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When households make financial decisions, are their preferences toward time and

risk substantially similar, or do they vary cross-sectionally? And if preferences are

heterogeneous, how do preference parameters covary in the cross-section with one

another and with household attributes such as education and sector of employment?

This paper answers these questions using a life-cycle model of saving and portfolio

choice fit to high-quality household-level administrative data from Sweden.

The canonical model of Epstein and Zin (1989) distinguishes three parameters

that govern financial decisions: the time preference rate (TPR), the coefficient of

relative risk aversion (RRA), and the elasticity of intertemporal substitution (EIS).

We structurally estimate these parameters in the cross-section of Swedish house-

holds by embedding Epstein-Zin preferences in a life-cycle model of consumption

and portfolio choice in the presence of uninsurable labor income risk and borrowing

constraints. Our baseline implementation assumes that all agents have common

beliefs about income processes and financial returns, but we also consider hetero-

geneity in beliefs about expected returns on risky assets.

To mitigate the effects of idiosyncratic events not captured by the model, we

carry out our estimation on groups of households who share certain observable

features, making use of asymptotic properties of our estimation procedure as the

size of each group increases. We first group households by their education level,

the level of income risk in their sector of employment, and birth cohort. To capture

heterogeneity in preferences that is unrelated to these characteristics we further

divide households by their initial wealth in relation to income and by their initial

risky portfolio share. This process gives us a sample of 4276 composite households

that have data available in each year of our sample from 1999 to 2007.

We allow age-income profiles to vary with education, and the determinants of
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income risk to vary with both education and the household’s sector of employment.

These assumptions are standard in the life-cycle literature (Carroll and Samwick

1997, Cocco, Gomes, and Maenhout 2005). These life-cycle models more readily

match portfolio allocations and wealth accumulation at mid-life than at younger ages

or after retirement. Therefore we estimate the preference parameters by matching

the time series of wealth and portfolio choice between ages 40 and 60, taking as

given the wealth-income ratio at the start of each year as well as realized group-level

income shocks and risky asset returns during the year.

Our measure of wealth includes liquid financial wealth, real estate, defined-

contribution retirement assets, and household entitlements to defined-benefit pen-

sion income. Our imputation of defined-contribution retirement wealth is an em-

pirical contribution that extends previous research on Swedish administrative data.

We confine attention to households who hold some risky financial assets outside

retirement accounts, for comparability with previous work and in order to avoid the

need to estimate determinants of non-participation in risky financial markets. To

reduce the dimensionality of the model, we map both real estate and risky financial

asset holdings into implied holdings of a single composite risky asset.

We address the challenge of identifying all three Epstein-Zin preference param-

eters. In principle, these parameters play different roles with the TPR affecting

only the overall slope of the household’s planned consumption path, risk aversion

governing the willingness to hold risky financial assets and the strength of the pre-

cautionary savings motive, and the EIS affecting both the overall slope of the planned

consumption path and the responsiveness of this slope to changes in background

risks and investment opportunities. We observe portfolio choice directly, and the

slope of the planned consumption path indirectly through its relation with saving

and hence wealth accumulation.
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Identifying the EIS separately from the TPR requires time-variation in back-

ground risks or investment opportunities (Kocherlakota 1990, Svensson 1989). Our

model is fully identified because it generates endogenous variation in household risk

exposures. Households in the model have an age-specific target level of wealth that

serves to smooth income variation and finance retirement. Households below the

target save more aggressively if they have a higher EIS. Relatedly, households with

high financial wealth relative to human capital invest more conservatively, which

reduces the expected return on their financial wealth. In addition as households age

their mortality rates increase, and this alters the effective rate of time discounting.

For all these reasons we can identify the EIS from wealth accumulation profiles.

This identification strategy is a methodological contribution of our paper.

We develop an indirect inference estimator of the preference parameters in the

household population, which we define as follows. For each of the 4276 household

groups, the indirect inference estimator is the vector of preference parameters under

which the life-cycle model matches most closely the empirical time series of the

group’s wealth-income ratio and risky share. We obtain this optimum by conducting

a grid search over 2112 combinations of the preference parameters and by then

running a smooth optimization in the neighborhood of the optimal grid point. The

estimation of household preference parameters therefore requires us to solve the

life-cycle model more than 10 million times.

Our main empirical findings are as follows. First, we find considerable het-

erogeneity in wealth accumulation and portfolio composition across the Swedish

population. Average wealth-income ratios increase strongly with the riskiness of in-

come and the level of education while average risky shares do not, but both variables

have substantial heterogeneity unrelated to these variables.
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Second, we document patterns in wealth and portfolio composition that are

broadly consistent with financial theory. As households age, they accumulate wealth

and reduce their risky portfolio share. The risky portfolio share also declines with the

wealth-income ratio conditional on age. Both patterns are predicted by a life-cycle

model in which human capital is safer than risky financial capital.

Third, we estimate heterogeneity in all three preference parameters. Relative

to its mean, the least heterogeneity is in risk aversion, which has a cross-sectional

standard deviation of 1.06 around a mean of 7.57. Our other two preference param-

eters are highly dispersed and right-skewed. The mean TPR is 5.21%, well above

the median value of 3.15%, and the standard deviation is 6.96%. The mean EIS is

0.96, well above the median value of 0.50, and the standard deviation is 0.90.

Fourth, our preference parameter estimates are only weakly cross-sectionally

correlated. The correlation between risk aversion and the EIS is very weakly

negative (−0.114), in contrast with the perfect negative correlation between log risk

aversion and the log EIS that we would find if all households had power utility

with heterogeneous coefficients. The TPR is weakly positively correlated with risk

aversion (0.191) and weakly negatively correlated with the EIS (−0.217), implying

a tendency for impatient people to be both cautious and unwilling to substitute

intertemporally. The weak correlations across preference parameters imply that

Swedish household behavior is heterogeneous in multiple dimensions, not just one.

A single source of heterogeneity omitted from our model cannot explain this pattern.

Fifth, we document notable correlations between our parameter estimates, the

moments we use for estimation, and exogenous characteristics of households. Risk

aversion is lower for households working in risky sectors. This pattern is consis-

tent with the hypothesis that risk-tolerant households select risky occupations. In
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addition, the TPR is negatively correlated with the initial wealth-income ratio of

each household group, and positively correlated with the average growth rate of

the wealth-income ratio. The symptom of a high TPR in our data is a tendency to

accumulate retirement savings later in life. The equivalent correlations for the EIS

have the opposite signs, suggesting that households with a high EIS save early in life

to reach a target wealth-income ratio, while households with a low EIS save more

gradually.

Sixth, when we allow for heterogeneity in beliefs about the expected return on

the risky asset, we find that belief heterogeneity has little effect on the fit of our

model and does not reduce the cross-sectional dispersion of estimated preference

parameters. The dispersion in estimated risk aversion actually increases, because our

model uses heterogeneous beliefs to fit savings behavior and adjusts risk aversion to

avoid counterfactual implications for risky portfolio shares. Moreover, the fit of the

model deteriorates drastically when we allow for heterogeneity in beliefs about the

Sharpe ratio but restrict preferences to be homogeneous across households, which

confirms the importance of the preference heterogeneity we estimate.

To the best of our knowledge, our paper is the first to estimate the Epstein-Zin

preference parameters of a life-cycle model using micro data. Since the estimation

of recursive preferences in this context is both new to the literature and numerically

intensive, we choose to focus on a widely used specification of a life-cycle model.

In future work, our estimation approach could be readily extended to richer settings,

involving for instance more complex labor income processes or preferences, at the

cost of greater computational burden.

Our paper is related to a large literature on portfolio choice over the life cycle,1

1See for instance Campbell and Viceira (2002), Cocco, Gomes, and Maenhout (2005), and
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and a series of papers using the Swedish administrative data.2 We contribute to

the literature by reporting micro-level preference estimates of these models. In

addition, our results provide useful inputs for models investigating the impact of

heterogeneous agents on financial and macroeconomic outcomes (e.g., Guvenen

2011, Kaplan and Violante 2021).

A small and growing literature on heterogeneity in portfolio choice has recently

tried to relate observed household behavior to underlying heterogeneity in prefer-

ences and beliefs (Giglio, Maggiori, Stroebel, and Utkus 2021, Meeuwis, Parker,

Schoar, and Simester 2021). Relative to this literature, we observe more households

over a longer period of time and have more complete data on wealth and portfolio

allocation, but we lack data on potentially heterogeneous beliefs. A robustness

check indicates that the main results of our paper are robust to heterogeneous beliefs

about expected returns.

The organization of the paper is as follows. Section 1 explains how we measure

household wealth and reports summary statistics. Section 2 presents the life-cycle

model. Section 3 discusses the identification of the preference parameters and

develops our estimation methodology. Section 4 reports empirical results. Section 5

concludes. An Internet Appendix provides additional results and details about our

empirical analysis and estimation technique.

Fagereng, Gottlieb, and Guiso (2017).
2See, for example, Calvet, Campbell, and Sodini (2007, 2009), Calvet and Sodini (2014), Beter-

mier, Calvet, and Sodini (2017), and Bach, Calvet, and Sodini (2020).
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1 Measuring Household Wealth and Asset Allocation

Our empirical analysis is based on the Swedish Wealth and Income Registry. This

high-quality administrative panel provides the income, wealth, and debt of every

Swedish resident. Income data are available at the individual level from 1983 and

can be aggregated to the household level from 1991. Wealth data are available from

1999 through 2007. The wealth data include bank account balances, holdings of

financial assets, and real estate properties measured at the level of each security or

property. We augment the dataset by imputing defined contribution (DC) retirement

wealth and entitlements to defined benefit (DB) pension income using income data

and the administrative rules governing Swedish pensions.

1.1 The Household Balance Sheet

We measure four components of the household balance sheet: liquid financial wealth,

real estate wealth, DC retirement savings, and debt. We define the total net wealth

of household ℎ at time 𝑡, 𝑊ℎ,𝑡 , as

𝑊ℎ,𝑡 = 𝐿𝑊ℎ,𝑡 + 𝐷𝐶ℎ,𝑡 + 𝑅𝐸ℎ,𝑡 − 𝐷ℎ,𝑡 , (1)

where 𝐿𝑊ℎ,𝑡 is liquid financial wealth, 𝐷𝐶ℎ,𝑡 is DC retirement wealth, 𝑅𝐸ℎ,𝑡 is real

estate wealth, and 𝐷ℎ,𝑡 is debt. In aggregate Swedish data in 1999, liquid financial

wealth, DC retirement wealth, and real estate net of debt respectively account for

36.1%, 13.9%, and 50.0% of aggregate net wealth. Non-cash net wealth is

𝑁𝐶𝑊ℎ,𝑡 = 𝐿𝑊𝑆
ℎ,𝑡 + 𝐷𝐶𝑆

ℎ,𝑡 + 𝑅𝐸ℎ,𝑡 − 𝐷ℎ,𝑡 , (2)
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where 𝐿𝑊𝑆
ℎ,𝑡

and 𝐷𝐶𝑆
ℎ,𝑡

are the risky components of liquid financial wealth and DC

wealth, respectively.

