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1 Introduction

The fundamental insight of intertemporal asset pricing theory is that long-term investors

should care just as much about the returns they earn on their invested wealth as about the

level of that wealth. In a simple model with a constant rate of return, for example, the

sustainable level of consumption is the return on wealth multiplied by the level of wealth,

and both terms in this product are equally important. In a more realistic model with time-

varying investment opportunities, long-term investors with relative risk aversion greater than

one (conservative long-term investors) will seek to hold “intertemporal hedges”, assets that

perform well when investment opportunities deteriorate. Merton’s (1973) intertemporal

capital asset pricing model (ICAPM) shows that such assets should deliver lower average

returns in equilibrium if they are priced from conservative long-term investors’first-order

conditions.

Investment opportunities in the stock market may deteriorate either because expected

stock returns decline or because the volatility of stock returns increases. The relative

importance of these two types of intertemporal risk is an empirical question. In this paper,

we estimate an econometric model of stock returns that captures time-variation in both

expected returns and volatility and permits tractable analysis of long-term portfolio choice.

The model is a vector autoregression (VAR) for aggregate stock returns, realized variance,

and state variables, restricted to have scalar affi ne stochastic volatility so that the volatilities

of all shocks move proportionally.

Using this model and the first-order conditions of an infinitely-lived investor with Epstein-

Zin (1989, 1991) preferences, who is assumed to hold an aggregate stock index, we calculate

the risk aversion needed to make the investor content to hold the market index rather than

overweighting value stocks that offer higher average returns. We find that a moderate level
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of risk aversion, around 7, is suffi cient to dissuade the investor from a portfolio tilt towards

value stocks. Growth stocks are attractive to a moderately conservative long-term investor

because they hedge against both declines in expected market returns and increases in market

volatility. These considerations would not be relevant for a single-period investor.

We obtain similar results for several other equity portfolio tilts, including tilts to portfolios

of stocks sorted by their past betas with market returns. High-beta stocks are attractive

to a conservative long-term investor because they have hedged against increases in volatility

during the past fifty years. In this way our model helps to explain the well-known puzzle

that the cross-sectional reward for market beta exposure has been low in recent decades.

We also consider managed portfolios that vary equity exposure in response to state vari-

ables. The conservative long-term investor we consider would find it attractive to hold a

managed portfolio that varies equity exposure in response to time-variation in expected stock

returns. The reason is that we estimate only a weak correlation between expected returns

and volatility, so a market timing strategy does not lead to an undesired volatility exposure.

Following Merton (1973), one might interpret the conservative long-term investor we

consider in this paper as a representative investor who trades freely in all asset markets.

There are however two obstacles to this interpretation. First, as already mentioned, our

model does not explain why such an agent would not vary equity exposure with the level

of the equity premium. Borrowing constraints can fix equity exposure at 100% when they

bind, but we estimate that they will not bind at all times in our historical sample. Second,

the aggregate stock index we consider here may not be an adequate proxy for all wealth,

a point emphasized by many papers including Campbell (1996), Jagannathan and Wang

(1996), Lettau and Ludvigson (2001), and Lustig, Van Nieuwerburgh, and Verdelhan (2013).

For both these reasons, we interpret our results in microeconomic terms, as a description

of the intertemporal considerations that limit the desire of conservative long-term equity
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investors (including institutions such as pension funds and endowments) to follow value

strategies and other equity strategies with high average returns. These considerations

may contribute to the explanation of cross-sectional patterns in stock returns in a general

equilibrium setting with heterogeneous investors, even if they do not provide a complete

explanation in themselves.

Our empirical model provides a novel description of stochastic equity volatility that is

of independent interest. Our VAR system includes not only stock returns and realized

variance, but also other financial indicators including the price-smoothed earnings ratio

and the default spread, the yield spread of low-rated over high-rated bonds. We find

low-frequency movements in volatility tied to these variables. While this phenomenon has

received little attention in the literature, we argue that it is a natural outcome of investor

behavior. Since risky bonds are short the option to default over long maturities, investors in

those bonds incorporate information about the long-run component of volatility when they

set credit spreads. Univariate volatility forecasting methods that filter only the information

in past stock returns fail to extract this low-frequency component of volatility, which is of

key importance to long-horizon investors who care mostly about persistent changes in their

investment opportunity set.

The organization of our paper is as follows. Section 2 reviews related literature. Section

3 presents the first-order conditions of an infinitely-lived Epstein-Zin investor, allowing for a

specific form of stochastic volatility, and shows how they can be used to estimate preference

parameters. Section 4 presents data, econometrics, and VAR estimates of the dynamic

process for stock returns and realized volatility. This section documents the empirical success

of our model in forecasting long-run volatility. Section 5 introduces our basic set of test

assets: portfolios of stocks sorted by value, size, and estimated risk exposures from our model.

This section estimates the betas of these portfolios with news about the market’s future cash

flows, discount rates, and volatility, and the preferences of a long-term investor that best
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fit the cross section of excess returns on the test assets. This section also summarizes

the history of the investor’s marginal utility implied by our model. Section 6 considers a

larger set of equity and non-equity anomalies and asks how much the model of section 5

contributes to explaining them. Section 7 explores alternative specifications, including the

model of Bansal, Kiku, Shaliastovich, and Yaron (2014), an alternative representation of our

model in terms of consumption, and alternative empirical implementations of our approach.

Section 8 concludes. An online appendix to the paper (Campbell, Giglio, Polk, and Turley,

2017) provides supporting details including a battery of robustness tests.

2 Literature Review

Since Merton (1973) first formulated the ICAPM, a large empirical literature has explored

the relevance of intertemporal considerations for the pricing of financial assets in general,

and the cross-sectional pricing of stocks in particular. One strand of this literature uses

the approximate accounting identity of Campbell and Shiller (1988a) and the first-order

conditions of an infinitely-lived investor with Epstein-Zin preferences to obtain approximate

closed-form solutions for the ICAPM’s risk prices (Campbell, 1993). These solutions can be

implemented empirically if they are combined with vector autoregressive (VAR) estimates

of asset return dynamics. Campbell and Vuolteenaho (CV, 2004), Campbell, Polk, and

Vuolteenaho (2010), and Campbell, Giglio, and Polk (CGP 2013) use this approach to

argue that value stocks outperform growth stocks on average because growth stocks hedge

long-term investors against declines in the expected return on the aggregate stock market.

A weakness of these papers is that they ignore the time-variation in the volatility of stock

returns that is evident in the data. We remedy this weakness by augmenting the VAR system

with a scalar affi ne stochastic volatility model in which a single state variable governs the

4



volatility of all shocks to the VAR. Since the volatility of the volatility process itself decreases

as volatility approaches zero, this specification reduces the probability that the volatility

becomes negative compared to a homoskedastic volatility process, especially as the sampling

frequency increases; we explore this advantage of our specification via simulations in the

online appendix.2 We extend the approximate closed-form ICAPM to allow for this type of

stochastic volatility, and derive three priced risk factors corresponding to three important

attributes of aggregate market returns: revisions in expected future cash flows, discount

rates, and volatility.

An attractive feature of our model is that the prices of these three risk factors depend

on only one free parameter, the long-horizon investor’s coeffi cient of risk aversion. This

feature protects our empirical analysis from the critique of Daniel and Titman (1997, 2012)

and Lewellen, Nagel, and Shanken (2010) that models with multiple free parameters can

spuriously fit the returns to a set of test assets with a low-order factor structure. Our use

of risk-sorted test assets further protects us from this critique.

Our work is complementary to recent research on the “long-run risk model”of asset prices

(Bansal and Yaron, 2004) which can be traced back to insights in Kandel and Stambaugh

(1991). Both the approximate closed-form ICAPM and the long-run risk model start with

the first-order conditions of an infinitely-lived Epstein-Zin investor. As originally stated

by Epstein and Zin (1989), these first-order conditions involve both aggregate consumption

growth and the return on the market portfolio of aggregate wealth. Campbell (1993) pointed

out that the intertemporal budget constraint could be used to substitute out consumption

growth, turning the model into a Merton-style ICAPM. Restoy and Weil (1998, 2011) used

2Affi ne stochastic volatility models date back at least to Heston (1993) in continuous time. Similar
models have been applied in the long-run risk literature by Eraker (2008) and Hansen (2012), among others.
A continuous-time affi ne stochastic volatility process is guaranteed to remain positive if the drift is always
positive at zero volatility, which is the case in a univariate specification. Our stochastic volatility process
can go negative, albeit with low probability, because our richer multivariate specification allows the drift to
be negative at zero volatility for certain configurations of the state variables.
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the same logic to substitute out the market portfolio return, turning the model into a gen-

eralized consumption CAPM in the style of Breeden (1979). Bansal and Yaron (2004)

added stochastic volatility to the Restoy-Weil model, and subsequent theoretical and empir-

ical research in the long-run risk framework has increasingly emphasized the importance of

stochastic volatility (Bansal, Kiku, and Yaron, 2012; Beeler and Campbell, 2012; Hansen,

2012). In this paper, we give the approximate closed-form ICAPM the same ability to

handle stochastic volatility that its cousin, the long-run risk model, already possesses.3

Bansal, Kiku, Shaliastovich and Yaron (BKSY 2014), a paper written contemporaneously

with the first version of this paper, explores the effects of stochastic volatility in the long-

run risk model. Like us, they find stochastic volatility to be an important feature of the

time series of equity returns. BKSY propose a different benchmark asset pricing model in

which a homoskedastic process drives volatility. This homoskedastic volatility process has

two disadvantages. First, volatility becomes negative more frequently than when volatility

follows a heteroskedastic process of the sort we assume. Second, BKSY’s asset pricing

solution under homoskedasticity requires an additional assumption about the covariance of

news terms that is not supported by the data. The different modeling assumptions and

several differences in empirical implementation account for our contrasting empirical results:

BKSY estimate that volatility risk has little impact on cross-sectional risk premia, and that

a value-minus-growth bet has a positive beta while the aggregate stock market has a negative

beta with volatility news; whereas we find that volatility risk is very important in explaining

the cross-section of stock returns, that a value-minus-growth portfolio always has a negative

beta with volatility news, and that the aggregate stock market’s volatility beta has changed

sign from negative to positive in recent decades. Section 7 presents a detailed comparison

of our results with those of BKSY.
3Two unpublished papers by Chen (2003) and Sohn (2010) also attempt to do this. As we discuss in detail

in the online appendix, these papers make strong assumptions about the covariance structure of various news
terms when deriving their pricing equations.
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Stochastic volatility has been explored in other branches of the finance literature that we

summarize in the online appendix. Most obviously, stochastic volatility is a prime concern of

the field of financial econometrics. However, the focus has mostly been on univariate models,

such as the GARCH class of models (Engle, 1982; Bollerslev, 1986), or univariate filtering

methods that use realized high-frequency volatility (Barndorff-Nielsen and Shephard, 2002;

Andersen et al. 2003). A much smaller literature has, like us, looked directly at the

information in other economic and financial variables concerning future volatility (Schwert,

1989; Christiansen, Schmeling, and Schrimpf, 2012; Paye, 2012; Engle, Ghysels, and Sohn,

2013).

3 An Intertemporal Model with Stochastic Volatility

In this section, we derive an expression for the log stochastic discount factor (SDF) of the

intertemporal CAPM that allows for stochastic volatility. We then discuss the properties

of the model, including the requirements for a solution to exist, the implications for asset

pricing, and methods for estimation.

3.1 The stochastic discount factor

3.1.1 Preferences

We consider an investor with Epstein—Zin preferences and write the investor’s value function

as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

])1/θ
] θ
1−γ

, (1)
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where Ct is consumption and the preference parameters are the discount factor δ, risk aversion

γ, and the elasticity of intertemporal substitution (EIS) ψ. For convenience, we define

θ = (1− γ)/(1− 1/ψ).

The corresponding stochastic discount factor (SDF) can be written as

Mt+1 =

(
δ

(
Ct
Ct+1

)1/ψ
)θ (

Wt − Ct
Wt+1

)1−θ

, (2)

where Wt is the market value of the consumption stream owned by the agent, including

current consumption Ct.4

We will be studying risk premia and are therefore concerned with innovations in the SDF.

