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Abstract

Bayesian hierarchical models provide a useful way of analyzing multilevel
survey data. The Bayesian estimates have good statistical properties, make
good predictions, and realistically account for clustering in the data. Still the
Bayesian estimates can be biased in the presence of omitted variables and
fixed effect models might sometimes be preferable. Bayesian statistics for
model comparison and evaluation—posterior predictive checks and the De-
viance Information Criterion—assist an empirical approach to distinguishing
between hierarchical models and their alternatives. These ideas are illus-
trated with an analysis of migration data from 22 villages in the Nang Rong
district of Thailand.



Bayesian statistics can make a special contribution to comparative and

historical social science. Comparative data are often not generated by a well-

defined probability mechanism, so a researcher’s uncertainty may be better

described by a degree-of-belief than the frequency behavior of sample statis-

tics (Berk et al. 1994). Comparative and historical researchers also unearth

rich qualitative information about particular countries, regions, and histor-

ical periods. In a classicial analysis, this nonsample information generally

provides informal guides to model choice or the post hoc interpretation of

results. Bayesian prior distributions explicitly incorporate non-sample infor-

mation that often influences data analysis in a more informal way (Western

and Jackman 1994). Prior information can have a large effect in comparative

analysis because data sets can be small and collinear. Under these conditions,

the final results may also depend closely on the choice of models. Bayesian

statistics can incorporate uncertainty about the model specification, pushing

inference in a more conservative direction (Western 1995). Finally, a key

message of comparative social science is that social and political processes

vary across countries, regions, and time periods. Bayesian hierarchical mod-

els help us analyze these kinds of heterogeneity (Western 1998; Western and

Kleykamp 2004).

This symposium on the analysis of multilevel survey data provides an-

other opportunity to apply Bayesian methods to the special methodological

problems of comparative research. Multilevel survey data are collected from,

say, a dozen or more countries, perhaps at several points in time. This data

structure shares some features with the pooled time series familiar to compar-

ative researchers—observations are clustered by country and there is likely

causal heterogeneity across countries. But unlike other comparative data,

multilevel survey data provide enough information about each country to
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conduct a country-level analysis. In this case, the data (within countries, at

least) are usually generated by probability sampling and prior information

will be less influential because sample sizes within countries are large.

Bayesian hierarchical models provide a useful way to study these clus-

tered, causally heterogeneous, survey data. But Bayesian models can yield

biased estimates when non-Bayesian alternatives do better. The Bayesian

models can also be difficult to compare to non-Bayesian alternatives because

models are non-nested and null hypotheses lie on the boundary of parameter

spaces. In this paper we review the Bayesian hierarchical model for multilevel

survey data. We argue that the merits of Bayesian and non-Bayesian models

should be assessed empirically so we describe some Bayesian statistics for

model comparison and evaluation. We illustrate these methods using survey

data on migration from 22 villages in Thailand.

Bayesian Inference

Bayesian statistical inference pools sample data with nonsample information

to make posterior probability statements about statistical parameters. Given

a sampling distribution for the data, p(y|θ), and a prior distribution for the

parameters, p(θ), the posterior inferences about θ given the data are made

by applying Bayes rule:

p(θ|y) ∝ p(y|θ)× p(θ)

If y is normally distributed with mean θ and variance, σ2, and θ has a normal

prior distribution with mean θ0 and variance τ 2, then the posterior distribu-

tion for θ is also normal, where the posterior mean is the weighted average

of the sample mean, ȳ, and the prior mean, θ0,

θ1 = wθ0 + (1− w)ȳ.
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The weight, w, depends on the relative size of the prior variance and the

variance of the sampling distribution for y,

w = σ2/(τ 2 + σ2).

The posterior variance of θ is given by,

V (θ|y) = 1/(τ−2 + σ−2).

If the prior variance is large, indicating great uncertainty about the location

of θ before the data are observed, then w will be small and the posterior mean

θ1 will be near the sample mean ȳ. In practice, the variance of the sampling

distribution, σ2 must also be estimated and given a prior distribution in a

Bayesian analysis. The main intuition is unaffected: the posterior mean is a

compromise between the prior and sample mean that depends on the relative

size of the prior and sample variance. Why do Bayesian inference? In this

case, the posterior variance is smaller than the usual sampling variance. The

gain in precision is not costless, however. The posterior mean, θ1, will gener-

ally be biased and the choice of prior distribution is subjective, so different

researchers may choose different values for θ0 and τ 2.

