.
- Some common practice / norm
 - q, k, v vectors share the same head dim.
 - When computing q, k, v all the heads are concat in one axis, then splitted.
 - So, W_Q , W_K , W_V have the same shape [embed dim, head dim \times #head cnt].
 - Mandate head $dim \times \#head \ cnt = embed \ dim$.
 - ⇒ Concat head output has the same shape as the embedding
 - ⇒ input and output of multi-head attention are the same shape.
 - By such, usually W_Q , W_K , W_V , W_O are square matrices of shape $[embed\ dim, embed\ dim]$.

Visualizing attention matrix a_{ij} after training

- Learning to pay Attention
- French 2 English
 - "la zone economique europeenne" →
 "the European Economic Area"
 - "a ete signe" →
 "was signed"

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Cross vs Self Attention

- Cross Attention
 - Source and target are different bunch of vectors (can have different length, number)
 - E.g. words in one language pay attention to words in **another**.
- Self Attention $(e_i = h_i)$
 - Source and target are the same bunch of vectors, with same length, number.

From Attention to TransformerBlock

- A transformer block has
 - Self Attention
 - information exchange between tokens
 - Feed forward network
 - Information transform within tokens
 - E.g. a multi-layer perceptron with 1 hidden layer
 - GeLU activation is commonly used.
 - Normalization (Layer normalization)
- A transformer model contains N x transformer block

Transformer is all you need.

- Position encoding
 - Sinusoidal function
 - Learnt from scratch (position embedding)
- Encoder: process input in parallel
 - Self Attention + FFN
- **Decoder:** generate output autoregressively
 - Masked Self Attention
 - Cross attention (fetch into)
 - FFN

Output Probabilities

Figure 1: The Transformer - model architecture.

GPT architecture

Learned text & position embedding

 Transformer block with causal masked self-attention

• Optional cross attention module for adding conditional info.

GPT1

Interim Summary: Attention

- Attention allows dynamic routing of information.
 - Cross attention: Fetching relevant information from one domain to the other
 - **Self attention**: Mixing information in one domain
- TransformerBlock = Composition of Self / Cross-Attention + MLP + Normalization

Transformer = input embeddings + sequence of TransformerBlocks

Remark on Transformer Architecture

- Transformer is extremely versatile.
 - potentially more general than MLP, weights are dynamically generated.
- Low inductive bias
 - Can learn everything from data
 - At large data limit, low bias is better than manmade bias.
 - On the flip side, it can suffer at small dataset.

Remark on Transformer vs RNN

RNN/LSTM

- **Sequential**: Time complexity $\sim T$
- Hidden states may forget about past words
- Space complexity O(1)
 - Scale to long sequence trivially

Transformer

- **Parallel:** Time complexity ~ 1
- Constant access to all the past / words
- Space complexity $\sim O(T^2)$
 - Limit by memory & position embedding when scale to long sequence

Part III Training language models

Given these models, how to train them?

Learning Word Vectors via Language ModellingBERT, GPT & CLIP

- Self-supervised learning of word representation
 - Autoregressive language modelling: predict next word (GPT)
 - Masked language modelling: predict missing words (BERT)

Multimodal Contrastive Learning: matching image and text.
 (CLIP)

Masked word prediction / Cloze task:

INPUT

BERT = Bidirectional Encoder Representations from

Transformers

• Mask out 15% tokens and predict those [MASK].

• **Bidirectional:** Predict the mask token from context on both sides .

 Transformer Encoder, allto-all self-attention

Suitable for text representation

Next word prediction: GPT = Generative Pre-trained Transformer

- Pre-trained: Each word predict the next word considering all previous words
 - Enforcing causal attention.
 - Enabling text generation
- Generative:

Autoregressive model, suitable for text generation.

Comparing BERT and GPT

BERT Paper

Multimodal representation learning: CLIP = Contrastive Language-Image Pre-Training

- Learn a joint encoding space for text caption and image
- Contrastive learning
 - Maximize representation similarity between paired image and caption.
 - Minimize representation similarity of other pairs

Beyond Supervised Learning

How to learn without labelling, generally

Self-supervised learning paradigm

Self-supervised pre-training Huge amount of unlabelled data $\{X'\}$ e.g. Raw sensory experience **IM** GENET

Supervised fine-tuning

- Objective of pretraining
 - Learn **good representation**, s.t.
 - downstream tasks can be easily solved on these representations. (e.g. linear decodable)
 - with fewer labeled samples

No supervision? Create supervised tasks and solve them.

- Self-supervised learning
 - Mask out some part of data and learning by predicting
 - Learning by comparing similarity.

Self-prediction (Masked Autoencoder, BERT, GPT)

Contrastive learning (SimCLR, CLIP)

Part IV Using language models after pretraining

Finetuning, Prompting, Head, Adapter

Two expectations for Al

 Machine Translation
 Code completion
 Song writing
 Email writing

 Text summary
 Chat bot
 Doing math

Specialist

- Pro:
 - Solve one task far better than anyone.
- Con:
 - Perform poorly on any other tasks ...

Generalist

- Pro
 - Flexibly solve many tasks with little modifications.
- Con
 - May not perform as well as specialist in one task.

