Appendix to John Y. Campbell and John H. Cochrane, “By Force of
Habit: A Consumption-Based Explanation of Aggregate Stock Market
Behavior”

1. Pricing a dividend claim

Substituting the definition of D in equation (19), we obtain

P, P
Htt (s1) = GE; lMt+16wt+1 (1 + Dt;ll (St—i-l))] .

To avoid integrating over two random variables, v and w, we use the Law of [terated
Expectations to derive

Elg(v)e’] = E[E(g(v)e”|v)] = E[g(v) E(e”[v)].

Then, the dividend claim satisfies
P
D,

ow P,
(o= Gt [t (14 22 o)

We plug in the definition of M in terms of the shock v;1; and solve this equation
numerically on a grid, using a numerical integrator to evaluate the conditional expec-
tation over the normally distributed v, ;. .

Comparing this equation with the price-dividend ratio of the consumption claim,
(17), the difference lies in the term e3(1-,)7% in front and the term ef"+1 rather
than e¥+!' inside. We will use parameters o, ~ 0.10 at an annual frequency and
p = 0.2, so the first term is roughly €°°® which is very close to one. The term pZ«
is the regression coefficient of dividend growth on consumption growth. Although
dividend growth and consumption growth are poorly correlated, dividend growth is
much more volatile than consumption growth, so this regression coefficient is in fact
about one. This explains our finding that the price-dividend ratio of the dividend
claim is similar to the price-dividend ratio of the consumption claim.

2. Density of s in continuous time.

The continuous time version of the surplus consumption ratio transition equation
is
dSt = (1 — Qb) (5 — St) dt + )\(St)O'dBt. (28)
The forward equation implies that the stationary density ¢(s) of a diffusion ds =
p(s)dt + o(s)dB, if it exists, can be expressed as
z(s)

a(s) = [ z(s)ds
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where

s g #()
62 [ o2(v)

Evaluating the integral with

p(s) = (1—¢)(s —s)

& Y
S=0 —1_¢,
As) = % 1-2(s—3)—1, s< Smax
0 5 2 Smax

we have

Inz(s) = 2/8 dv;g((vv)) —2Ino(s)

o [t ()
= 2/ dng)\Q(U)—an)\(s)—ana

Express p(v) dv in terms of A\(v).

A(v)zé 1-2(v—135) -1
p(0) = (1=6) (5 —v) = (1 ) A 2
—dv —dv

NS s PR+l

—82[1 + A(v)] dX = dv

now the integral,

Inz(s) = 2/8 dv:;(vv)) —2Ino(s)

° 5 SP+A7 -1
= 2 [ #p+N-9 [2;;

(1—¢)S2/s[1+/\] S2[1+2X+ N\ -1

dA—2In\(s) —2Ino

dA—2In\(s) —2Ino

o? A2
Y g2 _ 32 | 1232

_ _%/ 142 H?QS TS A~ 2l A(s) - 2Ino
g
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2 dA—2InA(s) —2Ino

_ <
52_1+ (35 1)

Q2 Q2
e 3574+ 5%

(1—¢)S? / S% 14+ 2052 4 X252 £ \S2 — X +2)252 4+ \352

dA—2InA(s) —2lno

+ (352 — 1) In A\(s) + 352A(s) + W] —2InA(s) —2Ino

As)’
2

] — {ry (352 — 1) +2} InA(s) —2Ino.

As s — —o0, the A?and ) terms dominate, so

In z(s) = —v|s| — 2vS/2]s].

With the more general model that allows interest rate variation, we have the more
general version,

(3-57) 7061

tn#{s) = GU-¢) =B

yio? (p—1) [A(s)? S - 1] + — 2| InA(s).

Ga-g—BF| 2 TP

3. Aggregation
Aggregating heterogeneous groups

Suppose each individual 7 in group j has the same endowment, which is a constant
fraction of average consumption

CY =Cf =dlCy

where C7 is group javerage consumption, C{ = &3, C, N/is the number of
people in group j, C'*is economywide average consumption, C¢ = % >ij C¥. N is the
number of people, and o/ is a constant. We use the symbol C for the endowment,
but we have to verify that the consumer does not trade away from this endowment.
Once this is done, we can interpret C'as the post-trade allocation from a different
endowment stream. Everyone’s log consumption growth is the same,

ij i a a
C —CG1 =6 —CG_q.
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However, some groups have lower levels of consumption than other groups.