We will also assume that asset returns and the SDF are conditionally jointly lognormally

distributed. Since we allow for changing conditional moments, we are careful to write both

first and second moments with time subscripts to indicate that they can vary over time.

Defining the log return on wealth rt+1 = ln (Wt+1/ (Wt − Ct)), and the log consumption-

wealth ratio ht+1 = ln (Wt+1/Ct+1) (denoted by h because this is the variable that determines

intertemporal hedging demand), we can write the innovation in the log SDF as

mt+1 − Etmt+1 = − θ
ψ

(∆ct+1 − Et∆ct+1) + (θ − 1) (rt+1 − Etrt+1)

=
θ

ψ
(ht+1 − Etht+1)− γ(rt+1 − Etrt+1). (3)

The second equality uses the identity rt+1 − Etrt+1 = (∆ct+1 − Et∆ct+1) + (ht+1 − Etht+1)

to substitute consumption out of the SDF, replacing it with the wealth-consumption ratio

and the log return on the wealth portfolio.

4This notational convention is not consistent in the literature. Some authors exclude current consumption
from the definition of current wealth.
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3.1.2 Solving the SDF forward

The online appendix shows that by using equation (3) to price the wealth portfolio, and

taking a loglinear approximation of the wealth portfolio return (that is perfectly accurate

when the elasticity of intertemporal substitution equals one), we obtain a difference equation

for the innovation in ht+1 that can be solved forward to an infinite horizon to obtain:

ht+1 − Etht+1 = (ψ − 1)(Et+1 − Et)
∞∑
j=1

ρjrt+1+j

+
1

2

ψ

θ
(Et+1 − Et)

∞∑
j=1

ρjVart+j [mt+1+j + rt+1+j]

= (ψ − 1)NDR,t+1 +
1

2

ψ

θ
NRISK,t+1, (4)

where ρ is a parameter of loglinearization related to the average consumption-wealth ratio,

and somewhat less than one. The second equality in (4) follows CV (2004) and uses the

notation NDR (“news about discount rates”) for revisions in expected future returns. In a

similar spirit, we write revisions in expectations of future risk (the variance of the future log

return plus the log stochastic discount factor) as NRISK .

Substituting (4) into (3) and simplifying, we obtain:

mt+1 − Etmt+1 = −γ [rt+1 − Etrt+1]− (γ − 1)NDR,t+1 +
1

2
NRISK,t+1

= −γNCF,t+1 − [−NDR,t+1] +
1

2
NRISK,t+1. (5)

The first equality in (5) expresses the log SDF in terms of the market return and news about

future variables. In particular, it identifies three priced factors: the market return (with a

price of risk γ), negative discount rate news (with price of risk (γ − 1)), and news about

future risk (with price of risk of−1
2
). This is a heteroskedastic extension of the homoskedastic
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ICAPM derived by Campbell (1993), with no reference to consumption or the elasticity of

intertemporal substitution ψ.5

The second equality rewrites the model, following CV (2004), by breaking the market

return into cash-flow news and discount-rate news. Cash-flow news NCF,t+1 is defined by

NCF,t+1 = rt+1−Etrt+1 + NDR,t+1. The price of risk for cash-flow news is γ times greater

than the unit price of risk for negative discount-rate news, hence CV call betas with cash-

flow news “bad betas”and those with negative discount-rate news “good betas”. The third

term in (5) shows the risk price for exposure to news about future risks and did not appear

in CV’s model which assumed homoskedasticity. Not surprisingly, the model implies that an

asset providing positive returns when risk expectations increase will offer a lower return on

average; equivalently, the log SDF is high when future volatility is anticipated to be high.

Because the elasticity of intertemporal substitution (EIS) has no effect on risk prices in

our model, we do not identify this parameter and, therefore, do not face the recent critique of

Epstein, Farhi, and Strzalecki (2014) that models with a large wedge between risk aversion

and the reciprocal of the EIS imply an unrealistic willingness to pay for early resolution

of uncertainty.6 However, the EIS does influence the implied behavior of the investor’s

consumption, a topic we explore further in section 7.2.

5Campbell (1993) briefly considers the heteroskedastic case, noting that when γ = 1, Vart [mt+1 + rt+1]
is a constant. This implies that NRISK does not vary over time so the stochastic volatility term disappears.
Campbell claims that the stochastic volatility term also disappears when ψ = 1, but this is incorrect. When
limits are taken correctly, NRISK does not depend on ψ (except indirectly through the loglinearization
parameter, ρ).

6We use the standard terminology to describe the two parameters of the Epstein-Zin utility function, γ
as risk aversion and ψ as the elasticity of intertemporal substitution. Garcia, Renault, and Semenov (2006)
and Hansen, Heaton, Lee, and Roussanov (2007), however, point out that this interpretation may not be
correct when γ differs from the reciprocal of ψ.
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3.1.3 From news about risk to news about volatility

The risk news term NRISK,t+1 in equation (5) represents news about the conditional vari-

ance of returns plus the stochastic discount factor, Vart [mt+1 + rt+1]. Therefore, risk news

depends on the SDF and its innovations. To close the model and derive its empirical im-

plications, we must make assumptions concerning the nature of the data generating process

for stock returns and the variance terms that will allow us to solve for Vart [mt+1 + rt+1] and

NRISK,t+1.

We assume that the economy is described by a first-order VAR

xt+1 = x̄ + Γ (xt − x̄) + σtut+1, (6)

where xt+1 is an n× 1 vector of state variables that has rt+1 as its first element, σ2
t+1 as its

second element, and n−2 other variables that help to predict the first and second moments of

aggregate returns. x̄ and Γ are an n× 1 vector and an n×n matrix of constant parameters,

and ut+1 is a vector of shocks to the state variables normalized so that its first element

has unit variance. We assume that ut+1 has a constant variance-covariance matrix Σ, with

element Σ11 = 1. We also define n × 1 vectors e1 and e2, all of whose elements are zero

except for a unit first element in e1 and second element in e2.

The key assumption here is that a scalar random variable, σ2
t , equal to the conditional

variance of market returns, also governs time-variation in the variance of all shocks to this

system. Both market returns and state variables, including variance itself, have innovations

whose variances move in proportion to one another. This assumption makes the stochastic

volatility process affi ne, as in Heston (1993), and implies that the conditional variance of

returns plus the stochastic discount factor is proportional to the conditional variance of

returns themselves.
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Given this structure, news about discount rates can be written as

NDR,t+1 = e′1ρΓ (I− ρΓ)−1 σtut+1, (7)

while implied cash flow news is

NCF,t+1 =
(
e′1 + e′1ρΓ(I− ρΓ)−1

)
σtut+1. (8)

Our log-linear model makes the log SDF a linear function of the state variables, so all

shocks to the log SDF are proportional to σt, and Vart [mt+1 + rt+1] = ωσ2
t for some constant

parameter ω. Our specification implies that news about risk, NRISK , is proportional to news

about market return variance, NV :

NRISK,t+1 = ωρe′2 (I− ρΓ)−1 σtut+1 = ωNV,t+1. (9)

The parameter ω is a nonlinear function of the coeffi cient of relative risk aversion γ, as

well as the VAR parameters and the loglinearization coeffi cient ρ, but it does not depend on

the elasticity of intertemporal substitution ψ except indirectly through the influence of ψ on

ρ. In the online appendix, we show that ω solves:

ωσ2
t = (1− γ)2Vart [NCF,t+1] + ω(1− γ)Covt [NCF,t+1, NV,t+1] + ω2 1

4
Vart [NV,t+1] . (10)

There are two main channels through which γ affects ω. First, a higher risk aversion–

given the underlying volatilities of all shocks– implies a more volatile stochastic discount

factor m, and therefore higher risk. This effect is proportional to (1 − γ)2, so it increases

rapidly with γ. Second, there is a feedback effect on current risk through future risk: ω
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appears on the right-hand side of the equation as well. Given that in our estimation we find

Covt [NCF,t+1, NV,t+1] < 0, this second effect makes ω increase even faster with γ.

The quadratic equation (10) has two solutions, but the online appendix shows that one

of them can be disregarded. The false solution is easily identified by its implication that ω

becomes infinite as volatility shocks become small. The appendix also shows how to write

(10) directly in terms of the VAR parameters.

Finally, substituting (9) into (5), we obtain an empirically testable expression for the

SDF innovations in the ICAPM with stochastic volatility:

mt+1 − Etmt+1 = −γNCF,t+1 − [−NDR,t+1] +
1

2
ωNV,t+1, (11)

where ω solves equation (10).

3.2 Properties and estimation of the model

3.2.1 Existence of a solution

With constant volatility, our model can be solved for any level of risk aversion, but in the

presence of stochastic volatility the model admits a solution only for values of risk aversion

consistent with the existence of a real solution to the quadratic equation (10). Given our VAR

estimates of the variance and covariance terms, the online appendix plots ω as a function of

γ and shows that a real solution for ω exists when γ lies between zero and 7.2.

The online appendix also shows that existence of a real solution for ω requires γ to satisfy

the upper bound:

γ ≤ 1− 1

(ρn − 1)σcfσv
(12)
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where σcf is the standard deviation of the scaled cash-flow news NCF,t+1/σt, σv is the stan-

dard deviation of the scaled variance news NV,t+1/σt, and ρn is the correlation between these

two scaled news terms.

To develop the intuition behind these equations further, the online appendix studies a

simple example in which the link between the existence to a solution for equation (10) and

the existence of a value function for the representative agent can be shown analytically. The

example assumes ψ = 1, since we can then solve directly for the value function without

any need for a loglinear approximation of the return on the wealth portfolio (Tallarini 2000,

Hansen, Heaton, and Li 2008). In the example we find that the condition for the existence of

the value function coincides precisely with the condition for the existence of a real solution

to the quadratic equation for ω. This result shows that the possible non-existence of a

solution to the quadratic equation for ω is a deep feature of the model, not an artifact

of our loglinear approximation to the wealth portfolio return– which is not needed in the

special case where ψ = 1. The problem arises because the value function becomes ever more

sensitive to volatility as the volatility of the value function increases, and this sensitivity

feeds back into the volatility of the value function further increasing it. When this positive

feedback becomes too powerful, then the value function ceases to exist.7

In our empirical analysis, we take seriously the constraint implied by the quadratic equa-

tion (10) and require that our parameter estimates satisfy this constraint. As a consequence,

given the high average returns to risky assets in historical data, our estimate of risk aversion

is often close to the estimated upper bound of 7.2.

7In the online appendix, we show that existence of the solution for ω also imposes a lower bound on γ:
γ ≥ 1− (1/(ρn+1)σcfσv). We do not focus on this lower bound on γ since in our case it lies far below zero,
at -6.8.
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3.2.2 Asset pricing equation and risk premia

To explore the implications of the model for risk premia, we use the general asset pricing

equation under conditional lognormality,

0 = ln Et exp{mt+1 + ri,t+1} = Et [mt+1 + ri,t+1] +
1

2
Vart [mt+1 + ri,t+1] . (13)

Combining this with the approximation

Etri,t+1 +
1

2
σ2
it ' (EtRi,t+1 − 1) , (14)

which links expected log returns (adjusted by one-half their variance) to expected gross

simple returns Ri,t+1, and subtracting equation (13) for any reference asset j (which could

be but does not need to be a true risk-free rate) from the equation for asset i, we can write

a moment condition describing the relative risk premium of i relative to j as:

Et [Ri,t+1 −Rj,t+1 + (ri,t+1 − rj,t+1)(mt+1 − Etmt+1)]

= Et

[
Ri,t+1 −Rj,t+1 − (ri,t+1 − rj,t+1)(γNCF,t+1 + [−NDR,t+1]− 1

2
ωNV,t+1)

]
= 0,(15)

where the second equality uses equation (11). This expression is our main pricing equation,

containing all conditional implications of the model for any pair of assets i and j. We note

that in general the model does not restrict the covariances between the various assets’returns

and the news terms; these are measured in the data and not derived from the theory (with

the exception of the market portfolio itself which is discussed in the next subsection).
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We can alternatively write the moment conditions in covariance form:

Et [Ri,t+1 −Rj,t+1] = γCovt [ri,t+1 − rj,t+1, NCF,t+1]

+ Covt [ri,t+1 − rj,t+1,−NDR,t+1]− 1

2
ωCovt [ri,t+1 − rj,t+1, NV,t+1] . (16)

As in CV (2004), this equation breaks an asset’s overall covariance with unexpected returns

on the wealth portfolio, rt+1−Etrt+1 = NCF,t+1−NDR,t+1, into two pieces, the first of which

has a higher risk price than the second whenever γ > 1. Importantly, it also adds a third

term capturing the asset’s covariance with shocks to long-run expected future volatility.

