Appendix to
Strategic Asset Allocation:
Portfolio Choice for Long-Term Investors

John Y. Campbell and Luis M. Viceira

July 2001



Contents

1 Appendix: Introduction

2 Appendix: Mathematical Derivations
2.1 Derivation of selected mathematical results in Chapter 3 . . .
2.1.1 Derivation of the approximation to the log portfolio
return . . . . ... .o
2.2 Derivation of selected mathematical results in Chapter 3 . . .
2.2.1 Derivation of the approximation to the log intertem-
poral budget constraint . . . ... ... ... ..
2.2.2  Solution to model with constant variances and risk
premia when there are multiple risky assets . . . . . .
2.2.3 Recursive expression for 4,, . . . . ... ... ... ..
2.2.4 Pricing nominal bonds . . . ... ... ... L.
2.3 Derivation of selected mathematical results in Chapter 5 . . .
2.3.1 Coefficients of the value function in the model with
time-varying interest rates and power utility . . . . . .
2.3.2 Coefficients of the value function in the model with
time-varying interest rates and recursive utility (unit
elasticity of intertemporal substitution case) . . . . . .
2.3.3 Coefficients of the value function in the model with
stochastic volatility and recursive utility (unit elastic-
ity of intertemporal substitution case) . . . . ... ..
2.4 Derivation of selected mathematical results in Chapter 6 . . .
2.4.1 Optimal consumption and portfolio choice for retired
investors . . . . . . ... oL L
2.4.2  Optimal consumption and portfolio choice for employed
investors . . . . . . ... L L



Chapter 1

Appendix: Introduction

This Appendix contains mathematical derivations of some selected results
presented in John Campbell and Luis M. Viceira’s book “Strategic Asset
Allocation: Portfolio Choice for Long-Term Investors.” To avoid confusion
between equations in the main text of the book and equations in this Ap-
pendix, we number equations in the Appendix as (Al), (A2), etc.



Chapter 2

Appendix: Mathematical
Derivations

2.1 Derivation of selected mathematical results in
Chapter 3

2.1.1 Derivation of the approximation to the log portfolio
return

In the case where there are two assets, one risky and one riskless, we have
from (2.1) that

1+ Rpir1 lta < 14+ R 1)
2 fpitl S )
1+ Ry 1+ Ry

Taking logs, this can be rewritten as
it = Tl = l0g [1+ o (exp(repr — rpe1) — 1]

This equation gives a nonlinear relation between the log excess return on the
single risky asset, 7441 — 141, and the log excess return on the portfolio,
Tpt+1 — Tfe+1. Lhis relation can be approximated using a second-order
Taylor expansion around the point 7441 —77441 = 0. The function f; (ree1—
rri+1) = log [1 4+ ay (exp(riy1 — rp¢41) — 1)] is approximated as

flress = 1) = Ji0) + O st = rrass) + 3O esn = g

The derivatives of the function f;, evaluated at ry11 —7 41 = 0, are f{(0) =
ag and f{'(0) = ay(1—ay). Also, we replace (ry11—7441)? by its conditional

2



CHAPTER 2. APPENDIX: MATHEMATICAL DERIVATIONS

expectation o?. Thus the Taylor approximation is

1
Tpt+1l — Tfi+1 = ap(rep1 — Tf,t+1) + §Oft(1 - at)”?-

The log excess portfolio return takes the same form as the simple excess
portfolio return, with an adjustment factor in the variance of the risky asset
return. The adjustment factor is zero if the portfolio weight in the risky
asset is zero (for then the log portfolio return is just the log riskless return),
and it is also zero if the weight in the risky asset is one (for then the log
portfolio return is just the log risky return). The approximation in (2.21)
can be justified rigorously by considering shorter and shorter time intervals.
As the time interval shrinks, the higher-order terms that are dropped from
(??) become negligible relative to those that are included, and the deviation
of the realized squared excess return (ry41 —ry441)? from its expectation o7
also become negligible.

