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SUMMARY

In this paper we provide methods for estimating non-Gaussian time series models. These
techniques rely on Markov chain Monte Carlo to carry out simulation smoothing and
Bayesian posterior analysis of parameters, and on importance sampling to estimate the
likelihood function for classical inference. The time series structure of the models is used
to ensure that our simulation algorithms are efficient.
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1. INTRODUCTION

In this paper we provide a likelihood analysis of an extension of the usual Gaussian
state space form (Harvey, 1989, Ch. 3). The Kalman filter and simulation smoother are
used to perform efficient signal extraction and parameter estimation.

The univariate observations y, are assumed to be distributed, conditionally on a uni-
variate 6,, according to f(y,10,) (t=1,...,n). Throughout log f is assumed to be twice
continuously differentiable with respect to 6,. An example of this is the exponential family,
written as

log f(:16,) = .6, — b(6,) + c(y.), (1-1)
where b and c are flexible but known functions. Here 6, is the stochastic process
h(Qt) = dt =2z,04+ xtﬂ
Uv1= VVHB+ T:at+Htut, ut~NID(09 I)s (12)
ay ~ N(ay)0, P110)-

Further h(.) is a known function which is continuously twice differentiable, while the «,
are called states and NID denotes normal and independently distributed. Typically T;, z,
and H, are selection matrices indexed by a small number of unknown parameters denoted
by ¢, while x, and W, are sparse regressors.

Only a small number of simple non-Gaussian models possess conjugate filtering
recursions. They are studied in Smith (1979, 1981), Smith & Miller (1986), Harvey &
Fernandes (1989) and Shephard (1994a). West, Harrison & Migon (1985) propose a
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dynamic generalised linear class of processes, which is made up of equations (1-1) and
(1-2). Fahrmeir (1992), Singh & Roberts (1992) and Durbin & Koopman (1997) develop
algorithms which find the exact mode of the smoothing density, f(x|y), and perform
approximate likelihood inference on . Here y =(y,..., ¥,) and a=(a, ..., a,).

General state space models are discussed by Kitagawa (1987) who used numerical
integration rules to approximate the required filtering and smoothing recursions.
Unfortunately the integrals are of the dimension of «, and so for many problems these
methods are inaccurate and quite slow, although there has been work to overcome these
problems (Fruhwirth-Schnatter, 1992). More recently importance sampling has been used
to approximate the likelihood by Danielsson & Richard (1993), while Markov chain
Monte Carlo methods have been used to perform smoothing and parameter estimation
(Carlin, Polson & Stoffer, 1992; Jacquier, Polson & Rossi, 1994; Chan & Ledolter, 1995).

The merging of the Kalman filter with Markov chain simulation methods has been
successful, exploiting the time series structure of the model to improve the efficiency of
the simulations, where it has been possible to condition on some latent indicator functions
or other component to make y, into a Gaussian state space. Leading references include
Carter & Kohn (1994, 1996) and Shephard (1994b). Unfortunately, it has so far been
unclear how to adapt these methods to deal with fundamentally non-Gaussian models.
We tackle this problem here by presenting a new methodology which is based on the
estimation by simulation of particular features of the model. This has the advantage that
the estimates can be made as accurate as needed and their degree of accuracy can be
assessed statistically. These simulation methods replace, in the Gaussian case, the role of
the Kalman filter and smoother which usually estimate the states a from the observations
y. In a simple example, if it were possible to simulate from «|y, y, then any interesting
function of « can be straightforwardly estimated from the draws. Likewise, if a Bayesian
paradigm is adopted for i, then { can be estimated by recording appropriate summaries
of the simulations from (&', )’ | y. If a classical view is taken, then an approximate Gaussian
simulation smoother can be used as an input into an importance sample estimator of the
likelihood.