3.2.3 Conditional and unconditional implications of the model

The moment condition (15) summarizes the conditional asset pricing implications of the

model. That expression can be conditioned down to obtain the model’s unconditional impli-

cations, replacing the conditional expectation in (15) with an unconditional expectation.

A special conditional implication of the model can be obtained when we focus on the

wealth portfolio and the real risk-free interest rate Rf . In this case since both rt+1 and mt+1

are linear functions of the VAR state vector, their conditional covariance will be proportional

to the stochastic variance term σ2
t :

Et [Rt+1 −Rf,t+1] = −Covt [rt+1,mt+1] ∝ σ2
t . (17)

The model implies that the risk premium on the market over a risk-free real asset varies in

proportion with the one-period conditional variance of the market.

This conditional restriction has some implications for the relation between news terms, in

particular NDR and NV . While the restriction does not tie the two terms precisely together
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(since NDR also reflects news about the risk-free rate), it suggests that the two should be

highly correlated unless the risk-free rate is highly variable. In the special case where the

risk-free rate is constant, the model predicts NDR,t+1 ∝ NV,t+1.

For several reasons we, like BKSY (2014), do not impose the conditional restriction (17)

on the VAR. Methodologically, we want to let the data speak about the dynamics of returns

and risks. Although imposing (17) could improve effi ciency if the market is priced exactly

in line with our model, our estimates would be distorted if our model is misspecified.8

Empirically, we do not assume that we observe the riskless real returnRf
t+1. The standard

empirical proxy, the nominal Treasury bill return, is not riskless in real terms, and recent

papers have argued that this return is affected by the special liquidity of a Treasury bill which

makes it “near-money”(Krishnamurthy and Vissing-Jørgensen, 2012; Nagel, 2016). Such a

pricing distortion implies that no model of risk and return will correctly price Treasury bills

in relation to equities. Consistent with this, a large empirical literature has already rejected

the restriction (17) on equity and Treasury bill returns (Campbell, 1987; Harvey, 1989, 1991;

Lettau and Ludvigson, 2010), and we find that our empirical measure of σ2
t , EVAR, does

not significantly forecast aggregate stock returns in our unrestricted VAR.

Even though we do not impose the conditional restriction (17) on the VAR, in our empir-

ical analysis we do test conditional asset pricing implications of the model by performing our

GMM estimation using as instruments conditioning variables implied by the model (specif-

ically σ2
t ). We also include a Treasury bill in the set of test assets so that we can evaluate

the severity of Treasury bill mispricing relative to our model.

8A related but distinct modeling choice is that, by contrast with BKSY (2014), we do not use ICAPM
restrictions on unconditional test asset returns in estimating our VAR system. Such restrictions involve a
similar tradeoff between effi ciency if the model is correctly specified, and bias if it is misspecified. In earlier
work on the two-beta ICAPM we found that using moment conditions implied by unconditional ICAPM
restrictions to estimate a VAR model is computationally challenging and can lead to numerical instability
(Campbell, Giglio, and Polk 2013).
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3.2.4 Estimation

Estimation via GMM is straightforward in this model given the moment representation of

the asset pricing equation (15). Conditional on the news terms, the model is a linear factor

model (with the caveat that both level and log returns appear), which is easy to estimate via

GMM even though it imposes nonlinear restrictions on the factor risk prices. The model has

only one free parameter, γ, that determines the risk prices as γ for NCF , 1 for −NDR, and

−ω(γ)/2 for NV , where ω(γ) is the solution of the quadratic equation (10) corresponding to

γ and the estimated news terms.

We estimate the VAR parameters and the news terms separately via OLS, and use GMM

to estimate the preference parameter γ. Thus, our GMM standard errors for γ condition on

the estimated news terms. In theory, it would be possible to estimate both the dynamics

and the moment conditions via GMM in one step. However, as discussed in CGP (2013),

this estimation is involved and numerically unstable given the large number of parameters.

The moment condition (15) holds for any two assets i and j. If an inflation-indexed

Treasury bill were available (whose return we would refer to asRf), it would be a conventional

choice for the reference asset j. In our empirical analysis, we use the value-weighted market

portfolio as the reference asset. This is a natural choice for the reference asset since it is

the portfolio that our long-term investor is assumed to hold. We also include a nominal

Treasury bill return as a test asset.

Finally, we perform our GMM estimation using a prespecified diagonal weighting ma-

trix W whose elements are the inverse of the variances of the test assets. This approach

ensures that the GMM estimation is not focusing on some extreme linear combination of

the assets, while still taking into account the different variances of individual moment con-

ditions. We have repeated our analysis using one-step and two-step effi cient estimation, and
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the qualitative results in the paper continue to hold in these cases.

4 Predicting Aggregate Stock Returns and Volatility

4.1 State variables

Our full VAR specification of the vector xt+1 includes six state variables, four of which are

among the five variables in CGP (2013). To those four variables, we add the Treasury bill

rate RTbill (using it instead of the term yield spread used by CGP) and an estimate of

conditional volatility.9 The data are all quarterly, from 1926:2 to 2011:4.

The first variable in the VAR is the log real return on the market, rM , the difference

between the log return on the Center for Research in Securities Prices (CRSP) value-weighted

stock index and the log return on the Consumer Price Index. This portfolio is a standard

proxy for the aggregate wealth portfolio, but in the online appendix we consider alternative

proxies that delever the market return by combining it in various proportions with Treasury

bills.

The second variable is expected market variance (EV AR). This variable is meant to

capture the variance of market returns, σ2
t , conditional on information available at time

t, so that innovations to this variable can be mapped to the NV term described above.

To construct EV ARt, we proceed as follows. We first construct a series of within-quarter

realized variance of daily returns for each time t, RV ARt. We then run a regression of

RV ARt+1 on lagged realized variance (RV ARt) as well as the other five state variables at

time t. This regression then generates a series of predicted values for RV AR at each time

9The switch from the term yield spread to the Treasury bill rate was suggested by a referee of an earlier
version of this paper. With either variable our results are qualitatively and quantitatively similar.
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t + 1, that depend on information available at time t: ̂RV ARt+1. Finally, we define our

expected variance at time t to be exactly this predicted value at t+ 1:

EV ARt ≡ ̂RV ARt+1. (18)

Note that though we describe our methodology in a two-step fashion where we first estimate

EV AR and then use EV AR in a VAR, this is only for interpretability. Indeed, this approach

to modelingEV AR can be considered a simple renormalization of equivalent results we would

find from a VAR that included RV AR directly.10

The third variable is the log of the S&P 500 price-smoothed earnings ratio (PE) adapted

from Campbell and Shiller (1988b), where earnings are smoothed over ten years, as in CGP

(2013). The fourth is the yield on a three-month Treasury Bill (RTbill) from CRSP. The

fifth is the small-stock value spread (V S), constructed as described in CGP.

The sixth and final variable is the default spread (DEF ), defined as the difference between

the log yield on Moody’s BAA and AAA bonds, obtained from the Federal Reserve Bank

of St. Louis. We include the default spread in part because that variable is known to track

time-series variation in expected real returns on the market portfolio (Fama and French,

1989), but also because shocks to the default spread should to some degree reflect news

about aggregate default probabilities, which in turn should reflect news about the market’s

future cash flows and volatility.

10Since we weight observations based on RV AR in the first stage and then reweight observations using
EV AR in the second stage, our two-stage approach in practice is not exactly the same as a one-stage
approach. In the online appendix, we explore many different ways to estimate our VAR, including using a
RV AR-weighted, single-step estimation approach.
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4.2 Short-run volatility estimation

In order for the regression model that generates EV ARt to be consistent with a reasonable

data-generating process for market variance, we deviate from standard OLS in two ways.

First, we constrain the regression coeffi cients to produce fitted values (i.e. expected market

return variance) that are positive. Second, given that we explicitly consider heteroskedas-

ticity of the innovations to our variables, we estimate this regression using Weighted Least

Squares (WLS), where the weight of each observation pair (RV ARt+1, xt) is initially based

on the previous period’s realized variance, RV AR−1
t . However, to ensure that the ratio of

weights across observations is not extreme, we shrink these initial weights towards equal

weights. In particular, we set our shrinkage factor large enough so that the ratio of the

largest observation weight to the smallest observation weight is always less than or equal to

five. Though admittedly somewhat ad hoc, this bound is consistent with reasonable priors

on the degree of variation over time in the expected variance of market returns. More impor-

tantly, we show in the online appendix that our results are robust to variation in this bound.

Both the constraint on the regression’s fitted values and the constraint on WLS observation

weights bind in the sample we study.

The first-stage regression generating the state variable EV ARt is reported in Table 1,

Panel A. Perhaps not surprisingly, past realized variance strongly predicts future realized

variance. More importantly, the regression documents that an increase in either PE orDEF

predicts higher future realized volatility. Both of these results are strongly statistically signif-

icant and are a novel finding of the paper. The predictive power of very persistent variables

like PE and DEF indicates a potentially important role for lower-frequency movements in

stochastic volatility.

We argue that these empirical patterns are sensible. Investors in risky bonds incorporate

their expectation of future volatility when they set credit spreads, as risky bonds are short
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the option to default. Therefore we expect higher DEF to predict higher RV AR. The

positive predictive relationship between PE and RV AR might seem surprising at first, but

one has to remember that the coeffi cient indicates the effect of a change in PE holding

constant the other variables, in particular the default spread DEF . Since the default spread

should also generally depend on the equity premium and since most of the variation in PE

is due to variation in the equity premium, we can regard PE as purging DEF of its equity

premium component to reveal more clearly its forecast of future volatility. We discuss this

interpretation further in section 4.4 below.

The R2 of the variance forecasting regression is nearly 38%. We illustrate this fit in

several ways in Figure 1. The top panel of the figure shows the movements of RV ARt

and EV ARt over time (both variables plotted at time t), illustrating their common low-

frequency variation. This panel also highlights occasional spikes in realized variance RV AR,

which generate high subsequent forecasts but are not themselves predicted by EV AR. The

middle panel of the figure plots the realized values at each time t, RV ARt, against the

forecast obtained using time t− 1 information, EV ARt−1, over the whole range of the data.

The bottom panel shows the observations for which both RV ARt and EV ARt−1 are less than

0.02 (the bottom left corner of the middle panel). These panels clearly show predictable

variation in variance that is captured by our model, and also show the tradeoff between

frequent small overpredictions of variance and infrequent large underpredictions, caused by

the skewness of realized variance.
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4.3 Estimation of the VAR and the news terms

4.3.1 VAR estimates

We estimate a first-order VAR as in equation (6), where xt+1 is a 6 × 1 vector of state

variables ordered as follows:

xt+1 = [rM,t+1 EV ARt+1 PEt+1 RTbill,t+1 DEFt+1 V St+1] (19)

so that the real market return rM,t+1 is the first element and EV AR is the second element. x̄

is a 6×1 vector of the means of the variables, and Γ is a 6×6 matrix of constant parameters.

Finally, σtut+1 is a 6×1 vector of innovations, with the conditional variance-covariance matrix

of ut+1 a constant Σ, so that the parameter σ2
t scales the entire variance-covariance matrix

of the vector of innovations.

The first-stage regression forecasting realized market return variance described in the

previous section generates the variable EV AR. The theory in Section 3 assumes that σ2
t ,

proxied for by EV AR, scales the variance-covariance matrix of state variable shocks. Thus,

as in the first stage, we estimate the second-stage VAR using WLS, where the weight of each

observation pair (xt+1, xt) is initially based on (EV ARt)
−1. We continue to constrain both

the weights across observations and the fitted values of the regression forecasting EV AR.

