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In sociological research, it is often difficult to compare nonnested models and to evaluate
the fit of models in which outcome variables are not normally distributed. In this article,
the authors demonstrate the utility of Bayesian posterior predictive distributions specif-
ically, as well as a Bayesian approach to modeling more generally, in tackling these
issues. First, they review the Bayesian approach to statistics and computation. Second,
they discuss the evaluation of model fit in a bivariate probit model. Third, they discuss
comparing fixed- and random-effects hierarchical linear models. Both examples high-
light the use of Bayesian posterior predictive distributions beyond these particular cases.
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Model diagnosis and comparison is often a difficult problem in
quantitative research. Sometimes, a statistical model is fit to capture
a substantively important feature of a data set, but goodness-of-fit
statistics are uninformative about this theoretically important vari-
ation. For example, say we are interested in predicting a very rare
event. The usual chi-square or R-square statistics may appear to be
reasonable because the model can fit most data well by predicting that
the event never occurs. In other cases, researchers may need to to
compare nonnested models. In a regression analysis of panel data, for
instance, we may want to choose between fixed- and random-effects
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models with different sets of covariates. There are no standard
statistics to aid model choice in this situation.

In this article, we describe diagnostics for assessing model fit based
on predictions generated by the model. Predictions inconsistent with
the observed data provide evidence against the model assumptions.
On the other hand, we would be disinclined to reject a model whose
predictions resemble the data. To obtain the diagnostics, predictions
are drawn from the Bayesian posterior predictive distribution. Com-
paring the predictive distribution to the observed data is generally
termed a posterior predictive check (Rubin 1984:1165-71; Gelman
etal. 1995:167-74). This approach has three advantages over standard
applications of fit statistics. First, an extremely wide range of fit statis-
tics can be defined, based on the distribution of predictions under a
model. Researchers need not be confined to various forms of residual
sums of squares. Second, the Bayesian basis for the statistic allows
the calculation of p values, describing the probability that the data
arose by chance, given the model assumptions. Third, posterior pre-
dictive simulation explicitly accounts for the parametric uncertainty
that is usually ignored by alternative approaches.

To describe and illustrate the application of posterior predic-
tive checks, we briefly review the Bayesian approach to statisti-
cal inference. We then discuss posterior predictive distributions,
describing how they can be simulated using Bayesian Markov chain
Monte Carlo methods for posterior simulation. We then describe two
applications—a bivariate probit model of causes of death and fixed-
and random-effects models of wages.

REVIEW OF BAYESIAN PARADIGM

Bayesian statistics has received considerable attention in statistics
over the past decade. The Bayesian approach has made less headway,
however, into mainstream sociological research, largely because of
discomfort with Bayesian prior distributions and the seemingly steep
learning curve required to perform Bayesian computation. Our goal
in this study is to provide a brief introduction to Bayesian computa-
tion and show how these computations assist in calculating Bayesian
posterior predictive distributions for assessing model fit and in com-
paring rival models. As we will see, there are numerous instances
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in which classical methods fail, but the Bayesian approach offers a
feasible method for assessing model fit.

The fundamental difference between Bayesian and more familiar
likelihood approaches to statistics rests in the use of a prior distribu-
tion. Bayes’s theorem states that

P(A|B)p(B)
p(A)

The theorem is a trivial result of applying a few basic probability
axioms. However, substituting “parameters” for B and “data” for A,
essentially elevating data to the same level as parameters, incurs crit-
icism. Upon substitution, the theorem states that a “posterior distri-
bution” for parameters, after considering the data at hand, p(B|A), is
a function of a “prior” distribution, p(B), representing prior uncer-
tainty about the true value of the parameter and the likelihood func-
tion, p(A|B). Although the latter term in the equation does not appear
to be a likelihood function, standard likelihood analysis is based on
the latter term: the sampling density for the data, given the parame-
ter values. In likelihood analysis, the sampling density is rearranged
so that the data are essentially treated as fixed and the parameter
values that maximize the probability of observing the data are esti-
mated. For Bayesians, both the parameters and the data are consid-
ered random quantities to which a probability distribution can be
attached.

Most of the dispute between Bayesian and likelihood approaches
arises from the inclusion of the prior distribution: It is argued that the
prior injects too much subjectivity into the modeling process and may
drastically affect the results. However, there are several responses to
this criticism:

p(Bl|A) =

1. Priors canbe diffuse (i.e., provide little or no information in the process
of estimation).

2. Maximum likelihood estimates are a special case of the Bayesian
paradigm in which all prior distributions are uniform.

3. Priors are generally asymptotically irrelevant (i.e., as n gets large—
as is typically the case in social science data sets—the prior has less
effect on the results).

4. Examining model fit can reveal problems with unreasonable or unre-
alistic prior distributions.
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5. Priors can be used to generate conservative tests (i.e., they can be
conservative and force the data to overturn them).

6. Priors allows research to build on previous research rather than the
typical approach of assuming ignorance and testing a null hypothesis
that is uninteresting and often assumed to be untrue anyway.

In this article, we assume that one has decided to conduct a Bayesian
analysis and relegate further discussion of anti-Bayesian arguments
to other sources (e.g., Gelman et al., 1995).

BAYESIAN COMPUTATION

A more serious problem with the inclusion of a prior distribution is that
it tends to make each model unique and hence makes estimation the
key hurdle to completing a Bayesian analysis. Furthermore, because
the marginal distribution of the data (the denominator in the equation
above) tends to be a complicated integral (the marginal for the data
is the sum or integral of the probability of the data under all values of
the parameter in the parameter space), it is often extremely difficult
to compute. However, because the parameter does not depend on this
denominator, Bayes’s theorem is often reduced to

posterior « prior X likelihood.

While this expression is theoretically easier to consider, it is nonethe-
less difficult to simulate from, and simulation of values from the pos-
terior distribution is a primary goal of a Bayesian analysis.

Most of the advances in Bayesian methods in recent years have
been in the area of model estimation. Many Bayesian models are
analytically intractable. Thus, prior to 1990, estimation often rested on
(multivariate) normal approximations to the posterior distribution—
which may be suspect—and quadrature and other numerical methods
that exceed the computational skills of most sociologists. Since 1990,
however, the explosion in computing capability and the development
of Markov chain Monte Carlo (MCMC) methods have enabled the
computation of high-dimensional models that previously had been
impossible, or nearly so, even for Bayesians. These methods have also
allowed the generation of the techniques of investigating posterior
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predictive distributions, which we discuss here, typically as a simple
extension of the estimation algorithm.

The standard methods of MCMC estimation include the Gibbs sam-
pler and the more general Metropolis-Hastings (MH) algorithm. The
Gibbs sampler is a special case of the MH algorithm in which parame-
ters are sampled from their full conditional distributions (rather than a
relatively arbitrary proposal distribution). The typical MH algorithm
consists of five steps:

1. Establish starting values for parameter(s) (6—o) (at maximum likeli-
hood estimates, guesses, 0, or some other values).