Habit for group j evolves from average consumption for group j, As before, we
describe habit formation via the evolution of the surplus consumption ratio for group
j» St = (0 — X{)/Cf by

st = (1= ¢)s+ sl + A(sl) (s —d — g).

Since consumption growth is the same for everyone, and starting from an initial state
with equal surplus consumption ratios, all surplus consumption ratios are the same,
st = s} Vi, j

where s¢ denotes the common value of the surplus consumption ratio.

Individuals in group 7 use group j habit. Therefore, marginal utility for individual
1 in group 7 is

MU} = (] - X7) " = (cisi) " = (cisp
Plugging in the endowment rule, we find that all marginal utilities move in lockstep,
MU} = (/) 7(CFS7) ™

Ratios of marginal utilities MU/ /M Utj_l are the same for all agents, and they all
agree on asset prices. They have no reason to trade away from the endowments.

Asset prices and aggregate quantities can be represented from the preferences of
a fictitious representative agent with marginal utility

MU, = (C252) ™.

Since all consumption growths and surplus consumption ratios are the same, the
common surplus consumption ratio evolves as it should,

st = (1= @)5+ ¢sf + A (s0) (cf —of — g).

C* is average consumption and S* is the average surplus consumption ratio. How-
ever, the “average habit” in the representative agent surplus consumption ratio is
a weighted average of individual group habits. Define X;* so that S¢ = (Cf —
X))/ Cg. Solving for X7,

X, xi
Xa —_ (a 1— ay _ altt -t
t C’t ( St) Ct Ct] ol
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Therefore, aggregate habit is a weighted average of individual habits.

. 1 X
N=g2o

,J

Aggregating heterogenous individuals

Each consumer i receives an endowment C} such that

&(Ci-x) =ecr-x)7.

Therefore, ‘
&1 (- x,) =g (Cr - X))
&' sici = e hseey, (29)
where Ci_ x
St = o

S% has the property that _ .
C'(1-95")=C"(1-95%
C'S'=C" - C* + C"S*
Substituting in (29),
&'ci-orraps| = ¢thsicr

{571/7 _ gi—l/’q

(€ -0 = b —sicr
Summing over ¢ and if we choose
_ 1 _
=S e

(2

we find that C%is in fact the average of the C°.

4. Risk aversion

To calculate risk aversion in our economy, consider an individual consumer. His
problem is to choose contingent consumption claims at each date and state, given ini-
tial wealth. Using a superscript a to distinguish individual and aggregate quantities,
and focusing on period 0 for notational simplicity, the consumer’s problem is

1 ue(CF, Xi)

C, < W. 30
UC(CS,Xt) =0 ( )

V(Wo, Wy, S5) = max Eyd 8'u(Ch, Xy) st Eg» 6
¢ t t

48



The u.(C?% X)terms give asset prices. In equilibrium for a representative agent,
wealth is the value of a share of aggregate consumption,

(€2, X,)
=E 5t“0 bt ca
OZ u(Cg, Xy)

The extra state variables W® and S enter the value function in order to describe
asset prices and the level of external habit. Asset prices depend on the state variable
S¢. Then one of W2, C¢ or X, can describe the level of external habit X, that

appears in individual utility.
Risk aversion is defined as

WVWW . _8ln Vw(Wo, Wél, Sg)
VW n 81n VW

rra = —

Since it is defined from the value function, risk aversion is a property of preferences,
technology, and market structure, not a property of preferences alone. Risk aversion
measures aversion to purely idiosyncratic bets on wealth. Crucially, the increase in
wealth OW; occurs for the individual, holding all aggregate variables constant.

The envelope condition u. = V,, means that the risk aversion coefficient can be
written
81DVW(W0,W61,SS> Glnuc(C’g,X) 81110[) 8lnC’0

= — _ — g —_— ]_
rra oIn Viy amC, omw, amw,’ (31)

where we denote curvature by 7,

_ _Ctucc(ct;Xt) . _3lnuc(C’t,Xt)
=TT CL X omC,

In our model, 7, = v/S;. Finding risk aversion is therefore reduced to finding out how
much consumption at date 0 reacts to an idiosyncratic wealth change. To answer this
question, we have to find out how much consumption at all dates and states responds
to the wealth change and impose the budget constraint.