Table 1, Panel B presents the results of the VAR estimation for the full sample (1926:2

to 2011:4).11 We report bootstrap standard errors for the parameter estimates of the VAR

that take into account the uncertainty generated by forecasting variance in the first stage.

Consistent with previous research, we find that PE negatively predicts future returns, though

11In our robustness test, we show that our findings continue to hold if we either estimate our model’s news
terms out-of-sample or allow the coeffi cients in the first two regressions of the VAR to vary across the early
and modern subsamples.
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the t-statistic indicates only marginal significance. The value spread has a negative but not

statistically significant effect on future returns. In our specification, a higher conditional

variance, EV AR, is associated with higher future returns, though the effect is not statistically

significant. Of course, the relatively high degree of correlation among PE, DEF , V S, and

EV AR complicates the interpretation of the individual effects of those variables. As for the

other novel aspects of the transition matrix, both high PE and high DEF predict higher

future conditional variance of returns. High past market returns forecast lower EV AR,

higher PE, and lower DEF .12

Table 1, Panel C reports the sample correlation matrices of both the unscaled residuals

σtut+1 and the scaled residuals ut+1. The correlation matrices report standard deviations on

the diagonals. A comparison of the standard deviations of the unscaled and scaled market

return residuals provides a rough indication of the effectiveness of our empirical solution to

the heteroskedasticity of the VAR. The scaled return residuals should have unit standard

deviation, and our implementation results in a sample standard deviation of 1.14.13

Table 1, Panel D reports the coeffi cients of a regression of the squared unscaled residuals

σtut+1 of each VAR equation on a constant and EV AR. These results are broadly consistent

with our assumption that EV AR captures the conditional volatility of the market return and

other state variables. The coeffi cient on EV AR in the regression forecasting the squared

market return residuals is 1.85, rather than the theoretically expected value of one, but this

coeffi cient is sensitive to the weighting scheme used in the regression. We can reject the null

12One worry is that many of the elements of the transition matrix are estimated imprecisely. Though these
estimates may be zero, their non-zero but statistically insignificant in-sample point estimates, in conjunction
with the highly-nonlinear function that generates discount-rate and volatility news, may result in misleading
estimates of risk prices. However, the online appendix shows that we continue to find an economically
significant negative volatility beta for value-minus-growth bets if we instead employ a partial VAR where,
via a standard iterative process, only variables with t-statistics greater than 1.0 are included in each VAR
regression.
13A comparison of the unscaled and scaled autocorrelation matrices, in the online appendix, reveals in ad-

dition that much of the sample autocorrelation in the unscaled residuals is eliminated by our WLS approach.
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hypothesis that all six regression coeffi cients are jointly zero or negative. This evidence is

consistent with the volatilities of all innovations being driven by a common factor, as we

assume, although of course it is possible that empirically, other factors also influence the

volatilities of certain variables.

4.3.2 News terms

The top panel of Table 2 presents the variance-covariance matrix and the standard devia-

tion/correlation matrix of the news terms, estimated as described above. Consistent with

previous research, we find that discount-rate news is nearly twice as volatile as cash-flow

news.

The interesting new results in this table concern the variance news term NV . First,

news about future variance has significant volatility, with nearly a third of the variability

of discount-rate news. Second, variance news is negatively correlated (−0.12) with cash-

flow news. As one might expect from the literature on the “leverage effect” (Black, 1976;

Christie, 1982), news about low cash flows is associated with news about higher future

volatility. Third, NV is close to uncorrelated (−0.03) with discount-rate news.14 The net

effect of these correlations, documented in the lower left panel of Table 2, is a correlation

close to zero (again −0.03) between our measure of volatility news and contemporaneous

market returns.

The lower right panel of Table 2 reports the decomposition of the vector of innovations

σ2
tut+1 into the three terms NCF,t+1, NDR,t+1, and NV,t+1. As shocks to EV AR are just a

linear combination of shocks to the underlying state variables, which includes RV AR, we

14Though the point estimate of this correlation is negative, the large standard error implies that we
cannot reject the “volatility feedback effect” (Campbell and Hentschel, 1992; Calvet and Fisher, 2007),
which generates a positive correlation. For related research see French, Schwert, and Stambaugh (1987).
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“unpack”EV AR to express the news terms as a function of rM , PE, RTbill, V S, DEF , and

RV AR. The panel shows that innovations to RV AR are mapped more than one-to-one to

news about future volatility. However, several of the other state variables also drive news

about volatility. Specifically, we find that innovations in PE, DEF , and V S are associated

with news of higher future volatility. This panel also indicates that all state variables with

the exception of RTbill are statistically significant in terms of their contribution to at least

one of the three news terms. We choose to leave RTbill in the VAR, though its presence in

the system makes little difference to our conclusions.

Figure 2 plots the NCF , −NDR and NV series. To emphasize lower-frequency movements

and to improve the readability of the figure, we first normalize each series by its standard

deviation and then smooth (for plotting purposes only) using an exponentially-weighted

moving average with a quarterly decay parameter of 0.08. This decay parameter implies a

half-life of approximately two years. The pattern of NCF and −NDR we find is consistent

with previous research, for example, Figure 1 of CV (2004). As a consequence, we focus

on the smoothed series for market variance news. There is considerable time variation in

NV , and in particular we find episodes of news of high future volatility during the Great

Depression and just before the beginning of World War II, followed by a period of little

news until the late 1960s. From then on, periods of positive volatility news alternate with

periods of negative volatility news in cycles of three to five years. Spikes in news about future

volatility are found in the early 1970s (following the oil shocks), in the late 1970s and again

following the 1987 crash of the stock market. The late 1990s are characterized by strongly

negative news about future returns, and at the same time higher expected future volatility.

The recession of the late 2000s is instead characterized by strongly negative cash-flow news,

together with a spike in volatility of the highest magnitude in our sample. The recovery

from the financial crisis has brought positive cash-flow news together with news about lower

future volatility.
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4.4 Predicting long-run volatility

The predictability of volatility, and especially of its long-run component, is central to this

paper. In the previous sections, we have shown that volatility is strongly predictable, specif-

ically by variables beyond lagged realizations of volatility itself: PE and DEF contain

essential information about future volatility. We have also proposed a VAR-based method-

ology to construct long-horizon forecasts of volatility that incorporate all the information in

lagged volatility as well as in the additional predictors like PE and DEF .

We now ask how well our proposed long-run volatility forecast captures the long-horizon

component of volatility. In the online appendix, we regress realized, discounted, annualized

long-run variance up to period h,

LHRV ARh =
4Σh

j=1ρ
j−1RV ARt+j

Σh
j=1ρ

j−1
, (20)

on the variables included in our VAR system, the VAR long-horizon forecast, and some

alternative forecasts of long-run variance. We focus on a 10-year horizon (h = 40) as longer

horizons come at the cost of fewer independent observations; however, the online appendix

confirms that our results are robust to horizons ranging from one to 15 years.

As alternatives to the VAR approach, we estimate two standard GARCH-type models,

specifically designed to capture the long-run component of volatility: the two-component

exponential (EGARCH) model proposed by Adrian and Rosenberg (2008), and the frac-

tionally integrated (FIGARCH) model of Baillie, Bollerslev, and Mikkelsen (1996). We first

estimate both GARCH models using the full sample of daily returns and then generate the

appropriate forecast of LHRV AR40. To these two models, we add the set of variables from

our VAR, and compare the forecasting ability of these different models. We find that while

the EGARCH and FIGARCH forecasts do forecast long-run volatility, our VAR variables
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provide as good or better explanatory power, and RV AR, PE and DEF are strongly sta-

tistically significant. Our long-run VAR forecast has a coeffi cient of 1.02, which remains

highly significant at 0.82 even in the presence of the FIGARCH forecast. We also find that

DEF does not predict long-horizon volatility in the presence of our VAR forecast, implying

that the VAR model captures the long-horizon information in the default spread.

The online appendix also examines more carefully the links between PE, DEF , and

LHRV AR40. We find that by itself, PE has almost no information about low-frequency

variation in volatility. In contrast,DEF forecasts nearly 22% of the variation in LHRV AR40.

Furthermore, if we use the component of DEF that is orthogonal to PE, which we call

DEFO or the PE-adjusted default spread, the R2 increases to over 51%. Our interpretation

of these results is that DEF contains information about future volatility because risky bonds

are short the option to default. However, DEF also contains information about future

aggregate risk premia. We know from previous work that much of the variation in PE reflects

aggregate risk premia. Therefore, including PE in the volatility forecasting regression cleans

up variation in DEF resulting from variation in aggregate risk premia and thus sharpens

the link between DEF and future volatility. Since PE and DEF are negatively correlated

(default spreads are relatively low when the market trades rich), both PE and DEF receive

positive coeffi cients in the multiple regression.

Figure 3 provides a visual summary of the long-run volatility-forecasting power of our

key VAR state variables and our interpretation. The top panel plots LHRV AR40 together

with lagged DEF and PE. The graph confirms the strong negative correlation between

PE and DEF (correlation of -0.6) and highlights the way both variables track long-run

movements in long-run volatility. To isolate the contribution of the default spread in pre-

dicting long run volatility, the bottom panel plots LHRV AR40 together with DEFO, the

PE-adjusted default spread that is orthogonal to the market’s smoothed price-earnings ratio.

The improvement in fit moving from the top panel to the bottom panel is clear.
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The contrasting behavior of DEF and DEFO in the two panels during episodes such

as the tech boom help illustrate the workings of our story. Taken in isolation, the relatively

stable default spread throughout most of the late 1990s would predict little change in future

market volatility. However, once the declining equity premium over that period is taken into

account (as shown by the rapid increase in PE), one recognizes that a high PE-adjusted

default spread in the late 1990s actually forecasted much higher volatility ahead.

As a further check on the usefulness of our VAR approach, in the online appendix we

compare our variance forecasts to option-implied variance forecasts over the period 1998—

2011. We find that when both the VAR and option data are used to predict realized variance,

the VAR forecasts drive out the option-implied forecasts while remaining statistically and

economically significant.

Taken together, these results make a strong case that credit spreads and valuation ratios

contain information about future volatility not captured by simple univariate models, even

those designed to fit long-run movements in volatility. Furthermore, our VAR method for

calculating long-horizon forecasts preserves this information.

5 Estimating the ICAPMUsing Equity Portfolios Sorted

by Size, Value, and Risk

5.1 Construction of test assets

In addition to the VAR state variables, our analysis requires excess returns on a set of test

assets. In this section, we construct several sets of equity portfolios sorted by value, size,

and risk estimates from our model. Full details on the construction method are provided in
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the online appendix.

Since the long-term investor in our model is assumed to hold the equity market, we

measure all excess returns relative to the market portfolio. Our primary cross section

consists of the excess returns over the market on 25 portfolios sorted by size and value (ME

and BE/ME), studied in Fama and French (1993), extended in Davis, Fama, and French

(2000), and made available by Professor Kenneth French on his website. To this cross-

section, we add the excess return on a Treasury bill over the market (the negative of the

usual excess return on the market over a Treasury bill), which gives us an initial set of 26

characteristic-sorted test assets.

We incorporate additional assets in our tests in order to guard against the concerns of

Daniel and Titman (1997, 2012) and Lewellen, Nagel, and Shanken (2010) that characteristic-

sorted portfolios may have a low-order factor structure that is easily fit by spurious models.

In particular, we construct a second set of six risk-sorted portfolios, double-sorted on past

multiple betas with market returns and variance innovations (approximated by a weighted

average of changes in the VAR explanatory variables).

We also consider excess returns on equity portfolios that are formed based on both

characteristics and past exposures to variance innovations. One possible explanation for

our finding that growth stocks hedge volatility relative to value stocks is that growth firms

are more likely to hold real options, whose value increases with volatility. To test this

interpretation, we first sort stocks based on two firm characteristics that are often used

to proxy for the presence of real options and that are available for a large percentage of

firms throughout our sample period: BE/ME and idiosyncratic volatility (ivol). Having

formed nine portfolios using a two-way characteristic sort, we split each of these portfolios

into two subsets based on pre-formation estimates of each stock’s simple beta with variance

innovations. One might expect that sorts on simple rather than partial betas will be
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more effective in establishing a link between pre-formation and post-formation estimates of

volatility beta, since the market is correlated with volatility news. This gives us 18 portfolios

sorted on both characteristics and risk.