Liquid financial wealth is the value of the household’s bank accounts and hold-

ings of Swedish money market funds, mutual funds, stocks, capital insurance prod-

ucts, derivatives and fixed income securities. Mutual funds include balanced funds

and bond funds, as well as equity funds. We subdivide liquid financial wealth into

cash, defined as the sum of bank balances and money market funds, and risky assets.

We impute DC retirement wealth by reconstructing the contribution rules of

several types of Swedish DC pensions. We accumulate these contributions since

1991, with appropriate assumptions about asset allocation and the initial level of

DC pension wealth in 1991.3 We describe this procedure in detail in Sections I.B

and V of the Internet Appendix. DC retirement wealth accumulates untaxed but

is taxed upon withdrawal. To convert pre-tax retirement wealth into after-tax units

that are comparable to liquid financial wealth, we assume an average tax rate 𝜏

on withdrawals (estimated at 32% which is the average tax rate on nonfinancial

income paid by households with retired heads over 65 years old) and multiply pre-

tax wealth by (1 − 𝜏). In the remainder of the paper, we always state retirement

wealth in after-tax units.

Real estate consists of primary and secondary residences, rental, commercial

and industrial properties, agricultural properties and forestry. As in Bach, Calvet,

3We can accurately impute DC contributions in Sweden because all companies are either part of
a collective agreement or benchmarked against one, and employees cannot opt out of a DC pension
scheme provided by their employer. For each employee, we compute DC contributions as the sum
of (i) the mandatory contributions stipulated by the relevant collective agreement and (ii) additional
private contributions, which we also observe. These extra pension contributions were relatively
uncommon during our sample period due to a monthly cap of 1,000 SEK on the amount eligible for
tax deferral.
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and Sodini (2020), we value real estate properties using Statistics Sweden data.4

Debt is the sum of all liabilities of the household, including mortgages and other

personal liabilities held outside private businesses. Since Swedish household debt

is normally floating-rate, we treat debt as equivalent to a negative cash position but

paying a borrowing rate that is higher than the safe lending rate.

As described here, the household balance sheet excludes durables and private

businesses, whose values are particularly difficult to measure. Private businesses

are an important component of wealth for the wealthiest households in Sweden, but

unimportant for most Swedish households (Bach, Calvet, and Sodini 2020).

1.2 Household Asset Allocation

Our objective is to match the rich dataset of household income and asset holdings

to the predictions of a life-cycle model. To accomplish this, we need to map the

complex data into a structure that can be related to a life-cycle model with one

riskless and one risky asset. This mapping proceeds in three stages.

At the first stage, we map all individual assets to equivalent holdings of diversified

stocks, real estate, or cash. We treat liquid holdings of individual stocks, equity

mutual funds, and hedge funds as diversified holdings of the MSCI world equity

index.5 We treat liquid holdings of balanced funds and bond funds as portfolios

4Real estate prices are compiled by Statistics Sweden from two main sources. Every 3 to 7 years,
tax authorities assess the tax value of properties using detailed property characteristics and hedonic
pricing. In addition, Statistics Sweden continuously collects data on every real estate transaction in
the country, which permits the construction of sales-to-tax-value multipliers for different geographic
locations and property types. The transaction data are also used to value apartments at the level of
each residential building.

5This reflects the global exposure of Swedish equity portfolios documented by Calvet, Campbell,
and Sodini (2007). It abstracts from underdiversification which is documented in the same paper.
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of cash and stocks, where cash pays the Swedish Treasury bill rate and where the

share in stocks is given by the beta of each fund with the world index.6 We assume

that DC retirement wealth is invested in cash and the MSCI equity world index, as

section I.B of the Internet Appendix explains.7 We treat all real estate holdings as

positions in a diversified index of Swedish residential real estate, the FASTPI index.

Moreover, we assume that unclassifiable positions in capital insurance, derivatives,

and fixed income securities are invested in the same mix of cash and stocks as the

rest of liquid financial wealth.

For each household ℎ at time 𝑡, this mapping gives us the implied weights

of liquid stocks, 𝜔𝑆
ℎ,𝑡

, DC stocks, 𝜔𝐷𝐶𝑆
ℎ,𝑡

, real estate, 𝜔𝑅𝐸
ℎ,𝑡

, and debt, 𝜔𝐷
ℎ,𝑡
, in the

household’s non-cash net wealth. The excess return on non-cash net wealth is then:

𝑅𝑒
𝑁𝐶𝑊,ℎ,𝑡+1 = 𝜔𝑆

ℎ,𝑡𝑅
𝑒
𝑆,𝑡+1 + 𝜔𝐷𝐶𝑆

ℎ,𝑡 𝑅𝑒
𝐷𝐶𝑆,𝑡+1 + 𝜔𝑅𝐸

ℎ,𝑡 𝑅
𝑒
𝑅𝐸,𝑡+1 − 𝜔𝐷

ℎ,𝑡𝑅
𝑒
𝐷,𝑡+1. (3)

where 𝑅𝑒
𝑆,𝑡+1, 𝑅𝑒

𝐷𝐶𝑆,𝑡+1, and 𝑅𝑒
𝑅𝐸,𝑡+1 denote the excess return over cash on risky liquid

wealth, risky DC wealth, and real estate, respectively, and 𝑅𝑒
𝐷,𝑡+1 is the household

borrowing rate over cash.

The second stage of our analysis is to calculate the variance of 𝑅𝑒
𝑁𝐶𝑊,ℎ,𝑡+1.

Since the borrowing rate is deterministic, we only need to consider the vec-

tor 𝜔ℎ,𝑡 = (𝜔𝑆
ℎ,𝑡
, 𝜔𝐷𝐶𝑆

ℎ,𝑡
, 𝜔𝑅𝐸

ℎ,𝑡
)′ and the variance-covariance matrix Σ of 𝑅𝑒

𝑡+1 =

(𝑅𝑒
𝑆,𝑡+1, 𝑅

𝑒
𝐷𝐶𝑆,𝑡+1, 𝑅

𝑒
𝑅𝐸,𝑡+1)

′. The variance of 𝑅𝑒
𝑁𝐶𝑊,ℎ,𝑡+1 is then 𝜎2(𝑅𝑒

𝑁𝐶𝑊,ℎ,𝑡+1) =

𝜔′
ℎ,𝑡

Σ 𝜔ℎ,𝑡 . To estimate Σ, we assume that cash earns the Swedish one-month risk-

The impact of underdiversification in liquid wealth is reduced when one takes account of diversified
DC retirement wealth as we do in this paper.

6We cap the estimated fund beta at 1, and use the cross-sectional average fund beta for funds with
less than 24 monthly observations.

7In Sweden, DC retirement wealth is highly diversified and invested either in variable annuity
products (traditionell försäkring) or in pension funds chosen from a menu available on pension
saving platforms provided by insurance companies (fondförsäkring).
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free rate net of taxes, that liquid equity earns the MSCI world index return net of a

30% long-term capital income tax rate (Du Rietz et al. 2015), that real estate earns

the FASTPI index return net of a 22% real estate capital gain tax rate, and that stocks

held in DC plans earn the pre-tax MSCI world index return before the adjustment

of their value to an after-tax basis. Using data from 1984–2007, we estimate the

post-tax excess return volatility for stocks at 13.3% and for real estate at 5.5%, with

a correlation of 0.27. The pre-tax excess stock return volatility is 19%.

In the third stage, we convert the volatility into a risky share held in a single

composite risky asset. The composite asset, also called numeraire, is the aggregate

portfolio of Swedish households, scaled to have the same volatility as the after-tax

MSCI world index: 𝑅𝑒
𝑁,𝑡+1 = (1 + 𝐿) (𝜔′

𝑎𝑔𝑔,𝑡𝑅
𝑒
𝑎𝑔𝑔,𝑡+1). Here 𝑅𝑒

𝑁,𝑡+1 is the return on

the numeraire and 𝜔𝑎𝑔𝑔,𝑡 is the vector containing the weights of equity, real estate

and risky DC wealth in the aggregate non-cash net wealth of all Swedish households

in our sample. The scaling factor 𝐿 is chosen so that the volatility of 𝑅𝑒
𝑁,𝑡+1 is equal

to the volatility of the after-tax return in local currency on the global equity index.

Total net wealth earns the excess return 𝑅𝑒
ℎ,𝑡+1 = (𝑁𝐶𝑊ℎ,𝑡/𝑊ℎ,𝑡)𝑅𝑒

𝑁𝐶𝑊,ℎ,𝑡+1. The

empirical risky share 𝛼ℎ,𝑡 is the ratio of the standard deviation of household ℎ’s

overall portfolio to the standard deviation of the numeraire asset:

𝛼ℎ,𝑡 =
𝜎(𝑅𝑒

ℎ,𝑡+1)
𝜎(𝑅𝑒

𝑁,𝑡+1)
=

(
𝑁𝐶𝑊ℎ,𝑡

𝑊ℎ,𝑡

)
𝜎(𝑅𝑒

𝑁𝐶𝑊,ℎ,𝑡+1)
𝜎(𝑅𝑒

𝑁,𝑡+1)
. (4)

This approach implicitly assumes that all households earn the same Sharpe ratio on

their risky assets, but guarantees that the standard deviation of a household’s wealth

return used in our simulations coincides with its empirical value. A unit value for

𝛼ℎ,𝑡 says that the portfolio has the same volatility, 13.3%, as if it is invested solely

in the MSCI world stock index outside a retirement account.
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1.3 Composite Households

We consider Swedish households that are aged between 40 and 60 during the 1999

to 2007 period and hold risky financial assets outside retirement accounts. This

corresponds to 5.4 million household-year observations on the 13 cohorts born

between 1947 and 1959, but we impose several filters. We exclude households

in which the head is a student, working in the agricultural sector, retired before

1999, missing information on education or sector of employment, or missing data

in any year. We exclude households that change their employment sector during

our sample in such a way as to alter the level of income volatility they are exposed

to. Since our measurement procedures may be less adequate for the wealthiest, we

also exclude households whose financial wealth is above the 99th percentile of the

wealth distribution in 1999. These filters exclude 2.7 million observations, leaving

us with a balanced panel containing 2.7 million household-year observations and

298,540 households.