It is possible to simulate from o]y, y, which is a highly multivariate non-Gaussian
random variable, by employing Markov chain methods (Gilks, Richardson &
Spiegelhalter, 1996). We use the independence chain Metropolis algorithm to simulate
from the joint distribution of x,, x,, ..., x,,, denoted by f, where x; stands for a group of
states or parameters in the model, given the data. Proposals z are made possibly to replace
the current x;, keeping constant x,; which denotes all the other elements of the x vector.
The proposal density is proportional to g(z, x,;) while the true density is f (xile). Both
of these densities are assumed to be everywhere positive (Tierney, 1994). If x® is the
current state of the sampler then the proposal is accepted with probability

. {f(ZIx‘\'?)q(xS"’, D )

SeP1xP)q(z, xP)’

In our work we would like to select g to be f(z|x,;), but this density is generally difficult
to sample directly. Instead we approximate f by ch(z) and then we can sample from a
density proportional to min{f(z|x;), ch(z)} by the scheme: (1) generate a candidate value
z from h(.) and a value u from a standard uniform; (2) if u < f(z|x\;)/ch(z) return z,
otherwise return to (1). Tierney (1994) calls this type of method a pseudo-dominating
rejection algorithm. It is discussed in more detail in Chib & Greenberg (1995).
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This scheme suggests taking x; to stand for individual states or parameters (Carlin et al.,
1992). Then the Markov chain simulation algorithm updates a single variable at a time
which has the advantage that the conditional densities are usually simple. The main
disadvantage is the correlation between variables over successive sweeps of the Metropolis
sample, a particularly severe problem in time series models (Carter & Kohn, 1994,
Shephard, 1994b).

Multi-move, or block, samplers work by updating several variables at the same time.
When carried out sensibly, block samplers tend to be very effective. Liu, Wong & Kong
(1994) produce results which show that ‘grouping random components in a Gibbs sampler
with two or more components usually results in more efficient sampling schemes’.

Block samplers raise a number of issues. How should the blocks be constructed so that
they are easy to sample? Should the blocks be the same for each sweep, a deterministically
updated Markov chain Monte Carlo, or should they be randomly selected, a random
block algorithm?

The simulations from f(a]y) are correlated. We can estimate Eg(x) by M™Y. g(a*),
where o* is the kth simulated value after reaching equilibrium, while the variance of this
estimator is computed using a Parzen window K( ); see Priestley (1981, p. 443). Let J,,
denote the estimation of the \/M scaled variance of the sample mean. Then

T =1(0)+ A;—Jf IS <B—’M> £i),

where

M
D=+ ¥ @-D@-a,
k=i+1
and B,,, the bandwidth, is stated in all our calculations.

The structure of the paper is as follows. In § 2 we look at a simple example of the model
and investigate the properties of simple single move Markov chain simulator for this
problem. The core of our contribution comes in § 3, which discusses the design of our
methods to maximise efficiency for these models. Section 4 looks at importance sampling.
Section 5 concludes, while an Appendix details some key algorithms.

2. EXAMPLE: STOCHASTIC VOLATILITY
2:1. The model

The stochastic volatility model has attracted much recent attention as a way of generalis-
ing the Black—Scholes option pricing formula to allow volatility clustering in asset returns
(Hull & White, 1987; Harvey, Ruiz & Shephard, 1994; Jacquier et al., 1994). The basic
stochastic volatility model has

yt=8tﬂ exp(a,/2), LN =¢at+'ln (2'1)

where ¢, and 7, are independent Gaussian processes with variances of 1 and o2 respectively.
Markov chain Monte Carlo methods have been used on this model by, for instance,
Jacquier et al. (1994).

In this paper we analyse the daily returns, i.e. the difference of the log of the series, on
the pound sterling/US dollar exchange rate from 1 October 1981 to 28 June 1985. The
dataset has been previously analysed using quasi-likelihood methods in Harvey et al.
(1994).
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2-2. Pseudo-dominating Metropolis sampler

We exploit a second-order expansion of the log-density as the basis of our pseudo-
dominating Metropolis sampler. The expansion is, writing «,|a,_{, o+, ~ N(x,, 67), sup-
pressing dependence on ¥, of the form

log f(o | y,, o) = log flet |0t — 1, 0,4 1) + log f (¥, | )

_ (at_#t)z ﬂ i
= - 20}2 - ) - 2ﬂ2 exp(—a,)

— )2 1
—t—%—%—%’zem(—u,){l—(a,—#r)+5(a,—ur)2}
=logg.