Combining all the above portfolios, we have a set of 50 test assets. We finally create

managed or scaled versions of all these portfolios by interacting them with our volatility

forecast EV AR. The managed portfolios increase their exposure to test assets at times

when market variance is expected to be high. With both unscaled and scaled portfolios, we

have a total of 100 test assets.15

Previous research, particularly CV (2004), has documented important differences in the

risks of value stocks in the periods before and after 1963. Accordingly we consider two main

subsamples, which we call early (1931:3-1963:3) and modern (1963:4-2011:4). A successful

model should be able to fit the cross-section of test asset returns in both these periods with

stable parameters.

5.2 Beta measurement

We first examine the betas implied by the covariance form of the model in equation (16). We

cosmetically multiply and divide all three covariances by the sample variance of the unex-

pected log real return on the market portfolio to facilitate comparison to previous research,

15Table 1 in the online appendix reports summary statistics for these portfolios.
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defining

βi,CFM ≡ Cov(ri,t, NCF,t)

V ar(rM,t − Et−1rM,t)
, (21)

βi,DRM ≡ Cov(ri,t,−NDR,t)

V ar(rM,t − Et−1rM,t)
, (22)

and βi,VM ≡ Cov(ri,t, NV,t)

V ar(rM,t − Et−1rM,t)
. (23)

The risk prices on these betas are just the variance of the market return innovation times

the risk prices in equation (16).

We estimate cash-flow, discount-rate, and variance betas using the fitted values of the

market’s cash flow, discount-rate, and variance news estimated in the previous section.

Specifically, we estimate simple WLS regressions of each portfolio’s log returns on each news

term, weighting each time-t+ 1 observation pair by the weights used to estimate the VAR in

Table 1 Panel B. We then scale the regression loadings by the ratio of the sample variance

of the news term in question to the sample variance of the unexpected log real return on the

market portfolio to generate estimates for our three-beta model.

5.2.1 Characteristic-sorted portfolios

Table 3 Panel A shows the estimated betas for the characteristic-sorted portfolios over the

1931-1963 period. To save space, we omit the betas for portfolios in the second and fourth

quintiles of each characteristic, retaining only the first, third, and fifth quintiles. The full

table can be found in the online appendix.

The portfolios are organized in a square matrix with growth stocks at the left, value

stocks at the right, small stocks at the top, and large stocks at the bottom. At the right

edge of the matrix we report the differences between the extreme growth and extreme value
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portfolios in each size group; along the bottom of the matrix we report the differences

between the extreme small and extreme large portfolios in each BE/ME category. The top

matrix displays post-formation cash-flow betas, the middle matrix displays post-formation

discount-rate betas, while the bottom matrix displays post-formation variance betas. In

square brackets after each beta estimate we report a standard error, calculated conditional

on the realizations of the news series from the aggregate VAR model.

In the pre-1963 sample period, value stocks (except those in the smallest size quintile)

have both higher cash-flow and higher discount-rate betas than growth stocks. An equal-

weighted average of the extreme value stocks across all size quintiles has a cash-flow beta

0.12 higher than an equal-weighted average of the extreme growth stocks. The average

difference in estimated discount-rate betas, 0.25, is in the same direction. Similar to value

stocks, small stocks have consistently higher cash-flow betas and discount-rate betas than

large stocks in this sample (by 0.16 and 0.36, respectively, for an equal-weighted average

of the smallest stocks across all value quintiles relative to an equal-weighted average of the

largest stocks). These differences are extremely similar to those in CV (2004), despite the

exclusion of the 1929-1931 subperiod, the replacement of the excess log market return with

the log real return, and the use of a richer, heteroskedastic VAR.

The new finding in the top portion of Table 3 Panel A is that value stocks and small

stocks are also riskier in terms of volatility betas. An equal-weighted average of the extreme

value stocks across all size quintiles has a volatility beta 0.06 lower than an equal-weighted

average of the extreme growth stocks. Similarly, an equal-weighted average of the smallest

stocks across all value quintiles has a volatility beta that is 0.06 lower than an equal-weighted

average of the largest stocks. In summary, value and small stocks were unambiguously riskier

than growth and large stocks over the 1931-1963 period.

Table 3 Panel B reports the corresponding estimates for the post-1963 period. As doc-
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umented in this subsample by CV (2004), value stocks still have slightly higher cash-flow

betas than growth stocks, but much lower discount-rate betas. Our new finding here is that

value stocks continue to have much lower volatility betas, and the spread in volatility betas

is even greater than in the early period. The volatility beta for the equal-weighted average

of the extreme value stocks across size quintiles is 0.11 lower than the volatility beta of an

equal-weighted average of the extreme growth stocks, a difference that is more than 85%

higher than the corresponding difference in the early period.

These results imply that in the post-1963 period where the CAPM has diffi culty explain-

ing the low returns on growth stocks relative to value stocks, growth stocks are relative

hedges for two key aspects of the investment opportunity set. Consistent with CV (2004),

growth stocks hedge news about future real stock returns. The novel finding of this paper is

that growth stocks also hedge news about the variance of the market return.

One interesting aspect of these findings is the fact that the average βV of the 25 size-

and book-to-market portfolios changes sign from the early to the modern subperiod. Over

the 1931-1963 period, the average βV is -0.10 while over the 1964-2011 period this average

becomes 0.06. Of course, given the strong positive link between PE and volatility news

documented in the lower right panel of Table 2, one should not be surprised that the market’s

βV can be positive. Nevertheless, in the online appendix we study this change in sign more

carefully. We show that the market’s beta with realized volatility has remained negative

in the modern period, highlighting the important distinction between realized and expected

future volatility. We also show that the change in the sign of βV is driven by a change in

the correlation between the aggregate market return and the change in DEFO, our simple

proxy for news about long-horizon variance.
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5.2.2 Risk-sorted portfolios

Panels C and D of Table 3 show the estimated betas for the six risk-sorted portfolios over the

1931-1963 and post-1963 periods. The portfolios are organized in a rectangular matrix with

low market-beta stocks at the left, high market-beta stocks at the right, low volatility-beta

stocks at the top, and high volatility-beta stocks at the bottom. Otherwise the format is

the same as that of Panels A and B.

In the pre-1963 sample period, high market-beta stocks have both higher cash-flow and

higher discount-rate betas than low market-beta stocks. Similarly, low volatility-beta stocks

have higher cash-flow betas and discount-rate betas than high volatility-beta stocks. High

market-beta stocks also have lower volatility betas, but sorting stocks by their past volatility

betas induces little spread in post-formation volatility betas. Putting these results together,

in the 1931-1963 period high market-beta stocks and low volatility-beta stocks were unam-

biguously riskier than low market-beta and high volatility-beta stocks.

In the post-1963 (modern) period, high market-beta stocks again have higher cash-flow

and higher discount-rate betas than low market-beta stocks. However, high market-beta

stocks now have higher volatility betas and are therefore safer in this dimension. This

pattern may not be surprising given our finding that the aggregate market portfolio itself

has a positive volatility beta in the modern period. The important implication is that our

three-beta model with priced volatility risk helps to explain the well-known result that stocks

with high past market betas have offered relatively little extra return in the past 50 years

(Fama and French, 1992; Frazzini and Pedersen, 2013).

In the modern period, sorts on volatility beta generate an economically and statistically

significant spread in post-formation volatility beta. These high volatility-beta portfolios also

tend to have higher discount-rate betas and lower cash-flow betas, though the patterns are
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not uniform.

We also examine test assets that are formed based on both characteristics and risk es-

timates. The online appendix reports the estimated betas for the 18 BE/ME-ivol-β̂∆V AR-

sorted portfolios in both the early and modern sample periods. In the early period, firms

with higher ivol have lower post-formation volatility betas regardless of their book-to-market

ratio. Consistent with this finding, higher ivol stocks have higher average returns. In the

modern period, however, we find that among stocks with low BE/ME, firms with higher ivol

have higher post-formation volatility betas and lower average returns; but these patterns

reverse among stocks with high BE/ME.

We argue that these differences make economic sense. High idiosyncratic volatility in-

creases the value of growth options, which is an important effect for growing firms with

flexible real investment opportunities, but much less so for stable, mature firms. Valuable

growth options in turn imply high betas with aggregate volatility shocks. Hence high idio-

syncratic volatility naturally raises the volatility beta for growth stocks more than for value

stocks. This effect is stronger in the modern sample where growing firms with flexible

investment opportunities are more prevalent.

Taken together, the findings from the characteristic- and risk-sorted test assets suggest

that volatility betas vary with multiple stock characteristics, and that techniques that take

this into account may be more effective in generating a spread in post-formation volatility

beta.

5.3 Model estimation

We now turn to pricing the cross section of excess returns on our test assets. We estimate our

model’s single parameter via GMM, using the moment condition (15). For ease of exposition,
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we report our results in terms of the expected return-beta representation from equation (16),

rescaled by the variance of market return innovations as in section 5.2:

Ri −Rj = g1β̂i,CFM + g2β̂i,DRM + g3β̂i,VM + ei, (24)

where bars denote time-series means and betas are measured using returns relative to the

reference asset. Recall that we use the aggregate equity market as our reference asset but

include the T-bill return as a test asset, so that our model not only prices cross-sectional

variation in average returns, but also prices the average difference between stocks and bills.

We evaluate the performance of five asset pricing models, all estimated via GMM: 1)

the traditional CAPM that restricts cash-flow and discount-rate betas to have the same

price of risk and sets the price of variance risk to zero; 2) the two-beta intertemporal asset

pricing model of CV (2004) that restricts the price of discount-rate risk to equal the variance

of the market return and again sets the price of variance risk to zero; 3) our three-beta

intertemporal asset pricing model that restricts the price of discount-rate risk to equal the

variance of the market return and constrains the prices of cash-flow and variance risk to

be related by equation (10), with ρ = 0.95 per year; 4) a partially-constrained three-beta

model that restricts the price of discount-rate risk to equal the variance of the market return

but freely estimates the other two risk prices (effectively decoupling γ and ω); and 5) an

unrestricted three-beta model that allows free risk prices for cash-flow, discount-rate, and

volatility betas.

5.3.1 Model estimates

Table 4 reports the results of pricing tests for both the early sample period 1931-1963 (Panel

A) and the modern sample period 1963-2011 (Panel B). In each case we price the complete
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set of test assets described in section 5.1; the online appendix reports the results of tests

that price the 25 size- and book-to-market-sorted portfolios in isolation. The table has five

columns, one for each of our asset pricing models. The first six rows of each panel in Table 4

are divided into three sets of two rows. The first set of two rows corresponds to the premium

on cash-flow beta, the second set to the premium on discount-rate beta, and the third set to

the premium on volatility beta. Within each set, the first row reports the point estimate in

fractions per quarter, and the second row reports the corresponding standard error. Below

the premia estimates, we report the R2 statistic for a cross-sectional regression of average

market-adjusted returns on our test assets onto the fitted values from the model as well

as the J statistic. In the next two rows of each panel, we report the implied risk-aversion

coeffi cient, γ, which can be recovered as g1/g2, as well as the sensitivity of news about risk

to news about market variance, ω, which can be recovered as −2g3/g2. The five final rows

in each panel report the cross-sectional R2 statistics for various subsets of the test assets.

Table 4 Panel A shows that in the early subperiod, all models do a relatively good job

pricing these 100 test assets. The cross-sectional R2 statistic is 74% for the CAPM, 78%

for the two-beta ICAPM, and 79% for our three-beta ICAPM. Consistent with the claim

that the three-beta model does a good job describing the cross section, the constrained and

the unrestricted factor model barely improve pricing relative to the three-beta ICAPM in

Panel A. Despite this apparent success, all models are rejected based on the standard J test.