We classify households by three levels of educational attainment: (i) basic or

missing, (ii) high school, and (iii) post-high school. We also classify households by

12 sectors of employment. Within each education level, we rank the sectors by their

total income volatility and divide them in three categories. We obtain a 3×3 grid of

9 large education/sector categories where the sectors of employment are aggregated

by income volatility. We subdivide each of these categories using a two-way sort by

deciles of the initial wealth-income ratio and initial risky share. We use the lowest

two and highest two deciles and the middle three quintiles, giving us a 7 × 7 grid

of 49 bins for the initial wealth-income ratio and risky share.8 Finally, we again

8The wealth-income and risky share breakpoints are set separately in each of the 9 categories.
This ensures that across categories we have the same proportion of households at each of the 7 risky
share and wealth-income levels. However, the number of households can differ across the 49 bins
defined by the two-way sort.
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subdivide by 13 cohorts to create 5733 = 9×49×13 groups. After excluding groups

with less than 10 members or a wealth-income ratio higher than 25 in each year

from 1999 to 2007, our final sample is a balanced panel of 4276 groups.

The median group size across years is 53 households, but the average group size

is larger at about 70 households. The difference reflects a right-skewed distribution

of group size, with many small groups and a few much larger ones. The group-level

statistics we report in the paper are all size-weighted in order to reflect the underlying

distributions of data and preference parameters at the household level.

We treat each group as a composite household, adding up all wealth and income

of households within the group. Because we assume scale-independent Epstein-Zin

preferences, we scale wealth by income and work with the wealth-income ratio as

well as the implied risky share held in our composite numeraire asset.

1.4 Cross-Section of Wealth-Income Ratio and Risky Share

We now consider the cross-section of the wealth-income ratio and risky share,

averaging across all years in our sample. The top panel of Table 1 shows the

variation in average wealth-income ratios and risky portfolio shares across groups,

averaging across cohorts and the subdivisions by initial wealth-income ratio and

risky share. Households in each group are treated as a single composite household

that owns all wealth and receives all income of the group, and groups are weighted by

the number of households they contain. Average wealth-income ratios vary widely

from 3.7 to 6.2, while average risky shares vary in a narrow range from 66% to 69%.

Within each sector, average wealth-income ratios are higher for more educated

households, particularly those with post-high school education, but average risky
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Table 1: Wealth-Income Ratio and Risky Share by Education and Income Risk
Panel A. Cross-Sectional Means

WY RS
No High High Post-High No High High Post-High
School School School All School School School All

Low 3.70 4.13 5.08 4.47 0.692 0.686 0.675 0.682
Medium 4.52 4.50 4.94 4.68 0.665 0.672 0.660 0.666
High 4.74 5.10 6.15 5.47 0.670 0.675 0.673 0.673
All 4.25 4.51 5.27 4.79 0.677 0.678 0.669 0.674

Panel B. Cross-Sectional Standard Deviations

WY RS
No High High Post-High No High High Post-High
School School School All School School School All

Low 3.06 3.27 3.58 3.42 0.249 0.227 0.203 0.221
Medium 3.69 3.56 3.77 3.67 0.249 0.228 0.210 0.224
High 3.87 3.85 3.90 3.92 0.238 0.220 0.189 0.211
All 3.53 3.55 3.76 3.66 0.246 0.226 0.203 0.220

Panel A reports cross-sectional means of the wealth-income ratio (WY) and risky share (RS) for
Swedish household groups with 3 levels of education and working in sectors with 3 levels of income
volatility given in Internet Appendix Tables IA.2 and IA.3 and for aggregates of these groups.
Panel B reports cross-sectional standard deviations of WY and RS across the groups in each of these
categories and their aggregates. All statistics are based on the 1999 to 2007 period and weight
groups by their size, that is by the number of households they contain, to recover the underlying
household-level statistics assuming homogeneity of WY and RS within groups. Summary statistics
on group size are reported in Internet Appendix Table IA.1.

shares vary little with education. Across sectors, income risk has a strong positive

effect on the wealth-income ratio and a weak effect on the risky share.

The bottom panel of Table 1 reports the standard deviations of the wealth-income

ratio and the risky portfolio share across groups in each of the nine categories of

education and sectoral income risk. The standard deviations of the risky share are

consistently in the range 19–25%, while the standard deviations of the wealth-income

ratio are in the range 3.0–3.9. Across all 4276 groups, the average wealth-income

ratio has a mean of 4.8 with a standard deviation of 3.7, while the average risky share

has a mean of 67% with a standard deviation of 22%. Figure 1 plots the distribution

of wealth-income ratios and risky shares across Swedish households.
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Figure 1: Distribution of Wealth-Income Ratio and Risky Share Across Swedish
Households

This figure presents histograms for the wealth-income ratio (WY) and risky share (RS) across
4,276 groups of Swedish households, size-weighted to recover the underlying distribution across
households under the assumption that WY and RS are homogeneous within groups. Each bin is
labeled on the horizontal axis with the upper cutoff value of WY or RS at the right edge of the bin,
except the extreme right bin which captures all groups above the previous bin’s cutoff. The vertical
axis shows the size-weighted fraction of the sample in each bin.

The cross-sectional variation in wealth and asset allocation documented in Ta-

ble 1 suggests that it will be difficult to account for household behavior without

allowing for heterogeneity in preferences. We now develop a life-cycle model that

we can use to estimate preferences from the evolution of wealth and asset allocation.

2 Income Process and Life-Cycle Model

2.1 Measuring Income Risk

We consider the labor income specification used in Carroll and Samwick (1997),

Gourinchas and Parker (2002) and Cocco, Gomes, and Maenhout (2005), among

others:

log(𝑌ℎ,𝑡) = 𝑎𝑐 + 𝑏′𝑥ℎ,𝑡 + 𝜈ℎ,𝑡 + 𝜀ℎ,𝑡 , (5)
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where 𝑌ℎ,𝑡 denotes real income for household ℎ in year 𝑡, 𝑎𝑐 is a fixed effect for the

cohort to which the household belongs, 𝑥ℎ,𝑡 is a vector of characteristics, 𝜈ℎ,𝑡 is a

permanent random component of income, and 𝜀ℎ,𝑡 is a transitory component.

We enrich the model above by distinguishing between shocks that are common

to all households in a group and shocks that are specific to each household in the

group. We assume that the permanent component of income, 𝜈ℎ,𝑡 , is the sum of a

group-level component, 𝜉 𝑡 , and an idiosyncratic component, 𝑧ℎ,𝑡 :

𝜈ℎ,𝑡 = 𝜉 𝑡 + 𝑧ℎ,𝑡 . (6)

To simplify notation, we do not write an explicit group index but write group-level

shocks using a single time index. The components 𝜉 𝑡 and 𝑧ℎ,𝑡 follow independent

random walks: 𝜉 𝑡 = 𝜉 𝑡−1 + 𝑢𝑡 , and 𝑧ℎ,𝑡 = 𝑧ℎ,𝑡−1 + 𝑤ℎ,𝑡 .

The transitory component of income, 𝜀ℎ,𝑡 , is by contrast purely idiosyncratic.

This fits the fact that group average income growth in our Swedish data is slightly

positively autocorrelated, whereas it would be negatively autocorrelated if transitory

income had a group-level component. Finally, we assume that the three income

shocks impacting household ℎ are i.i.d. Gaussian: (𝑢𝑡 , 𝑤ℎ,𝑡 , 𝜀ℎ,𝑡)′ ∼ N(0,Ω𝑌 ),

where Ω𝑌 is the diagonal matrix with diagonal elements 𝜎2
𝑢, 𝜎

2
𝑤, and 𝜎2

𝜀 .

We estimate the income process (5) using household yearly income data, fol-

lowing a procedure described in Section I.C of the Internet Appendix. This gives

us estimates of the age-income profile for each education group, which we plot in

Figure 2. The profiles are steeper than profiles estimated in the US.9

9Dahlquist, Setty, and Vestman (2018) estimate income profiles for Sweden with a pronounced
hump shape and lower income towards the end of working life. They use a model that excludes cohort
effects, thereby estimating the age-income profile in part by comparing the incomes of households
of different ages at a point in time. This procedure is biased if different cohorts receive different
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Figure 2: Estimated Age-Income Profiles

This figure presents estimated age-income profiles, including replacement ratios in retirement, for
Swedish households with three levels of education: no high school (HS), high school, and post-high-
school. The estimates are based on a labor income process specified in equations (5)-(6).

To estimate income risk, we further divide households with the same education

level into business sector categories. 𝜎2
𝑢 is estimated by averaging the regression

residuals within each education-business sector category, and by computing the

sample variance of the resulting income innovations. We then apply a Carroll and

Samwick (1997) decomposition to estimate the permanent and transitory idiosyn-

cratic income risks, 𝜎2
𝑤 and 𝜎2

𝜀, of each education-business sector category.

We proceed in two steps. First, we implement the procedure above on 36

education-business sector categories obtained by dividing households with each of

lifetime income on average. We obtain similar estimates when we exclude cohort effects from our
model of income.
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three education levels into the 12 business sectors corresponding to the first digit

of the SNI industry code. Equipped with income risk estimates for each of the 36

categories, we aggregate business sectors into three levels of total income risk for

each education level.10 Second, we re-apply the procedure above to estimate income

risk for the resulting nine education-business sector categories.

Internet Appendix Table IA.3 reports the standard deviations estimated for these

nine categories. Permanent (systematic and idiosyncratic) income volatilities vary

relatively little across sectors, but transitory idiosyncratic income volatilities are

considerably higher for high-risk sectors. The table also shows that educated house-

holds, particularly those with higher education, face higher transitory income risk

and lower idiosyncratic permanent income risk than less educated households. This

pattern is consistent with Low, Meghir, and Pistaferri (2010), but it contrasts with

earlier studies showing the opposite pattern in the US. A likely explanation is that

in Sweden, uneducated workers face lower unemployment risk and lower effects of

unemployment on income than in many other countries, while educated workers

face relatively high income losses when they become unemployed.11

We have already noted in discussing Table 1 that average wealth-income ratios

tend to be higher in sectors with riskier income. This pattern is intuitive given

that labor income risk encourages precautionary saving. However, there is little

tendency for risky portfolio shares to be lower in sectors with riskier income.