In the limit of continuous time, the approximation is exact and can be
derived using Ito’s Lemma. For completeness we present the derivation in
the most general case where there are multiple risky assets and no riskless
asset. The log return on the portfolio 1, ;11 is a discrete-time approximation
to its continuous-time counterpart. We assume that there are (n + 1) risky
assets, one of which we use as a benchmark. Without loss of generality, we
assume that the benchmark asset is a risky short-term instrument whose
price we denote by B;. We begin by specifying the return processes for the
short-term instrument B; and all other risky assets P; in continuous time:

dB
—L =y dt + oy dWi,
By ’

dP

—L = pdt+odWy,
P,

where p,; and p, are the drifts, o}, and o are the diffusion, and Wy is a m-
dimensional standard Brownian motion. The dimensions of p, p, oy, o are
1x1,nx1,1xm,nxm, respectively. We allow the drifts to depend on other
state variables, but for notational simplicity, we suppress this dependency
and simply use the time subscript. = Moreover, note that the same W;
appears in these two equations.

Since we are working with log returns, we apply Ito’s Lemma to each
asset:

dBy 1

dlog Bt = (E) — 5 (O'bO'é) dt,
AP\ 1

leg H,t = <?7t> — 5 (O'ZO',L) dt,
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where o; is the ith row of the diffusion matrix o, and i =1, .., n.
Let Vi be the value of the portfolio at time t. We will use dlogV; to
approximate rp;y1. By Ito’s Lemma,

avi\ 1 [/dv;\?
dlogVi=|— ] —-—=[—1 .
o8 < Vi > 2 < Vi )
We will now derive these 2 terms in order:

dV; , [ dP;y , \ dBy
i —t 1— it
Vi at<Pt>+( atb) B,

- a; <d log Pt + % [O'Z'O';-] dt) + (1 - a;[') <d10g Bt + % (O'bO';)) dt)
= a;(legPt_dlogBt‘L)-l—dlogBt
1

+§a; ([oio] — ooy, - 1) dt + %a'ba'Zdt,

where ¢ is a n x 1 vector of ones and the bracket [-] denotes a vector with
0,0 the ith entry. Next,

d 2
(%) = o} (dlogP; — dlog B; - ¢) (dlog Py — dlog By - 1)’ ay + (dlog By)*
t
+20x; (dlog Py — dlog By - ¢) (dlog By) + o (dt) ,

where the o(dt) terms vanish because they involve either (dt)? or (dt) (AW}) .
Now, from equation (??)—(??) and ignoring dt terms,

dlogP; —dlogB; -t = (o0 — - 0}) dW4.
Thus,

(dlogPy — dlog By - 1) (dlog Py —dlog B, 1) = (o0 —t-0p) (0 —1-0p),
(dlogP¢ —dlog B -t) (dlog By) = (0 —t-0yp)- 0.

Collecting these results and using our notation for excess returns and the
return on the benchmark risky asset (x¢11 = dlogP; — dlog B; - ¢, and
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r0,t+1 = dlog (By)) and setting dt = 1, we have:

Tp,t+1
= dlogV;

1
= X1 +roer + §a; ([eio}] — ovoy, - 1)

1
—3 (o (00— 0) (0 —1-03) oy + 200 (00— v 0p) 0]
= X411+ 10141 — = (0 —L-0p) (0 —t-0p) oy

2

+%a2 ([oio}] + ovoy, -t — 2007) .

Similarly, using the notation in book for variances and covariances, we have

(6 —t-0p) (0 —1-0p) = %y
oo, = ob,
l0:0] + o040, L — 200}, = of.

With these terms, the return on the portfolio is

1 1
/ /2 !
Tpi+1 = OXip1 + 70041 + 50407 — §at2tat:

which is equation (2.23) in text.