A similar quadratic expansion appears in Green & Han (1990) in their analysis of Poisson
images with a Gaussian prior. The quadratic term in log g means that it does not bound
log f. This delivers a pseudo-dominating suggestion, with suggested draws z for a,|y,,
being made from

0;.-2 *2

N [?, e+ '7 {% exp(—p)(1 + ) — 1}, cr,*’},
where

-2 _ g2 Ve

o B exp(m)

Notice that, if y, =0, then ¢*2 =62 and f is truly normally distributed and equals g. The
precision of ¢*~2 increases with y2.

In the accept/reject part of the algorithm, these suggestions are made until acceptance
with probability min( f/g, 1), while the Metropolis probability of accepting the resulting
z is

: [f (z1y,, ) min{f(a| y,, o), g(o4*)} 1}
[Py, o) min{f(z]y,, &), g2} * |

A slightly less direct way of thinking about this analysis is that we are using a Gaussian
approximation to the log-likelihood, log f(v,|«,), which is then added to the then-conjugate
Gaussian prior to deliver a Gaussian posterior. Notice that as y, goes to zero this likelihood
becomes uninformative, although the posterior is perfectly well-behaved. This way of
thinking about this problem is easily extended to updating more than a single state at
a time.

Here we pursue a Bayesian analysis of the parameters in the model. Given the states,
sampling from the parameters is straightforward for § and ¢Z. First assuming a flat prior
for log B we achieve the posterior B2|y, a ~ y, 22 y, exp(—a,), while assuming a prior of
%, 2 S, for o%|¢ we have

a?,|¢,a~x,.‘+2p{ S (o g1+ (1 —¢2>+so}.

t=2

In this work we assume that for daily data p= 10 and S, = p x 0-01, while for weekly data
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S, 1s taken to be p x 0-05. Our prior on the persistence parameter ¢ is designed to ensure
that the log volatility process is stationary. To carry this out we employ a beta prior on
(¢ + 1)/2, with E(¢) = {26/(y + 6)} — 1. In the analysis we use below, we set § =20 and
y = 1-5 so the prior mean is 0-86 and standard deviation is 0-11. As a result of our prior
choice, the posterior is nonconjugate and we sample from ¢|oZ, o using an accept/reject
algorithm.

2-3. Empirical effectiveness
Our Markov chain sampler is initialised by setting all the log-volatilities to zero and
¢ =095, 62=002 and f=1. We iterated the sampler on the states for 1000 iterations
and then on the parameters and states for 50 000 more iterations before recording any
answers. The next 1000 000 iterations are graphed in Fig. 1 and summarised in Table 1.
The correlogram shows significant autocorrelations for ¢ at 10 000 lags, for g at 25 000
lags and for o, at 5000 lags.

Fig. 1. Returns for pound sterling/US dollar: (a)—(c), simulations against iteration; (d)}—(f), histograms of
marginal distribution; (g)—(i), corresponding correlograms for simulation.
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Table 1. Returns for the pound sterling/US dollar: summaries of Fig. 1.
The standard error of simulation computed using B,, = 100 000; corre-
lations are in italics; computer time: 233 303 seconds on a P5/133

Mean Monte Carlo SE Covariance and Correlation of posterior
¢ly 09821 0-000277 8434 x 1075 —0-629 0217
o,y 01382 0-000562 —0-0001479 0-0006631 —0-156
Bly 06594 00121 0-0002089 —0-0004228 001209

3. DESIGNING BLOCKS
3-1. Background

Liu et al. (1994) suggest blocking to improve the speed of convergence for simulators.
This idea has motivated a considerable time series statistics literature on this topic in
models built out of Gaussianity, but with some nonnormality mixed in (Carter & Kohn,
1994; Shephard, 1994b). However, the non-Gaussian measurement state space models are
not of this form: they are fundamentally non-Gaussian. Hence there is a substantial need
for a new strategy.

Before we discuss our suggestion, a comment on our notation is in order. The states a
in (1-2) usually have many identities linking the state variables over time, and consequently
when we simulate from «|y we simulate from a possibly highly degenerate density. To
avoid this complication we can focus on the fundamental disturbances in the model u,,
ensuring that u|y is nondegenerate. To simplify the exposition we remove the regressors,
W; and x,, from the analysis in the remainder of this section.