Table 2 further explores these effects by regressing the average wealth-income

ratio and risky share on age, total income volatility, and dummies for high school

10Internet Appendix Table IA.1 reports the number of households and Table IA.2 reports the
underlying sectors in each category.

11This results from institutional features of the Swedish labor market which we explain in Sec-
tion I.C of the Internet Appendix.
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Table 2: Panel Regressions of Wealth-Income Ratio and Risky Share on Group
Characteristics

(1) (2) (3)
WY RS RS

Age 0.156∗∗∗ -0.014∗∗∗ -0.010∗∗∗
(0.016) (0.001) (0.001)

Total income volatility 15.755∗∗∗ -0.151 0.288∗∗
(1.891) (0.111) (0.092)

High school 0.478∗∗∗ -0.010 0.003
(0.136) (0.009) (0.007)

Post-high school 1.044∗∗∗ -0.016∗ 0.013
(0.138) (0.008) (0.007)

WY -0.028∗∗∗
(0.001)

Constant -6.331∗∗∗ 1.532∗∗∗ 1.356∗∗∗
(0.785) (0.053) (0.043)

Year fixed effects Yes Yes Yes
𝑅2 0.103 0.189 0.382

This table reports panel regressions of the wealth-income ratio (WY) and risky share (RS) on group
characteristics including the age of households in the group, total income volatility (in natural units),
and dummies for high-school and post-high-school education. All regressions weight groups by
their size, to recover underlying relationships at the household level, and include year fixed effects.
Standard errors are reported in parentheses and statistical significance levels are indicated with stars:
* denotes 1-5%, ** 0.1-1%, *** less than 0.1% significance. There are 38,484 observations on
groups, corresponding to 2,686,860 observations on underlying households.

and post-high school education. All regressions also include year fixed effects.

The first column of the table shows that the average wealth-income ratio increases

with age and with income volatility. This is consistent with the view that wealth

is accumulated in part to finance retirement, and in part as a buffer stock against

temporary shocks to income. In addition, the average wealth-income ratio increases

with the level of education.

The second column shows that the average risky share decreases with age, but

income risk and education are not significant predictors of the average risky share

although the coefficient on income risk is negative as one might expect. The third
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column adds the wealth-income ratio as a predictor for the risky share, and finds

a negative effect. After controlling for the wealth-income ratio, income risk has a

significantly positive effect on the risky share. This finding suggests that households

with risky income tend to have lower risk aversion, as Section 4.2 will confirm.

The negative effects of age and the wealth-income ratio on the risky share are

consistent with the predictions of a simple static model in which labor income is

safe and tradable, so that human capital is an implicit cash holding that tilts the

composition of the financial portfolio towards risky assets (Bodie, Merton, and

Samuelson 1992, Campbell and Viceira 2002).12 We work with a richer lifecycle

model in which labor income is risky and nontradable, but that model implies a

similar pattern of age and wealth effects on the risky share.

The results of this section are obtained under the maintained assumption that

real estate is a risky asset that earns the FASTPI index return net of a 22% real

estate capital gain tax. We now consider how our results are modified when real

estate is treated as riskless. Table IA.8 in the Internet Appendix reports the resulting

wealth-income ratio and risky share. The cross-sectional average risky share under

riskless real estate is about two-thirds that under risky real estate. This suggests

that an increase in risk aversion of about 50% would be needed to match the data if

we assumed riskless real estate. This would push the average risk aversion estimate

above 10, which seems implausibly high. Moreover, under riskless real estate, the

cross-sectional standard deviation of the risky share and the wealth-income statistics

are close to the values obtained in Table 1. In Table IA.9, we report panel regressions

12The negative effect of the wealth-income ratio on the risky share appears to contradict evidence
that wealthier individuals take more financial risk (Carroll 2002, Wachter and Yogo 2010, Calvet and
Sodini 2014). The discrepancy is likely due to several factors. Our sample excludes non-participants
in risky financial markets and the wealthiest 1% of Swedish households in 1999; we measure the
risky portfolio share taking account of housing and leverage through mortgage borrowing; and we
predict the risky share using the wealth-income ratio rather than the absolute level of wealth.
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of the wealth-income ratio and risky share on group characteristics. The results are

similar to the ones obtained in Table 2.

2.2 Life-Cycle Model

We consider a standard life-cycle model, very similar to the one in Cocco, Gomes

and Maenhout (2005) and Gomes and Michaelides (2005). We consider a relatively

tractable framework because the estimation of heterogeneous preference parameters

in the household population is numerically costly.13 Households have finite lives

and Epstein-Zin utility over a single consumption good. The utility function 𝑉𝑡 is

specified by the RRA coefficient 𝛾, the time discount factor 𝛿 or equivalently the

TPR − log(𝛿), and the EIS 𝜓. The utility 𝑉𝑡 satisfies the recursion

𝑉𝑡 =

[
𝐶

1−1/𝜓
𝑡 + 𝛿

(
E𝑡 𝑝𝑡,𝑡+1𝑉

1−𝛾
𝑡+1

) (1−1/𝜓)/(1−𝛾)
] 1

1−1/𝜓
, (7)

where 𝑝𝑡,𝑡+1 denotes the probability that a household is alive at age 𝑡 + 1 conditional

on being alive at age 𝑡, calibrated from Sweden’s life tables. Preference parameters

vary across households but we suppress the household index in (7) for simplicity.

The wealth accumulation of young households is significantly influenced by

housing purchases, transfers from relatives, investments in education, or changes

in family size, which for tractability we do not include in our model. Similarly,

matching the behavior of retirees is also hard for simple life-cycle models that do

not incorporate health shocks or bequest motives.14 For these reasons, we only

13The estimation of the chosen specification proceeds as follows. For each of the 4276 household
groups, we conduct a grid search over 2112 combinations of the preference parameters, followed by
a smooth optimization in the neighborhood of the optimal grid point, which overall requires us to
solve the life-cycle model more than 10 million times.

14Since we do not observe decisions late in life, we do not include an explicit bequest motive and
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consider the model’s implications for ages 40 to 60.

We initialize the model at age 40. The time index in the model, 𝑡, starts at 1, so

that 𝑡 is calendar age minus 39. Each period corresponds to one year and agents live

for a maximum of 𝑇 = 61 periods (corresponding to age 100). Before retirement

households supply labor inelastically. The stochastic process of labor income, 𝑌ℎ,𝑡 ,

is described in Section 2.1. All households retire at age 65, as was typically the

case in Sweden during our sample period, and retirement earnings are set to a

constant replacement ratio of the last working-life permanent income. Consistent

with Section 1, wealth in the model is invested every period in a one-period riskless

asset (bond) and a composite risky asset.

The household chooses its consumption level 𝐶ℎ,𝑡 and risky portfolio share 𝛼ℎ,𝑡

subject to a constraint that financial wealth is positive—that is, the household cannot

borrow to finance consumption. We do allow borrowing to finance a risky asset

position, that is, we allow 𝛼ℎ,𝑡 ≥ 1. Household wealth satisfies the budget constraint

𝑊ℎ,𝑡+1 = (𝑅 𝑓 + 𝛼ℎ,𝑡𝑅
𝑒
𝑁,𝑡+1) (𝑊ℎ,𝑡 + 𝑌ℎ,𝑡 − 𝐶ℎ,𝑡), (8)

where 𝑅𝑒
𝑁,𝑡+1 is the return on the composite numeraire asset in excess of the gross

risk free rate 𝑅 𝑓 . The excess return 𝑅𝑒
𝑁,𝑡+1 is Gaussian N(𝜇𝑟 , 𝜎2

𝑟 ).

2.3 Calibrated Parameters

The parameters of our life-cycle model can be divided into those describing the

income process, and those describing the properties of asset returns. For income,

we have age profiles and retirement replacement ratios as illustrated in Figure 2, and

instead capture the desire to leave a bequest as a lower TPR.

22



the standard deviations 𝜎𝑢, 𝜎𝑤, and 𝜎𝜀 in Table IA.3 in the Internet Appendix.

We assume that all safe borrowing and lending takes place at a single safe interest

rate of 2.0%.15 We set the volatility of the numeraire risky asset at 13.3%, which is

equal to the volatility of post-tax excess stock returns as discussed in section 1.2. We

assume that the average excess return on the numeraire asset over the safe interest

rate is 3.5%, the same as the average post-tax equity premium on the MSCI world

index in local currency over the period 1984–2007. Putting these assumptions

together, we assume a Sharpe ratio of 0.26. In section 4.5 we discuss robustness of

our results to assuming alternative Sharpe ratios.

Following Campbell, Cocco, Gomes, and Maenhout (2001), we estimate the

correlation between the numeraire risky asset return and group-level systematic

income shocks by lagging the stock return one year to capture a delayed response of

income to macroeconomic shocks that move asset prices immediately. Empirically

the correlation has an average value across the nine education-sector categories of

0.08 for stock returns, 0.37 for real estate returns, and 0.26 for the composite risky

asset.16 Table IA.4 in the Internet Appendix reports the separate correlations for

each of the nine categories that we use in our model.

15This is calibrated as a weighted average of a safe lending rate of 0.8% and the average household
borrowing rate of 3.6%, using the cross-sectional average household debt level to construct the
average. Moreover, our model would allow us to assume that households pay a higher rate when they
have a risky share greater than one. However, this assumption would not be a better approximation
to reality than the one we make, since households who borrow to buy housing pay the borrowing
rate even when their risky share is below one.

16The correlation between the numeraire risky asset return and individual income growth is much
smaller because most individual income risk is idiosyncratic.
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3 Identification and Estimation

3.1 Identification Strategy

3.1.1 Intuition

Our goal is to estimate the three preference parameters of the Epstein-Zin utility

model. The main challenge is that the TPR and the EIS are not separately identified

if consumption growth and the portfolio return are independent and identically

distributed, as Kocherlakota (1990) and Svensson (1989) explain.

This section suggests three possible solutions in our context. One channel

is endogenous variation in savings driven by time variation in the wealth-income

ratio. The second channel is time variation in the expected portfolio return. Even

though our model has no exogenous variation in expected asset returns, age drives

endogenous changes in the risky share. The third channel is age variation in the

survival probabilities 𝑝𝑡,𝑡+1 and therefore the effective time discount factor 𝛿𝑝𝑡,𝑡+1.

These sources of variation imply that the profile of the wealth-income ratio is affected

in different ways by the TPR and the EIS, at different ages.