2.2 Derivation of selected mathematical results in
Chapter 3

2.2.1 Derivation of the approximation to the log intertem-
poral budget constraint

Taking logs on both sides of the intertemporal budget constraint (3.2) we
obtain equation (3.3) in text:

Awyyy = 1p i1+ log(l — exp(e; — wy)). (A1)

The second-term on the right-hand side of (A1) is a non-linear function
of the log consumption-wealth ratio. A first-order approximation of this
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function around the mean of the log consumption-wealth ratio gives:

log(1 —exp(cy —wy)) ~ log (1 —exp (E[c; — wi]))
_exp(E e —wi))

1 —exp (E et —wy)

= log (1 —exp (E[c; — wi]))

exp (E [¢; — wi])

((er —wy) — Eer — wy])

1 —exp (E et —wy)) E e —w]
— ixfx(pE(Et[c_t i"ti})t]) (e — wy). (A2)
Pelining p=1—exp(E[ct —wy)), (A3)
we can rewrite (A2) as
g1 = expler — ) ~ b+ (1= 5) (o= wy). (A1)

where

exp (E [cr — wy))

k= log(l—exp(E[ct —wy)) + 1 —exp(Ela —wy)

(E [t —wy])

1—p

= log(p) + log (1 —p).

Note that this approximation is exact when the optimal consumption-wealth
ratio is constant. so that ¢, — w; = E¢[cp — wyl.

Direct substitution of (A4) into (Al) gives equation (3.4) for the log
intertemporal budget constraint in text.

2.2.2 Solution to model with constant variances and risk pre-
mia when there are multiple risky assets

Chapter 2 shows (see equation [2.51]) that under Epstein-Zin utility with
multiple risky assets, the premium on each risky asset over the risky bench-
mark asset is given by

1
Et (Tit41 — 70,041) + 5 Vary (75,441 — 70,t41)

0
= v Covi (Aciy1,Tip+1 — T0,t41)

+ (1 = 0) Covy (rpt41,Tig+1 — To,t+1)
— Covy (4,641 — 70,641, 70,t4+1) 5 (A5)
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where 6 = (1 —7)/(1 =4 1).
Using the log budget constraint (3.4) and the trivial identity Ac;4q =
(ct41 — wig1) — (¢p — wy) + Awgpq, we have

Covi (Acty1,Ti 441 — T0,641)

((ct41 —wi1) — (¢4 —wi) + AWip1, 75441 — 70,64+1)
(

(

Covy (Ct+1 — w1, Tit+1 — 7“0,t+1) + Covy (Tpt+1,7‘z‘,t+1 - T’O,t+1) (AG)

== COVt

= Covy (C1 — W1, Tip41 — T0,t41) + Covy (Awip1, 75 141 — 70,641)

Substitution of (A6) into (A5) gives

1
Et (Ti4+1 — To,t41) + 5 Varg (75 441 — T0,t41)

= E COVt (Ct+1 — W41, T4 t4+1 — rO,t—i—l)

0
+ (1 -0+ " Covi (Tp,t41,Tit+1 — T0,t4+1)
— Covy (ﬂ',tﬂ —T0,t+1, 7"0,t+1) )

or, in vector notation,

1

E¢ (ri41 — rog+1t) + 5‘7?

-
= - <— Covy (Ci41 — Wig1,Tp1 — To,441L)

1—
+v Covi (Tp t+1, Tt41 — To,t+1¢)
— Covi (Tep1 — 10,4414, 70,641) 5 (A7)

where we have substituted (1 —)/(1 — 1) for 6. &? denotes a column
vector with the variance of the excess return on each asset over the return
on the benchmark risky asset:

07 = (Vary (71441 — 70,441) » oy Vary (Tngg1 — To441)) -

The equation for log portfolio return (2.23) implies that the second co-
variance term in (A7) is

Covi (Tp,t41,Te4+1 — T0,t4+1L)
= Covy ((re41 — 7"0,t+1b) +70,t4+1,Yt4+1 — 7"0,t+1b)

!/
= o Varg (41 — 7“0,t+1b) + Covy (r07t+17 i+l — 7“0,t+1b) )
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so that (A7) becomes

L 5
Et (ri41 — rog+1t) + 5
l—v
= T2 Covi (Ct41 — Wi, Teg1 — T0,641L)

+yag Varg (rep1 — rogsit)

— (1 =) Covy (re41 — 00412, T0,041) 5 (A8)
from which we obtain immediately an expression for ay.