Bayesian Inference for Comparative Analysis

How can this machinery be used for comparative research? If we are in-

terested in estimating means, θi, from a number of surveys from countries,

i = 1, . . . , I, a mean could be calculated for each country, ȳi. If ȳi ∼ N(θi, σ
2)

we can obtain more precise estimates for each of I countries by supplying a

prior distribution:

θi ∼ N(θ0, τ
2).
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With data from many countries, the prior parameters θ0 and τ 2 for a par-

ticular θi can be estimated using the sample data from all countries. The

prior parameters could be estimated by the mean of the country means,

θ̂0 = I−1 ∑
ȳi, and variance of the country means, τ̂ 2 =

∑
(ȳi − θ̂0)

2/I. This

is the empirical Bayes estimator that yields the estimates of the posterior

mean:

θ̂i = ŵθ̂0 + (1− ŵ)ȳi

where ŵ = σ2/(σ2 + τ̂ 2). The empirical Bayes estimator has lower mean

squared error and makes better forecasts than the maximum likelihood es-

timate, ȳi (e.g., Carlin and Louis 2000, 69–72; Jusko and Shively make the

point more rigorously in this issue). The superior performance of the em-

pirical Bayes estimator results from the larger amount of information used

for its estimation. The country-level mean, ȳi, uses just the sample data

from country i. The empirical Bayes estimate, θ̂i, uses the sample data from

country i and additional information from all countries expressed by the hy-

perparameters θ̂0 and τ̂2.

Although empirical Bayes estimates are an improvement over maximum

likelihood, the method does not acknowledge uncertainty about the prior

parameters, θ0 and τ 2. A fully Bayesian analysis puts prior distributions on

these hyperparameters.

Multilevel Regression Models

The model for the mean, θ, can be generalized to a regression where yi is a

vector of observations on a dependent variable from country i (i = 1, . . . , I)

and Xi is a matrix of K covariates. A common Bayesian linear model gives a

set of K regression for each of I countries. If the coefficients are in the I×K
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matrix, b, with rows, bi· and columns b·k, then yi has a normal likelihood,

yi ∼ N(Xibi·, σ
2
i ).

The regression coefficients, bi·, may be given a distribution that depends on

country-level variables, zi, that could describe, say, institutional or historical

characteristics of national societies. The I coefficients for covariate k, b·k, are

then given a normal distribution,

bk ∼ N(Z ′ηk, τ
2
k ),

where Z is matrix of country-level covariates with rows, zi. The empirical

Bayes model is specified by the likelihood for yi and the distribution for b·k.

Because the coefficients, b·k, are given a distribution, they are often called

“random effects.” A fully Bayesian analysis adds prior distributions for ηk

and τ 2
k . A conjugate analysis that yields normal posterior distributions as-

signs normal priors to the coefficients and gamma distributions to the inverse

variances:

ηk ∼ N(c0k, V0k)

τ−2
k ∼ Gamma(a0, b0)

With the η coefficients of covariate k given diffuse priors—like c0k = 0, V0k =

diag(106), and a0 = b0 = .001—Bayesian and empirical Bayes estimates will

be approximately equal. Results for this conjugate model with diffuse priors

can be sensitive to alternative noninformative specifications for the prior

variances. A uniform distribution for the square root of the variance may

provide a more robust distribution for vague prior information. Hierarchical

model estimates of b will have lower mean squared error and will tend to

make better forecasts than MLEs, b̂i, that use information from just one
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country. The macro-level effects, ηk, will have larger standard errors than

equivalent effects under a pooled model with interactions between Xi and

zi or in a regression of b̂i on zi. The large standard errors in the multilevel

model result from the heterogeneity of the bi· across countries and can be

viewed as an adjustment for country-level clustering in the data.

Arguments Against the Multilevel Model

The parameters of the multilevel model have good statistical properties.