This may not be surprising, given that even the empirical three-factor model of Fama and

French (1993) is rejected by this test when faced with the 25 size- and book-to-market-sorted

portfolios.

In stark contrast, Panel B documents that in the modern subperiod, the CAPM fails

to price not only the characteristic-sorted test assets already considered in previous work,

but also risk-sorted and variance-scaled portfolios. The cross-sectional R2 of the CAPM is

negative at −20%. The two-beta ICAPM of CV (2004) does a better job describing average
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returns in the modern subperiod, delivering an R2 of 25%, but it struggles to price the risk-

sorted and variance-scaled test assets and once again requires a much larger coeffi cient of

risk aversion in the modern subperiod than in the early subperiod.

In the modern period the three-beta ICAPM outperforms both the CAPM and the two-

beta ICAPM, delivering an overall R2 of 60%. The model also does a good job explaining

all the subsets of test assets that we consider, including the risk-sorted and variance-scaled

test assets. Moreover, the three-beta estimate of risk aversion is relatively stable across

subperiods. This improvement is driven by the addition of volatility risk to the model; our

estimate of the volatility is both economically and statistically significant. The premium

for one unit of volatility beta is approximately -38% per year and more than 2.76 standard

deviations from zero.

Further support for our three-beta ICAPM can be found in the last two columns. Relax-

ing the link between γ and ω (but continuing to restrict the premium for discount-rate beta)

only improves the fit somewhat (from 60% to 71%). Indeed, the γ and ω of the partially-

constrained model are 12.2 and 31.0 respectively which are not dramatically different from

the estimated parameters of the fully-constrained version of the model. Furthermore, a com-

pletely unrestricted three-beta model has an R2 (72%) that is very close to that of the

partially-constrained implementation. Finally, we find that the premium for variance beta is

relatively stable and always statistically significant across all three versions of our three-beta

model (ICAPM, partially-constrained, and unrestricted).

Figure 4 provides a visual summary of the modern-period results reported in Table 4

Panel B. Each panel in the figure plots average realized excess returns against average

predicted excess returns from one of the asset pricing models under consideration. A well-

specified model should deliver points that lie along the 45-degree line when realized returns

are measured over a long enough sample period.
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In the top row of Figure 4, we first examine how these models price the original 25

characteristic-sorted portfolios, which are plotted as stars, along with the Treasury bill,

plotted as a triangle. The CAPM is plotted at the left, the two-beta ICAPM in the middle,

and the three-beta ICAPM at the right. The poor performance of the CAPM in this

sample period, and the increase in explanatory power provided by the two-beta ICAPM and

particularly the three-beta ICAPM, are immediately apparent. The two-beta ICAPM has

particular diffi culty with the Treasury bill, predicting far too low an excess return relative to

the aggregate stock market, or, equivalently, far too high an equity premium. The bottom

row of Figure 4 provides a visual summary of the modern-period results with the full set of

test assets. There is a visually striking improvement in fit as one moves to the right in the

figure, from the CAPM to the two-beta ICAPM and then to the three-beta ICAPM.

5.3.2 Implications for the history of marginal utility

As a way to understand the economics behind the ICAPM, and as a further check on the

reasonableness of our model, we consider what the model implies for the history of our

investor’s marginal utility. Figure 5 plots the time-series of the combined shock γNCF−NDR−
1
2
ωNV , normalized and then smoothed for graphical purposes as in Figure 2, based on our

estimate of the three-beta model using characteristic-sorted test assets in the modern period

(Table 4, Panel B). The smoothed shock has correlation 0.77 with equivalently smoothed

NCF , 0.02 with smoothed −NDR, and -0.80 with smoothed NV . Figure 5 also plots the

corresponding smoothed shock series for the CAPM (NCF − NDR) and for the two-beta

ICAPM (γNCF − NDR). The two-beta model shifts the history of good and bad times

relative to the CAPM, as emphasized by CGP (2013). The model with stochastic volatility

further accentuates that periods with high market volatility, such as the 1930s and the late

2000s, are particularly hard times for long-term investors. Assets that do well in such
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hard times– for example, growth stocks– are valuable hedges that should have low average

returns.

6 An ICAPM Perspective on Asset Pricing Anomalies

In this section we use our ICAPM model to reassess a wide variety of anomalies that have

been discussed in the asset pricing literature. We begin with equity anomalies, and then

consider some anomalous patterns from outside the equity market.

6.1 Equity anomalies

Table 5 analyzes a number of well known equity anomalies using data taken from Professor

Kenneth French’s website. The sample period is 1963:3—2011:4. The anomaly portfolios

include the market (RMRF ), size (SMB), and value (HML) equity factors of Fama and

French (1993), the profitability (RMW ) and investment (CMA) factors added in Fama and

French (2016), the momentum (UMD) factor of Carhart (1997), short-term reversal (STR)

and long-term reversal (LTR) factors, and zero-cost portfolios formed from value-weighted

quintiles sorted on beta (BETA), accruals (ACC), net issuance (NI) and idiosyncratic

volatility (IV OL). We also consider a dynamic portfolio that varies its exposure to the

equity premium based on c/PEt, where c is chosen so that the resulting managed portfolio

has the same unconditional volatility as RMRF . We refer to this portfolio asMANRMRF .

For each of these portfolios, the table reports the mean excess return in the first column

and the standard deviation of return in the second column. The next set of three columns

report the portfolios’betas with our estimates of discount-rate news, cash-flow news, and

variance news. These are used in the next four columns to construct the components of
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fitted excess returns based on discount-rate news (λDR), cash-flow news in the two-beta

ICAPM (λ2−BETA
CF ), cash-flow news in the three-beta ICAPM (λ3−BETA

CF ), and variance news

in the three-beta ICAPM (λV ). These fitted excess returns use the parameter estimates of

the two-beta and three-beta models reported in Table 4 Panel B; we do not reestimate any

parameters and in this sense the evaluation of equity anomalies is “out of sample”.

The final three columns of the table report the alphas of the anomalies– their sample

average excess returns less their predicted excess returns– calculated using the CAPM, the

two-beta ICAPM, and the three-beta ICAPM. All the portfolios, with the obvious exception

of RMRF , have been chosen to have positive CAPM alphas. The ability of the ICAPM to

explain asset pricing anomalies can be measured by the reduction in magnitude of ICAPM

alphas relative to CAPM alphas. To summarize model performance, the bottom right hand

corner of the table reports average absolute alphas across all anomaly portfolios, the three

Fama-French (1993) portfolios, and the five Fama-French (2016) portfolios. These averages

are calculated both for raw alphas and after dividing each anomaly’s alpha by the standard

deviation of its return.

Table 5 shows that volatility risk exposure is helpful in explaining many of the equity

anomalies that have been discussed in the recent asset pricing literature. Most of the

anomaly portfolios have negative variance betas which make them riskier and help to explain

their positive excess returns; exceptions to this statement include the excess return on the

market over a Treasury bill RMRF and the managed excess return MANRMRF (since we

have found the market to be a volatility hedge in the modern subperiod), and the returns

on small size SMB, profitability RMW , and momentum UMD. The three-beta ICAPM is

particularly good at explaining the high return on value HML, which may not be surprising

since we estimated the model using size- and value-sorted equity portfolios. But it also

makes considerable progress at explaining the returns to low-investment firms CMA, low-

beta stocks BETA, long-term reversal LTR, and low idiosyncratic volatility IV OL.
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Averaging across all the anomalies in the table, the average absolute alpha is 1.16% for

the CAPM, slightly higher at 1.28% for the two-beta ICAPM, but lower at 0.90% for the

three-beta ICAPM. Looking only at the Fama and French (1993) anomalies, the three-beta

model reduces the average absolute alpha from the CAPM’s 0.62% to 0.36%, and looking

only at the Fama and French (2016) anomalies the average absolute alpha falls from 0.83%

to 0.55%. In both these subsets the two-beta ICAPM actually performs worse than the

CAPM. Results are similar when anomaly returns are scaled by standard deviation.

To what extent is our progress substantial? One reasonable way to gauge these results is

by comparing the pricing improvement (relative to the CAPM) of our model to unrestricted

models of the risk-return tradeoff. The bottom of Table 5 provides exactly those comparisons.

For example, one such possible benchmark is the unrestricted three-beta version of our model

where the factors are NCF , −NDR, and NV . Using only a single free parameter, our three-

beta ICAPM provides 72% of the pricing improvement that an unrestricted multi-factor

model does. Other reasonable benchmarks studied in the table include the three- and five-

factor models of Fama and French (1993, 2016). Relative to those models, our three-beta

ICAPM provides 100% and 44% of the respective pricing improvement. Of course, that class

of models is built from portfolios directly sorted on several of the anomalies studied in Table

5 which makes our pricing improvement even more impressive.

6.2 Non-equity anomalies

Table 6 considers several sets of non-equity test assets, each of which is measured from a

different start date until the end of our sample period in 2011:4. First, we considerHY −IG,

the risky bond factor of Fama and French (1993), which we measure from 1983:3 using the

return on the Barclays Capital High Yield Bond Index (HY RET ) less the return on Barclays

Capital Investment Grade Bond Index (IGRET ). Second, we study the cross section of
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currency portfolios (CARRY ) starting in 1984:1, where developed-country currencies have

been dynamically allocated to portfolios based on their interest rates as in Lustig, Roussanov,

and Verdelhan (2011).16 Third, we use the S&P 100 index straddle returns (STRADDLE)

studied by Coval and Shumway (2001) starting in 1986:1.17

Finally, from the S&P 500 options market, we generate quarterly returns on 3 synthetic

variance forward contracts starting in 1998:3. We construct these returns as in Dew-Becker et

al. (2016). First, we construct a panel of implied variance swap prices using option data from

OptionMetrics, for maturities n ranging from one to three quarters ahead: V IX2
n,t. Under

the assumption that returns follow a diffusion, we will have: V IX2
n,t = EQ

t [
∫ t+n
t

σ2
sds]. We

compute V IX2
n,t using the same methodology used by the CBOE to construct the 30-day

VIX, applying it to maturities up to three quarters. We then compute synthetic variance

forward prices as: Fn,t = V IX2
n,t − V IX2

n−1,t. These forwards allow us to isolate claims

to variance at a specific horizon n (focusing on the variance realized between n − 1 and

n). The quarterly returns to these forwards are computed as Rn,t = Fn−1,t
Fn,t−1

− 1, where

F0,t = RV ARt. Dew Becker et al. (2016) document a large difference in average returns

for these forwards across maturities. Accordingly, we construct the anomaly portfolio as

a long-short portfolio that sells short-maturity forwards and buys long-maturity forwards

(yielding strongly positive average returns).

All these anomaly portfolios have been normalized to have positive excess returns, and

they all have negative variance betas so their exposure to variance risk does contribute to

an explanation of their positive returns. However, in the case of HY − IG, the three-beta

model overshoots and predicts a higher average return than has been realized in the data.

In the case of CARRY , the three-beta model cuts the CAPM alpha roughly in half. In the

16We thank Nick Roussanov for sharing these data.
17Specifically, the series we study includes only those straddle positions where the difference between the

options’strike price and the underlying price is between 0 and 5. We thank Josh Coval and Tyler Shumway
for providing their updated data series to us.
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two options anomalies, STRADDLE and V IXF2−V IXF0, the three-beta model reduces

the CAPM alpha slightly but the high returns to these anomalies remain quite puzzling even

after taking account of their long-run volatility risk exposures.

Though our three-beta ICAPM is far from perfect in absolute terms, our model fares

relatively well compared to unrestricted asset-pricing models. For example, the unrestricted

version of our model has slightly higher average absolute pricing errors. Perhaps even more

impressively, our economically-motivated ICAPM also significantly outperforms both the

three- and five-factor versions of the empirical models of Fama and French.