Sampling directly from u|y may be too ambitious as this is highly multivariate and so
if n is very large it is likely that we will run into very large rejection frequencies, counter-
acting the effectiveness of the blocking. Hence we employ an intermediate strategy.
Our sampling method is based around sampling blocks of disturbances, say u,,=
(We=1,...,U4x_1), given beginning and end conditions «,_, and «,,,.,, and the obser-
vations. We call these end conditions ‘stochastic knots’. At the beginning and end of the
dataset, there is no need to use two-sided knots. In these cases only single knots are
required, simulating, for example, from uy |t 45415 Y15 -« Yotk

3-2. Proposal density
The only viable way of carrying out sampling from u, ;|0 —1, % 4541, Ves - - - » Vi+x SECMS
to be to place it within a Metropolis algorithm, employing multivariate Gaussian pro-
posals. We use a Taylor-type expansion of

logf=logf(t_1,- - s thsi-1]% 15 % skt1>Vis- - o> Vern)
around some preliminary estimate of u,, made using the conditioning arguments o,_;,
% +x+1 and y, ...,y These estimates, and the corresponding «,,...,a,, and
0., ...,0,4x, are denoted by hats. How they are formed will be discussed in a moment.
We write [(0,) to denote log f(y,|0,) and write the derivative of this log-density with respect
to d, as I’ and 1" respectively. The expansion is then
t+k

1
- u;,kut.k + Z 1(93)’ Ag+1 = Tsas + Hsusa

log f= —
ogf 5

s=t
t+k

1 . A 1 R
logfﬁ - E utl,kut.k + Z l(es) + Zs(as - &:)l,(ex) + 5 {zs(as - &3)}2Ds(63)

s=t

=logg.
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We require the assumption that the as yet unspecified D,(6) is everywhere strictly negative
as a function of 0. Typically we take D (0 =1 (9 ) so that the approximation is a second-
order Taylor expansion. This is convenient, for in the vast majority of cases /" is everywhere
strictly negative. However, it is useful in covering unusual cases to have the possibility of
not setting D, equal to the second derivative. Of course, for those cases, we have to provide
sensible rules for the selection of D,.

A crucial and attractive feature of this expansion is that the error in the approximation
involves only the difference between I(0,) and I6,) + z,(a, — &,)I'H, )+ 3z, (o, — &,)}2D,(8,),
not the transition equation u;,u,,. The implication is that the algorithm should not
become significantly less effective as the dimension of u, increases. This can be contrasted
with the numerical integration routines used in Kitagawa (1987), which usually deteriorate
in effectiveness as the dimension of «, increases.

Some interesting relations can be found for the crucial I’ function. First, in general,

a6, ale)
ad 0:=é- aet 9t=61’
which for the exponential family becomes

00,
ad 0t=é.
Similar manipulations are possible for I' (0,). The most interesting case of this is the
canonical link, where 1"(8,) = —b(,).

The density of g is highly multivariate Gaussian. It i 1s not a dominating density for log f,

but it is usually a good approximation. If we write v, ,(0 ), then the joint density
can be calculated by defining the artificial varnables

Py=1z,8,+0,0'0,) (s=t,...,t+k)
and then modelling them as

ﬁ3=zla3+681 EJNN(O’ vs), a3+1= T;a-!—i—HSuS’ uSNNID(O’ I)' (3‘1)

1'@,)=

r@,) = x {y,— B(6,)}.

Consequently, it is possible to simulate from the approximating posterior density of u,,,
given knots, using the de Jong & Shephard (1995) simulation smoother on the artificial
P+ Peax- As g does not bound f these draws from the simulation smoother provide
suggestions for the pseudo-dominating Metropolis algorithm discussed in § 1.