Defining
_ Covy (= (¢t41 — Wig1) , Top1 — T0,441L)
Opt = )
1—1
Et = Vart (I‘t+1 — T07t+1L) s

and

oot = Covy (Yep1 — 70,6418, 70,641)
the expression for ay resulting from (A8) becomes

1. 1 —
o = ;Et ' (EtI't+1 —7“0,t+1b+0'%/2) + <1_ ;) %y How —on),

which is (3.21) in text. Equation (3.20) obtains when the benchmark asset
is riskless one-period ahead, so that ag; = 0.
Note that section 3.1.3 shows that

(Et+1 — Et) (ct41 — wi41)

1=

= (Et+1 — Et) Z ,Ojrp,t—‘rl-‘rj' (A9)
j=1

This section also shows that, when time-variation in interest rates is the
only source of variation in investment opportunities, the right-hand-side of
(A9) is equal to

[o.°] [o.o]

(Et+1 — Ex) Z Prpir1vj = (Ber1 — Ex) Z P
j=1 Jj=1
so that
Ct41 — Wil
o = Covg <—%¢+,rt+1 — r07t+11,>

o
= Covi | —(Ber1 —Ee) ) p/rpestegsTeer —ropne |, (AL0)
=1

8
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as stated in (3.19).
From equation (3.18) in text, it is easy to see that, if p = p,, then
equation (A10) becomes

e, 0)
o = Covy | —(Ei41 —Ee) E PTf 4145, Ti41 — T0t+1L
Jj=1

= Covi (Te 41, 441 — T0,t41L)
= O,

so that X, 1oy, = 3, 1oy is the vector of population regression coefficients
from a multiple regression of an inflation-indexed consol return onto the set
of risky asset returns, as stated in text.

2.2.3 Recursive expression for A4,

The recursive equation for the coefficient A, in the indexed zero-coupon
bond pricing equation (3.27) is given by

1
Ap — Ap1 = (1 - ¢z) :umBn—l - 5 (/Bmz + Bn—1)2 0—3: + 072’11 .

with Ag = By = 0. See Campbell, Lo and Mackinlay (1997) for a derivation
of the pricing equation (3.27).

2.2.4 Pricing nominal bonds

The pricing of default-free nominal bonds follows the same steps as the
pricing of indexed bonds. The relevant stochastic discount factor to price
nominal bonds is the nominal SDF ]V[tﬂz_l, whose log is given

My = Mep1 — Tepls (A1)

Since both M;;; and Il;4; are jointly lognormal and homoskedastic, ]\/[t$_~_1
is also lognormal. The log nominal return on a one-period nominal bond is
Ti“—l = —log E¢[My41], or

1
T?,t+1 = —FE [mfﬂ} -3 Var, [merl}
1
= Tyt 2z2— 5 {(6777,;(: + 67r;c) 20-20 +572rz02 + (]- + 671’)20-7271 + 0’72r ,
a linear combination of the expected log real SDF and expected inflation.

9
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The risk premium on a 1-period nominal bond over a 1-period real bond
can be written as

$ 1 2 2
Et Tl,t+1 = Tt41 — T+l + 5 Va‘rt [7rt+1] = 7/6mx/67rz z ﬁﬂ'mo-m’

which has the same form as equation (3.38) for equities.