These findings relate to a literature on the pricing of volatility risk in derivative markets

(Coval and Shumway, 2001; Ait-Sahalia, Karaman, and Mancini, 2015; Dew-Becker et al.,

2016). Dew-Becker et al. (2016) study the market for variance swaps with different matu-

rities, and show that in that market risk premia associated with short-term variance shocks

are highly negative, whereas risk premia for news shocks about future variance are close to

zero. These results present a challenge to models where investors have strong intertemporal

hedging motives, including our model and the long-run risk model of BKSY (2014). It

may not be surprising that the intertemporal model of this paper, which is based on the

first-order conditions of a long-term equity investor, works better for equity anomalies than

for anomalies in derivatives markets which are harder to access for this type of investor.

7 Alternative Specifications and Robustness

In this section we compare our model with some alternatives that have recently been explored

in the literature. We also briefly discuss the robustness of our results to alternative choices

in the empirical implementation.
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7.1 Comparison with the BKSY (2014) model

In this section we explore the main differences between our paper and BKSY (2014), regard-

ing both modeling assumptions and empirical implementation.

A first difference lies in the modeling of the volatility process itself. In our paper, we

model volatility as a heteroskedastic process. In contrast, in their main results BKSY em-

ploy a homoskedastic volatility process. A disadvantage of BKSY’s specification is that

the volatility process becomes negative more frequently than in the case of a heteroskedas-

tic process, where the volatility of innovations to volatility shrinks as volatility gets close

to zero. In the online appendix we explore this difference formally, using simulations to

compare the frequency with which the heteroskedastic and homoskedastic models become

negative, showing a clear advantage in favor of the heteroskedastic process. If one adjusts the

volatility process upwards to zero whenever it would otherwise go negative, the cumulative

adjustment required quickly decreases to zero for the heteroskedastic process as the sampling

frequency increases, whereas it does not for the homoskedastic process. In our simulations,

the ratio of the adjustment needed in the homoskedastic case relative to the one needed in

the heteroskedastic case is 6 at the quarterly frequency, 17 at the monthly frequency, and

over 200 at the daily frequency.

BKSY’s assumption of homoskedastic volatility has important consequences for their

asset pricing analysis. In the online appendix we show that if the volatility process is ho-

moskedastic, the SDF can be expressed as a function of variance news NV only under special

conditions not explicitly stated by BKSY: that the NV shock only depends on innovations

to state variables which are themselves homoskedastic, and that NCF and NV are uncor-

related.18 In our empirical analysis, we estimate the correlation between NCF and NV to

18There are other knife-edge cases where a solution can exist even when NCF and NV are correlated, but
they entail even more extreme assumptions, for example NV not loading at all on volatility innovations,
or the set of news terms not depending at all on any heteroskedastic state variable. The online appendix
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be −0.12; we also explore a range of other specifications for the VAR, and find that this

correlation is often below −0.5, and in some cases as low as −0.78. In fact, when we emulate

BKSY’s VAR specification, we obtain a strongly negative correlation of −0.71. This result

should not be surprising: the literature on the “leverage effect”(Black, 1976; Christie, 1982)

has long documented that news about low cash flows is associated with news about higher

future volatility. Overall, the empirical analysis provides strong evidence that assuming a

zero correlation between NCF and NV , as BKSY implicitly do, is counterfactual across a

range of specifications.

In a robustness exercise in their sections II.E and III.D, BKSY entertain a heteroskedas-

tic process similar to ours, in which a single variable σ2
t drives the conditional variance of

all variables in the VAR. In this specification there are no theoretical constraints on the

correlation between NCF and NV . However, as we discussed in section 3.2.1, another con-

straint appears in models with heteroskedastic volatility: the value function of the investor

ceases to exist once risk aversion becomes suffi ciently high. The most visible symptom of the

existence issue is that the function that links ω (the price of risk of NV ) to risk aversion γ is

not defined in this region. The condition for existence of a solution is a nonlinear function of

the structural parameters of the model and the time-series properties of the state variables.

BKSY ignore the existence constraint by linearizing the function ω(γ) around γ = 0.19 There

are two problems with this approach. First, the empirical estimates of the model parameters

may erroneously imply a model solution that lies in the non-existence region. Second, even

when the model is in a region of the parameter space where a solution would exist, BKSY’s

solution is based on an approximation whose accuracy is not clear and not explored in the

paper.

In addition to these different modeling assumptions, BKSY differs from our paper in the

provides details.
19In the first draft of our paper we also used this inappropriate linearization.
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empirical implementation. This difference leads to several important differences in the find-

ings. First, we find that variance risk premia make an important contribution to explaining

the cross-section of equity returns, while they contribute only minimally in BKSY. Second,

we find that a value-minus-growth bet has a negative beta with volatility news, while BKSY

find it has a positive volatility beta. Third, in the modern period we estimate the aggregate

stock market to have a positive volatility beta while BKSY estimate a negative volatility

beta.

To better understand the source of the differences in empirical results, the online appendix

explores the properties of the news terms using different VAR specifications including our

baseline specification, BKSY’s baseline (for the part of their analysis expressed in terms of

returns rather than consumption, so directly comparable to ours), and various combinations

of those. We focus on three main differences in the empirical approach: 1) The estimation

of a VAR at yearly vs. quarterly frequencies; 2) The methodology used to construct realized

variance since we construct realized variance using sum of squared daily returns, whereas

BKSY use sums of squared monthly returns that ignore the information in higher-frequency

data and result in a noisier estimator of realized variance; 3) The use of different state

variables, and particularly the value spread, that we show to be important for our results

and that is not included in BKSY. This analysis shows that both using high-frequency data

to compute RV AR and including the value spread are important drivers of the differences

between our results and those of BKSY.20

With regard to the difference in the estimated volatility beta of a value-minus-growth

portfolio, we note that our negative volatility beta estimate is more consistent with models in

20BKSY estimate their VAR system by GMM, using additional moment conditions implied by the ICAPM
and the unconditional returns on test assets. We used a similar methodology for a two-beta ICAPM model in
Campbell, Giglio, and Polk (2013), but found it to be computationally challenging and numerically unstable.
We have not replicated this approach for the three-beta ICAPM, but we do not believe it has a first-order
effect on the differences in empirical results since we can account for these differences using unrestricted
VAR models.
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which growth firms hold options that become more valuable when volatility increases (Berk,

Green, and Naik, 1999; McQuade, 2012; Dou, 2016). Empirically, our negative volatility

beta estimate is consistent with the underperformance of value stocks during some well

known periods of elevated volatility including the Great Depression, the technology boom of

the late 1990s, and the Great Recession of the late 2000s (CGP, 2013).

The online appendix sheds light on the drivers of the difference between the positive

volatility beta that we estimate for the market as a whole in the modern period, and the

negative volatility beta that BKSY estimate. While we confirm the result that in BKSY’s

specification market innovations are negatively correlated with NV , that result is quite sensi-

tive to the exact specification. If RV AR is computed using daily instead of monthly returns,

in particular, the correlation moves much closer to zero and in several cases becomes positive,

as in our baseline specification.

One important driver of the correlation between market returns and NV is the correlation

between NDR and NV . Since an increase in discount rates lowers stock prices, other things

equal, these two correlations tend to have opposite signs. In our replication of BKSY’s

analysis, we find a positive correlation of 0.47 between NDR and NV , but this positive

correlation does not survive if quarterly data is used instead of yearly data, if the value

spread is used in the VAR, or if RVAR is constructed using daily instead of monthly returns.

In all these alternative cases, the relation between NDR and NV is much weaker or even

negative, confirming the results of a long literature in asset pricing (see for example Lettau

and Ludvigson, 2010).

In summary, we believe that neither the finding of a negative volatility beta for value

stocks relative to growth stocks, nor the finding of a positive volatility beta for the aggregate

equity market in the modern period should be surprising. Stockholders are long options,

both options to invest in growth opportunities (particularly important for growth firms) and

49



options to default on bondholders. These options become more valuable when volatility

increases, driving up stock prices. Thus there is no theoretical reason to believe that higher

volatility always reduces aggregate stock prices. And in recent history there have been

important episodes in which stock prices have been both high and volatile, most notably the

stock boom of the 1990s.

7.2 Comparison with consumption-based models

In this paper, as in Campbell (1993), we have estimated the model without having to observe

the consumption process of the investor (who was assumed to hold the market portfolio).

However, the model could also alternatively be expressed in terms of the investor’s consump-

tion; both consumption and asset returns are endogenous, and the two representations are

equivalent.

In this section we show how to map the returns-based representation to the consumption-

based representation. We focus on two main objects of interest: consumption innovations

and the stochastic discount factor.

Consumption innovations for our investor are given by

∆ct+1 − Et∆ct+1 = (rt+1 − Etrt+1)− (ψ − 1)NDR,t+1 − (ψ − 1)
1

2

ω

1− γNV,t+1. (25)

The EIS parameter ψ, which enters this equation, is not pinned down by our VAR estimation

or the cross-section of risk premia, so we calibrate it to three different values, 0.5, 1.0, and

1.5. The online appendix shows that implied consumption volatility is positively related to

ψ, given our VAR estimates of return dynamics. With ψ = 0.5, our investor’s consumption

(which need not equal aggregate consumption) is considerably more volatile than aggre-

gate consumption but roughly as volatile as the time series of stockholder’s consumption we
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obtained from Malloy, Moskowitz, and Vissing-Jørgensen (2009). Implied and actual con-

sumption growth are positively correlated, and stockholder’s consumption correlates with

implied consumption more strongly than aggregate consumption.

We can also represent the entire SDF in terms of consumption; in particular, we can write

it as a function of consumption innovations ∆ct+1−Et∆ct+1, news about future consumption

growth (NCF ) and news about future consumption volatility, NCV,t+1:

mt+1 − Etmt+1 = − 1

ψ
(∆ct+1 − Et∆ct+1)− (γ − 1

ψ
)NCF,t+1 +

1

2
η

(
θ − 1

θ

)
NCV,t+1, (26)

where the parameter η is a constant that depends on the VAR parameters and on the

structural parameters of the model (the online appendix reports the derivation). As in the

case of the consumption innovations, the SDF depends on the parameter ψ. That parameter

is not pinned down by risk premia in this model, thus requiring additional moments to be

identified relative to our returns-based analysis.

This SDF corresponds to the standard SDF used in the consumption-based long-run risk

literature (e.g. Bansal and Yaron, 2004). When γ > 1
ψ
, news about low future consumption

growth or high volatility increases the investor’s marginal utility, so assets that have low

returns when such bad news arrives command an additional risk premium. The SDF collapses

to the standard consumption-CAPM with power utility when γ = 1
ψ
(and therefore θ = 1).

In that case, the coeffi cient on consumption innovation is simply equal to γ, and both the

consumption news term and the volatility news term disappear from the SDF.

To conclude, the model can be equivalently expressed in terms of consumption or returns.

In this paper, we follow Campbell (1993) using the latter approach, but emphasize that

neither approach is more “structural”than the other, as all quantities are determined jointly

in equilibrium.
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7.3 Implications for the risk-free rate

In addition to deriving the implied consumption process, we can also use the estimated VAR

and preference parameters to back out the implied risk-free rate in the economy. This tells

us what time-series for the risk-free rate would have made the long-run investor content not

to time the market at each point in time.

In the online appendix we show that the implied risk-free rate is the difference between

the expected return on the market (which can be directly obtained from the VAR) and the

market risk premium, itself a function of σ2
t :

rft+1 = Etr
M
t+1 −Hσ2

t , (27)

for a constant H that, in our data, is estimated to be 2.27. The implied risk-free rate there-

fore decreases (and potentially becomes negative) whenever conditional variance increases

without a corresponding increase in the conditional expectation of the market return.

The appendix shows that the implied risk-free rate is volatile (with a standard deviation

of 2.4% per quarter). It became negative during the Great Depression, the technology boom,

and the global financial crisis, all periods of elevated volatility. The implied risk-free rate

therefore does not resemble the observed Treasury bill rate. This result should be expected:

as discussed in section 3.2.3, we do not impose the conditional implications of the model for

the market risk premium, precisely because market volatility and expected market returns do

not line up well in the data. For this reason our model does not explain why a conservative

long-term investor would not use Treasury bills as part of an equity market timing strategy.

The appendix also shows that news about the present value of future implied risk-free

rates has a volatility similar to that of news about market discount rates. Implied risk-free

rate news was persistently negative during the Great Depression and the technology boom,
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but not during the global financial crisis which had a more transitory effect on the state

variables of our model.