They have low mean squared error and make good predictions within the

sample and for new data. Should we always fit multilevel models when we

have multilevel data? No. There will be analyses in which the multilevel

model is undesirable. We describe two main objections that comparative

researchers should consider: the Bayesian estimates are often biased and

country-level random effects may not be exchangeable.

Estimates of random effects, bi·, are biased but an unbiased estimator is

readily at hand: the MLE of bi·, based just on data from a particular country.

A special case arises where the effects of covariates Xi are constrained to be

the same across countries, but a separate intercept is estimated for each

country:

E(yi) = αi + Xib.

The multilevel model assigns a normal distribution to αi, whose parameters

would also be given a hyperprior in a fully Bayesian analysis. Unbiased esti-

mates of αi could be obtained simply by pooling the data from all countries,

and using country-level dummy variables to fit I different intercepts. In the

analysis of panel data, this dummy variable specification yields the so-called

fixed effects model which is distinguished from the (hierarchical Bayesian)

random effects model.
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With these kinds of models, researchers are often interested only in the

slope coefficients, b, not the intercepts, αi. In the presence of country-level

omitted variables that are correlated with Xi, the misspecified fixed effects

model will still yield unbiased estimates of b. The effects of omitted variables

will be absorbed by the fixed effects, αi. In the random effects model, how-

ever, estimates of b will be biased in the presence of country-level omitted

variables correlated with Xi. In the limit, as the number of countries becomes

large, the random effects estimates of b will go to the least squares estimates

for the model E(yi) = α + Xib that includes no country-level intercepts.

Discussions of the sensitivity of the random effects estimates to this kind

of model misspecification often arises in the econometrics of causal inference

(e.g., Hsiao 2003, 41–48). The fixed effects model is offered as a useful tool for

causal inference because the researcher need not specify any model for cross-

country variation. With a misspecified model for country-level variation, the

slope coefficients, b, will have smaller variance with random rather than fixed

effects. However, the random effects estimates may have larger mean squared

error because of their bias.

This argument in favor of fixed effects is now carrying the day in applied

research in economics and sociology (Wooldridge 2002; Halaby 2004). Still,

there are good arguments for random effects, particularly for comparative

research. Often comparative researchers are interested in country-level vari-

ables, zi. The country-level variables are linearly dependent on the fixed

effects so their coefficients are not identified in the fixed effects model. For

all its advantages, the fixed effects model treats cross-country differences as

a nuisance that threatens causal inference, rather than as a substantively

interesting source of variation.

Even in this case where we are interested in the effects of country-level
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variables, there is a non-Bayesian alternative. We could simply fit a model

that pools data from all countries and includes the coefficients of zi as an-

other parameter to be estimated. If the effects of zi differ for subgroups

of each country’s population, we might also include interactions between zi

and Xi. However, coefficients for the pooled model that includes just a sin-

gle intercept, α, will be optimistically small compared to the random effects

estimates, because the pooled model makes no adjustment for clustering.

Researchers now commonly account for clustering with a sandwich estimator

(Huber 1967) for the coefficient covariance matrix of these pooled models.

Beck and Katz (1995) popularized this option for pooled time series in com-

parative politics.

A second objection to the multilevel model challenges the treatment of

parameters as realizations of an underlying probability distribution. The

multilevel model assumes that the coefficients b·k are exchangeable, meaning

that their joint distribution, p(b1k, b2k, . . . , bIk), is invariant under permuta-

tions of the indices, i = 1, . . . , I. Researchers must assume that after condi-

tioning on covariates, no information is available to distinguish one bik from

another. The covariates exhaustively account for all the systematic varia-

tion in the random effects. With exchangeable bik, we will not expect the

random effects from any particular country to be especially large or small.

Because comparative researchers often have very rich and detailed informa-

tion about countries, the assumption of exchangeability may be difficult to

satisfy. The multilevel analysis can at least draw the researcher into studying

the heterogeneity of effects and thus invites scrutiny of the exchangeability

assumption.
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Should we use Multilevel Models?