To further explain the intuition underlying our identification strategy, we consider

an Epstein-Zin investor who can trade a riskless asset and a risky asset every period.

The Euler equation for the return on the optimal portfolio is given by

1 = E𝑡

[̃
𝛿𝑡+1

(
𝐶𝑡+1
𝐶𝑡

)− 1
𝜓

(
𝑉𝑡+1

𝜇(𝑉𝑡+1)

) 1
𝜓
−𝛾

𝑅𝑃
𝑡+1

]
(9)

where 𝛿̃𝑡+1 = 𝛿𝑝𝑡,𝑡+1, 𝑅𝑃
𝑡+1 = 𝑅 𝑓 +𝛼𝑅𝑒

𝑡+1, and 𝜇(𝑉𝑡+1) denotes the certainty equivalent
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of 𝑉𝑡+1.17 Under the usual assumption of conditional joint lognormality, we obtain

E𝑡𝑔𝑡+1 = 𝜓 [E𝑡𝑟
𝑃
𝑡+1 − log(𝛿̃𝑡+1)] + (1 − 𝛾𝜓) E𝑡 𝑣̃𝑡+1 +

1
2𝜓

𝜎2
𝑔,𝑡 + 𝜎𝑔𝑟,𝑡 (10)

+𝜓
2

[(
1
𝜓
− 𝛾

)2
𝜎2
𝑣̃,𝑡

+ 𝜎2
𝑟,𝑡 +

(
1
𝜓
− 𝛾

)
𝜎𝑣̃𝑟,𝑡

]
+

(
1
𝜓
− 𝛾

)
𝜎𝑔𝑣̃,𝑡 ,

where lower case letters denote logs of upper case letters, 𝑔𝑡+1 = log(𝐶𝑡+1/𝐶𝑡), and

𝑉𝑡+1 = 𝑉𝑡+1/𝜇(𝑉𝑡+1).

Equation (10) highlights the identification problem. If the expected portfolio

return, the time discount factor, and the conditional variances are constant over time,

then the expected consumption growth rate E𝑡𝑔𝑡+1 is constant and for any value of 𝜓

there is a corresponding time discount factor 𝛿 that delivers the same level of E𝑡𝑔𝑡+1.

Without additional restrictions on 𝛿 or 𝜓 these two parameters cannot be separately

identified, as shown by Kocherlakota (1990) and Svensson (1989).

Equation (10) also suggests three possible solutions. First, one can exploit time-

variation in variance terms, which arises in life-cycle models with undiversifiable

risky labor income such as ours. However these changes tend to be more substantial

early in life, when households have less wealth to smooth shocks (Gomes and

Michaelides 2005). A second channel is time variation in the expected portfolio

return. Even though our model has no exogenous variation in expected asset returns,

we have endogenous variation driven by changes in the agent’s portfolio as a function

of age. The third channel is time variation in the effective time discount factor

𝛿̃𝑡+1 = 𝛿𝑝𝑡,𝑡+1, driven by the survival probabilities 𝑝𝑡,𝑡+1 which are also a function

17This Euler equation holds with equality even though our model has borrowing constraints,
because with labor income risk and a Bernoulli utility function that satisfies 𝑢′ (0) = ∞ the agent
will always choose to hold some financial assets. Our model also has short-sales constraints on risky
asset holdings, but these do not bind for the middle-aged households we are considering.

25



of age.

All three sources of variation imply that the profile of the wealth-income ratio is

affected in different ways by the TPR and the EIS, at different ages. Our identification

strategy builds on this intuition, as we now explain.

3.1.2 Regressions on Simulated Data

We illustrate the promise of our identification strategy by running a series of re-

gressions based on simulated data from the model. More specifically we regress

the underlying preference parameters that were used to generate those simulations

against a series of moments from the simulated data. The values for the preference

parameters are the same grid points that we consider in our estimation: 1,848 com-

binations of 12 values of RRA ranging from 3 to 12, 11 values of the TPR ranging

from -0.05 to 0.22, and 14 values of the EIS ranging from 0.1 to 2.5. The exact

grid points are provided in Section II.A of the Internet Appendix. For each of these

1,848 preference parameter combinations we consider all 4,276 combinations of the

initial wealth-income ratio and other group characteristics that we observe in the

data.18

To build intuition we consider four moments in our regressions. The first

moment is the initial wealth-income ratio which determines the initial conditions

in our simulations ((𝑊/𝑌 )𝑖0). The second moment is the average risky share for

18Simulated moments are obtained by averaging 10,000 simulations. In this exercise, unlike
our empirical analysis, we use the observed wealth-income ratio only in the first year, and take
wealth-income ratios in subsequent years from the simulated data rather than from the observed data.
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household 𝑖 over the 8 years in our sample:

𝛼𝑖 =

(
1
8

8∑︁
𝑡=1

𝛼𝑖𝑡

)
, (11)

which should provide strong identification of the risk aversion parameter. The third

moment that we consider is the 8-year cumulative growth of the wealth-income

ratio,

𝑔𝑟𝑊𝑌𝑖 =

[(
𝑊

𝑌

)
𝑖8
/
(
𝑊

𝑌

)
𝑖0

]
. (12)

Finally, to capture age variation in the rate of wealth accumulation, the fourth

moment we consider is

𝑐𝑜𝑛𝑣𝑒𝑥𝑊𝑌𝑖 =

1
2
[
𝑊
𝑌 𝑖0 +

𝑊
𝑌 𝑖8

]
𝑊
𝑌 𝑖4

− 1. (13)

This measures the convexity of the wealth-income ratio as a function of age.

As an alternative to these four moments, we also consider the average risky share

and the average wealth-income ratio in every year, thus giving us a total of sixteen

moments ({𝛼𝑖𝑡}𝑡=1,8 and {(𝑊/𝑌 )𝑖𝑡}𝑡=1,8). These are the moments we actually use in

our estimation.

We first consider the risk aversion parameter. The average risky portfolio share

is an intuitive moment to explore here, so we first run the following regression:

𝛾𝑖 = 𝑘0
𝛾 + 𝑘1

𝛾𝛼𝑖 + 𝑒𝑖 . (14)

Panel A of Table 3 reports the estimation results. Confirming that the average risky

share is a very good moment for identifying the risk aversion parameter, the adjusted

𝑅2 from this regression is 81.5%. This is an extremely high number since we are
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Table 3: Regressions of Preference Parameters on Simulated Moments

Panel A. RRA Regressions.

Average RS Yes Yes No
Growth of WY No Yes No
Convexity of WY No No No
16 moments No No Yes
𝑅2 0.815 0.822 0.909

Panel B. TPR Regressions.

Average RS No Yes No
Growth of WY Yes Yes No
Convexity of WY No Yes No
16 moments No No Yes
𝑅2 0.231 0.514 0.619

Panel C. EIS Regressions.

Average RS No Yes No
Growth of WY Yes Yes No
Convexity of WY Yes Yes No
16 moments No No Yes
𝑅2 0.029 0.029 0.024

Panel D. EIS Regressions Part II.

WY range ≤ 1 (1, 2] (2, 3] (3, 5] (5, 7] (7, 10] > 10
𝑅2 0.604 0.640 0.634 0.534 0.463 0.343 0.172

This table reports the 𝑅2 statistics of regressions in simulated data using all preference parameters
on a grid containing 12 values of relative risk aversion (RRA) ranging from 3 to 12, 11 values
of the time preference rate (TPR) ranging from -0.05 to 0.22, and 14 values of the elasticity of
intertemporal substitution (EIS) ranging from 0.1 to 2.5. For each of the 1,848 combinations
of preference parameters we consider all initial levels of the wealth-income ratio (WY) observed
among Swedish household groups. We regress the preference parameters on simulated moments
including the average risky share (RS), the initial WY, the 8-year cumulative growth of WY defined
in equation (12), the convexity of WY defined in equation (13), and all 16 moments (8 values of
RS and 8 values of WY) used in our empirical analysis. The dependent variable in the regressions
is RRA in Panel A, the TPR in Panel B, and the EIS in Panel C. The three columns in Panels A,
B, and C include different combinations of explanatory variables. Panel D runs EIS regressions
separately, using all 16 moments, for simulated groups with initial WY in different bins indicated in
the columns.
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estimating a linear regression and imposing the same coefficients across groups.

We know that the true relationship is non-linear and also depends on the initial

wealth-income ratio. In our second specification we add the cumulative growth

rate of the wealth-income ratio as an explanatory variable; the adjusted 𝑅2 statistic

then increases to 82.2%. Finally, in the last column we report results using all 16

moments from our estimation ({𝛼𝑖𝑡}𝑡=1,8 and {(𝑊/𝑌 )𝑖𝑡}𝑡=1,8). The adjusted 𝑅2 is

now 90.9%, an impressive value for simple linear regressions.

In panel B of Table 3, we turn our attention to the identification of the TPR.

In the first specification we regress the TPR on the cumulative growth rate of the

wealth-income ratio and obtain an adjusted 𝑅2 of 23.1%. When we add the risky

share and the convexity of the wealth-income ratio, the adjusted 𝑅2 increases to

51.4%. The adjusted 𝑅2 reaches 61.9% when we consider all 16 moments.

In Panels C and D of Table 3, we show the good identification of the EIS and

we illustrate that a reliable estimation procedure should carefully control for non-

linear variation of the EIS with respect to initial wealth-income ratio. In panel C,

we begin by considering linear specifications of the EIS that do not sort house-

holds by initial wealth-income ratio. The explanatory power of these regressions

is low. The adjusted 𝑅2 is only 2.9% when the set of explanatory variables con-

sists of the cumulative growth rate and the convexity of the wealth-income ratio,

regardless of whether or not we include the average risky share as a regressor. The

adjusted 𝑅2 even drops to 2.4% when we consider all sixteen moments ({𝛼𝑖𝑡}𝑡=1,8

and {(𝑊/𝑌 )𝑖𝑡}𝑡=1,8). However, in panel D of Table 3, we relax the linearity assump-

tion and estimate regressions within seven different ranges of values of the initial

wealth-income ratio. The values for the adjusted 𝑅2 then vary between 17.2% and

64.0%. Hence, the EIS is well identified within our framework when we conduct

the estimation separately for different wealth-income ratio groups.
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3.2 Indirect Inference Estimator

The estimation of the vector of preference parameters, 𝜃𝑔 = (𝛿𝑔, 𝛾𝑔, 𝜓𝑔)′, in each

group 𝑔 proceeds by indirect inference (Smith 1993, Gouriéroux, Monfort, and

Renault 1993). This method compares a vector of auxiliary statistics produced by

the lifecycle model to the vector of empirical auxiliary statistics in the group. We

denote by 𝑝 = 3 the number of components of 𝜃𝑔, by 𝑁𝑔 the number of households

in the group, and by 𝑇 = 8 the number of years in the panel.

