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A Defense of Traditional Hypotheses about the
Term Structure of Interest Rates

JOHN Y. CAMPBELL*

ABSTRACT

Expectations theories of asset returns may be interpreted either as stating that risk
premia are zero or that they are constant through time. Under the former interpretation,
different versions of the expectations theory of the term structure are inconsistent with
one another, but I show that this does not necessarily carry over to the constant risk
premium interpretation of the theory. I present a general equilibrium example in which
different types of risk premium are constant through time and dependent only on
maturity. Furthermore, I argue that differences among expectations theories are second-
order effects of bond yield variability. I develop an approximate linearized framework
for analysis of the term structure in which these differences disappear, and I test its
accuracy in practice using data from the CRSP government bond tapes.

IN A WELL-KNOWN article in this Journal, Cox, Ingersoll, and Ross (CIR [4]) re-
examine and find wanting certain hypotheses about the term structure of interest
rates. A striking feature of CIR’s re-examination is that it is entirely theoretical.
CIR show that different versions of the pure expectations theory of the term
structure, which traditionally were regarded as equivalent, are in fact inconsistent
with one another when interest rates are random. Furthermore, in a fairly general
continuous time arbitrage pricing framework, when interest rates are random, all
versions of the theory except one are incompatible with equilibrium.

At first sight, CIR’s results appear to be devastating to traditional empirical
work on the term structure. They suggest that researchers must specify arbitrage
pricing models with a small number of state variables before proceeding to
empirical work. Such models must restrict not only the deterministic components
of interest rate movements, but also the variance-covariance matrix of interest
rate innovations and the information set of market participants.

The purpose of this paper is to defend traditional hypotheses about the term
structure as a starting point for empirical research. Although these hypotheses
may as a matter of fact be false, it is meaningful to test them against the data;
useful empirical work can be done outside the confines of tightly specified
arbitrage pricing models.

The defense has two parts. In the first, I argue that CIR’s criticisms apply to
a more restrictive type of expectations theory than is typically studied in the

* Department of Economics, Princeton University. This paper is based on Chapter 2 of my Yale
Ph.D. Dissertation, Asset Duration and Time-Varying Risk Premia. I am grateful to Ed Kane, Pete
Kyle, Huston McCulloch, Kermit Schoenholtz, Robert Shiller, and an anonymous referee for helpful
correspondence and discussions, and particularly to Pete Kyle for showing me how to fill an important
gap in the argument. I am responsible for any remaining errors.
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empirical literature. In the second, I show that the inconsistencies pointed out
by CIR are of “second order” in a precise mathematical sense, and I claim that
they may often be ignored in empirical work.

Section I of the paper presents the first part of the defense. I begin by showing
that it is natural to express a version of an expectations theory of the term
structure as a statement about the expected difference between a random variable
and a known one. Such an expected difference may be called a term premium or
risk premium. CIR discuss versions of the pure expectations theory of the term
structure, which states that term premia are zero.! But much of the literature is
concerned with versions of a less restrictive theory, which states merely that
term premia are constant through time. These are referred to here as versions of
the expectations theory of the term structure.

CIR’s basic point is that when interest rates are random, different term premia
cannot simultaneously equal zero because of Jensen’s Inequality; therefore,
different versions of the pure expectations theory are inconsistent with one
another. This is, of course, correct. But it turns out that different versions of the
expectations theory, as opposed to the pure expectations theory, are not neces-
sarily incompatible with each other or with arbitrage pricing equilibrium. I
present a general equilibrium example in which expected excess holding returns
on discount bonds are constant, and differences between forward rates and
expected spot rates are also constant. That is, two versions of the expectations
theory of the term structure hold simultaneously in this general equilibrium
model. The example is of independent interest as a variant of the one in CIR
[6].2

In Section II, I argue that in any case the differences among term premia are
second-order effects of bond yield variability. I present an approximate linearized
framework for the analysis of the term structure in which these differences
disappear. The framework has a number of advantages: it states a linear rela-
tionship between the level and change of a bond yield and the holding return on
the bond; it can easily be applied to coupon bonds as well as to discount bonds;
and it suggests simple regression tests of the expectations theory. Finally, I briefly
examine the empirical accuracy of the approximation, using data from the CRSP
government bond tapes.