There are good statistical arguments for using multilevel models but there

will be situations when pooled or fixed effects models are preferable. Ide-

ally, alternative models should be evaluated empirically and not just on a

priori grounds. We need statistics that will help us decide between alterna-

tive specifications. These statistics should let us compare fixed and random

effects models, often in situations where the models are not nested, where

they include different sets of predictors. Comparing fixed to random effects

models involves testing a null hypothesis at the boundary of the parame-

ter space where a variance component equals zero. In many cases a ran-

dom effects model will include country-level predictors whose coefficients are

not identified in fixed effects models, so the researcher must compare non-

nested specifications. Conventional fit statistics—likelihood ratio chi-squares

or specification tests based on F-statistics—cannot be applied to this task.

Bayesian statistics are useful for evaluating and choosing between com-

plex and non-nested models. The posterior predictive distribution provides

diagnostics for assessing models as well as statistics for making inferences

about the discrepancy between data and model. The posterior predictive

distribution assigns probabilities to hypothetical or future values of y, writ-

ten yrep, integrating over uncertainty about the posterior distribution of the

parameters (Gelman et al. 2004, 159–177):

p(yrep|y) =
∫

p(yrep|θ) p(θ|y) dθ

↑ ↑
Sampling Posterior

Distribution Distribution
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The integral defining the posterior predictive distribution has two parts. The

first part gives the probability density of yrep given particular values of θ. The

form of this density is given by the sampling distribution for y. The second

part of the integral is the posterior distribution for the model parameters, θ.

The posterior predictive distribution incorporates two kinds of uncertainty:

sampling uncertainty about y given θ, and parametric uncertainty about θ.

The posterior predictive distribution can be compared to the observed data

to assess model fit. If a model fits the data well, the observed data are rela-

tively likely under the posterior predictive distribution. On the other hand,

large discrepancies between the observed data and the posterior predictive

distribution indicate that the model fits poorly. The posterior predictive dis-

tribution is straightforward to simulate for Bayesian models estimated with

Markov Chain Monte Carlo (MCMC) methods. Given random draws, θl from

the posterior distribution and the sampling distribution, p(y|θ), yrep can be

generated by a random draw from p(y|θl).

The discrepancy between the model and the data can be assessed with a

test statistic, T (y), that summarize some substantively important feature of

y. Model fit can be judged by comparing the observed T (y) to the distribution

of T (yrep). A Bayesian p-value is defined by,

p = Pr[T (yrep) ≥ T (y)|y].

The p-value describes, conditional on the model, the probability of observing

data at least as extreme as that actually observed. An extreme value for p

indicates the data are unlikely under the model. Note that the p-value does

not describe the probability that a particular model is correct, nor does the

p-value provide evidence against a null in favor of an alternative. Instead,

small p-values indicate the implausibility of the data under the model and
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the utility of examining other models (Berkhof and Hoitjtink 2000).

An alternative Bayesian approach to model evaluation uses penalized like-

lihood statistics of the form:

Adequacy of a model = fit− complexity.

These statistics weigh the model fit, usually measured by the log likelihood or

the deviance (−2 times the log-likelihood). The fit is subject to a penalty for

model complexity, often indexed by some function of the degrees of freedom,

as for the Bayesian information criterion (BIC), or the number of parameters,

as in the Akaike information criterion (AIC). Penalized likelihood statistics

like the AIC and BIC reward simple models that fit the data well.

Penalized likelihood statistics are difficult to apply to hierarchical mod-

els because model complexity is difficult to measure. Each random effect

consumes something less than a full degree of freedom. One measure of the

discrepancy between the data and model that depends just on the data, y,

conditions on a point estimate for θ,

Dθ̂(y) = D(y, θ̂[y]),

where the deviance might be evaluated at the posterior mean, θ̂ = E(θ|y).

Alternatively, we can account for uncertainty about the parameters by aver-

aging over the posterior distribution for θ,

D̄(y) = E[Dy, θ)|y].