2. Sample “candidate” parameter(s) (6.) from a “proposal” distribution
a(9). The “candidate” is so called because it is not automatically
accepted as a draw from the posterior (see the next step). The “pro-
posal” is so called because it is simply a distribution for generating
candidates. The proposal generally can be any distribution from which
it is easy to simulate draws.

3. Evaluate the posterior density at the candidate point and previous point

and form the ratio R = %. The a(al|b) terms represent
the probability that a would be proposed as a value, given the chain
is currently in state b, providing a way to compensate for asymmetric
proposal densities. If the proposal density is symmetric, these terms
drop from the ratio. For example, we may use a normal proposal that
is centered over the previous value of the parameter, so that 6, =
0j—1 + N(0, d). That is, the candidate is a normal random variable
with variance d added to the previous value of the parameter. In this
case, the proposal is symmetric because the probability of proposing
0., given 6;_;, will be equal to the probability of proposing 6;_; in
the next iteration if the chain moves to 6,.

4. Accept the candidate parameter with probability min(1, R) by draw-
ing a U(0, 1) deviate and comparing it to R: If R > U, then accept
the candidate (6; = 6.); otherwise, reject it (set 6; = 6;_1).

5. Return to Step 2 and repeat until an adequate number of draws are
obtained.

The prescribed algorithm generates a Markov chain of iterates that
constitute a random walk over the posterior distribution, the results of
which are equivalent to integrating the density over the data to obtain
a sample from the posterior distribution for the parameters.

The method is very flexible, allowing various choices for pro-
posal densities (indeed, if the proposals are full conditionals, the
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algorithm is a “Gibbs” sampler, which accepts every candidate),
sequential updating of parameters (‘“random-walk metropolis™), and
mixing of Gibbs and metropolis steps for simulating different parame-
ters in the model. For proof of the algorithm’s convergence, see Gilks,
Richardson, and Spiegelhalter (1996) in general and Tierney (1996)
specifically.

At the completion of a run of an MH algorithm (or Gibbs sampler),
initial iterates (prior to convergence) should be discarded (the “burn-
in”), and simple descriptive statistics (e.g., mean, median, mode, vari-
ance, interquartile range, etc.) for the remaining iterates can be used
to summarize posterior knowledge about the parameter. Furthermore,
the interpretation of these results is more straightforward than the
standard interpretation of likelihood-based confidence intervals and
t tests (given acceptance of the Bayesian paradigm of thinking). For
example if 95 percent of the iterates for a parameter fall between O
and 2, one can say that we are “95 percent certain that the parameter
is between 0 and 2.” A similar argument holds for hypothesis testing
purposes: If the hypothesis were that the parameter was between 0
and 5, and 95 percent of the iterates fell in this region, we could say
that the probability that the hypothesis were true was .95.

POSTERIOR PREDICTIVE DISTRIBUTIONS

Aside from the descriptive statistics that can be produced from an
MCMC-generated sample, other statistics can be generated to produce
inference about other key quantities of interest and to assess model
fit. One such quantity is the posterior predictive distribution:

PO =/ p(yI) p@ly)  db,
1 1
Sampling Posterior

Distribution Distribution

where y™P denotes replicated or hypothetical values of y. We can
think of y™P as values that might have been observed if the condi-
tions generating y were reproduced. The integral defining the pos-
terior predictive distribution has two parts. The first part gives the
probability density of y™P, given particular values of 8. The form



Lynch, Western / BAYESIAN POSTERIOR PREDICTIVE CHECKS 307

of this density is given by the sampling distribution for y. The
second part of the integral is the posterior distribution for 6, p(6]y)
[(8; y)p(0), where [(0; y) is the likelihood. The posterior predictive
distribution thus reflects two kinds of uncertainty: sampling uncer-
tainty about y given 6 and parametric uncertainty about 6.

The posterior predictive distribution can be compared to the
observed data to assess model fit. If a model fits the data well, the
observed data should be relatively likely under the posterior predic-
tive distribution. On the other hand, large discrepancies between the
observed data and the posterior predictive distribution indicate that
the model performs poorly.

The use of y™P to assess model fit is flexible and can be extended
considerably. Aside from visual inspection of predictive simulations,
discrepancy statistics can be computed that also help evaluate model
fit. These discrepancy statistics can be chosen to capture substantively
important features of the data. For example, in a one-sample problem,
we may be interested in how well our model fits remote values. In
this case, our discrepancy statistic might take the following form:

T(Y) =Ymin OF T(¥) = Ymax,

where ymin} and ymax} are the minimum and maximum observed
values of y. Note that choosing sufficient statistics—such as the mean
for the normal model—yields trivial results because the model fits
these statistics exactly. In different applications, different patterns of
variation will be substantively important, and different discrepancy
statistics can be defined. We discuss this issue further in the applica-
tions below.

Model fit statistics can be assessed by comparing the observed 7' (y)
to the distribution of T (y™P). A Bayesian p value can be defined as

p =Pr(TQH™) =Ty,

which can be interpreted as, conditional on the model, the probability
of observing data at least as extreme as that actually observed. An
extreme value for p indicates that the data are unlikely under the
model. Care should be taken in interpreting the p value. In particular,
the statistic does not describe the probability that a particular model is
correct. Nor does the p value provide evidence against a null in favor
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of an alternative. Instead, small p values reflect the implausibility of
the data under the model (and hence the lack of fit of the model to
the data) and therefore suggest examining other models (Berkhof and
van Mechelen 2000). The choice of p value considered small enough
to merit rejection of a model is a subjective determination (as any
p value criterion) but may be made based on conventional standards
(e.g., p < .05, p < .01, etc.).

For the Bayesian p value, the data are treated as fixed, and the
distribution on 7 (y*P) depends partly on uncertainty about model
parameters, 6. In contrast, the classical p value treats the data as ran-
dom, with parameters fixed at values given by a null hypothesis. Para-
meters might also be introduced into the definition of the Bayesian
discrepancy statistic. Thus, Gelman, Meng, and Stern (1996) suggest
an omnibus measure of goodness of fit based on a Bayesian residual
sum of squares:

2 i ~ [yi — E(i|O))
X<””—23 Var(lo)

In the examples below, we use discrepancy statistics based just on the
observed data, emphasizing the applied importance of calculations
designed to capture substantively important patterns of variation.

With simulated values 9(’;) (j = 1,...,J) from the posterior
distribution, yielding replicated discrepancy statistics, T/ (y™P), the
Bayesian p value can be estimated by

H#IT/(y") > T(y)]
J ’

p=

the proportion of simulated discrepancy statistics at least as large as
the observed value, 7 (y).