I. Expectations Theories: Zero versus Constant Risk Premia

Following CIR, I define P(Y, t, T) as the time, ¢, price in consumption goods of
a real discount bond, that is a claim to one unit of consumption goods at time,
T. This price is a function of ¢, T, and some vector of state variables, Y, which
summarizes the state of the economy at time, t. The corresponding yield to
maturity, the continuously compounded rate of return on holding the bond to
maturity, is

yY,t, T)=-[1/(T—-t)]In P(Y, t, T). (1)
At any time, t, and for given state, Y, the term structure of interest rates is the

! This terminology is due to Lutz [9].
21 am most grateful to Pete Kyle for supplying this example.
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set of P(Y, t, T') considered as a function of T. Assume that this function is
differentiable. Then, the instantaneous forward rate on a loan at time, T, entered
into at time, ¢, is

f(Y, t, T) = —[6P(Y, t, T)/9T1/P(Y, t, T)
=y(Y,t, T) + (T = t)[oy(Y, ¢, T)/oT]. 2

Equation (2) states a relation between the instantaneous forward rate and the
yield which is analogous to the relation between marginal and average cost. Thus,
for example, when the yield is rising with maturity, the forward rate is higher
than the yield.

The instantaneous spot rate of interest at time t, r(Y, t), is the limit as T
approaches t of both f(Y, t, T) and y(Y, ¢, T').

The instantaneous holding return at time, ¢t on a claim maturing at T is

kY, t, T) = dP(Y, t, T)/P(Y, t, T) (3

where dP is the change in P over an interval of time, dt.

I am now able to define two term premia which are the primitive objects of
expectations theories. The instantaneous holding premium is the expected differ-
ence at t between the instantaneous holding return on a bond which matures at
T and the spot rate at t: ¢(Y, t, T) = E.h(Y, t, T) — r(Y, t). The instantaneous
forward premium is the expected difference at t between the forward rate at T
and the spot rate at T: (Y, t, T) = f(Y, t, T) — Ex(Y, T).2

Two versions of the pure expectations theory considered by CIR are
¢o(Y, t, T) =0forall Y, t, and T (CIR’s “Local Expectations Hypothesis”) and
WY, t, T) =0 for all Y, t, and T (CIR’s “Yield to Maturity Expectations
Hypothesis”). The corresponding versions of the expectations theory are
o(Y,t, T)=H(T —t)and y(Y, t, T) = F(T — t).

CIR use Jensen’s Inequality to show that the theories ¢ = 0 and ¥ = 0 are
inconsistent when interest rates are random. They also use an arbitrage argument
to show that the theory ¢ = 0 is incompatible with any rational expectations
equilibrium. By contrast, the following example, which is a specialization of CIR
[5] and a variant of CIR [6], shows that the conditions ¢(Y, t, T) = H(T — t)
and Y(Y, t, T) = F(T — t) may both hold simultaneously in general equilibrium.

The example provides a general equilibrium foundation for the model of
Vasicek [14]. Its key feature is that the instantaneous variances of the underlying
sources of uncertainty are constant through time rather than proportional to a
state variable as in CIR [6]. This means that real interest rates periodically
become negative, which they never do in CIR [6], but the parameter values may
be chosen to make the occurrence of negative interest rates arbitrarily unlikely
in any finite time interval.