A similar expansion to (3-1), but without the knots, is used in Fahrmeir (1992), Singh
& Roberts (1992) and Durbin & Koopman (1997). These authors use a moment smoother
(A-4) to provide an estimate of u| y using this Taylor-expanded approximation. By iterating
around the latest smoothed values, this algorithm converges to the mode of the density
of u|y in cases where 8% logl/da, da; is negative semidefinite; the same condition is needed
for generalised linear regression models to have a unique maximum (McCullagh & Nelder,
1989, p. 117). 1t is typically stated as a requirement that the link function be log-concave.
In the case being addressed here, the iterations are an efficient way of carrying out a
Newton—Raphson hill climbing algorithm using analytic first and second derivatives on
a concave objective function. Thus the approximations suggested by previous authors can
be interpreted as Laplace approximations to a very high dimensional density function.
Our algorithm, by contrast, converges to a sequence of simulations from u|y.

It is informative to look at some special cases of the set-up given in (3-1), to see the
effect of non-Gaussianity on the approximating model.
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Example 1: Canonical link. If a canonical link is assumed, that is 6, =4, and log f =
y,9, - b(et) + c(yl)7 then

vs_l = b.(és)s j’s = as + vs{ys - b(és)}
A special case of this is the Poisson model, where b(6,) = exp(f,) and so
v =exp), 9.=d,+exp(—d,){y,—exp(d,)}.

Another important example is the binomial, where b(6,)=nlog{l + exp(6,)}. For this
model

ot =np(1=p) §y=d,+(y,—np)/{np(L—p)},
where p, = exp(a,)/{l +exp(d,)}.
Example 2: Stochastic volatility model. This model has
log f(y.la) = —a,/2 — y7 exp(—a,)/2p>.
Thus

i = Zrexp(—d), = d,+ Z0Fexp(d /B~ 1)
28 2

This case is particularly interesting as v, depends on y,, unlike with canonical links. As
ys—0 so v;' -0 and y,— oo, suggesting that the draws from the simulation smoother
might always be rejected. However, this observation ignores the fact that v, — oo, which
effectively treats such observations as missing. Of course there is a numerical overflow
problem here, but that can be dealt with in a number of ways without resulting in any
approximation.

Example 3: Heavy-tailed stochastic volatility model. This argument extends to allow ¢,
in (2:1) to follow a scaled ¢-distribution, ¢, = t,/{(v — 2)/v}?, where t,~t,. Then

y? CXP(—%)}

o
logf(ytlat)= —5—(V+ 1)/210g{1 + ﬁZ(v_z)

SO

roy =L [(v + 1D){2B*(v = 2)} 'yi exp(—a) 1]
Y720 1+ exp(—a){BPv—2)t ! ’

WETU4 L+ Zexp(—2) (B2 —2)) "' 1/)

The resulting v; ' and §, are easy to compute. This approach has some advantages over
the generic outlier approaches for Gaussian models suggested in Shephard (1994b) and
Carter & Kohn (1994), which explicitly use the mixture representation of a ¢-distribution.

It is important to select sensible values for the sequence 9,, .+ Bi4x. The most straight-
forward choice would be to take them as the mode of

f(et: R} 9r+k|at—l7 O tk+1s Yise o yt+k)’

the points at which the quadratic expansion is carried out. Although we have just noted
that iterating the smoothing algorithm on (3-1) achieves this mode, this will slow our
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simulation algorithm if we have to iterate this procedure until full convergence, although
rapid convergence is typical for these procedures. Instead we suggest using the pseudo-
dominating Markov chain Monte Carlo method and only a fixed number of iterations of
the smoothing algorithm to get a reasonably good sequence 9,, ey 9,” instead of an
‘optimal’ one. Typically we use two to five iterations.

3-3. Stochastic knots

The stochastic knots play a crucial role. They ensure that as the sample size increases
our algorithm does not fail due to excessive numbers of rejections. In our discussion so
far the knots are regarded as being fixed, but in practice there are advantages in selecting
them randomly, allowing the points of conditioning to change over the iterations. Our

proposal is to work with a collection of stochastic knots, at times k= (k,,..., kg) and
corresponding values o =(a; , ..., ), which appropriately cover the time span of the
sample.

The selection of the knots is carried out randomly and independently of the outcome
of the Markov chain simulation process, with U, being independent uniforms and

k,=int[nx {(i+ U)K +2)}] G(=1,...,K). (3-2)

Thus the selection of knots is indexed by a single parameter K which we control. Notice
that, in the way we have set this up, it is not possible to select K to recover the single-
move algorithm as a special case.