To make these ideas concrete, we illustrate the use of posterior pre-
dictive checks in a linear regression, y = X + e, where the error
variance, o2, is known and the dependent variable, y, conditionally
follows a normal distribution. With diffuse prior information, the pos-
terior distribution of the vector of regression coefficients will be nor-
mal with posterior,

B~ N@B, o> (X'X)™, (1)
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TABLE 1: Data and Predictive Statistics From a Bivariate Regression

Observations x y y y£2s 95% CI of y™P
1 1 0 1.01 -3.37,5.40 -3.87,5.89
2 2 0 1.89 -2.50, 6.28 -3.05, 6.46
3 3 1 2.77 -1.62,7.15 -1.63,7.45
4 4 3 3.64 -0.74, 8.03 -0.64, 8.14
5 3 4 2.77 -1.62,7.15 -1.71,7.17
6 5 2 4.52 0.13, 8.91 0.09,9.23
7 4 6 3.64 -0.74, 8.03 -0.58, 8.37
8 6 7 5.40 1.01,9.79 0.95,9.77
9 5 8 4.52 0.13, 8.91 0.34, 8.88

10 7 7 6.28 1.89, 10.66 1.86, 10.95

11 5 6 4.52 0.13, 8.91 0.02,9.26

12 9 5 8.03 3.64,12.42 2.74,13.21

NOTE: Column (5) gives the interval based on the standard error of the residuals, s.

where ,3 is the least squares estimate, (X'X)~'X’y. In this case, the
posterior distribution has a known form, facilitating a one-step Gibbs
sampler. If we take random draws from the normal distribution in (1),
yielding B7;) (j = 1,..., J), the replicates are obtained as random
draws,

Yy ~ N(XB. 0°).

Posterior predictive statistics for a bivariate regression with 12
observations are shown in Table 1. Posterior predictive statistics are
generated by taking 1,000 random draws from the posterior distribu-
tion for the coefficients given in equation (1). The posterior predictive
interval for each of the 12 observations is contrasted with the classical
interval for y, based on the residual standard error. The Bayesian pre-
dictive interval is wider than the classical interval because it reflects
both parametric and sampling uncertainty, whereas the classical inter-
val reflects only sampling uncertainty.

If we take as our discrepancy statistics the minimum and max-
imum values of y, we can compare the distribution of 7 (y™P) to
the observed T (y) (Figure 1). The minimum can be written as
T(y) = (ya) + y@)/2, the average of Observations 1 and 2. The
maximum is 7' (y) = y), Observation 9. The top panel of the figure
shows that the model predictions tend to exceed in the negative
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Figure 1: Posterior Predictive Densities for the Regression Model of Data in
Table 1

NOTE: The top panel shows the predictive density for (y(1) + y(2))/2. The bottom panel shows

the predictive density for the maximum of y(9).
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direction the observed minimum, y = 0. With 209 out of 1,000
simulated values of T (y™P) (p =.209), the data appear quite plausible
under the model. However, evidence against the model is given by the
sample maximum. The posterior predicted value of y«, tends to be
too small. The posterior predictions of the maximum cluster around
4, but the observed maximum is y = 8. In this case, the Bayesian p
value is just .062.

This example is extremely simple. The following applications
apply Bayesian posterior predictive checks to more complex and real-
istic models.

EXAMPLE 1: BIVARIATE PROBIT MODEL FOR COMPETING
RISKS OF CAUSE OF DEATH

Competing risks models are used in demography to examine
outcomes—especially death, in which an individual can succumb to
only one outcome—although there are multiple outcomes that could
claim the individual (Preston, Heuveline, and Guillot 2001). Often,
these outcomes are modeled independently in a discrete time format
in which the individual becomes a “censored” case in model j when
she or he experiences an event other than j (see Allison 1984). This
approach, however, assumes that the regression equations for each
outcome are independent, but that is an empirical question. Ideally,
we should model the outcomes in a multivariate model, allowing error
correlation to exist between equations.

Assume that n individuals alive at time ¢ can experience k different
outcomes by 7 +m. The possible transitions into these outcome states
can be represented by a multinomial variable of dimension £ — 1,
with each dimension having binary response (1 = experienced this
transition or 0 = did not). A 0 in all dimensions indicates no transition,
and no one can have a 1 on more than one outcome (for simplicity in
this example). A likelihood function can be established based on this
multinomial variable, in which the latent propensities for individuals
to achieve a 1 in any dimension (assumed to be N (0, 1) in the probit
model) are integrated out in the likelihood function.

An alternative strategy is to assume that individuals have latent
propensities to die and to bring these propensities into the estimation
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strategy. We can assume that these propensities to die from any one
of k — 1 causes are distributed as follows:

Z; ~TruncMVN (u, 2).

Here, Z; is a vector of propensities for the ith individual. The
propensities are distributed as a truncated multivariate normal vari-
able (MVN), with the mean for each dimension (a) determined by a
regression on a vector of covariates: Z;(a) = X (a)'b(a), Vi, a. The
truncation point is defined at O (as in a standard probit model), with
the individual’s scores drawn from the cell region of the multinomial
contingency table representing the observed transition. The dimen-
sionality is k — 1 because if the individual lives, he or she will take
a 0 in all outcome dimensions. X'(a) is 1 x g; b(a) is g x 1, where
g represents the number of covariates used in modeling the response
in dimension a.

These propensities are related to each other via the covariance
matrix, ¥, which allows error correlations between the propensi-
ties that are not accounted for by the regression model. These cor-
relations may exist and will likely be highly negative because of
the structural aspect of the model that renders an outcome vector
with more than one “1” impossible. Approaching a competing risk
model from this perspective is more efficient, and it also allows for
construction of multiple decrement (and multistate) life tables with
empirical confidence intervals on state expectancies using the joint
posterior distributions for all parameters (see e.g., Lynch, Brown, &
Harmsen, 2003).

With a completed MVN set of propensities, the augmented like-
lihood function for the other parameters in the model becomes a
multivariate normal likelihood:

L. 2|1Z) o« []1Z1 exp (0T w)

i=1

where the vector, o, is a k — 1 dimensional residual, and b and ¥ are
regression coefficients and error covariances.

Here, we use a hybridized Gibbs/MH algorithm, specified as
follows:
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1. Simulate the latent data from TruncMV N as discussed above. An
individual Z vector is drawn until it satisfies the truncation require-
ments discussed above.

2. Given these latent data, the likelihood function is now the multivariate
normal likelihood discussed above—conduct MH steps to update b
and the components of X over several additional iterations.

3. Return to Step 1.

This algorithm varies from a simple MH algorithm in that we have
included a Gibbs sampling step (Step 1) in which the latent data are
simulated rather than integrated out of the posterior distribution. A
benefit to this approach is that it allows for greater leverage in diag-
nosing outliers, influential cases, and other problems. A limitation
of standard analyses of discrete data is the relatively poor diagnostic
measures available because many diagnostic measures assume nor-
mally distributed errors. Normal errors are impossible to obtain when
the data are discrete, and so most diagnostic measures are ad hoc con-
tortions of measures for linear models. In this model, on the other
hand, pseudo-errors (latent residuals) can be obtained from the simu-
lated distributions of the latent scores for each individual. Our focus
here is on posterior predictive quantities, and so we do not emphasize
this aspect of model fit.