The consumer’s first order conditions for choice of C; are
uc(otv Xt) = _S(Wﬂa Wg: Sg) Uc(Cgv Xt)

where £ is a constant of proportionality. Differentiating to find the effect of a wealth
change,

aC, ¢

ucc(Cta Xt) aW[) GWO

uC(Cgu Xt)
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Simplifying and evaluating at C' = C',

_Ctucc(otaXt) WyoCy . W()af
UC(Ct,Xt> Ct8WO N 8WO

Therefore, the elasticity of date (state-) ¢ consumption with respect to initial wealth
is inversely proportional to curvature,

OlnW, M

0ln C, const

To raise marginal utility by the same proportion in each state, consumption rises by
a larger proportion in good states with low curvature. Evaluating this equation at
time 0, and comparing to the definition of risk aversion, we find that the constant is
time-0 risk aversion,

OlnC;  rrag
olnWy,  n,

(32)

To evaluate the constant, and therefore initial period risk aversion we differentiate
the budget constraint,
u(Cf, Xy) 0C
EO Z 5t t t) t
(CO ) XU) 8W0

+ Ue Ct;Xt> Ct (91nC’t

E, =1 4
025 (C8, X)) Wo dln W, (34)

Co, X,)
E 5tuc< to t C
020 e x)

tu (C2,X4)
EO Zt - -(C¢,X¢) Ct

Ey ¥, 6! ;ESa 5!

Thus the risk aversion coefficient is the price of the consumption stream divided by
the price of a security that pays the consumption stream times the inverse of the local
curvature of the utility function.

—1 (33)

rrag
Up

=W,

rrag =

In our model, marginal utility is u.(t) = (CyS;)~7, and utility curvature is 7, =
v/S;. Hence, the risk aversion coefficient is a function only of the surplus consumption
ratio S and it can be expressed as the price of a claim to C} divided by the price of
a claim to C}S;.

Ep 32208 (St1Ciij) 7Chy;

A . 35
Ey 3720 I(S145C115) 7 St45C145 (35)

rra; = rra(Sy) =1y X
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We calculate the price of the claim to C,S; on a grid like the other assets and find,
as explained in the text, that the risk aversion coefficient is greater than the utility
curvature coefficient. This behavior is illustrated in the figure below.
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Figure A1l. Risk aversion and utility curvature .

Equation (35) gives one explanation for this behavior. In a nonstochastic steady
state, this formula for risk aversion reduces to curvature, rra = /S . When there
are shocks, the price of C'S is lower than S times the price of C', for the simple reason
that S is procyclical (low in high marginal utility states) and hence risky.

The fact that we find risk aversion higher than curvature, together with equation
(31) means that consumption responds more than proportionally to wealth in every
state. This result might seem to be inconsistent with the budget constraint (33)
that “on average” consumption must move proportionally with wealth. However,
the budget constraint is not violated. First, “on average” is weighted by contingent
claims prices and the C/W or dividend/price ratio. Second, one should not confuse
0lnC;/0InW; in a different initial state Sy with 0C;;/0W, across potential future
states Siy;. In response to a change in W, equation (32) shows that consumption in
future dates (and states) increases in inverse proportion to local curvature,

1 8hlct+j _l@lnCt
N+ 81HWt —T]tatht'

Thus, although initial consumption responds more than proportionally to wealth
in every initial state, InC;/0InW; > 1 at every value of S;, future consumption
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responds less (0InCyy;/0In W, < 0InC;/01InW,) in future states with higher curva-
ture 7;4; (lower surplus consumption ratios) than the initial state. States with high
curvature also have higher contingent claims prices and higher C'/W (price/dividend)
ratios, and so count more in the budget constraint. There are enough such states to
satisfy the budget constraint.

5. Marginal utility with internal habit

Marginal utility for the internal-habit version of our model, with random walk
consumption, is given by the following procedure.

1) Find a function Z(S) from the recursive relation

Z(S) = Sy + 6G 9B { e (14 X (s)viga] Z(Span) } -

2) Marginal utility is then given by

8Ut —
aC, (Sm Ct) = G f(St)
F(S) = S 1+ Asy)]

~A(s1)0G VE {0 Z(S ) [1— ¢ — N (s)viga] [ St -

In the external case, marginal utility is given by C~7S77. In the internal case, marginal
utility is still given by a function separable between consumption and the surplus
consumption ratio, C~7f(.S). Beyond this observation, the formula is ugly, and we
are not able to provide much intuition.