For every 𝑡 ∈ {1, ..., 𝑇}, we consider the following auxiliary statistics: (i) the

wealth-income ratio of the group, defined as the ratio of the group’s total wealth to

the group’s total income:

𝜇̂
𝑔

1,𝑡 =

∑𝑁𝑔

ℎ=1 𝑊ℎ,𝑡∑𝑁𝑔

ℎ=1𝑌ℎ,𝑡
, (15)

and (ii) the group’s risky share:

𝜇̂
𝑔

2,𝑡 =

∑𝑁𝑔

ℎ=1 𝛼ℎ,𝑡𝑊ℎ,𝑡∑𝑁𝑔

ℎ=1 𝑊ℎ,𝑡

. (16)

These statistics provide reliable measures of wealth accumulation and risk-taking

based on group aggregates. We note that 𝜇̂𝑔1,𝑡 and 𝜇̂
𝑔

2,𝑡 are ratios of sample moments

but are not sample moments themselves, which motivates the use of indirect infer-

ence rather than moment-based estimators. We stack auxiliary statistics into the

empirical auxiliary estimator 𝜇̂𝑔 = ( 𝜇̂𝑔1,1, . . . , 𝜇̂
𝑔

1,𝑇 , 𝜇̂
𝑔

2,1, . . . , 𝜇̂
𝑔

2,𝑇 )
′. By construc-

tion, 𝜇̂𝑔 has 𝑞 = 16 components.19

The data-generating process is based on the policy functions of households with

19We could also include the risky share in the initial year (𝛼𝑖0), since it is also an endogenous
moment from the simulations. We exclude it in order to have an equal number of auxiliary statistics
related to the wealth-income ratio and to the risky share.
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preference parameter vector 𝜃, the return process, and the labor income process

defined in earlier sections. As the number of households in the group goes to infinity,

the empirical auxiliary estimator 𝜇̂𝑔 converges to the binding function 𝜇𝑔 (𝜃) ∈ R𝑞

with components 𝜇
𝑔

1,𝑡 (𝜃) = E𝑔

𝜃
(𝑊𝑡)/E𝑔

𝜃
(𝑌𝑡) and 𝜇

𝑔

2,𝑡 (𝜃) = E𝑔

𝜃
(𝛼𝑡𝑊𝑡)/E𝜃 (𝑊𝑡),

where E𝑔

𝜃
( · ) denotes the cross-sectional mean of households in the group. These

expectations are computed under the assumption that all households earn the riskfree

rate 𝑅 𝑓 and the synthetic excess risky return 𝑅𝑒
𝑁,𝑡

on their risky asset holdings.

We estimate the binding function 𝜇𝑔 (𝜃) by simulation of the life-cycle model as

follows. For each preference parameter 𝜃, we compute the wealth-income ratio and

risky share predicted by the model for the years 2000 to 2007 using the parameters

from Table IA.3 in the Internet Appendix as inputs. For each year 𝑡, the starting

point is an information set I𝑡 containing the empirical wealth-income ratio of group

𝑔 at the end of year 𝑡 − 1. In the simulations, we feed the realized return on

the risky asset and the realized empirical group-level income shocks, during the

year. Consistent with the life-cycle model, we assume that households have this

much advance information about wages and hours. We simulate the idiosyncratic

permanent and transitory income shocks of each household, which we combine to

I𝑡 to obtain the group’s wealth-income ratio and risky share at the end of year 𝑡.

We denote the simulated values as 𝜇̃
𝑔

1,𝑡 (𝜃) and 𝜇̃
𝑔

2,𝑡 (𝜃), respectively, and stack them

into a column vector 𝜇̃
𝑔

𝑆
(𝜃). Section II.B of the Internet Appendix explains the

simulation procedure in detail.

We estimate the vector of preference parameters by minimizing the deviation

𝜇̃
𝑔

𝑆
(𝜃) − 𝜇̂𝑔 between the lifecycle model and the data:

𝜃̂
𝑔
= arg min

𝜃

[
𝜇̃
𝑔

𝑆
(𝜃) − 𝜇̂𝑔

]′
Ω

[
𝜇̃
𝑔

𝑆
(𝜃) − 𝜇̂𝑔

]
. (17)
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We choose a diagonal weighting matrix Ω common to all groups. Each diagonal

element of Ω is a scale factor that converts the wealth-income ratios and risky shares

into comparable units. Specifically, we let Ω = 𝑑𝑖𝑎𝑔(𝜔1, ..., 𝜔1, 𝜔2, ..., 𝜔2), where

𝜔1 =

(
1

𝐺 𝑇

∑𝐺
𝑔=1

∑𝑇
𝑡=1 𝜇̂

𝑔

1,𝑡

)−2
and 𝜔2 =

(
1

𝐺 𝑇

∑𝐺
𝑔=1

∑𝑇
𝑡=1 𝜇̂

𝑔

2,𝑡

)−2
. These weights have

(𝜔2/𝜔1)1/2 = 7.57, consistent with an average risky share of around 0.5 and an

average wealth-income ratio of 3.5. Using a common weighting matrix Ω implies

that the objective function in (17) is comparable across groups.

If our model is correctly specified, the indirect inference estimator 𝜃̂𝑔 is asymp-

totically consistent as the number of households in each group increases. We can

also calculate the asymptotic variance-covariance matrix of our parameter esti-

mates. Further details on the properties of our estimator are given in Section II of

the Internet Appendix.

4 Empirical Results

4.1 The Cross-Sectional Distribution of Preference Estimates

Tables 4 and 5 and Figure 3 summarize the cross-sectional distributions of our es-

timated preference parameters. Table 4 reports the cross-sectional means, medians,

and standard deviations of the estimated parameters along with summary statistics of

the data. Table 5 reports the cross-sectional correlations of the estimated parameters

and summary statistics. A number of interesting patterns are visible in these tables.

Table 4 reports a mean RRA of 7.57, close to the median estimate of 7.50 and

in the range considered as reasonable by Mehra and Prescott (1985). The cross-

sectional standard deviation of estimated RRA is modest at 1.06, less than 15% of
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Table 4: Cross-Sectional Distributions of Estimated Preference Parameters
and Group Financial Characteristics

Mean Median Std. Dev. 10% 25% 75% 90%
RRA 7.57 7.50 1.06 6.30 6.90 8.00 8.90
TPR (%) 5.21 3.15 6.96 -1.09 1.21 6.19 18.87
EIS 0.96 0.50 0.90 0.10 0.17 1.81 2.50
Average RS 0.65 0.63 0.17 0.45 0.53 0.75 0.90
Initial WY 4.28 3.04 3.90 0.87 1.64 5.22 9.25
Growth of WY 1.08 1.07 0.05 1.03 1.05 1.10 1.14
Convexity of WY 0.24 0.23 0.09 0.15 0.19 0.28 0.35

This table reports the mean, median, standard deviation, and 10th, 25th, 75th, and 90th percentiles
of estimated preference parameters and group financial characteristics. All statistics weight groups
by their size to recover the underlying cross-sectional distributions at the household level. Growth
of WY and convexity of WY are defined in equations (12) and (13) of the Internet Appendix. There
are 4,276 groups containing 298,540 households.

the mean and median estimates.

The cross-sectional standard deviation of RRA is lower in proportional terms

than the cross-sectional standard deviation of the risky portfolio share, which was

shown in Table 1 to be almost one-third of its mean. In a simple one-period

portfolio choice model without labor income, the risky portfolio share and RRA are

inversely proportional to one another so they must have equal proportional standard

deviations; and the same is true in a model where labor income is safe and can be

borrowed against and all investors have the same wealth-income ratio. Two features

of our model help to account for this finding. First, there is variation across groups

in their wealth-income ratios which helps to account for some of the cross-sectional

variation in risky shares as illustrated in Table 2. Second, we estimate that labor

income risk is correlated with financial risk; this increases the change in the risky

financial share that is needed to generate a given change in a household’s overall

risk exposure.

The other two preference parameters have much greater cross-sectional variation
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Figure 3: Joint Distribution of TPR and EIS

This figure presents bivariate heat map for estimates of TPR and EIS across 4,276 groups of
Swedish households, size-weighted to recover the underlying distribution across households under
the assumption that preferences are homogeneous within groups. Each axis label shows the upper
cutoff value of the corresponding bin, except for labels beginning with = which indicate that the
bin contains only estimates of the exact value indicated by the label. The logarithmic color scheme
indicates the fraction of the sample in each bin. This fraction is 9.6% for the darkest color and 0.0%
for the brightest color.

relative to their means, and both are strongly right-skewed. The median TPR is

3.15%, considerably lower than the mean of 5.21%, and the cross-sectional standard

deviation of the TPR is 6.96%. Similarly, the median EIS is 0.50, considerably

lower than the mean of 0.96, and the cross-sectional standard deviation of the EIS is

0.90. This cross-sectional standard deviation is over 6 times as large for the EIS as

for RRA in proportional terms; this contrasts with the prediction of a power utility

model, which would imply equal proportional standard deviations for RRA and the

EIS since one parameter is the reciprocal of the other.20

Table 5 shows that preference parameter estimates are only weakly cross-

sectionally correlated. RRA and the EIS have a weak negative correlation of −0.11,

a finding that contrasts with the perfect negative correlation between the logs of

RRA and the EIS under power utility. The TPR is positively correlated with RRA

20Figure IA.1 in the Internet Appendix plots the univariate distributions of all three preference
parameters.
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Table 5: Cross-Sectional Correlations of Estimated Preference Parameters and
Group Financial Characteristics

RRA TPR EIS Average Initial Growth
RS WY of WY

RRA 1.000
TPR 0.191∗∗∗ 1.000
EIS -0.114∗∗∗ -0.217∗∗∗ 1.000
Average RS -0.124∗∗∗ 0.561∗∗∗ -0.065∗∗∗ 1.000
Initial WY -0.483∗∗∗ -0.461∗∗∗ 0.387∗∗∗ -0.501∗∗∗ 1.000
Growth of WY 0.321∗∗∗ 0.539∗∗∗ -0.116∗∗∗ 0.600∗∗∗ -0.709∗∗∗ 1.000

This table reports the cross-sectional correlations across estimated preference parameters and group
financial characteristics. Correlations weight groups by their size to recover the underlying cross-
sectional correlations at the household level. Growth of WY is defined in equation (12) of the
Internet Appendix. Statistical significance levels of correlation coefficients are indicated with stars:
* denotes 1-5%, ** 0.1-1%, *** less than 0.1% significance. There are 4,276 groups containing
298,540 households.

and negatively correlated with the EIS, but the correlations are modest at 0.19 and

−0.22 respectively. These weak correlations imply that heterogeneity in house-

hold preferences is multi-dimensional and cannot be explained by any single factor

missing from our model such as heterogeneity in beliefs about the equity premium.