After a completed MCMC run, we use the post-burn-in simulated
iterates to simulate latent data for each observation. Unlike frequen-
tist analyses, which assume that the parameter is fixed at its maxi-
mum likelihood estimation (MLE), the Bayesian approach explicitly
accounts for parametric uncertainty in this fashion. Posterior simu-
lation is accomplished by simulating j vectors Z ~ MV N (u, X),
where w(a) = X(a)'b(a); and j references the simulated values of
b from the MCMC run. After this simulation, individuals are allo-
cated to the appropriate multinomial cell based on their vector of
latent traits and the known thresholds of 0 in each dimension. In
this example, we assume two classes of causes of death: circulatory
system diseases (CSD) and all other causes of death (OCD). An indi-
vidual with vector Z = [< 0, < 0] would be classified as a “survivor,”
an individual with a vector Z = [> 0, > 0] would be double classi-
fied as dying from both CSD and OCD, an individual with a vector
Z = [<0, > 0] would be classified as dying from OCD, and an indi-
vidual with a vector Z = [> 0, <0] would be classified as dying from
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CSD. In conducting this simulation, we do not impose the constraint
that individuals cannot be double classified—if the model is specified
appropriately (and, more specifically, error correlation is estimated
appropriately), double classification should not occur.

The data for this example are from the National Health and Nutri-
tion Examination Survey (NHANES) and its follow-ups (the National
Health Epidemiologic Followup Survey—NHEEFS). The baseline
sample of 34,000 persons ages 25 to 74 was surveyed in 1971. A
total of 14,400 individuals who were administered a detailed medical
exam at baseline were administered follow-up questionnaires in 1982,
1987, and 1992. Of these, we use persons who were administered the
health care supplement and were older than age 65 at baseline
(n =1, 231).

At the end of the survey period, a vital and tracing status file was
compiled that included date and cause of death and final interview
status. We excluded 29 (2.4 percent) individuals who did not have a
final interview and whose status was unknown, leaving us with 1,202
respondents measured over a 22-year period. We use this information
to construct a person-year data file encompassing the period 1971-
1992 (final N = 18, 005).

Individuals surviving through the end of the period are treated
as censored, while individuals who died (n = 909) were coded as
dying from either CSD (n = 497) or OCD (n = 412), based on
ICD9 codes from their death certificates (range: 390-459). CSDs
include cardiovascular problems and events (e.g., myocardial infarc-
tion) and cerebrovascular problems and events (e.g., stroke), as well
as structural defects of the heart, heart and renal problems induced
by hypertension, embolisms, aneurysms, pulmonary circulation prob-
lems, peripheral vascular problems, and so forth. Many of these causes
are related to risk factors (e.g., smoking, age, diet, race), and most
individuals dying from these causes cluster around ischemic heart
disease and stroke, two of the leading causes of death for adults in
the United States.

We include age (baseline M = 68.98, SD = 2.82, range = 65-77),
sex (male = 1, 48.7 percent), race (non-White = 1, 15.3 percent),
southern residence (South = 1, 31.3 percent), baseline marital sta-
tus (married = 1, 63.9 percent), smoking history (0 = nonsmoker,
51 percent; 1 = former smoker, 29.0 percent; 2 = current smoker,
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20 percent), and education (in years, M = 9.43, SD = 3.6, range =
1-17+) as covariates predicting both outcomes. We expect age, race,
gender, southern residence, and smoking to have positive effects on
death due to either cause, while we expect marriage and education
to be beneficial. We expect the effect of age to be stronger for CSDs
than for OCDs because heart disease and stroke are the first and third
leading causes of death.

Table 2 presents the results of the run of the model. The coeffi-
cients reported in the table are the posterior means for the bivariate
probit coefficients, and they have an interpretation identical to those
of a standard univariate probit model. The results reveal that age,
being male, and smoking have significant and positive effects on
death due to both classes of causes. Being non-White increases the
probability of death due to OCDs but not CSDs. On the other hand,
being from the South has a moderately significant positive effect on
the probability of dying from CSDs but not OCDs. Being married
significantly reduces the probability of dying from a CSD, but the
effect is only moderately significant for OCDs. Education is only
moderately significant in reducing the probability of death to either
type of cause. Finally, the error correlation between equations is
significantly different from 0 (=-.73).

The p values for these coefficients were computed as the empirical
proportion of simulated parameters that exceeded O (either positively
or negatively). While a standard ¢ test could be constructed, based
on the posterior standard deviations, this test assumes normality of
the marginal posterior distributions—an unnecessary assumption to
make in a Bayesian setting.

The third column of the table reports the probabilities that the coef-
ficient for each parameter differs across equations. Specifically, we
report the probability that the coefficient from the CSD equation is
greater than the coefficient from the OCD equation. This test is useful
for testing hypotheses that may be relevant in examining the effects
of covariates on different CODs. For example, the empirical proba-
bility that the effect of age is stronger for CSDs than for OCDs is 1, as
expected, given that CSDs constitute two of the three leading causes
of death. There is also a fairly high probability (.87) that being from
the South has a greater effect on CSD than OCD, and such may be
attributable to dietary differences between the South and other regions
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TABLE 2: Bivariate Probit Model Results: Effects of Covariates on Death Due to
Circulatory System Diseases (CSD) and Death Due to Other Causes (OCD)

Outcome
Covariate Death Due to CD Death Due to OC P(Bcp > Boc)?
Intercept® —6.13(.23)%*** =5.15(.25)H***
Age .05(.003 ) .04(.003 )k 1
Male 23(.046)H* 13(.05)*** 93
Non-White .06(.06) 13(.06)%** .20
South .07(.04)* —.006(.04) .87
Married —.13(.05)%*s#* —-.07(.05)* .20
Smoking .10(.03)#sk** 13(.03) 22
Education —.0008(.006)* —-.007(.006)* 46

De —T3( 11 )

a. The p values are the empirical probability that the parameter is either > 0 or < 0, depending
on the sign of the parameter. These values are found by computing the proportion of the
simulated parameter values that exceed O (either positively or negatively). The p values reported
are classified into the ranges represented by the asterisks.

b. The probabilities are the probabilities that the coefficient from the first equation is greater
than the coefficient from the second equation, obtained by computing the number of posterior
parameter values in the CSD equation that exceed the maximum value for the comparable
parameter in the OCD equation.