The log price of an n-period nominal bond, pi’t, also has an affine struc-
ture. It is a linear combination of x; and z; whose coefficients are time-
invariant, though they vary with the maturity of the bond. As shown in
equation (3.36), —pi’t =A% ¢ Bf’nxt + Bgnzt,where

Bf, = 1+,B}, =+ %
1,n z-1n—1 1— d)a;
1—¢7
BS, = 1+¢,BS, | = :
2,n z2n—1 17¢z
A;sib - A?L*l = (1 - ¢z) HxBf,nfl + (1 - ¢z) :ung,nfl
1 $ s\ 2
_5 (ﬂm:c + ﬂﬂ'x + Bl,nfl + Bz:cBQ,nfl) Og
1 2 1
*5 (/Bﬂ'z + Bg,n—1> ‘73 - 5 (1 + /67rm + ﬁzm)2 07271
1
502,

and A§ = B} j = B§; =0.
The excess return on a n-period bond over the one-period log nominal
interest rate is

T;s{,t+1 - T?,t—kl = pi—l,t—&-l - Pi,t + Pit
= — (B + BSu18er) (Bra + Bra) 03 — B3 118702
(U4 Brn) B Bin10% — 5 (Bs + B 1Br) 02
5 (B) 22 (B8 o2
- (Bsf,n—l + B§,n—1621> Eatr1 — BS _1BemEmit41
—Bgm_l&?z,tﬂ.

The terms in Bg,n—lﬁzx and Bg,n—1ﬁzm arise because shocks to expected
inflation are correlated with shocks to the expected and unexpected log real
SDF. Thus risk premia in the nominal term structure are different from

10
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risk premia in the real term structure because they include compensation
for inflation risk. Like real risk premia, however, nominal risk premia are
constant over time.

2.3 Derivation of selected mathematical results in
Chapter 5

2.3.1 Coefficients of the value function in the model with
time-varying interest rates and power utility

Substitution of (5.22) into (5.20) leads to

_ dhe N
0 = T 1—7(CO+01T)+2W2 1_7—#7“
2
R e — ) — _9 o2
+<1_7(9 r) >‘>Cl+2(1_7)01, (A12)

where we must determine Cy and C; so that the equation holds for all
values of the instantaneous interest rate. Simple inspection of the terms
in the equation shows that the right hand side of the equation is a linear
combination of the instantaneous interest rate. Thus Cy and C; must be
such that both the intercept and the slope of the linear equation are zero
simultaneously:

h
0 = dmEne g (A13)
L=n
7 Yho N
0 1_700-%-1_74-270_2 T
2 ) R
SN o puup i’ ) Al4
<1—7 FTa -yt (AL4)

Equation (A13) is a linear equation whose only unknown is Cj. The
solution to this equation is given in (5.23). Equation (A14) depends on
both C7 and Cp, but it is linear in Cy given C;. Substituting the expression
for C that obtains from (A13) into (A14), we can solve for Cjy immediately.

11
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2.3.2 Coefficients of the value function in the model with
time-varying interest rates and recursive utility (unit
elasticity of intertemporal substitution case)

The solution procedure is analogous to the solution procedure shown in the
previous section. Substitution of (5.72) into (5.71) leads to

_ g A
0 = 1_7Kb+0w%%0ﬂ%6 6+2Mﬂ+r
o2 K A o2
+—02+<— 0—r ——)C +——C% (Al

where we must determine Cy and C] so that the equation holds for all values
of the instantaneous interest rate. Once again, simple inspection of the terms
in the equation shows that the right hand side of the equation is a linear
combination of the instantaneous interest rate. Thus Cy and C; must be
such that both the intercept and the slope of the linear equation are zero
simultaneously. This leads to two algebraic equations for Cy and Cf.

The first equation obtains from collecting terms in r in (A15) and setting
them to zero:

SNACRRLYSANE Y (A16)
Y

This equation is identical to (A13) with Ay = 8. The second equation is

again linear in Cy given C7, and obtains by collecting all other terms in
(A15).