Figure 3 is a heat map of the bivariate distribution of the TPR and EIS. The

distribution of the EIS is U-shaped, with probability mass concentrated below 1 and

near the upper edge of our parameter space which we set to 2.5. The distribution

of the TPR is also dispersed, but the figure shows that more extreme values of the

TPR are associated with low values of the EIS. This makes sense since a low EIS

reduces the impact of the TPR on observable savings decisions.

Section IV.A of the Internet Appendix conducts a Monte Carlo analysis of our

procedure. A key lesson is that small-sample bias cannot explain the substantial

cross-sectional heterogeneity in our preference estimates. There is almost no bias

for the RRA, minimal bias for the TPR, and some bias for the EIS, but correcting

this bias has little effect on cross-sectional parameter dispersion.
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4.2 Preference Estimates and Household Characteristics

The lower portion of Table 5 explores correlation patterns among preference param-

eters and observables. The initial wealth-income ratio has a correlation of −0.50

with the average risky share and a correlation of −0.71 with the average growth

rate of the wealth-income ratio. These correlations are consistent with the predic-

tions of our life-cycle model that the risky share declines with the level of financial

wealth in relation to human capital, and that households that enter the sample with

low financial wealth have a strong motive to accumulate wealth to finance retire-

ment. Correspondingly, the average risky share and the average growth rate of the

wealth-income ratio have a positive correlation of 0.60.

Our estimate of RRA is weakly negatively correlated (−0.12) with the average

risky share, an intuitive result that is consistent with our identification analysis.

RRA is more strongly negatively correlated (−0.48) with the initial wealth-income

ratio. Mechanically, this reflects the fact that households who enter the sample with

high wealth have risky shares that are insufficiently lower than the risky shares of

other households to be consistent with the same level of RRA.

Our estimate of the TPR is negatively correlated (−0.46) with the initial wealth-

income ratio and positively correlated (0.53) with the average growth rate of the

wealth-income ratio in our sample period. Mechanically, this is due to the fact that

households that enter our sample with low initial wealth accumulate wealth more

rapidly than average households, but not as rapidly as they would do if they had

an average TPR. It is intuitive that impatient households accumulate less wealth

before age 40 and then belatedly catch up as retirement approaches. The TPR is also

positively correlated (0.56) with the average risky share, reflecting the lower wealth-

income ratio of impatient households that justifies a riskier investment strategy.
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Table 6: Education, Income Risk and Preferences

(1) (2) (3)
RRA TPR EIS

Total income -11.029∗∗∗ -0.227∗∗∗ 1.980∗∗∗
volatility (0.465) (0.042) (0.542)
High school 1.525∗∗∗ 0.037∗∗∗ -0.196∗∗∗

(0.037) (0.003) (0.040)
Post-high school 0.632∗∗∗ 0.017∗∗∗ -0.155∗∗∗

(0.030) (0.003) (0.038)
Constant 8.922∗∗∗ 0.105∗∗∗ 0.775∗∗∗

(0.096) (0.010) (0.120)
Cohort dummies Yes Yes Yes
𝑅2 0.352 0.085 0.023

This table reports the cross-sectional regression coefficients across estimated preference parameters
and group characteristics including the total income volatility (in natural units), and dummies for
high-school and post-high-school education. All regressions weight groups by their size, to recover
the underlying cross-sectional relationships at the household level. Standard errors are reported in
parentheses and statistical significance levels are indicated with stars: * denotes 1-5%, ** 0.1-1%,
*** less than 0.1% significance. There are 4,276 groups containing 298,540 households.

Our estimate of the EIS is positively correlated (0.39) with the initial wealth-

income ratio and weakly negatively correlated (−0.12) with the average growth rate

of the wealth-income ratio. Economically, this suggests that households with a high

EIS save for retirement early in life, before our sample begins; such households have

a high willingness to adjust consumption to reach their target wealth-income ratio,

whereas households with a low EIS save more gradually over time.21

We next ask how our estimates are related to households’ income risk and

education. Table 6 regresses preference estimates on labor income volatility, the

level of education, and cohort fixed effects. RRA is most strongly related to these

observables. Households with riskier labor income tend to have lower risk aversion.

Mechanically, this results from the fact documented in Table 2 that income volatility

21Table IA.5 in the Internet Appendix reports multiple regressions rather than univariate corre-
lations. Most patterns are similar, but controlling for the initial wealth-income ratio, the growth of
wealth-income predicts the EIS positively rather than negatively.
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has little effect on the risky share: if risk aversion were the same for safe and for

risky occupations, then the risky share should fall with income risk. The finding

suggests that risk-tolerant individuals self-select into risky occupations. Controlling

for income risk, more educated people tend to have slightly higher RRA. The 𝑅2

of the regression for risk aversion is 35%. Households with high income risk also

tend to have a lower TPR and higher EIS, but the explanatory power of the TPR

regression is less than 9% and that of the EIS regression is only 2%. We do not find

that educated households are more patient; in fact, they tend to have slightly higher

TPR controlling for their income risk.

4.3 Parameter Uncertainty

The discussion in the previous subsections treats our point estimates of parameters

as if they are equivalent to the parameters themselves. In Section IV.B of the Internet

Appendix, we develop asymptotic standard errors of the preference parameters that

take parameter uncertainty into account. Reassuringly, the cross-sectional standard

deviations of the RRA, TPR, and EIS, which we have reported in Section 4.1, are

only weakly affected by estimation error, as Table IA.16 of the Internet Appendix

shows.

In Table 7 we report hypothesis tests based on our asymptotic standard errors

and using 5% significance levels. We report that 13% of households are in groups

estimated to have a negative TPR, but we can reject the null of a positive TPR

for only 6% of households. Thus, a significantly negative TPR is a relatively rare

occurrence in our sample. Conversely, we can reject the null of a negative TPR for

51% of households, and the null of a zero TPR using a two-sided test for 52% of

households. Thus the TPR is significantly positive for a slight majority of Swedes.
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Table 7: Statistical Test Results for Estimated Preference Parameters
Condition % of Pop. Condition % of Pop.
TPR < 0 13.3 Reject RRA = mean(RRA) 84.4
Reject TPR > 0 6.4 Reject TPR = mean(TPR) 45.1
Reject TPR < 0 50.5 Reject EIS = mean(EIS) 55.7
Reject TPR = 0 52.0 Reject joint equality to mean 98.5
EIS < 1 60.5 Reject RRA = median(RRA) 82.7
Reject EIS > 1 44.2 Reject TPR = median(TPR) 32.7
Reject EIS < 1 15.1 Reject EIS = median(EIS) 46.4
Reject EIS = 1 56.2
EIS < 1/RRA 22.3
Reject EIS > 1/RRA 0.8
Reject EIS < 1/RRA 34.4
Reject EIS = 1/RRA 30.7

This table reports the size-weighted fraction of Swedish household groups, or equivalently the
fraction of Swedish households, for which each condition stated in the row label applies. All
hypothesis test rejections are at the 5% significance level. Hypothesis tests in the bottom panel treat
the cross-sectional median preference parameter as known rather than estimated. There are 4,276
groups containing 298,540 households.

The table reports that 61% of households are in groups with estimated EIS less

than one. We can reject the null of an EIS greater than one for 44% of households,

and can reject the null of an EIS less than one for only 15% of households.22 Thus

it is far more common for Swedish households to have an EIS significantly below

one than an EIS significantly above one.

Turning to power utility, 22% of households have an estimated EIS that is lower

than the reciprocal of RRA. We reject the null that EIS exceeds 1/RRA for only

1% of households, and reject the null that the EIS is lower than 1/RRA for 34% of

households. A two-sided test rejects the power utility null for 31% of households.

We also test hypotheses about the heterogeneity of preferences. We report that

22The asymmetry reflects the fact, illustrated in Figure IA.2 in the Internet Appendix, that the
asymptotic standard error of the EIS is positively correlated with the level of the estimated EIS.
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84% of households are in groups for which we can reject the null that the group RRA

equals the cross-sectional mean RRA, taking account of statistical uncertainty about

that mean. Similarly, we reject equality to the mean TPR for 45% of households, and

equality to the mean TPR for 56% of households. We can reject the null that all three

parameters equal their cross-sectional means for 99% of households. Results are

similar when we test whether group preference estimates equal the cross-sectional

medians, treating the medians as known for simplicity. Overall, the table presents

strong statistical evidence against homogeneity of preferences within our framework.

4.4 Model Fit

As Figure IA.3 in the Internet Appendix shows, our model captures well the average

variation of the risky share and wealth-income over the life-cycle, the usual target for

life-cycle models. In this subsection we consider group-level measures of model fit.

We begin by describing the cross-sectional distribution of the errors our model makes

in fitting the 16 auxiliary statistics that are the target of our estimation procedure.

We take the 8 wealth-income ratios and the 8 risky shares, and for each of these

variables we calculate the root mean squared error (RMSE), the square root of the

average squared deviation of the model-fitted variable from the observed variable.

The results are reported in percentage points in the first two rows of Table 8.