Example: Consider an economy of identical individuals, each of whom

3 CIR also discuss a third type of premium. This is defined as the difference between the gross,
uncompounded return on holding a bond to maturity and the expected equivalent return on rfzceiving
the spot rate at each instant of time. I do not discuss this premium concept further here, as it seems
more natural to consider a rate of return over an interval of time in the manner of Equation (1). The
example given in which holding and forward premia are constant does not make this third type of

premium constant.
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maximizes

E, f p exp(—ps)log c(s) ds (4)

by choosing consumption, ¢(t), subject to the budget constraint, W(s) = 0, for all
s, and

dW(t) = W(t) dn(t) — c(t) dt. (5)

Here, dn(t) is the instantaneous return on physical investment, which has
stochastic constant returns to scale. It satisfies

dn(t) = (a + Y(¢t)) dt + o, dz, 6)
where Y(¢) moves through time as
dY(t) = —gY(t) dt + oy dzy g> —p. 7

Y(t), the time-varying component of the expected return on physical investment,
is the single state variable for the economy. However, there are two sources of
uncertainty in the model, dz, and dzy, which are scalar Wiener processes. They
have some correlation which is indexed by a positive or negative number, 6:
E, dz, dzy = 6 dt. Instantaneous investment in the productive process, dn(t), is
subject only to uncertainty arising from dz,, but investment for more than an
instant is also subject to uncertainty arising from random variation, dzy, in the
expected instantaneous return on investment.

The theorems of CIR [5] can be applied to solve this model, as noted in CIR
[6], footnote 5. The optimal consumption decision is ¢(t) = pW(t), and the value
function, the maximized value of (4), is J(W, Y, t) = (exp(—pt))[log(pW) +
(@—p—0d2)/p+ Y/(p + g)]. The riskless instantaneous interest rate, r(Y, ¢) is,
from CIR [5] Theorem 1,

r(Y,t) =a+ Y(t) — 0. (8)
The dynamics of r(Y, t) are just those of Y(¢). From (7) and (8),
dr=g(a—o?,—r) dt+0’yd2y (9)

which is an Ornstein-Uhlenbeck process (a continuous-time AR-1) of the type
studied by Vasicek [14].

Since consumption is proportional to wealth, a continuous time version of the
Capital Asset Pricing Model holds (Ingersoll [8, Chapter 13]). This can be used
to show that the “market price of interest rate risk” is just a constant, syo,8, as
assumed by Vasicek [14]. The closed-form solution for the discount bond price
is as in Vasicek:

T
P(Y, t, T) = exp[— L fY, ¢, s)]
f(Y,t,s) =a— oi + Y exp[—g(s — )]
— o1 — exp[—g(s — t)])*/28"
— oyon.d(1 — exp[—g(s — t)])/g. (10)
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The price, P(Y, t, T'), may be greater than unity (the yield may be negative),
since, as previously noted, negative interest rates occur in the model.
The holding premium is constant and is found to be

¢(Y,t, T) = HT — t) = ¢po.0v((0P/3Y)/P)
— Oonoy[1 — exp(—g(T — t))]/s. (11)

Discount bonds have positive instantaneous holding premia when 6 is negative
(since dP/dY is negative). Intuitively, when 6 is negative, increases in wealth are
associated with decreases in the interest rate and capital gains on bonds. Returns
on bonds are thus positively correlated with the market, and a positive premium
is required. Campbell [2] develops a similar characterization of holding premia
in a discrete time exchange model.

The forward premium is also constant and smaller than the holding premium:

(Y, t, T) = F(T - ¢t) = H(T — t) — o%((3P/3Y)/P)*/2
= H(T — t) — o%[1 — exp(—g(T — t))]*/2g". (12)

The forward premium is negative when the holding premium is zero (i.e., when
6 = 0). Equivalently, the expected continuously compounded return from ¢ to T,
on a bond which matures at T, is lower than the expected continuously com-
pounded return on rolling over short bonds for this period. This can be explained
heuristically as follows. The rollover strategy has high returns when Y(t) is high
on average between t and 7. But with # = 0, wealth is high on average at T if
Y(t) has been high between ¢ and T. Thus, the returns on the rollover strategy
are positively correlated with the market and have a higher expected value,
generating a negative forward premium.

The difference between H(T — t) and F(T — t) in Equation (12) is proportional
to the instantaneous variance of the bond yield, while H(T — t) itself is propor-
tional to the instantaneous standard deviation. I now develop some implications
of this observation.