Like the posterior predictive statistics, the expectation of the deviance, D̄(y),

lends itself to calculation with MCMC output. With draws, θl from the poste-

rior distribution, we can estimate D̄(y) as the average of the deviance statis-

tics. Speigelhalter and his colleagues (2002, 587) propose using the mean
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deviance minus the deviance of the means as a measure of model complexity:

pD = D̄(y)−Dθ̂(y),

where pD can be interpreted as the effective number of parameters in a

Bayesian model. We can think of pD as the number of unconstrained pa-

rameters in a model where a parameter scores: 1 if it is estimated with no

constraints or prior information; 0 if it is fixed or fully specified by prior

information; or between 0 and 1 if the parameter depends on the data and

the prior (Gelman et al. 2004, 182).

A Deviance Information Criterion (DIC) is then given by:

DIC = D̄(y) + pD

= 2D̄(y)−Dθ̂(y)

where smaller values of the DIC indicate a better fitting model. The DIC

can be regarded as a generalization of AIC. For non-hierarchical models the

two statistics will be approximately equal. In the following application we

consider a variety of models, and compare them using posterior predictive

checks and DIC statistics.

An Empirical Application: Migration from Thai Villages

To illustrate the Bayesian analysis of multilevel survey data, we study data

on migration for men and women aged 18 to 25, from 22 villages in the

Nang Rong district of Northeastern Thailand (Curran, et al. 2005). Like the

survey data analyzed in other papers in this issue, we have a relatively large

number of observations from each unit (villages in our case, but countries in

the other papers). The Thai village survey collects information on whether

a respondent has spent longer than two months away from the village in the
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survey year, 1990. (Some respondents are living away from the village at the

time of the survey, and they followed up and interviewed.) Migration is coded

as a binary variable where y = 1 if the respondent was away from the village

for at least two months, and y = 0 otherwise. Because remittances from

migrants make an important contribution to village economies, researchers

are interested in the characteristics of those that leave. We predict migration

in the survey year as a function of age, sex, education, whether the respondent

has migrated in the past. We are also interested in the effects of village

characteristics—the average level of migration in the village and village-level

inequality in migration experiences.

If for respondent i (1 = 1, . . . , nj) in village j (j = 1, . . . , 22), individual-

level covariates are collected in the vector, xij, and village-level covariates are

in the vector, zj, the probability of migration, pij = E(yij), might be written

in four alternative models:

(1) The Pooled Model:
logit(pij) = α + x′

ijβ + z′
jγ

(2) The Fixed Effect model:
logit(pij) = αj + x′

ijβ

(3) The Random Intercept Model:
logit(pij) = αj + x′

ijβ + z′
jγ, αj ∼ N(µα, τ 2

α), and

(4) The Random Slope and Intercept Model:
logit(pij) = αj + x′

ijβj + z′
jγ, αj ∼ N(µα, τ 2

α), βj ∼ N(µβ, τ 2
β),

To complete the Bayesian specification, the hyperparameters—µα, τ 2
α, µβ,

and τ 2
β—are all given diffuse prior distributions. In our application the hy-

permeans are given a prior zero with an arbitrarily large variance (106), and

the hypervariances are given a diffuse inverse gamma distribution. The fixed

effect model is a special case of the random effects model, where in the fixed

effect specification, the village effects, αj, are given a diffuse proper prior.
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The fixed effects model drops the village-level effects because they are not

identified by the sample data. All other parameters in all models were given

diffuse proper priors. All models were estimated with MCMC methods. Slow

mixing in the chain was corrected by standardizing the continuous predic-

tors. For each model, two parallel chains were run for 50,000 iterations after

a burn-in of 5,000 iterations. Diagnostics and trace plots indicated conver-

gence.

Heterogeneity in the sample data is shown by the descriptive statistics

(Table 1). The sample sizes for each village are smaller than the sample sizes

for countries in comparative data sets like the ISSP or Eurobarometer. Still,

enough data has been collected to estimate separate migration equations for

each village. Table 1 shows large differences in gender-specific migration

rates. In village 6, 57 percent of young women had been absent for at least

two months in the year. In villages 10 and 15, around 70 percent of young

men migrated at some point in the year. Village 10 is especially unusual,

because the high level of men’s migration accompanies a low level of women’s

migration, just 15 percent. Posterior predictive checks will show that this

feature of the data contributes to poor predictions with a fixed effect model.

Table 2 reports regression results from the four migration models. The

pooled model combines all the data and fits the effects of our six covariates.