The derivation consists of laboriously evaluating the derivatives 0.X,;/0C} in (26)
from the surplus consumption ratio evolution equation. To simplify the notation,
specialize to t = 0. The setup is

1=y
EO Zét Xt)
-7
s.t.
_ X,
St11 = (]. — Qb)S + QbSt + )\(St) [Ct+1 — Cp — g] ;S = hlSt = In <1 _ F) .
t
Marginal utility is
8UO " 8Xt
aC, = (Co—Xo) ' — {Z 6" (Cy — 2Co } (36)
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Examining (36), our task is simply to evaluate partial derivatives 0.X;/0Cy. To
do this directly, we have to iterate the state transition equation ¢ times and then take

the derivative. This is infeasible, but we can take the derivative and then iterate,
since an/aC[) = 8X2/8X1 X (9X1/8C[)

Write the s transition equation as

Xi) _ X _ X _
ln(l—CHl)—(1—¢)s+¢ln<1—0t>+)\(ln<1 C))[mot+1 InG, — g].

This defines a function
Xt = Xi1 (X, G, Gy).

Take a total derivative to get

1 X1 ¢ Xy
————dXy1 + ———dC = — dX; + ——5dC,
SnCin T g LcE T T TR TS
, X |
+)\ (St> l— S;bot dXt ;ioz dC;| [ln Ct+1 —1In Ct — g] + )\(St) l0t+1 dCt+1 Ct dC,;|

Isolating dX terms,

1
Si+1C1

X1 >\( t)
Sti1 Ct2+1 Ciy1

¢
- S,C,

dXi1+ [ ] dCiy1 =

1 [¢X ,
A [i ctt [1+XN(s)) InCopy —InCy — g)] — A(@] dC,.

Therefore, the required partial derivatives are

8Xt+1 . St+10t+1 ! _ _
= ¢ o (14 X(s;) (InCyyy —InC; — g)]
aXtH XtJrl
= — SiA
BCrn ~ Coy  riAl)
0X C X
8(?':1 = —StJrl_(t;;l lgtcft 1+ XN(s;) InCpy —InCy — g)] — )‘(St)]
The A(s) terms are
M) = o/1—2(s—5) — 1, §=0 |
S YT TAT

[]_ + )\/(St> (ln Ct+1 —In Ct — g)] dXt



i d 11 2 1
)\/(S) _ (S> _ - B _

ds 25 ica(s—5 Sfi-2(s—»)

Now we are ready to evaluate marginal utility. The first step is to express the
derivatives of the quantity X;, 0X;/0Cy , in terms of the derivatives of the function
Xir1(Xt, Cii1,Ct). ( We could introduce a notation f(Xy, Cii1,Cy) to keep the two
straight, but it’s not worth the bother). Xj is a function X;(Xo, C1, Cp), so Cy affects
X directly and via Xy. Thus, we get

o, L 0%, L TOX, 69X, 09X,
3, ~ (Co=Xo) " = (Co—Xo) T 5a — Bed (Cr = X) laoo T X, aool
L 0X, [0X, | 90X, 0X,
o2 B 4 0X9 1 10X
EBob™ (G2 = Xa) " 55, [aoo T ax, 800]
L 0X;0X, [0X,  0X, X,
o 3 _ Y
Bod™ (G = Xa) 5%, %, [800 T X, 800]

Simplifying a bit,

Uy oy %o C\ T [0X: 09X, 09X,
— 557 - _E
Cige, ~ %'~ % 5g, ~ Tbs (CO> [acﬁaxoaq)]
GO\ 0K, [0X) 09X, 0X,
_ 297y (=2
Fot52 (01 Co> X, laco T 9%, 000]
sia (03 C, 01> 70X X [0X: | 0X1 0%,
NG, 0 G 9X,0X, |9C, ' 9X,0C, |

Now, collect terms to write marginal utility as

o, 90X, ON"T [0X,  0X,0X,
C“ac =5’ <1 aco> E0{6(Co> " [aoﬁaxoaool}
where
o Cy an 2 (% Cg) 0X30X,
Wi =S 48557 <01> ax, % e ) axax T
W, is recursive:
] Cy\ 7 0%,
Wy = S5 + 6557 (02) T
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-
C’2> 0X, W.

_ o
Wi=s o (z) o
Now we have to handle the expectations. We want a recursive object that is a
function of the state variable s. We can use the random walk rule for consumption,
since will only evaluate marginal utility for the given consumption process, rather
than for arbitrary consumption paths. We are evaluating a formula for the derivative,
not taking a derivative at this stage.