II. An Approximate Linearized Framework for Study of the Term
Structure

In this section, I present a set of linear approximations relating forward rates,
holding returns, and yields to maturity. These approximations serve a double
purpose. First, they show that the inconsistencies pointed out by CIR are second-
order effects of bond yield variability. When bond yields are “not too” variable,
the inconsistencies can be neglected. Secondly, linear approximations can be
derived for coupon bonds as well as discount bonds, and thus allow an easy direct
approach to the study of coupon bond data.* Linear approximations have previ-
ously been worked out for discrete time by Shiller, Campbell, and Schoenholtz
[13] and Campbell and Shiller [3]; however, linearization in continuous time is
new and requires somewhat different mathematical tools.

* Traditionally, researchers have followed McCulloch [12] and transformed a coupon bond yield
curve into an implied discount bond yield curve before conducting their analysis. This procedure is
elaborate and itself subject to error.
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I begin by showing how a linear relationship between yields and forward rates,
equivalent to that in Equation (2), can be derived for coupon bonds as an
approximation. Define the yield to maturity on a coupon bond which pays a
continuous coupon stream at rate C from ¢ to T, and then a final payment of a
dollar at time, T, by the implicit function

T
c J: exp[—(s — t)yc(Y, ¢, T)] ds + exp[—(T — t)yc(Y, t, T)]

T
=Pc(Y,t, T) = Cf P(Y,t s)ds+ P(Y, t, T).
t

This equation states that yc(Y, t, T') is that rate of return which discounts the
coupon and principal payments of the bond to Pc(Y, ¢, T'), its time ¢ price. The
price is just the sum of those payments’ present values—a coupon bond is
equivalent to a portfolio of discount bonds—so Pc¢(Y, t, T') can also be written
in terms of discount bond prices P(Y, t, T') or discount bond yields y(Y, t, T).

It will be useful to apply the concept of “duration” in studying coupon bonds.
Duration was defined by Macaulay [10] as the present-value-weighted average
length of time before repayment of a loan, where the yield to maturity on the
loan is used to compute present value. The duration D¢(yc, t, T) of a bond
maturing at T with coupon C and yield yc¢ is

DC(yC, t’ T)
=C J: (s — t)exp[—(s — t)yc] ds + (T — t)exp[—(T — t)yc]. (14)

When yc = C = R for some R (i.e., when the bond is selling at par), this formula
collapses to Dx(T — t) = [1 — exp[—(T — t)R]/R. It is also worth noting that
duration as defined in Equation (14) is just (—1/yc) times the elasticity of P¢
with respect to yc.

Equation (13) expresses a complicated nonlinear relationship between yc, C,
and the term structure of discount bond yields {y(Y, ¢, s)}. Write this as
Klyc, C, {y(Y, t, s)}] = 0, where K is a functional since one of its arguments is
{y(Y, t, 5)}, a function of s. A linear approximation is obtained by applying a
first-order Volterra-Taylor expansion about a path (Volterra [15]), in a manner
familiar from the calculus of variations and analogous to the Taylor expansion
about a point for a function.® The linearization path is yc = C = {y(Y, ¢, s)} = R
for some R, i.e., a flat-term structure with coupon bonds selling at par.

I obtain the following approximate relationship between the coupon bond yield
and the term structure of forward rates. C does not appear in this relation, even
though C = R only at the path of linearization.

T
yC(Y) t, T) = [I/DR(T - t)] J: 6DR(S - t)/as f(Y, t; S) dS. (15)

& Further details of the approximation procedure are explained in an Appendix available from the
author.
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This can be rearranged to express the forward rate f(Y, ¢, T') as a function only
of the level and slope of the term structure of coupon bond yields at the point
t T):

f(Y, t, T) = ye(Y, t, T) + [Dr(T — 8)/(3Dr(T — £)/0T)10yc(Y, t, T)/T. (16)

Equation (16) is directly analogous to Equation (2), expressing a marginal-
average relation between the forward rate and the coupon bond yield. Wherever
maturity appears in Equation (2), it is replaced by duration in Equation (16); for
discount bonds duration and maturity are the same, and Equation (16) holds
exactly.