The model takes no account of the hierarchical structure of the data (clus-

tered within villages) and assumes that the effects of sex, age, education, and

an individual’s earlier trips do not vary across villages. The pooled model

provides strong evidence for gender and education differences in migration.

People who have spent long periods out of their village in the past are also

likely to migrate in the current year. At the village level, great inequality

in migration experiences is associated with a low probability of migration
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Table 1. Proportion of men and women migrating in 22 villages, Nang Rong,
Thailand, 1990.

Sample Proportion Migrating
Size

Village (nj) Women Men
1 104 .38 .58
2 82 .45 .54
3 52 .50 .63
4 80 .56 .48
5 87 .38 .48
6 40 .57 .61
7 83 .37 .33
8 75 .18 .26
9 89 .26 .45

10 89 .15 .69
11 59 .46 .48
12 44 .22 .43
13 75 .26 .27
14 50 .20 .30
15 76 .53 .70
16 117 .25 .40
17 107 .38 .59
18 59 .29 .38
19 63 .50 .59
20 102 .17 .30
21 57 .33 .43
22 96 .26 .34

Average 77 .35 .47
Minimum 40 .17 .26
Maximum 117 .57 .70

Note: To maintain the confidentiality of the data, villages are assigned arbtirary
identification numbers.
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Table 2. Posterior means of parameters in four models of migration in 22 Thai
villages. (Posterior standard deviations in parentheses.)

Fixed Random Random Slope
Pooled Effect Intercept and Intercept

(1) (2) (3) (4)
Intercept -.80 -.66 -.79 -.76

(.12) (.10) (.13) (.14)
Male .32 .38 .33 .30

(.14) (.14) (.14) (.15)
Age -.13 -.15 -.13 -.13

(.08) (.08) (.08) (.09)
Years of education .39 .38 .39 .39

(.07) (.08) (.07) (.08)
Prior trips (individual) 1.08 1.13 1.08 1.22

(.09) (.10) (.09) (.16)
Prior trips (village) -.61 - -.59 -.69

(.37) (.43) (.46)
Gini of prior trips (village) -.62 - -.60 -.61

(.21) (.24) (.25)
DIC 1259.41 1273.29 1259.62 1247.55
pD 7.02 26.24 10.93 30.58

among individuals. This effect of migration inequality is not simply an ar-

tifact of a low general level of migration in highly unequal villages, because

the village mean migration rate is controlled.

This pattern of results is stable across different models. The age, gen-

der, and education effects are insensitive to whether village heterogeneity

is modelled with fixed or random effects. The effect of an individual’s mi-

gration history is estimated to be about 10 percent large under the random

slope model than under the other models, and uncertainty about this larger

effect is also relatively large. Although the village-level coefficients are not

identified by the sample data for the fixed effects model, the random coef-

16



ficient models—like the pooled model—offer strong evidence that migration

is less likely in villages where only a few residents have substantial migra-

tory experience. As we would expect, standard errors are generally larger

in the multilevel models than the pooled model because of the additional

heterogeneity due to the random effects.

In this application, the performance of any one model is not clearly supe-

rior to the others. Are there other empirical criteria we might use to decide

between the models? The DIC statistic provides a way of comparing these

non-nested and hierarchical models. The measure of model complexity, pD,

shows that the pooled model is the most parsimonious. Although there are

only 7 effects to be estimated, the effective number of parameters, pD is

slightly larger because of the small influence of prior information on the pos-

terior distribution of the regression coefficients. The random intercept model

is only slightly more complex although the model adds an intercept term for

each village in the sample. The most complex model includes random slopes

and intercepts, a total of 110 random effects for the 22 villages. Because of its

hierarchical structure, the random slopes model is only slightly more highly

parameterized than the fixed effects specification that adds a fixed intercept

term for each village. The DIC statistic of 1247.55 for the random slope

model is about 12 points lower than for either the pooled model or random

intercept model. The DIc indicates that fixed effects model does not yield a

sufficient improvement in fit to justify its parametric complexity.