The mean RMSE across all groups is 31.9% for the wealth-income ratio and

5.0% for the risky share. In other words, the average error in fitted wealth is just

under 4 months of income and the average error in the risky share is about 5% of

wealth. The RMSE distribution is somewhat right-skewed as indicated by the fact

that the median RMSEs are below the mean RMSEs at 22.1% and 4.1% respectively.
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Table 8: Cross-Sectional Distributions of Model Fit Indicators
Mean Median Std. Dev. 10% 25% 75% 90%

WY RMSE 31.89 22.10 30.82 9.93 14.24 38.27 67.18
RS RMSE 4.96 4.09 4.17 2.01 2.82 5.92 8.37
Scaled WY RMSE 6.29 4.36 6.08 1.96 2.81 7.55 13.24
Scaled RS RMSE 7.58 6.25 6.37 3.07 4.32 9.05 12.79
Scaled total RMSE 7.50 5.95 5.57 3.45 4.30 9.03 12.88
RMSE-scaled OF 7.03 5.95 4.48 3.40 4.40 8.48 12.23

This table reports the mean, median, standard deviation, and 10th, 25th, 75th, and 90th percentiles
of several measures of model fit. All statistics weight groups by their size to recover the underlying
cross-sectional distributions at the household level. WY (RS) RMSE is the root mean squared error
of the 8 WY (RS) moments used in estimation, multiplied by 100 so that the units are percentage
points of income or wealth. Scaled WY RMSE divides by the cross-sectional mean of WY, 5.07,
to express the WY RMSE in proportional percentage units. Scaled RS RMSE divides by the cross-
sectional mean of RS, 0.65, to express the RS RMSE in proportional percentage units. RMSE-scaled
OF (objective function) is the square root of the objective function divided by 4 and multiplied by
100 to express it in RMSE-equivalent percentage units. It differs slightly from the average of scaled
WY and scaled RS RMSE because of interpolation in our estimation procedure. The cross-sectional
means of WY and RS are computed over the 2000-2007 period. There are 4,276 groups containing
298,540 households.

To interpret these numbers, we note that the RMSE of an atheoretical random

walk model for WY has an average across groups of 33.0% and a median of 30.4%.

Thus our model has a slightly better mean performance and a much better median

performance than a random walk. The standard deviation of the risky share around

its group-specific time-series mean has an average across groups of 6.4% and a

median of 5.5%. Thus our model, which captures variation in the risky share with

age and wealth accumulation, fits asset allocation better than an atheoretical model

that simply captures the mean risky share for each group.

Our estimation procedure takes into account that the wealth-income ratio and

the risky share have different units, and scales them in proportion to their grand

cross-sectional means. The next two rows of Table 8 similarly divide the RMSEs

for the wealth-income ratio and risky share by their grand means of 5.07 and 0.65,

respectively, to express them in proportional units. The mean proportional RMSE
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is 6.3% for the wealth-income ratio and 7.6% for the risky share.

Finally, we report a transformation of the objective function that is rescaled to

express it in RMSE-equivalent units. The objective function is the sum of squared

proportional errors, so we divide by the number of auxiliary statistics (16) and take

the square root, then multiply by 100 to express the RMSE-scaled objective function

in percentage points.23 The bottom row of Table 8 is similar to an average of the

previous two rows, with a moderately right-skewed distribution.

Table IA.10 in the Internet Appendix shows how model fit deteriorates under

homogeneous preferences. The mean RMSE-scaled objective function more than

doubles to 16.0% if we fix RRA at its cross-sectional mean. Fixing TPR at its

cross-sectional mean produces a mean RMSE-scaled objective function of 8.6%,

and similarly restricting the EIS delivers a mean RMSE-scaled objective function

of 7.7%. Fixing all parameters at their cross-sectional means is disastrous in the

sense that it increases the mean RMSE-scaled objective function to 24.8%. A life-

cycle model with homogeneous preferences, under our maintained assumption of

homogeneous rational beliefs, delivers an extremely poor fit to the cross-section of

household behavior.

4.5 Heterogeneous Beliefs

We have shown that heterogeneous preferences are essential to fit household behavior

if beliefs are homogeneous. It is natural to ask to what extent this finding is driven

by our restriction on beliefs. In Tables IA.11–IA.13 in the Internet Appendix, we

23Group by group, the result is not exactly the average of the proportional errors for the wealth-
income ratio and the risky share because of the interpolation method we use in estimation; and the
quantiles of the cross-sectional distribution also may refer to different groups.
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address this question by considering a simple form of heterogeneity in beliefs that

allows three possible values of the Sharpe ratio: the base value of 0.26, a high value

of 0.40, and a low value of 0.15. Then, for each group we pick the Sharpe ratio and

preference parameters that minimize the objective function. The base case Sharpe

ratio is selected for groups representing 54% of households, while the low Sharpe

ratio and the high Sharpe ratio are each selected for 23% of households.

Allowing for heterogeneity in household beliefs has only a modest impact on

the average preference parameters we estimate. Mean RRA is now 7.80, the mean

TPR is 4.72%, and the mean EIS is 1.01. The cross-sectional standard deviations

of the TPR and the EIS are similar to those we estimate in the homogeneous-beliefs

case, but the cross-sectional standard deviation of risk aversion is over twice as large

at 2.74. The explanation is that the model uses heterogeneous beliefs to better fit

wealth accumulation, and offsets belief heterogeneity with RRA heterogeneity to

avoid counterfactual heterogeneity in the risky share.

Heterogeneous beliefs necessarily improve the fit of our model by adding free

parameters, but the degree of improvement is modest. Table IA.13 in the Internet

Appendix shows that the mean RMSE-scaled objective function declines only from

7.03 in the homogeneous-beliefs case to 6.52 in the heterogeneous-beliefs case.

Importantly, we also show that the fit of the model is extremely poor when we

combine heterogeneous beliefs with homogeneous preferences.

Our results relate to Giglio et al.’s (2021) finding that portfolio choices respond

less strongly to investors’ self-reported beliefs than a simple Merton model would

predict. A possible explanation is that optimistic households tend to also have high

risk aversion. Our estimates display this positive correlation between beliefs and

risk aversion; however, Table IA.13 in the Internet Appendix shows that a restricted
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model that imposes homogeneous preferences for groups that share the same beliefs

continues to fit very poorly. Overall, these estimates confirm our message that

substantial preference heterogeneity is required to fit household financial decisions.

4.6 Preference Variation across Wealth Groups and Implications

for Representative-Agent Modeling

In Section 4.1, we have reported size-weighted averages of preference parame-

ters across groups, corresponding to equally weighted averages across households.

While this is the natural weighting scheme in household finance applications, wealth-

ier households have a greater influence on equilibrium asset prices and so asset pric-

ing economists may be interested in wealth-weighted average preference parameters

of households. In Table IA.6 in the Internet Appendix, we weight groups by their

average wealth during the sample period rather than by their size. We find a similar

mean risk aversion of 7.14, a much lower mean time preference rate of 2.63%, and

a somewhat higher mean EIS of 1.19. The cross-sectional standard deviations of

these parameters are similar to the equally weighted case.

In Table IA.15 in the Internet Appendix, we verify that the wealth-weighted

mean risk aversion, mean TPR and mean EIS are extremelyly stable over time. The

time-series standard deviation is 0.03 for risk aversion, 0.13% for the TPR, and 0.01

for the EIS. Hence, a representative agent model with Epstein Zin preference seems

appropriate to capture the dynamics of the wealth-income ratio and risky share of

the household sector.

We next investigate how the dispersion of preference parameter estimates varies

across wealth brackets. In Table IA.7 in the Internet Appendix, we present the
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standard deviation of preference parameters within wealth quintiles. Our calculation

of the standard deviation assigns equal weights to households. The table reveals that

preference parameters are more dispersed in bottom quintiles than in top quintiles

of the wealth distribution. This empirical regularity appears most strongly for the

TPR, whose standard deviation declines from 7.6% in the two lowest quintiles to

2.8% in the top quintile. The standard deviation of the TPR in the bottom quintiles

greatly exceeds the 3.15% standard deviation across all households in the sample.

Hence, households with low wealth can have very different TPR and therefore very

different willingness to save.

Overall, these results indicate that a representative agent model with Epstein

Zin utility may provide a reasonable model of the aggregate wealth-income ratio

and the aggregate risky share of the household sector. Hence, the representative-

agent approach, which is widely used in financial economics and macroeconomics,

is indeed appropriate due to the dominant role of wealthy households. At the

same time, we have uncovered very substantial preference heterogeneity, especially

among the least wealthy households. Heterogeneity is most pronounced for the TPR,

which controls to a large extent household willingness to save. Hence, preference

heterogeneity is likely to have strong welfare implications in lower brackets of the

wealth distribution.

5 Conclusion

In this paper, we have estimated a life-cycle model of consumption-portfolio choice

on a panel of Swedish households. Our estimates of the RRA and EIS are only

weakly negatively correlated across households, which contradicts the predictions
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of power utility. The TPR is weakly positively correlated with RRA and negatively

correlated with the EIS. We estimate a negative correlation between income volatility

and risk aversion. More educated households tend to have higher risk aversion and

higher TPR when we control for income volatility. We show that our results are

unlikely to be driven by heterogeneous beliefs about the Sharpe ratio of the aggregate

portfolio.

Our work sheds light on a number of issues in asset pricing and household

finance. In general equilibrium models, Epstein-Zin preferences are popular because

they are scale-independent and therefore accommodate economic growth without

generating trends in interest rates or risk premia. In particular, the long-run risk

literature following Bansal and Yaron (2004) has argued that many asset pricing

patterns are explained by a moderately high RRA (typically around 10) and an EIS

around 1.5. We estimate a somewhat lower cross-sectional average RRA around 7.5.

We obtain an EIS with a cross-sectional median of 0.5, a cross-sectional average

close to 1, and strong dispersion, so that relatively few households have an EIS

between 1 and 2.

In household finance, there is considerable interest in estimating risk aversion

at the individual level and measuring its effects on financial decisions. This has

sometimes been attempted using questions in surveys (Barsky, Juster, Kimball, and

Shapiro 1997, Vissing-Jørgensen 2003). One difficulty with these attempts is that

even if risk aversion is correctly measured, its effects on household decisions will

be mismeasured if other preference parameters or the properties of labor income

covary with risk aversion. Our estimates suggest that this should indeed be a

concern. Similarly, there is interest in measuring the effects of labor income risk on

financial risk-taking (Calvet and Sodini 2014, Guiso, Jappelli, and Terlizzese 1996,

Heaton and Lucas 2000). Models such as those of Campbell, Cocco, Gomes, and
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Maenhout (2001) and Cocco, Gomes, and Maenhout (2005) show the partial effect

of labor income risk for fixed preference parameters, which will be misleading if

risk aversion or other parameters vary with labor income risk. Our estimates suggest

that this too is a serious empirical issue.

Our findings may also contribute to an ongoing policy debate over approaches to

consumer financial protection (Campbell 2016, Jackson and Rothstein 2019). If all

households have very similar preference parameters, strict regulation of admissible

financial products should do little harm to households that optimize correctly, while

protecting less sophisticated households from making financial mistakes. To the

extent that households are heterogeneous, however, such a stringent approach can

harm some households by eliminating financial products they prefer.
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