Next, I apply the method of linear approximation to the holding return on a
coupon bond. In a straightforward modification of Equation (3), this holding
return is defined as

he(Y, t, T) = [dPc(Y, ¢, T) + C dtl/Pc(Y, ¢, T). (17)

I assume that the coupon bond yield, yc, follows an Ito process® with parameters
wand o:

dye(Y, t, T) = u(Y, t, T) dt + (Y, t, T) da. (18)

Since Pc is a function of yc and C, I can apply Ito’s lemma to express h¢ as a
nonlinear function of C, y¢, u, and o. This can then be linearized around the
point C = yc = R, p = ¢ = 0, yielding

he(Y, t, T) = yc(Y, t, T) dt — Dp(T — t) dyc(Y, t, T). (19)

Equation (19) says that, ceteris paribus, a high bond yield means a high instan-
taneous holding return. However, an increase in the yield causes a capital loss
proportional to the duration of the bond (since the duration is the price elasticity
with respect to the yield) and lowers the holding return accordingly.

Equation (19) can be rearranged to express the yield on a coupon bond as an
approximate weighted sum of future holding returns:

T
ye(Y, t, T) = (1/Dr(T — t)) f dDr(s — t)/ds he(Y, s, T) ds. (20)

Note that this equation holds in realization and not just in expectation.
Equations (15) and (16), and (19) and (20), make up a complete linearized
framework for analysis of the term structure. It is easy to see that within this
framework, there are no inconsistencies between expectations theories. Taking
expectations and equating the right-hand sides of (15) and (20), we have

T
(1/Dx(T — 1)) f (ODg(s — t)/os)Y(Y, t, s) ds

T
= (1/Dx(T — ¢)) f (0Dg(s — t)/0s) ¢(Y, s, T') ds. (21)

% This is perfectly consistent with the assumption of CIR that the bond price follows an Ito process.
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Within the linearized system, if (Y, t, T) =0forall Y, t,and T, then ¥(Y, ¢, T')
=0 for all Y, t, and T': these two forms of the pure expectations theory imply
one another. A fortiori, the corresponding forms of the expectations theory imply
each other.

The linearized system also suggests simple tests of the expectations theory.
Taking expectations of Equation (19), and substituting in the definition of
o(Y, t, T), we have

ye(Y, 6, T) = r(Y, t) = ¢(Y, ¢, T) + Dr(T = )E,; dyc(Y, t, T).  (22)

That is, the long-short spread, yc — r, can be decomposed into a risk premium
and a term which is the expected change in the long rate multiplied by duration.
If the risk premium is zero or constant, an unusually high spread should predict
a rise in long rates. Conversely, if expected changes in long rates vary little, the
spread is a good proxy for the risk premium. These observations are the basis for
empirical work by Fama [7], Mankiw and Summers [11], and Shiller, Campbell,
and Schoenholtz [13], among others.

The usefulness of the linear approximations in this section depends on their
accuracy in practice. I now present some summary statistics which are designed
to help evaluate the accuracy of the approximate expression for the holding
return on a long bond.”

Above, an approximation was derived only for the instantaneous holding
return. This is easily extended to the return on holding a bond from time ¢ to
time t’, he(Y, t, t’, T):

he(Y, t, t’, T) = (1/Dg(t" — t)) f dDg(s — t)/3s he(Y, s, T) ds. (23)

This equation is analogous to the expression (20) for the yield on a coupon bond:
but here, the integral runs from ¢ to ¢’ rather than from ¢ to T. It follows from
(20) that the period holding return is a simple linear function of the yields at
times t and ¢’ on a bond maturing at time 7"

hC(Yr t; tly T) = [DR(T - t)yC(Y’ t; T) - (DR(T - t)
— Dr(t’ — 8))yc(Y, t’, T)l/Dgr(t" — ). (24)

In the empirical work of this section, I use the discrete time version of (24),
developed by Shiller, Campbell, and Schoenholtz [13], in which

Dp(s —t) =1 —-~"9/(1=+v) and vy =1/(1+R).