*p<.l. #p<.05. FEp < 0l FEFEp < 001

(e.g., greater fat intake from fried foods). Finally, the probability that
the intercept is larger for CSD is 0. This finding might imply that the
general propensity to die from CSDs would be less than the propensity
to die from OCDs, if risk factors for CSDs as a whole had effects com-
parable to their effects on OCDs (or, put another way, that the distribu-
tions of risk factors in the population were comparable across causes).

The validity of these results obviously depends on the performance
of the model. The three general posterior predictive tests that we
use to examine the fit of the model include the following: the count
of double classifications, a model chi-square goodness-of-fit statistic
between the observed and expected cell frequencies, and the log of
odds ratios for death due to CSD versus OCD.

We conduct two additional tests to determine whether gender and
smoking are modeled appropriately. First, men and women have
different mortality patterns, which may suggest that they should be
modeled separately to allow the age dependence of their rates to
vary. Thus, using simply a dummy variable for gender would be
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inappropriate. We can easily test this hypothesis by examining
whether the posterior predictive distribution for the odds ratio for
gender for CSD and OCD outcomes is centered over the value in
the sample. Second, the measurement of smoking in this model
appears very crude. It is reasonable that former smokers may have
quit due to poor health, thus making them more likely to die than
current smokers. On the other hand, there is reason to suspect that
the integer-level coding of smoking may be inappropriate because
former smokers look more like never-smokers than smokers after
sufficient time has passed to repair the damage done by smoking. The
appropriateness of this measure can be tested in a similar fashion by
examining the posterior predictive distribution of the various odds
ratios that can be constructed comparing each level of smoking with
other levels for each cause of death.

Figure 2 shows the distribution of posterior predictive data in
10,000 replicated predictive data sets by double classifications, that
is, future observations about whom the model would classify as dying
from both classes of causes. Obviously, this double classification
should never occur because the model does not allow the latent sim-
ulated data to be simulated from that region of the contingency table.
However, in the predictive data, it is possible for data to be classified
in that cell on occasion since the predictive data are simply a replica-
tion from the (nontruncated) bivariate normal distribution. The figure,
however, indicates that in the replicated data, we rarely see double
classifications. In fact, we see 0 double classifications in 9,338 of the
10,000 replicated data sets. The majority of the remaining 662 repli-
cations have only 1 (out of 18,005) double-classified observations
(n = 505). A p value can be obtained by dividing the number of repli-
cated cases that are more extreme than the observed data by the total
number of replications. Because the data are discrete, we treat half of
the 9,338 replicated data sets with no double classifications as being
more extreme, yielding a p value of .5331. By this standard, the model
fits the data well. However, a limitation of this measure is that it does
not tell us whether our model reproduces the correct marginals—that
is, the correct number of counts for each cell. A model that simply
classified everyone as a survivor, for example, would obviously have
0 double classifications but would also not produce the appropriate
number of decedents.
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Figure 2: Posterior Predictive Densities for the Number of Persons Classified
as Dying From Both Classes of Causes

Our second measure of model fit is a chi-square goodness-of-fit
statistic computed for each of the 10,000 posterior predictive replica-
tions. This statistic has the following form:

(0, — E))?
Xir-e1 =D — 5
i=1 4

where the observed values are the cell counts in the posterior predic-
tive data, the expected data are the cell counts in the original data,
and the degrees of freedom are determined by the number of cells (¢)
in the table. In our case, we exclude the cell with a structural O count
because there are O cases in it in most of the replicated data sets (refer
to Figure 2), and the calculation cannot be made for that case.
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Figure 3 displays the distribution of these chi-square values for the
replicated data. The figure shows that the majority (76.7 percent) of
the chi-squares for the replicated data fall below the @ = .05 “critical
value” of 5.991 (indicated by the reference line in the figure—also,
98.98 percent fall below the o« = .01 threshold). Unlike a standard
likelihood analysis, which would only calculate this statistic at the
MLE, the Bayesian approach takes uncertainty in the parameter vec-
tor into account. Even after considering uncertainty, however, the
model appears to perform well, given the high percentage of repli-
cations that fall below the classical threshold for considering the
difference between the model-implied data and the observed data to
be “significant.” Compared to a model in which everyone is classified
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1 1
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Figure 3: Posterior Predictive Chi-Square Goodness-of-Fit Statistics
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as a survivor (which has a chi-square = 1042.33), this model looks
much better.

Perhaps a better test of the model’s ability to simultaneously fit
each of the cells is the log of the odds ratio for death due to CSD
versus OCD. The odds ratio is simply the ratio of the odds of dying
from CSD to the odds of dying from OCD. The odds ratio is bounded
at 0, so taking the log of the odds ratio makes the distribution more
symmetric. For the observed data, the odds ratio is as follows:

log odds ratio

) 497/18005 412/18005
=lo
& (18005 — 497)/18005/ (18005 — 412)/18005

=.19241.

Figure 4 shows the distribution for the log odds ratio for the posterior
predictive data. The value for the observed data falls squarely in the
middle of the distribution here, with a p value of .435. By this test, the
observed data do not appear extreme, providing yet another indication
that the model fits well. A model in which everyone was classified
as surviving, on the other hand, would have a posterior predictive
distribution at -co.

With the general model appearing to fit the data well, we turn our
attention now to the checks of the specific covariates about which
we were concerned. Figure 5 shows posterior predictive densities for
gender for both causes of death. The figure suggests that our treat-
ment of gender is appropriate in the model. The p value for the odds
ratio for CSD is .55, and the odds ratio for OCD is .46, indicating that
the observed data and data replicated under the model assumptions
are very close.

The results for smoking were not as promising. Figure 6 presents
six histograms of the odds ratios for each level of smoking for both
classes of causes of death. There are three odd ratios constructed
for each level of smoking: 1 versus 0, 2 versus 0, and 2 versus 1.
The first column of the figure reports the odds ratios for CSDs; the
second column reports the odd ratios for OCDs. The posterior pre-
dictive distributions are reasonably centered over the true values for
the OCD column. The (tail) p values were .185, .149, and .131, sug-
gesting that this measurement strategy is appropriate for the OCD
outcome. On the other hand, the results for the CSD column clearly
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Figure 4: Posterior Predictive Distribution of the Log Odds Ratio of Death Due
to Circulatory System Diseases (CSD) Versus Other Causes of Death (OCD)

indicate this is not an appropriate approach to measuring the effect
of smoking on death due to CSDs. The (tail) p values for these pos-
terior predictive distributions were .003, .27, and .001. The results
suggest that the hazards are not proportional across smoking levels
measured in this fashion. Specifically, the posterior predictive distri-
butions overpredict the odds of dying from a CSD for former smok-
ers relative to nonsmokers (top histogram), and they underpredict the
odds of dying from a CSD for current smokers versus former smokers
(bottom histogram). Interestingly, however, the odds ratio for current
smokers versus nonsmokers is estimated well. The results argue sta-
tistically for a revision of the measure that perhaps categorizes non-
smokers and former smokers together for this class of cause of death.
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Figure5: Posterior Predictive Distribution of the Odds Ratio for Gender for Both Classes
of Cause of Death

Alternatively, we could simply replace the continuous measure of
smoking with a set of dummy variables in both equations. Substan-
tively, we may reconsider the fact that there is considerable het-
erogeneity within the former-smoker group, as well as within the
current-smoker group, that may account for some of the poor fit.
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Figure 6: Posterior Predictive Distributions of the Odds Ratio for Levels of Smoking for
Both Classes of Cause of Death

Respecification in this case, then, may require using an alternate (or
additional) measure of smoking.