In practice K is a tuning parameter, allowing the lengths of blocks to be selected. If K
is too large the sampler will be slow because of rejections; if K is too small it will be
correlated because of the structure of the model.

In our experience it is helpful to increase K for a few iterations at regular intervals to
ensure that the method does not get firmly stuck due to excessive rejection.

3-4. Illustration on stochastic volatility model

To illustrate the effect of blocking we work with the stochastic volatility model, analysing
the Markov chain Monte Carlo algorithms on simulated and real data. Our simulated
data allow two sets of parameters, designed to reflect typical problems for weekly and
daily financial datasets. In the weekly case, =1, 62 =01 and ¢ = 0-9, while in the daily
case f =1, 62=0-01 and ¢ =0-99.

Table 2 reports some results from a simulation using n=1000: it is in two parts.
Table 2(a) is concerned with estimating the states given the parameters, a pure signal
extraction problem. It is clearly difficult to summarise the results for all 1000 time periods
and so we focus on the middle state, aso, in all our calculations. Extensive simulations
suggest that our results reported here are representative of these general results.

The last four rows in (a) and (b) of Table 2 look at the estimation of the states at the
same time as estimating the parameters of the model. Hence for that simulation the
problem is a four-fold one: estimate the states and three parameters.

Table 2 reports the ratio of the resulting variance of the single-move sampler to the
multi-move sampler. Numbers bigger than one reflect gains from using a multi-move
sampler. One interpretation of the table is that if the ratio is x then the single-move
sampler has to be iterated x times more than the multi-move sampler to achieve the same
degree of precision in the estimates of interest. So, if a sample is 10 times more efficient,
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Table 2. Relative efficiency of block to single-move Markov Chain Monte Carlo sam-

pler; K denotes number of stochastic knots. Reported are the ratio of the computed

variances, which reflect efficiency gains. The variances are computed using B,, = 10 000

and 100 000 iterations in all cases except for the single-move sampler on daily param-

eters cases. For that problem B,, = 100 000 and 1000 000 iterations were used. The
burn-in period is By

(a) Weekly parameter case
Weekly parameters K=0 K=1 K=3 K=5 K=10 K=20 K=50 K=100 K=200

States|parameters 1-7 41 7-8 17 45 14 12 43 30
States 20 22 32 28 39 12 12 21 1-98
o, 13 13 11 1-7 22 1-7 1-5 1-7 15
é 15 14 11 16 2-6 1-7 15 290 15
B 16 14 32 14 23 6 9 10 1

(b) Daily parameter case
Daily parameters K=0 K=1 K=3 K=5 K=10 K=20 K=50 K=100 K=200

States|parameters 66 98 98 85 103 69 25 85 25
States 91 40 30 60 47 80 14 27 18
o, 27 31 29 28 34 38 2:6 36 1-8
¢ 16 13 18 18 16 18 68 11 57
B 93 51 51 76 65 106 23 27 26

it produces the same degree of accuracy from 1000 iterations as from 10 000 iterations
from the inferior simulator.

Table 2 shows that, when the number of knots is extremely small, say O, there is a
possibility in low persistence cases that the sampler actually performs worse than a single-
move algorithm. This is because of large rejection rates. However, this result is very
specialised. In the vast majority of cases the gains are quite significant and, most import-
antly, they are largest in cases where the single-move algorithms do badly. This suggests
that the use of block samplers does increase the reliability of Markov chain simulation
techniques for state space models.

To illustrate the effectiveness of this method we return to the application considered in
§ 2. We use 10 stochastic knots in our block sampler. The results are displayed in Fig. 2.
This was generated by using 200 iterations using the initial parameter, 300 iterations
updating the parameters and states and finally we record 10 000 iterations from the equilib-
rium path of the sampler. Figure 2 shares the features of Fig. 1, with the same distribution
for the parameters. However, the correlations amongst the simulations are now quite
manageable.