The Center for Research in Securities Prices (CRSP) at the University of
Chicago has a complete set of monthly data on individual government bonds
from 1925. This offers an opportunity to evaluate the linear approximation (24)
because the data set contains both yields and exact monthly holding returns on
long bonds.

" Berger [1] examined a similar approximation for returns on consols; his work assumed that 20-
and 30-year government bonds are effectively consols. Shiller, Campbell, and Schoenholtz [13]
evaluated an approximation for forward rates.
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In Tables I and II, I present summary statistics for exact holding returns and
two different approximate holding returns on 24 bonds. Table I covers eight 10-
year bonds and four 20-year bonds, while Table II covers 12 bonds of at least 30
years maturity at issue. All summary statistics are for the first 5 years (60
observations) after the bond was issued.

Table I
The Accuracy of Linear Approximations to Holding Returns on 10- and 20-
Year Bonds
Ratio of
Error

Variance to
Correlation of Variance of

A i Exact
Maturity at  Mean Error Eil;z(;xll%?:;fnf Return
Coupon  Issue Issue
Bond  Rate Date (Years) (1) (2) (1) (2) (1) (2)
1 4.000 1962:9 10 —0.051 0.020 0.9996 0.9996 0.001 0.001
2 4.000 1963:9 10 —-0.061 0.018 0.9997 0.9997 0.001 0.001
3 4.125 1964:7 9% -0.117 0.003 0.9998 0.9997 0.001 0.001
4 4,125 1964:12 9 —0.196 —0.045 0.9996 0.9995 0.002 0.001
5 4.250 1964:4 10 —-0.091 0.001 0.9998 0.9997 0.001 0.001
6 7.000 1971:7 10 —-0.001 0.014 0.9996 0.9997 0.001 0.007
7 6.375 1972:1 10 —0.037 —0.073 0.9996 0.9995 0.003 0.007
8 8.000 1976:8 10 —0.900 -—1.482 0.9987 0.9987 0.008 0.027
9 4.000 1959:1 21 —0.036 —0.028 0.9998 0.9998 0.001 0.010
10 3.500 1960:9 20 —0.040 0.136  0.9997 0.9997 0.001 0.016
11 6.750 1973:1 20 —0.262 —0.459 0.9996 0.9995 0.004 0.027
12 7.500 1973:8 20 —0.214 —0.562 0.9968 0.9970 0.015 0.076
Table II
The Accuracy of Linear Approximations to Holding Returns on 30-Year Bonds
Ratio of

Error
. Variance to
Correlation of Variance of

Approximate & Exact

Maturity at Mean Error Exact Returns R
eturn
Coupon  Issue Issue

Bond Rate Date (Years) (1) (2) (1) (2) (1) (2)
1 3.250 1953:4 30 —0.032 —0.174 0.9984 0.9987 0.009 0.027
2 3.500 1958:1 32 —0.244 0.156  0.9998 0.9998 0.002 0.031
3 4.250 1962:7 30 —-0.201 0.129 0.9995 0.9996 0.003 0.007
4 4.000 1963:1 30 —0.296 0.318 0.9996 0.9995 0.006 0.008
5 4.125 1963:4 31 —-0.376 0.243 0.9995 0.9995 0.006 0.007
6 3.000 1955:1 40 —0.366 0.891 0.9996 0.9994 0.004 0.066
7 3.500 1960:9 38 —0.113 0.210 0.9998 0.9998 0.003 0.039
8 8.250 1975:5 30 —-0.779 —1.984 0.9968 0.9971 0.043 0.292
9 7.625 1977:2 30 —-3.366 —6.174 0.9949 0.9950 0.124 0.416
10 7.875 1977:11 30 —1.345 -—2.979 0.9953 0.9954 0.110 0.434
11 8.375 1978:8 30 —1.813 —3.523 0.9954 0.9954 0.099 0.514

12 8.750  1978:11 30 —1.239 —2.996 0.9959 0.9960 0.089 0.570
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The two approximations in the tables, (1) and (2), are constructed using
Equation (24) and differ only in the point of linearization R. Approximation (1)
takes the own coupon rate on the bond as the linearization point, while approx-
imation (2) uses a common linearization point of 5.5% for all bonds. 5.5% was
chosen because it is close to the average coupon rate of all bonds in Table II, and
to the average long bond rate in the 1959-1979 period. Shiller, Campbell, and
Schoenholtz [13] and Campbell and Shiller [3] linearized around similar points.