All the previous tests indicate that the joint assignment of individ-
uals to each cell is relatively consistent across models—that there is
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not a propensity to overassign or underassign individuals to one cell
versus another in models when there is accurate placement of indi-
viduals in a third cell.

We have not resolved the issue of whether the model consistently
misplaces specific individuals (possible outliers). We have developed
a useful posterior predictive check (not a test) for such persistent
misclassification. Specifically, for each individual in the data set, we
compute the total number of times out of the 10,000 posterior pre-
dictive replications each observation is misclassified. If the model
fit perfectly, then this distribution would be concentrated completely
at 0. If the model had some slight error, then we might expect that
the cluster of observations would be centered around 10 to 15 per-
cent, implying that each individual was misclassified between 1/7
and 1/10 of the time. On the other hand, if the model were no bet-
ter than random assignment of individuals to cells, we might expect
the distribution to be centered around 75 percent, implying that each
individual was misclassified % of the time—there would only be a
.25 probability that an individual would be classified correctly in any
replicated data set. Figure 7 shows the distribution of these counts
out of 10,000 replications, for all 18,005 individuals in the data set.
The vast majority of the distribution is below 1,500, reflecting that 92
percent of the observations are classified correctly 85 percent of the
time. The expectation of this distribution is 950, which means that
the model, on average, misclassifies persons less than 10 percent of
the time. If we compare this to random assignment, only about half
of the observations would be classified more than 25 percent of the
time, yielding an expectation of 7,500!

Beyond comparing hypothetical models, the most important fea-
ture of this posterior calculation is to locate outliers, which will tend
to have very high misclassification rates. In Figure 7, we can see a
handful of such persons at the extreme right edge of the histogram.
Fortunately, before we began the analyses, we sorted the data by all
the variables, starting with age. This allows us to pinpoint very quickly
the characteristics of the outliers that may be causing the problem.
In fact, it appears that the outliers are all persons who died—they
are typically being misclassified as surviving. This may not be sur-
prising, given that the probabilities of dying are very small—the data
are highly skewed. However, the fact that the model is predicting the
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Figure 7: Distribution of Replicated Observations by Frequency of Misclassification

appropriate number of deaths in each category very well illustrates
the ecological fallacy of assuming that the effects of the covariates
hold for any particular observation.

In sum, the results suggest that the model fits the aggregate data
fairly well, but the model does not fit very well to the individual
cases. This finding may call for a revision of the model and further
exploration of outliers.

EXAMPLE 2: ESTIMATING PRISON’S EFFECT ON
WAGE GROWTH WITH PANEL DATA

In this application, we consider the use of posterior predictive checks
to study the fit of several models that are difficult to compare using
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traditional methods. This application is motivated by the analysis of
panel data in which we have observations on a dependent variable, y,
for a unit (say, a survey respondent) i at time points t = 1, ..., T;.
Inference for the usual least squares regression assumes that the obser-
vations are independent, conditional on a vector of covariates, x;,.
This is unlikely to be true with this design because observations within
units will tend to be correlated. A common model for panel data is
written as follows:

I
Yie = o +x;, B+ e,

where the independence of the errors, e;;, within units is induced by
fitting the unit-level effect, o;. For maximum likelihood estimation,
e;; 1s usually assumed to be normally distributed.

Assumptions about ¢; define two alternative specifications, often
termed fixed- and random-effects models (e.g., Hsiao 1986). The
random-effects model is derived by assuming that «; is a random
variable, independently drawn from a normal distribution. With this
distributional assumption, a likelihood can be written, and iterative
methods can be used to find maximum likelihood estimates of «; and
the regression coefficients of key interest, 8. The fixed-effects model
makes no distributional assumptions and instead treats «; as fixed
parameters that may be correlated with other regressors. The fixed-
effects model can be fit with least squares, either by introducing a
dummy variable for each unit, i, or by transforming x;, and y;, into
deviations from unit-level means.

The fixed-effects model is often preferred because it will yield
unbiased estimates of 8 in the presence of certain kinds of omitted
variables. In particular, if there are other predictors, z;, that vary across
units and are correlated with the model covariates x;,, the effects of z;
will be absorbed by the unit-level coefficients, «;. The random-effects
estimates of 8 will suffer from omitted variable bias in this situation.

Is there any reason, then, to prefer the random-effects model? The
fixed-effects model fits an extremely large number of parameters and
is thus less efficient than the random-effects model. This is reflected
in relatively large standard errors for the fixed-effects estimates of the
coefficients, S. In specific applications, the reduction in bias obtained
by the fixed-effects model may be outweighed by the increase in
variance. Although bias and variance considerations should guide
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the issue of model choice, the criterion of unbiasedness has received
greatest attention. Specification tests have been proposed that focus
on the bias in the random-effects estimate of 8. The most popular
test, proposed by Hausman (1978), provides a chi-square statistic
for the null hypothesis that the unit-level effects and the predictors
are uncorrelated. Although textbooks indicate the importance of the
bias-variance trade-off, the value of unbiased estimation appears to
be a higher priority for applied researchers because fixed effects are
often preferred to random effects in practice.

Although econometric analysis tends to argue for the utility of the
fixed-effect model, the applied relevance of the analysis may be over-
stated. All discussions compare fixed- and random-effects estimators
for models in which the predictors are identical. In practice, however,
researchers will often have unit-level variables, z;, that can be included
in the random-effects models. Because the coefficients of z; are not
identified for the fixed-effects estimator, researchers face the practi-
cal problem of comparing nonnested models. Consider an analysis of
men’s wages when there are unit-level data on the race, ethnicity, and
cognitive test scores of survey respondents. These variables would be
included in the random-effects model but not the fixed-effect model.
Specification tests are not available to compare these two nonnested
models.

In addition, analysis generally focuses on random intercept models,
but in some applications, it would also be useful to specify random
slopes as well. Thus, for example, the analysis of wages by Bernhardt
et al. (2001) supplement the usual random intercept with a random
component for the effect of age on men’s wages. This model may pro-
vide a better specification of the time-dependent character of observa-
tions than a model that assumes that the age-wage profile is identical
for all respondents. Standard specification does not accommodate the
comparison of fixed-effects models to models with multiple random
components.