The precision of the results from the simulation is calculated using the Parzen window
with B,, = 1000. The results given in Table 3 are consistent with those given in Table 1
for the single-move algorithm. However, the precision achieved with the 1000 000 iter-
ations is broadly comparable with that achieved by 10 000 iterations from the multi-move
sampler.

One of the most powerful aspects of the approach we are advocating is that the block
size controls the efficiency of the methods. It is important to note, however, that the
methods work whatever the block size.

It would be convenient if we had a method which would automatically find the ‘optimal’
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Fig. 2. Returns for pound sterling/US dollar: (a)—(c), simulations against iteration; (d)}~(f), histograms of
marginal distribution; (g)—(i), corresponding correlograms for simulation.

Table 3. Returns for the pound sterling/US dollar. summaries of
Fig. 2. The standard error of simulation computed using B,; = 1000,
correlations are in italics, computer time: 322 seconds on a P5/133

Mean Monte Carlo SE Covariance and Correlation of posterior
$ly 09802 0000734 0-000105 —0-689 0-294
o.ly 01431 0-00254 —0-000198 0-000787 —0178
Bly 06589 0-0100 0-000273 —0-000452 0-00823

value for K, but it seems likely that this size will be different for different aspects of the
problem and, in any case, our results suggest extensive robustness of the efficiency gains,
with large efficiency gains for blocks between 50 and 500.

4. CLASSICAL ESTIMATION
4-1. Animportance sampler

So far this paper has focused on Bayesian estimation of the parameters which index
the models. We now turn our attention to classical inference. Our suggestion is to construct
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the likelihood via the use of importance sampling (Ripley, 1987, pp. 122-3) drawing
samples from the Gaussian approximation to the smoothing density we developed in § 3.
There is no use of stochastic knots, nor of acceptance/rejection sampling. We write this
density as f(u]y; y), using the disturbances rather than the states, and then use the
manipulation

SWlu, 0)f(u; ¥)
fluly, ¥)

The estimator of this integral takes on the form

PPN S 1 01 8 )V (R
f(y; l’b)M—]Wj=1 @y )

where u/ ~ f(uly; ¥)~. Crucially, this estimator is differentiable in  thanks to the
Gaussianity of the smoothing density. If f(u|y; ¥) = f(u]y; ¥) then this estimate is exact
even if M = 1. Further, it is straightforward to exploit antithetic variables (Ripley, 1987,
pp. 129-32) for this problem by simply switching the signs on the x, in the simulation
smoother (A-1).

fluly; ¥) du.

fy, )=

(41)

4-2. Technical issues

The estimate (4-1) involves simulating from f(u|y; ¥) and evaluating f(u’|y; ¥), f(u’; ¥)
and f(y|u’; ¢). The simulation is straightforward using the simulation smoother, while
f(@W’; ¥) and f(y|u’; ) are trivial to evaluate. The term f(u’|y; ) can be found using the
smoothing density (de Jong & Shephard, 1995).

PROPOSITION 1. Define X;= f(u'|y; ¥)/f (| y; ¥)~, where u/ ~ f(u/|y; ¥)". Then X, is,
conditional on y, independent and identically distributed with the moments

fluly; ¥)
fluly; )

We define f(y; yY = f(yu; Y)f @’ ¥)[f@’|y; ¥, so that

S@!1y; ¥)
Sy =f(3; w)f( Ty )

Consequently the estimator f(y; )y is unbiased with variance o*(y; y)/M.

2
E(X;ly)=1, var(X;|y, ¥)= J{ —1} fuly; ¥) du=a*(y; ¥).

=f(n; ¥)X;.

For classical inference it is the log-likelihood which is the focus of attention. Our esti-
mator of this log f (y; ¥)a has the property

1 M
log /(3: Y = logf(y; ¥) +log 7 3. X,

The implication of this is that

E[log{l +$ il: (Xj—l)}] = —al—;';—ﬂ+0(M'2),
j=1

and so the estimator of log f(y; ), is biased to O(M ~1'). As the ¢*(y; ¥) depends on the
parameters of the model, this causes an O(M ~!) bias in the estimators of the parameters
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of the model. The magnitude of this bias will depend on the merit of the importance
sampling device. However, importantly, it is likely that ¢?(y; ¥) = O(n). This means that,
as the sample size increases, the importance sampling bias will become larger unless M
increases at a rate larger than n. This is unfortunate.