By iterated expectations and since all the other terms in curly braces are func-
tions of no more than time 1 information, we can replace Wi with E;W7 in the last
expression for marginal utility,

8UO _ 8X0 Cl 7 8X1 8X1 8X0
vZ20 _ o _ 220 it}
“ag, =% <1 ) Fo {5 (CO> B(h) [800 T X, 800”

Substituting in the partial derivative formula 9X5,/0X; from above into the W
transition equation,

—
Wy =S77+6 <02> S50

— / P— —
C, (bSlCl 14+ XN(s1)(InCy —InCy — g)] Wh.

Wy =577+ 5¢lee<”>v2% [T+ N (51)ve] Wo.

1
Therefore,

Ev(Wh) = 577 + 866G E, {eﬂw% 14+ N(s1)vs) EQ(WQ)} .

1

If Eo(Ws) is a function of state Se, then Ey(W;) is a function of state S;. We use
the notation Z(St+1) = St+1Et+1Wt+1<St+1).

Now we have

v, . (. 0X, Coi\ " Z(Sis1) [0X1  0Xp1 0X,
VoYt oy [ YAt
Cae, =5 <1 act> Et{é( Ct> Se. | 0C, T ox, aq,

Note if we set all the X derivatives to zero we recover the external case C; 'S, .

JFrom above, the partial derivatives are given by

8Xt+1 - St+1Ct+1 /

09X, =¢ S,C, [1 + A (3t>Ut+1]
0X; B X,
ac, ~ o, oA
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X
C, [A(St) e

1+ X(savm]]

Plug the formulas for partial derivatives into the formula for marginal utility and
simplify.

oU,

CIogt = S (1 M) -
C't+1>7 Z(Si41) Ci B OXy /
Et {(S < Ct St+1 St+1 Ct )\(St) StCt [1 + A (St)'l}t+1]
Sy1C, X,
+¢% 1+ X(sJuea] | 5 St)\(stl)} }}
or o
Ciger =S (L4 Msn) -
C, - C,
Et {(S ( é’:1> Z(StJrl) éjtrl X
X, , , X
P\(St) - ?t(i [L+ N (s¢)vea] + % [1+ X (s¢)vega] af - SM(St—l)H }
or o
C’?a_CZ =S (1 + A(si1)) —

Cia 7 Xy Xy p
E, {5 ( o ) Z(Si1) [)\(st) 4 {% [E - St)\(stl)} _ gt Ct} 1+ A (st)vtﬂ]] }
or, finally,

ou,
t

y_ "t
Ce aC.

(1t M)~ {6 (S) " 210 s~ o) (14 X(sovm)]} |

The conditional expectations only require one-step ahead simulation and so we
can find them easily by numerical integration. Marginal utility is a function of state
St, S¢—1. The form is then reassuring: U.(C;) = Cy " f(S;, S;—1). It’s initially surprising
that A(s;_1) enters. That feature comes from the fact that X, changes as C; changes,
and A(s;_1) controls the sensitivity of X; to C;. In the continuous time limit, the
distinction between A(s;;1) and A(s;) vanishes. Therefore, we save a state variable
and approximate marginal utility as

aUt C’tJrl

yZZt _ gl _
Ct aCt t [1 + )\(St)] Et {(S < Ct

) 2 s — 0A) (1 + X(sovm)]}
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This approximation is exact when s; = s;_1.

6. An example in which internal and external habits are indistinguishable

Suppose habit accumulation is linear, and there is a constant riskfree rate or linear
technology equal to the discount rate, Rf = 1/6. The consumer’s problem is then

x L (C—Xx) =
maxZétﬁ S.t.Z(StCt = Zétet -+ W[), Xt = HZQb]thj
t=0 - t t j=1

where ¢; is a stochastic endowment. The first order conditions are
MU, = E, [MU,,]
where MU denotes marginal utility. In the external case, marginal utility is simply
MU, = (C; — Xy) 7. (37)
In the internal case, marginal utility is
MU, = (€= X7 =83 89/E (Cosy = Xeoy) (39)
=

The sum measures the habit-forming effect of consumption. Now, guess the same
solution as for the external case,

(Ct - *th)_’y = Et {(CtJrl - Xt+1)_’q : (39)

and plug in to (38). We find that the internal marginal utility is simply proportional
to marginal utility (37) in the external case,

056

) (C, — X,)77. (40)

Since this expression satisfies the first order condition MU; = E,MU,,{, we confirm
the guess (39). Ratios of marginal utility are the same, so allocations and asset prices
are completely unaffected by internal vs. external habit in this example.
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