Three summary statistics are presented for each approximation. These are the
mean error, the mean difference between the approximate holding return and
the exact holding return; the correlation between the approximate and exact
holding returns; and the ratio of the variance of the approximation error to the
variance of the exact holding return.

The summary statistics of Tables I and II indicate that the linear approxima-
tions of this paper are reliable if used judiciously. Consider first the 10-year
bonds in rows 1 through 8 of Table I. One would expect that the approximation
(1) performs well so long as the interest rate remains close to its level at the issue
date. The approximation (2) should perform well if, in addition, the bond coupon
rate is fairly close to 5.5%. In rows 1 through 8 of Table I, the worst mean error
is in row 8, for a bond with an 8% coupon in the period 1976:8 to 1981:7. 8% is
further from 5.5% than any other coupon rate in the table, and the period was
one of rapidly rising and volatile interest rates. The other mean errors never
exceed absolute values of 0.196% for approximation (1) and 0.073% for approxi-
mation (2).

The correlations of exact and approximate holding returns are extraordinarily
high. They exceed 0.999 for all 10-year bonds except row 8, where the correlations
are 0.9987 for both approximations. The ratio of the error variance to the variance
of the true return is very low, never exceeding 0.003 for (1) or 0.007 for (2) except
in row 8, where the ratios are 0.008 and 0.027.

A similar pattern appears for the four 20-year bonds in rows 9 through 12 of
Table I. The correlations and mean errors are comparable to those in the first
part of Table I. For bond 12, the error variance ratio reaches 0.015 for approxi-
mation (1) and 0.076 for approximation (2), but all other statistics are favorable.

In Table II, the first 7 bonds were issued with low coupons in the relatively
stable 1950’s and 1960’s; the last 5 bonds were issued with high coupons in the
turbulent 1970’s. The summary statistics reflect this distinction. The first 7 rows
are comparable to those of Table I, but in the last 5 rows the linear approxima-
tions begin to break down. There are high mean errors, reaching 3.366% for (1)
and 6.174% for (2) in row 9. The correlations remain very high, falling just below
0.995 in only one case, but the error variance ratios rise to more than 10% for
approximation (1) and more than 50% for approximation (2).

In conclusion, linear approximations should be used with caution in describing
the period of high and volatile interest rates in the late 1970’s and 1980’s, and in
studying extremely long-term bonds. Even here, however, the high correlations
of Table II show that the approximations capture the movements of returns well.
The approximations (1) and (2) behave like the exact returns, but amplified and
damped, respectively. For periods with less extreme interest rate movements,
and for somewhat shorter bond maturities, the approximations are extremely
accurate.
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III. Conclusions

In this paper, I have tried to rehabilitate a unified view of the expectations theory
of the term structure.? It is true that Jensen’s Inequality places a wedge between
different concepts of risk premia in the term structure; but this does not prevent
different premia from being constant through time at different values, as I
demonstrate with a simple general equilibrium example. Furthermore, the differ-
ences among risk premia are second-order effects of bond yield variability, which
disappear in a framework of linear approximations to term structure concepts.
These approximations track monthly movements in bond returns quite accurately
in postwar U.S. data.

8 This should not be confused with a rehabilitation of the theory itself, as a good empirical
description of the behavior of interest rates. In Shiller, Campbell, and Schoenholtz [13] and Campbell
and Shiller [3], I have helped to argue that the theory is strongly rejected in postwar U.S. data.
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