2.3.3 Coefficients of the value function in the model with
stochastic volatility and recursive utility (unit elastic-
ity of intertemporal substitution case)

Substitution of guess I = exp{Cy + C1¢;} into (5.85) leads to

N2
0 = Blogf—p— il log(l—'y)—kwq—kr
L—n 2y
1 PpeOq bp — T K
—Eﬁ(COﬂLCM)ﬂL(Pq o e )y+1_q (Hq_Q)>01
2 2 2
PPq7q o2 q 2
+ Ci + —/———qC7. Al7

where we must determine Cy and C] so that the equation holds for all values
of precision g;. Once again, simple inspection of the terms in the equation

12
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shows that the right hand side of the equation is a linear combination of
gt Thus Cy and €7 must be such that both the intercept and the slope of
the linear equation are zero simultaneously. This leads to the following two
algebraic equations for Cy and Cf:

= aC? +bCy +c, (A18)
= (1—=7)(BlogB+1r—pB) = Bylog (1 —v) — BCo + ketC1{A19)
where
a = 073[7(1—,02)—#,02] (A20)
2y (1—7) Pl Phal
b — Preq(ttp — 1) _/3+/£q’ (A21)
Y I—v
_ (p — 7")2
c = T (A22)

Equation(A18) is a quadratic equation in C}, and equation (A19) is
linear in Cy given C;. For general parameter values the equation for C; has
two roots. These roots are always real provided that v > 1. From standard
theory on quadratic equations, the product of the roots is equal to c¢/a.
When « > 1, this ratio is always negative so that the roots have opposite
signs. It is easy to check that only the negative root maximizes the value
function for all values of ¢;.! This root is obtained by selecting the positive
root of the discriminant of the quadratic equation. Therefore, C7; < 0 when
v > 1

When v < 1, the roots are real—and a solution to the problem exists—if

and only if
1 —yoq(pp —1) oq(pp —1)
2 + ) <1
< gl B+ Kq PPq B+ Kq

This condition implies that both roots of the quadratic equation are positive.
In this case the largest root—again, the root associated with the positive
root of the discriminant—maximizes the value function. Therefore, C7 > 0
when v < 1. Putting together the results for v > 1 and 7 < 1, we have that
o :Cl/(l —7) > 0.

!Note that the equation for B implies that dCo/0C1 > 0.

13
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2.4 Derivation of selected mathematical results in
Chapter 6

2.4.1 Optimal consumption and portfolio choice for retired
investors
Optimal portfolio rule

A retired investor does not have labor income. Thus he faces the in-
tertemporal budget constraint

I/V[H = (W —C%) (1 + R;,t+1) )

whose loglinear approximation is given in equation (3.4) in text. To facilitate
comparisons with the labor income case, it is convenient to rewrite (3.4) as
follows:

wi iy —wr = k" — pp(cf —we) +1p 441 (A23)

where pl = —(1 —1/p) = exp{E[¢" —w¢|}/(1 — exp{E[¢" — w¢]}), and k" =
—(1 4 pf)log(1 + pl) + pLlog(pl). Note that (A23) holds exactly when the
consumption-wealth ratio is constant—as it is in this case.

We have also shown in this appendix that we can approximate the log
portfolio return with the following expression:

1
Tpt+1 = Tp+ ou(rern —7p) + gou(l - ay)os. (A24)

This is equation (2.21) when investment opportunities are constant.

We have shown in section 2.2.3 that the Euler equation for an investor
with power utility of consumption and no labor income implies the following
expression for the risk-premium on the risky asset (see equation [2.43]):

1
Etreq1 —7p + 5 Var (r441) = 7 Covy (c;_H — cg,rtﬂ) . (A25)
or, given our assumptions about the investment opportunity set,

1
p+ =02 =~ Covy (chy1 — ¢ regn) - (A26)

We can compute the covariance term in the right-hand side of equation
(A26) by noting that (6.42) implies

¢y — ¢ = bl (wi  —wy), (A27)