The models can also be assessed with posterior predictive checks. This

approach yields multilevel diagnostics, similar in spirit to the “HLM EDA”

recommended elsewhere in this issue. Calculating posterior predictive statis-

tics first involves defining a test statistic that records discrepancies between a

model and the sample data. We take the sex-specific village mean, T (y) = ȳjk
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Figure 1. Observed and predicted proportions of men and women, migrating from
22 villages in Nang Rong district, Thailand. Vertical lines indicate 80 percent
confidence intervals. Villages 10 and 15 are indicated on the plot.
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(for village j = 1, . . . , 22, and k =male or female), to assess the adequacy of

the model. (The village mean might be an alternative test statistic but in

this case the fixed effect specification provides a model of the migration rate

within villages.) The posterior predictive distribution yields a distribution

for the test statistic that can be compared to the sample data.

Figure 1 shows the mean levels of migration for men and women in each

of the 22 villages. The horizontal axis shows the observed means and the ver-

tical axis shows the means predicted by the different models. Vertical lines

show an 80 confidence interval. If the model accurately predicts the observed

mean, the confidence interval will cross the 45 degree line. The predictions

from the pooled model are generally more dispersed than those from the

other specifications that allow for heterogeneity across villages. Predictions

for the fixed effect model are much more tightly clustered, often falling close

to the 45 degree, indicating a close match between model and data. Predic-

tions from the two random effects models are slightly more dispersed than

under the fixed effects model. Predictive performance varies noticeably in the

two villages with high men’s migration rates. Villages 10 and 15, where 70

percent of the men report absences of at least 2 months, are quite accurately

predicted by the random slope model. By contrast, the fixed effect model

only accurately predicts men’s migration rates for village 5. The fixed effect

model does more poorly for village 10, where women’s migration is unusually

low. Indeed the predictive interval for the fixed effect model indicates that

the high rate of men’s migration in village 10 is highly unlikely.

Conclusion

This paper has extended the use of Bayesian statistics in comparative research

to consider survey data in which samples from each country are large enough
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to estimate the parameters of a regression. Bayesian hierarchical models

provide an appealing framework for data with this structure. The Bayesian

estimates have lower mean squared error than either the pooled estimate that

combines data and fits just one effect for all countries, or the unpooled (fixed

effect) estimate that fits one effect for each country. Lower mean squared

error of the Bayes estimator is reflected in better within sample and out-of-

sample predictions than those of either the pooled or unpooled estimators.

Despite these desirable properties, the Bayesian hierarchical model yields

biased estimates in the presence of country-level omitted variables that are

correlated with predictors. If causal inference is the main objective, re-

searchers may prefer a fixed effect estimator that is unbiased for this specific

model misspecification. In comparative analysis, however, we will often be

interested in studying the effect of country-level variables. In the absence of

good instruments, the effects of country-level variables will not identified in

fixed effects models. If interest centers on these country-level variables, the

researcher will have little choice but to fit a pooled model or a Bayesian hier-

archical model. Because standard errors of the pooled model will be too small

in the presence of country-level clustering, the Bayesian model is preferable.

Given the advantages and disadvantages of Bayesian models for compar-

ative survey data we have argued that the merits of different models should

be assessed empirically. Statistics for model evaluation should ideally be

able to compare models with fixed and random effects, and models that are

non-nested. Two Bayesian approaches provide some empirical standards for

model comparison and evaluation. A deviance-based measure, pD, provides

a useful way of comparing the parametric complexity of fixed and random

effects models. A penalized likelihood approach motivates the DIC statistic

that weighs goodness of fit and parametric complexity in assessing the ade-
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quacy of a model. Posterior predictive checks allow the construction of test

statistics that can be tailored to measure substantively important patterns

of variation that arise in specific applications. In our analysis of the Thai

migration data, we found that estimates from a fixed effects model were of-

ten very accurate, but one extreme data point was more accurately predicted

with random effects.

In sum, Bayesian methods provide useful tools for analyzing multilevel

survey data in comparative research. In applications, however, a number of

non-Bayesian alternatives will often be available. We recommend an empir-

ical approach to the problem of model evaluation in which preferred models

yield not just significant coefficients for our favorite hypotheses, but also

capture substantively important patterns of variation in the data.
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