Two major ways of using Language Models

Fine-tuning

• Gradient descent on weights to optimize performance on one task.

- What to fine-tune?
 - Full network
 - Readout heads
 - Adapters

Parameter efficient fine-tuning

Prompting

 Design special prompt to cue / condition the network into specific mode to solve any tasks.

• No parameter change. one model to rule them all.

Change the model "itself"

Change the way to use it.

Hungyi-Lee https://www.youtube.com/watch?v=F58vJcGgj to&t=4s

A historical note on Finetuning vs Prompting

Fine-tuning

- Popularized on BERT
 - Provide representation for solving downstream tasks.
 - Smaller scale
 - Cannot "speak"

Prompting

- Popularized on GPT3/4
 - Can speak.
 - Can be prompted into solving tasks.

Change the model itself

Change the way to use it.

Hungyi-Lee https://www.youtube.com/watch?v=F58vJcGgj to&t=4s

"Finetuned" ironman suits

Large Foundation model

Finetuned models for special purposes

Finetuning Readout Heads

- BERT as example.
 - Classify sentence / pair
 - Q&A: Find the relevant text span in a paragraph.

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(c) Question Answering Tasks: SQuAD v1.1

(b) Single Sentence Classification Tasks: SST-2, CoLA

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Figure 4: Illustrations of Fine-tuning BERT on Different Tasks.

Finetuning Adapter Light weight addon for LLM

- Insert tiny modules into LLM and only finetune those parameters.
- Easier to save.

https://arxiv.org/abs/2210.06175 Adapter Methods — adaptertransformers documentation

Prompting:

let the model learn a task in context.

 Give some examples as demonstration and let the model follow it to solve new problems.

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. //

LM

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

Finetuing + Prompt Instruction Tuning

 Finetuned a model to answer questions, not just continue text.

 Can generalize this ability to unseen language tasks.

Figure 4: Multiple instruction templates describing a natural language inference task.

FLAN

https://arxiv.org/abs/2109.01652.pdf

Instruct GPT / RLFH

 Training method behind ChatGPT Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

A prompt and several model outputs are sampled.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

D>G>A=B

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Supervised learning Similar to FLAN Reinforcement learning from human feedback

InstructGPT https://arxiv.org/abs/2203.02155

Interim Summary: Training transformer

- Language Transformer is usually pretrained by self-supervision.
 - Language modelling
 - Masked language modelling
 - Contrastive learning
- For downstream tasks, we do
 - Finetune (weights, heads, adapters)
 - Prompting
- Advanced technique
 - Instruction Tuning
 - RL from human feedback

Transformer is a general sequence processing tool...

Many things are sequence...

1 2 3 3 4 4 5 6 6 6 6 7 8 9 9

Image (as sequence of patches)

Action sequence in games

Video sequence

Protein sequence

One single architecture to rule them all.

"I want to beat 10 of them!" – Donnie Yen

Audio transformer: Whisper

OpenAl, Whisper, 2022

https://openai.com/research/whisper

Music transformer

Vision transformers

- Patches as tokens / words
- Self attention between patch tokens.
- Extra [CLASS] token used for classification.

Vision Transformers

Transformers for image generation

- Encoded patches discretized as tokens
- Transformer model the sequence of tokens
- Images decoded from the tokens.

Figure 2. Our approach uses a convolutional *VQGAN* to learn a codebook of context-rich visual parts, whose composition is subsequently modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of convolutional approaches to transformer based high resolution image synthesis.

Stable Diffusion

 Image is influenced by text via cross attention.

• Image features influence each other via self attention.

Transformers for Control / Game

Observation

Action

- Game playing / control as sequence completion
 - Interleaved sequence of action, observation $\{s_0, a_1, s_1, a_2, s_3, a_3\}$ as a sequence of tokens.
 - Predict next action from past observation and actions.

Attention provides a flexible mechanism to let modalities influence each other

Modality A & B can be

Image, audio, video, text, action sequence, protein sequence, neural activity time series, ...

Perceiver / Perceiver IO: Transformer for general data perception

- General data processing method given data can be mapped into sequence of vectors
 - Use cross attention to fetch information from input
 - Self attention to process input.
 - Use cross attention to fetch relevant information and send to output.

Transformers are powerful, but think about

- How to represent your signal as a sequence of tokens (image -> sequence)
- Use discrete tokens or continuous embedding vectors
- $O(N^2)$ memory cost for long sequence
- Higher computational cost c.f. simpler architecture (slower)
- Special token / header for the task.
- Training objective.

Interim Summary: beyond language

 Transformer / attention is a general info processing architecture, in one or more data modality.

 Found usage in vision, audio, action, music, image generation, neural signal processing etc.

Summary Recap

- Two pillars of NLP: good representation and language modelling.
- Attention mechanism & Transformers architecture
- Self-supervised pre-training objectives (e.g. BERT, GPT, CLIP)
- Pre-training and finetuning paradigm; Prompting; Instruction Tuning
- Application of transformer beyond language. (e.g. Audio, Music, Vision, Game, Control etc.)

Thanks for your listening!