14
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so that
T T T T
Covy (Ct+1 — Ctﬂ“t+1) = b] Cov, (th — wt,rtH)
= b Covy (rp,t41,7e+1)
ror 2
blat Ous

where the second equality obtains from (A23), and the third equality obtains
from (A24).
Therefore,
ror 2

1
1+ 503 =biajoy,

from which (6.43) in text follows.
Optimal consumption rule

To derive the optimal consumption rule, note that the log of the Euler
equation (6.41) with ¢ = p yields the following equation for expected log
consumption growth:

1 1
Et [ —¢] = 5 E [r} 1] +1logé" + B} Var [r] 0 =7 (ciy1 — Cm] )
(A28)
where 6" = (1 — 7%)8, and I have suppressed the subscript ¢ from the con-
ditional moments on the right-hand-side because af = o implies that they
are constant. Moreover, equation (A27) implies Vary[ry ;1 —7(cj;1 —¢f)] =
(1= b1y)* Var(ry, ).
On the other hand, from equation (A27) and the log budget constraint
(A23) we have

Ei [ciy1 —cf] = 0Bt [wiyq —wil
= VI E [rp 1] — bipebp + b1 4 b7 % (1 — b7) wi(A29)

Equalizing the right-hand side of equations (A28) and (A29), and iden-
tifying coefficients, we obtain two equations. The first one implies

b=1,
while the second one implies
1 1 1
by = — ——b | E|r; + —log 6"
5 = () |G %) mlial =5
1 r_\2 r .
+Z (1 —0biy)" Var (r},,41) — bIK"| . (A30)

15
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Since b] = 1, we have b = E[c] —w;] = log(p,) —log(1 + pi.). We can easily
substitute the log-linearization constants p. and k" out from equation (A30)
and obtain

1 1 1
y = log <1 —exp{[(; —b’i) E [rpei1] + ;10g6r + —

> (1 —b7y)* Var (rgytﬂ)} })

(A31)
2.4.2 Optimal consumption and portfolio choice for employed
investors

To derive the optimal portfolio rule in the employment state we first need to
derive loglinear expressions for the intertemporal budget constraint (6.39)
and the Euler equation (6.40) for an employed investor.

Loglinear intertemporal budget constraint

We can rewrite the intertemporal budget constraint (6.39) as

W¢E W, C¢ L
t41 <1+_t __t> <_t> thH,
L1 Ly Ly Lyt ’

or, in logs,
wiy — lep1 = log (exp {w — It} —exp{cf —lt}) — Alpy1 + 715,41 (A32)

We can now linearize equation (A32) by taking a first-order Taylor ex-
pansion around (¢f — ly) = E[¢§ — l¢] and (w§ — l;) = E[w§ — [;]. This gives

Wiy — b1 =K+l (we — 1) — pe (¢f —l) — Al +71p441,  (A33)

where
e = exp {E[wf§ — I]}
Pow = 1+ exp {E[wte — lt]} — exp {E[Cf _ lt]}, (A34)
- exp {E[¢f — I}
Pe 1+ exp {E[w§ — ]} — exp {E[cf — 1]}’ (A35)
and

ke = —(1 = pi + pc) log(1 — py, + p) — py log(py) + pglog(ps).  (A36)

Note that p¢,, p¢ > 0 because W; + L; — C§ > 0 along the optimal path.
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Loglinear Euler equation

We can write equation (6.40) as

1 = 7 By [exp {logd — (cfy1 —cf) + et }]
+ (1 —7) e [exp {log 8" — v (41 — ¢f) +Tig+1}]
= 7° Erfexp{wea}] + (1 —7°) B [exp{yri1}] (A37)

where the notational correspondence between the first and second line is
obvious, and §" = (1 — 7%)§. Taking a second order Taylor expansion of

exp {x¢11} and exp {ys41} around Ty = Eq [w441] and ¥y = Ey [y441] we can
write:

1

1 ~ n°E {exp {m} <1 (@ = T) + 5 (@ _ftﬁ)}

+(1—7° B [exp {:} <1 + Y1 —7) + % e _yt)Qﬂ

= mCexp (T} <1 +% Var, (xt+1)> +(1—7°) exp {7, } <1 +% Var, (ym)) .