The fit of such nonnested models can be compared using posterior
predictive checks. To explain the calculation of posterior predictive
distributions, we begin by providing a Bayesian formulation of the
fixed- and random-effects models. For all models, y;, is conditionally
normal:

VielXir ~ N()A’iza 02),
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where the expectation is
Vi =a; + x,{fﬂ + 5;5-

For the fixed-effect model, we specify a diffuse proper prior for «;
and each of the k components of §:

o ~ N(0,02),
B ~ N0, 0D,

where the prior variances are taken to be large—say, o; = o5 = 10°.
The effects of z; are not identified by the data and will be absorbed
by the estimates of ¢;, so § is set to zero for the fixed-effects model.

In the random intercept model, the priors for 8 and § are given the
same diffuse prior given to § in the fixed-effects model, but the prior
for the unit-level effects has the following hierarchical structure:

o; ~ N(a07 T(f)
Oy ™~ N(O, 0'3)
Ti ~ 1G(ay, b),

where /G denotes the inverse gamma distribution for the variance
parameter, and the prior parameters a, and b, are chosen to be large,
representing diffuse prior information. From the Bayesian perspec-
tive, the fixed- and random-effects models are identical except in
the choice of prior for ¢;. The fixed-effect model has a diffuse prior
centered at zero; the random-effects model has an informative prior
centered at «.

The model can be elaborated further by allowing 8 to vary across
units. The so-called random slope model introduces a hierarchical
structure for the regression coefficients:

Bi ~ N(Bo, 72)
Bo ~ N(0,02)
5 ~ 1G (ap, by).
With a likelihood for y;; and proper priors for all parameters, a

Gibbs sampler can be written to simulate draws from the posterior
distributions. If particular simulated values are written—pg*, o, and
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o *—these can be used to calculate the simulated conditional mean,
w?,. The posterior predictive distribution can then be simulated by
random draws from

i~ N(uj,, 0%

for simulated values of the parameters from each iteration of the Gibbs
sampler.

We illustrate posterior predictive checks for models of panel data
by analyzing data on wages for men, using data from the National
Longitudinal Survey of Youth (NLSY). The NLSY is a panel survey
of a national sample of men and women ages 14 to 21 in 1979. Survey
respondents were interviewed annually until 1994 and then again in
1996 and 1998. Unlike many labor force surveys, the NLSY contin-
ued to interview respondents if they went to prison or jail. The incar-
ceration status of respondents is recorded at the time of the interview.
The data thus provide a useful source of information for studying the
effects of incarceration on wage mobility. We analyze wage mobil-
ity among a high-risk sample of young Black NLSY men who report
being in jail or prison or involved in juvenile delinquency or adult
crime.

Interest centers on whether the age-wage gradient for men who have
been to prison is different from wage growth among male nonpris-
oners. Some descriptive statistics on the growth in log hourly wages
is reported in Table 3. Growth in median log wages between ages 22
and 35 is about 40 percent greater for nonprisoners than prisoners,
providing preliminary evidence for slow wage growth among men
with prison records.

Regression results for four models are reported in Table 4. Each
model yields a statistically significant estimate for the interaction
between age and incarceration status, indicating slow wage growth
among ex-prisoners. The main effect of age, however, is sensitive
to the model choice, suggesting different rates of wage mobility for
prisoners and ex-prisoners. Which model should be preferred? The
R? shows that the random slope and intercept model fits best. Which
model best captures patterns of wage growth that we observe in the
data?

To answer this question, we define a discrepancy statistic,

T(y) = P.(ylage = 35) — Pc(ylage = 22),
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TABLE 3: Results for Regression of Log Hourly Wages on Incarceration Status and
Other Characteristics, Black Men Reporting Crime or Incarceration,
National Longitudinal Survey of Youth 1983-1998

Ordinary Random Random Slopes
Least Squares Fixed Effects Intercepts and Intercepts
Intercept .76 .66 79 a7
(12.69) (4.24) (8.36) (7.40)
Was incarcerated (P) -.02 -.05 -.03 -.04
(.87) (1.64) (1.23) (1.05)
Log age (A) -.04 .79 23 17
(.37) (2.21) (1.31) (.87)
PxA -.37 -.30 -.35 -42
(3.31) (2.58) (3.28) (2.02)
Now incarcerated (C) =22 =23 =22 -.18
(7.06) (7.87) (7.96) (6.64)
Work experience .59 .64 57 .59
(17.95) (8.89) (11.94) (12.27)
Education .30 .63 .35 34
(6.82) (5.50) 4.91) (4.91)
Year .01 -.01 .01 .01
(3.87) (1.16) (.97) (1.31)
AFQT .56 — 47 48
(11.81) (5.09) (5.04)
R? 20 44 A4 .56

NOTE: Number of respondents = 533; 5,043 respondent-years. AFQT = Armed Forces
Qualifying Test. Further details of this analysis are reported in Western (2002).

where the function P, returns the level of log wages at percentile c.
For example, the median wage at age 35 is given by Pso(y|age = 35).
We examine three different discrepancy statistics for ¢ = 10, 50, 90.
Posterior predictive densities for growth in median log wages from
age 22 to 25 is shown in Figure 8. Densities are shown for the fixed-
effect model, the random intercept model, and the random slope and
intercept model. The vertical line on the figure shows the observed
difference in median wages. All three models accurately repro-
duce the difference in median wages and indeed yield very similar
predictions.

At the tails of the wage distribution—at the 10th and 90th
percentiles—however, we see some divergence between the model
predictions (Figure 9). All three models tend to overestimate the dif-
ference in log wages at the 10 percentiles but underestimate wage
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TABLE 4: Location and Spread of Log Hourly Wages by Age and
Incarceration Status, Black Men Reporting Delinquency
or Incarceration, National Longitudinal Survey of Youth

1983-1998
Age 22 Age 35 Difference
(1) 2) ) -
Prisoners
Mean 1.461 1.589 128
Median 1.421 1.594 173
90-10 difference .890 1.150 260
Nonprisoners
Mean 1.473 1.804 331
Median 1.451 1.762 311
90-10 difference .848 1.315 468

Predicitve Density

1 1 1 1
0.0 0.2 0.4 0.6

Change in Median Log Wage

Figure 8: Posterior Predictive Densities for Change in Log Median Wages From Ages
22 to 35 for Fixed-Effect (FE), Random Intercept (RI), and Random Slope and
Intercept (RSI) Models

NOTE: The vertical line indicates the observed change in median wages.
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Figure 9: Posterior Predictive Densities for Change in Wages From Ages 22 to 35 for
Fixed-Effect (FE), Random Intercept (RI), and Random Slope and Intercept
(RSI) Models

NOTE: The top panel shows the change in the 10th percentile of the wage distribution. The

lower panel shows the change in the 90th percentile of the wage distribution.
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differences at the top. The wage distribution tends to fan out as the
NLSY respondents age, and none of the models are able to success-
fully reproduce this pattern of variation. Although all three models
tend to fit rather poorly in this respect, the random slope and intercept
specification tends to do somewhat better than the other two. Bayesian
p values for wage differences at the 10th and 90th percentiles for the
random slope and intercept (RSI) model are around .05 compared to
p values of under .01 for the model with just unit-level effects.