The bias is proportional to ¢*(y; i), which can be unbiasedly estimated by

o1 2 VO =T
and hence

log /(5 W+ 37 37— X, U0 WY =F s 9

2MM

gives an unbiased estimator to O(M ~2). Of course this does not mean that the resulting
estimator of Y is superior, for the addition of this term may sufficiently increase the
variance of the estimator of the log-likelihood so as to compensate for the reduction in bias.

5. CONCLUSIONS

This paper uses simulation to provide a likelihood basis for non-Gaussian extensions
of state space models. We argue that the development of Taylor expansion-based multi-
move simulation smoothing algorithms can deliver reliable methods.

The methods have five basic advantages. (i) They integrate the role of the Kalman filter
and simulation smoother into the analysis of non-Gaussian models, thereby exploiting
the structure of the model to improve the speed of the methods. (ii) They exploit the
Taylor expansion which has been previously used in various approximate methods sug-
gested in the literature. (iii) They approximate only log f(y,|6,) and so, as the dimension
of the state increases, the computational efficiency of the method should not diminish
significantly. (iv) They extend to many multivariate cases by using a multivariate Taylor
expansion of logf to deliver a multivariate approximating version of the model (3-1).
(v) They allow the transition equation (1-2) to become non-Gaussian by Taylor expanding
the transition density log f(«,,,|a,). Then the Metropolis rejection rate will additionally
depend on the accuracy of the approximation to transition density.

Although there have been very significant recent advances in signal extraction of non-
Gaussian processes, there is much work to be carried out in this area. We have not
provided any model checking devices for our fitted models. In principle this is straightfor-
ward if based on one-step-ahead prediction densities. Some progress has recently been
made in finding methods for computing these densities (Gordon, Salmond & Smith, 1993;
Muller, 1991; West, 1993).
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APPENDIX
Some algorithms
This appendix details Gaussian filtering and smoothing. The Gaussian state space puts
Ve = xtﬂ + 2,0, + G,u,, Uy~ NID(O, I),
%41 =W+ T, + Huy, o] Yo~ N(ayjo, Pyjo)-

We assume that G;H,=0 and write the nonzero rows of H, as M,. The Kalman filter (de Jong,
1989) computes a,,—, = E(%,| Y;-,, B) and P,,_,, containing the mean squared errors of o, | Y;_, B,

Wiy =Wp+ Ttam_l + K,v,, Pryyyy=TPy - Li+ HH, v,=y,—2Za)_,—xp,
F, =Z1Pr|t—IZt’+ GtG;a K,= 7;P,|,_IZ;F,_1, L= T;—K,Z,.

The filter yields forecast errors v,, their mean squared errors F, and the Gaussian log-likelihood

1 1
log f(y1, - ya) = const — > 3 log| Fi| — 5 3, o/ F "o,

The simulation smoother (de Jong & Shephard, 1995) samples from «|Y,, 8. Setting r, =0 and
N,=0,fort=n,...,1, we have

C.= MM~ M,HN,HM,, x,~N(0,C,),
fio1=2Z.F 'v,+ Lir,— LN HM,C; 'x,, (A1)
Nooy = ZIF{'Z,+ LN, L, + LiN,H,M,C] ' M,HN, L,.

Then we can add M, H;r, + k, to the corresponding zero rows so that we simulate from the whole
H,u, vector, written f,. The end condition #, is calculated by

Co= Pyjo— P11oNoPyjo, %o~ N(0,Co), 1n9= PyjoTo + Ko- (A2)
The « vector is simulated via the forward recursion, starting with a, =0,
%o =Wh+ T, +4, (t=0,...,n—1). (A-3)

The moment smoother (de Jong, 1989; Koopman 1993) computes a,,= E(a|Y,, f). With
r, =0 it runs backwards:

reo1=2ZF 'v,+Lr, (t=n,...,1). (A-4)

The M, H,r, completes, as above, #, allowing a recursion of the form (A-3) for the conditional
expectations.
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