Finally, a first-order Taylor expansion around zero gives
1~ 7 <1 + T + % Vary ($t+1)> + (1 —7°) (1 +7; + % Vary (yt+1)> ,
or
0 = ~=° (log(5 —~E, [cf_H — cf] + E¢ [ri,t41] (A38)
gV g =7 (e = )
+ (1 —7°) (log 0" — ~Ey [c§+1 — cﬂ + E¢ [7i641]

1
§Vart [7“1'71:-4-1 - (C:Jrl - Cf)]) :

Optimal portfolio rule

We start guessing the functional form of the optimal policies in the em-
ployment state is:

ci =l = by+07(w—1t), (A39)

af = af.
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Note that we can also write the optimal consumption policy in the retirement
state (6.42) in the same form as equation (77?):

Criq — L1 = 0y + 07 (wep1 — li41) (A40)

where 0] = 1.
Subtracting the log Euler equation (A38) for 7,441 = ry from the log
Euler equation (A38) for 7411 = 741 yields:

1
BEtrg41 —rp + 5 Varg (re41) = @ Covy (Cf+1 - Cfﬂ“tﬂ)
+7 (1 — 7€) Covy (cfyq — ¢, req1 ) (A4L)

But equations (A39) and (A40), the log-linear intertemporal budget con-
straint (A33) and the trivial equality

i1 — ¢ = (1 — b)) — (¢f —1e) + (b1 — lo), (A42)
imply that
Covi (cjp1 = cfsrer1) = Cove (birp g + (1= b1) (lera — 1) ,7e41)
= bafol +(1-1b) Teu, (A43)

for s = e, r. The second line follows from the assumptions on asset returns
and labor income. Substituting back into equation (A41) and using equation
(A26) we find

1
pot 5ot =y [T+ (1) afod +7° (1= b)) ow] . (AdY)

from which equation (6.45) in text obtains immediately.

Optimal consumption rule

The log-Euler equation (A38) for i = p and the trivial equality (A42)
imply

T B [cf1 — lipa] + (1= 7€) Ee [cfyy — lipa] = (¢f —U) +Tf,  (A45)
where

1
Ty =7T°= <E 7o e1] + 5 Ve +nlogd + (1 — 7€) log 6r> —g, (A46)

==
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and
Ve = [m(1=0§0)? + (1= 7) (1 = b{v)?] Var[rg, ]
+7éy(1 — bY) Var[Al4]
—2me(1 = 9b§)(1 — b€) Covlrt, ., Alpsa]. (A47)

If we substitute equations (A39) and (A40) into equation (A45) we obtain
50 + 51 E: [wt+1 — lt—i—l] =7+ bS + bi (wt — lt) , (A48)

where by = 7b§+ (1 —m¢)bj; and by = m¢b$ + (1 —7€)b}. Further substitution
of the log budget constraint in the employment state (A33) and guess (A39)
in the left-hand side of equation (A48) yields

bo + b1 (p5, — pebs) (wy — 1) + by (k€ — pibG — g + E75,41)
=T BB (wf — 1)

Identifying coefficients on both sides of this equation we get the following
two-equation system:

b1 (py — p7) = b,
bo+b1(ke—p§b8—g+Er§7t+1) = T°+0b.

We can solve this system recursively, since the first equation depends only
on b{ and the second on b and bf.

Simple algebraic manipulation of the first equation gives the following
quadratic equation for b§:

0= 7mp¢ (b5)* + [1 — wpE, + (1 — 7°) p&] b5 — (1 — 7©) p5,. (A49)

The expression for bf is given by

with ~
k1= (1—7°) + pib1 > 0. (A51)
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