What conclusions can be drawn from the posterior predictive anal-
ysis? The posterior predictive distributions are diagnostic tools, not
statistics for model selection. The superior fit of the RSI model to
patterns of wage growth at the 10th and 90th percentiles indicates
that this model captures the variety of wage trajectories somewhat
better than alternative models. Given that other research has empha-
sized the importance of the increasing dispersion of wage profiles
(Bernhardt et al. 2000), the RSI model can be understood to repro-
duce a substantively important pattern of variation. Although it is
tempting to use this as a basis for preferring the RSI model over the
fixed-effect and random-effect alternatives, other discrepancy statis-
tics could also be defined. For example, we might also study the
capacity of models to predict the difference in wage dispersion
between ex-inmates and noninmates or among Black and White men.
Discrepancy statistics can be calculated to describe the realism of the
models in capturing these other features of the data. The substantive
context of the research problem should govern the choice of discrep-
ancy statistics.

What if posterior predictive distributions indicate that none of the
models under consideration accurately capture important patterns
of variation? In this case, we resort to the usual tools for model
reformulation: adding predictors, experimenting with new functional
forms, data transformations, and so on. Despite statistically signifi-
cant regression coefficients, posterior predictive checks may indicate
a qualitatively poor fit of the model to the data. Under these cir-
cumstances, our coefficients may not provide a substantively relevant
description of the data or the data-generating mechanism, and alter-
native models should be examined.
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DISCUSSION

The posterior predictive distribution provides a useful set of statistics
for assessing model fit. Unlike standard goodness-of-fit statis-
tics, discrepancy statistics formed from the posterior predictive
distribution can be designed to assess a model’s fit to substantively
important patterns of variation. It is difficult to generalize about the
form that discrepancy statistics should take, but in our research, we
have found it useful to examine conditional odds ratios in analyzing
discrete data and conditional quantiles in examining continuous data.
Arising in a Bayesian framework, the discrepancy statistics have an
inferential as well as diagnostic interpretation. Discrepancy statis-
tics allow the calculation of p values that indicate the plausibility of
observed data under a particular model.

Because posterior predictive distributions can be approximated
using simulations from the posterior distribution of model parame-
ters, the diagnostic offers a useful approach for studying models fit
by simulation methods such as MCMC. Such models often have a
hierarchical structure and can often consist of very large numbers of
parameters. In many cases, rival models will be nonnested. Under
these conditions, standard fit statistics and diagnostics will be difficult
to apply. Furthermore, in many cases, the model(s) under considera-
tion may simply not have any (or many) established diagnostic tests,
or the standard diagnostic tests may be based on assumptions (e.g.,
normality of the error) that are unreasonable for the particular model.
Posterior predictive checks, however, provide an easily implemented
approach to model evaluation and comparison in this context.

A Bayesian approach to monitoring model fit by comparing model
predictions to observed data was introduced by Rubin (1981, 1984).
A modern application of posterior predictive checks in the context
of MCMC simulation is provided by Gelman et al. (1996). A dis-
cussion of the Bayesian p values, as well as a comparison to clas-
sical hypothesis testing, is provided by Berkhof and van Mechelen
(2000). A good didactic discussion of posterior predictive checks
can be found in Gelman et al. (1995, chap. 6). In a sociologi-
cal context, the merits of posterior predictive checks in compari-
son to the calculation of Bayes factors for model comparison have
been discussed by Raftery (1995a, 1995b) and Gelman and Rubin
(1995).



Lynch, Western / BAYESIAN POSTERIOR PREDICTIVE CHECKS 335

REFERENCES

Allison, Paul D. 1984. Event History Analysis: Regression for Longitudinal Event Data. Sage
University Paper Series on Quantitative Applications in the Social Sciences, 07-046. Beverly
Hills, CA: Sage.

Berkhof, Johannes and Iven van Mechelen. 2000. Computational Statistics 15:337-54.

Bernhardt, Annette, Martina Morris, Mark S. Handcock, and Marc A. Scott. 2000. Divergent
Paths: Economic Mobility in the New American Labor Market. New York: Russell Sage
Foundation.

Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. 1995. Bayesian Data
Analysis. London: Chapman & Hall.

Gelman, Andrew, Xiao-Li Meng, and Hal S. Stern. 1996. “Posterior Predictive Assessment of
Model Fitness Via Realized Discrepancies.” Statistica Sinica 6:733-807.

Gelman, Andrew and Donald B. Rubin. 1995. “Avoiding Model Selection in Bayesian Social
Research.” Sociological Methodology 25:165-74.

Gilks, W. R., S. Richardson, and D. J. Spiegelhalter, eds. 1996. Markov Chain Monte Carlo in
Practice. Boca Raton, FL: Chapman & Hall/CRC.

Hausman, J. A. 1978. “Specification Tests in Econometrics.” Econometrica 46:1251-71.

Hsiao, Cheng. 1986. Analysis of Panel Data. Cambridge, UK: Cambridge University Press.

Lynch, Scott M., J. Scott Brown, and Katherine G. Harmsen. (2003). “The Effect of Altering
ADL Thresholds on Active Life Expectancy Estimates for Older Persons.” The Journals of
Gerontology: Social Sciences 58(3):S171-178.

Preston, Samuel H., Patrick Heuveline, and Michel Guillot. 2001. Demography: Measuring
and Modeling Social Processes. Oxford, UK: Blackwell.

Raftery, Adrian E. 1995a. “Bayesian Model Selection in Social Research.” Sociological
Methodology 25:111-64.

. 1995b. “Rejoinder: Model Selection Is Unavoidable in Social Research.” Sociological
Methodology 25:185-96.

Rubin, Donald B. 1981. “Estimation in Parallel Randomized Experiments.” Journal of Educa-
tional Statistics 6:377-401.

. 1984. “ Bayesianly Justifiable and Relevant Frequency Calculations for the Applied
Statistician.” Annals of Statistics 12:1151-72.

Tierney, Luke. 1996. “Introduction to General State-Space Markov Chain Theory.” Pp. 59-74
in Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and
D. J. Spiegelhalter. Boca Raton, FL: Chapman & Hall/CRC.

Western, Bruce. (2002). “The Impact of Incarceration on Wage Mobility and Inequality.”
American Sociological Review 67:526-546.

Scott M. Lynch is an assistant professor of sociology at Princeton University. His
recent substantive research examines inequality and health over the life course. His
recent methodological work involves developing a Bayesian approach to estimating
multistate life tables with covariates.

Bruce Western is a professor of sociology at Princeton University. His recent research
examines labor market inequality and social impact of the growth of incarceration in
the United States.