7.4 Robustness to empirical methodology

The online appendix examines the robustness of our results to a wide variety of method-

ological changes. We use various subsets of variables in our baseline VAR, we estimate the

VAR in different ways, we use different estimates of realized variance, we alter the set of

variables in the VAR, we explore the VAR’s out-of-sample and split-sample properties, and

we use different proxies for the wealth portfolio including delevered equity portfolios. Such

robustness analysis is important because the VAR’s news decomposition can be sensitive to

the forecasting variables included.21

Key results from these robustness tests follow. We find that including two of DEF ,

PE, and V S is generally essential for our finding of a negative βV for HML. However,

successful pricing by our volatility ICAPM requires all three in the VAR. We find a negative

βV for HML regardless of how we estimate the VAR (e.g. OLS or various forms of WLS)

or construct our proxy for RV AR. However, our ICAPM is most successful at pricing using

a quarterly VAR estimated using WLS where RVAR is constructed from daily returns.

We also augment the set of variables under consideration to be included in the VAR.

We not only explore different ways to measure the market’s valuation ratio but also include

other variables known to forecast aggregate returns and market volatility, specifically Lettau

and Ludvigson’s (2001) CAY variable and our quarterly FIGARCH forecast. HML’s βV is

always negative, and our volatility ICAPM generally does well in describing cross-sectional

21All our VAR systems forecast returns rather than cash flows. As Engsted, Pedersen, and Tanggaard
(2012) clarify, results are approximately invariant to this decision, notwithstanding the concerns of Chen
and Zhao (2009).
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variation in average returns. We further find that our results are robust to using alternative

proxies for the market portfolio, formed by combining Treasury Bills and the market in

various constant proportions.

An important question is the extent to which our VAR coeffi cients are stable over time.

We address this issue in two ways. First, we generate the model’s news terms out-of-sample,

by estimating the VAR over an expanding window. We start the out-of-sample analysis

beginning in July 1963. Not only do we continue to find a negative βV for HML, relative to

our baseline result, the cross-sectional R2 increases to 77%. Second, we instead allow for a

structural break between the early and modern periods in the coeffi cients of the return and

volatility regressions of the VAR. We again find that HML’s βV is negative. As with our

baseline specification, the modern period cross-sectional R2 is approximately 48%.

Finally, the appendix describes in detail the results of analysis studying the volatility

betas we have estimated for the market as a whole, and for value stocks relative to growth

stocks. For example, we report OLS estimates of simple betas on RV AR and the 15-year

horizon FIGARCH forecast (FIG60) for HML and RMRF . The betas based on these two

simple proxies have the same sign as those using volatility news from our VAR.

8 Conclusion

We extend the approximate closed-form intertemporal capital asset pricing model of Camp-

bell (1993) to allow for stochastic volatility. Our model recognizes that an investor’s invest-

ment opportunities may deteriorate either because expected stock returns decline or because

the volatility of stock returns increases. A long-term investor with Epstein-Zin preferences

and relative risk-aversion greater than one, holding an aggregate stock index, will wish to

hedge against both types of changes in investment opportunities. Such an investor’s per-
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ception of a stock’s risk is determined not only by its beta with unexpected market returns

and news about future returns (or equivalently, news about market cash flows and discount

rates), but also by its beta with news about future market volatility. Although our model

has three dimensions of risk, the prices of all these risks are determined by a single free

parameter, the investor’s coeffi cient of relative risk aversion.

Our implementation models the return on the aggregate stock market as one element

of a vector autoregressive (VAR) system; the volatility of all shocks to the VAR is another

element of the system. The estimated VAR system reveals new low-frequency movements in

market volatility tied to the default spread. We show that the negative post-1963 CAPM

alphas of growth stocks are justified because these stocks hedge long-term investors against

both declining expected stock returns, and increasing volatility. The addition of volatility

risk to the model helps it fit the cross section of value and growth stocks, and small and

large stocks, with a moderate, economically reasonable value of risk aversion.

We confront our model with portfolios of stocks sorted by past betas with the market

return and volatility, and portfolios double-sorted by characteristics and past volatility betas.

We also confront our model with managed portfolios that vary equity exposure in response

to our estimates of market variance. The explanatory power of the model is quite good

across all these sets of test assets, with stable parameter estimates. Notably, the model

helps to explain the low cross-sectional reward to past market beta and the negative return to

idiosyncratic volatility as the result of volatility exposures of stocks with these characteristics

in the post-1963 period.

Our model does not explain why a conservative long-term investor with constant risk

aversion retains a constant equity exposure in response to changes in the equity premium

that are not proportional to changes in the variance of stock returns. As a consequence, we do

not interpret our model as a representative-agent model of general equilibrium in financial
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markets. However, our model does answer the interesting microeconomic question: Are

there reasonable preference parameters that would make a long-term investor, constrained

to invest 100% in equity, content to hold the market rather than tilting towards value stocks

or other high-return stock portfolios? Our answer is clearly yes.
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Table 1: VAR Estimation
The table shows the WLS parameter estimates for a first-order VAR model. The state
variables in the VAR include the log real return on the CRSP value-weight index (rM),
the realized variance (RV AR) of within-quarter daily simple returns on the CRSP value-
weight index, the log ratio of the S&P 500’s price to the S&P 500’s ten-year moving average
of earnings (PE), the log three-month Treasury Bill yield (rTbill), the default yield spread
(DEF ) in percentage points, measured as the difference between the log yield on Moody’s
BAA bonds and the log yield onMoody’s AAA bonds, and the small-stock value spread (V S),
the difference in the log book-to-market ratios of small value and small growth stocks. The
small-value and small-growth portfolios are two of the six elementary portfolios constructed
by Davis et al. (2000). For the sake of interpretation, we estimate the VAR in two stages.
Panel A reports the WLS parameter estimates of a first-stage regression forecasting RV AR
with the VAR state variables. The forecasted values from this regression are used in the
second stage of the estimation procedure as the state variable EV AR, replacing RV AR in
the second-stage VAR. Panel B reports WLS parameter estimates of the full second-stage
VAR. Initial WLS weights on each observation are inversely proportional to RV ARt and
EV ARt in the first and second stages respectively and are then shrunk to equal weights so
that the maximum ratio of actual weights used is less than or equal to five. Additionally,
the forecasted values for both RV AR and EV AR are constrained to be positive. In Panels
A and B, the first seven columns report coeffi cients on an intercept and the six explanatory
variables, and the remaining column shows the implied R2 statistic for the unscaled model.
Bootstrapped standard errors that take into account the uncertainty in generating EV AR
are in parentheses. Panel C of the table reports the correlation ("Corr/std") matrices of both
the unscaled and scaled shocks from the second-stage VAR, with shock standard deviations
on the diagonal. Panel D reports the results of regressions forecasting the squared second-
stage residuals from the VAR with EV ARt. For readability, the estimates in the regression
forecasting rTbill,t+1 with EV ARt are multiplied by 10000. Bootstrap standard errors that
take into account the uncertainty in generating EV AR are in parentheses. The sample
period for the dependent variables is 1926:3-2011:4, 342 quarterly data points.

Panel A: Forecasting Quarterly Realized Variance (RV ARt+1)
Constant rM,t RV ARt PEt rTbill,t DEFt V St R2%
-0.020 -0.005 0.374 0.006 -0.042 0.006 0.000 37.80%
(0.009) (0.005) (0.066) (0.002) (0.057) (0.001) (0.003)
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Panel B: VAR Estimates

Second stage Constant rM,t EV ARt PEt rTbill,t DEFt V St R2%
rM,t+1 0.221 0.041 0.335 -0.042 -0.810 0.010 -0.051 3.36%

(0.113) (0.063) (2.143) (0.032) (0.736) (0.022) (0.035)
EV ARt+1 -0.016 -0.002 0.441 0.005 -0.021 0.004 0.001 60.78%

(0.007) (0.001) (0.057) (0.002) (0.046) (0.001) (0.002)
PEt+1 0.155 0.130 0.674 0.961 -0.399 -0.001 -0.024 94.29%

(0.113) (0.062) (2.112) (0.032) (0.734) (0.022) (0.035)
rTbill,t+1 0.001 0.002 -0.084 0.001 0.948 0.001 -0.001 94.07%

(0.004) (0.002) (0.075) (0.001) (0.024) (0.001) (0.001)
DEFt+1 0.194 -0.293 11.162 -0.118 4.102 0.744 0.175 88.22%

(0.309) (0.176) (5.838) (0.086) (1.925) (0.062) (0.094)
V St+1 0.147 0.069 2.913 -0.017 -0.253 -0.004 0.932 93.93%

(0.111) (0.065) (2.169) (0.031) (0.705) (0.022) (0.034)

Panel C: Correlations and Standard Deviations

Corr/std rM EV AR PE rTbill DEF V S

unscaled
rM 0.105 -0.509 0.907 -0.041 -0.482 -0.039

EV AR -0.509 0.004 -0.592 -0.163 0.688 0.106
PE 0.907 -0.592 0.099 -0.004 -0.598 -0.066
rTbill -0.041 -0.163 -0.004 0.003 -0.111 0.013
DEF -0.482 0.688 -0.598 -0.111 0.287 0.323
V S -0.039 0.106 -0.066 0.013 0.323 0.086

scaled
rM 1.138 -0.494 0.905 -0.055 -0.367 0.022

EV AR -0.494 0.044 -0.570 -0.178 0.664 0.068
PE 0.905 -0.570 1.047 -0.014 -0.479 0.005
rTbill -0.055 -0.178 -0.014 0.041 -0.160 -0.001
DEF -0.367 0.664 -0.479 -0.160 2.695 0.273
V S 0.022 0.068 0.005 -0.001 0.273 0.996

Panel D: Heteroskedastic Shocks

Squared, second-stage,
unscaled residual Constant EV ARt R2%

rM,t+1 -0.002 1.85 20.43%
(0.003) (0.283)

EV ARt+1 0.000 0.004 6.36%
(0.000) (0.001)

PEt+1 -0.004 1.89372 19.75%
(0.003) (0.289)

rTbill,t+1 0.111 0.283 -0.29%
(0.054) (4.542)

DEFt+1 -0.113 27.166 27.50%
(0.041) (3.411)

V St+1 0.004 0.472 5.57%
(0.002) (0.133)



Table 2: Cash-flow, Discount-rate, and Variance News for the Market Portfolio
The table shows the properties of cash-flow news (NCF ), discount-rate news (NDR), and
volatility news (NV ) implied by the VAR model of Table 1. The upper-left section of the
table shows the covariance matrix of the news terms. For readability, these estimates are
scaled by 100. The upper-right section shows the correlation matrix of the news terms with
standard deviations on the diagonal. The lower-left section shows the correlation of shocks to
individual state variables with the news terms. The lower-right section shows the functions
(e1′ + e1′λDR, e1′λDR, e2′λV ) that map the state-variable shocks to cash-flow, discount-
rate, and variance news. We define λDR ≡ ρΓ(I − ρΓ)−1 and λV ≡ ρ(I − ρΓ)−1, where Γ
is the estimated VAR transition matrix from Table 1 and ρ is set to 0.95 per annum. rM
is the log real return on the CRSP value-weight index. RV AR is the realized variance of
within-quarter daily simple returns on the CRSP value-weight index. PE is the log ratio
of the S&P 500’s price to the S&P 500’s ten-year moving average of earnings. rTbill is the
log three-month Treasury Bill yield. DEF is the default yield spread in percentage points,
measured as the difference between the log yield on Moody’s BAA bonds and the log yield
on Moody’s AAA bonds. V S is the small-stock value-spread, the difference in the log book-
to-market ratios of small value and small growth stocks. Bootstrap standard errors that take
into account the uncertainty in generating EV AR are in parentheses.

News cov. NCF NDR NV News corr/std NCF NDR NV

NCF 0.236 -0.018 -0.015 NCF 0.049 -0.041 -0.121
(0.087) (0.119) (0.030) (0.008) (0.225) (0.264)

NDR -0.018 0.838 -0.008 NDR -0.041 0.092 -0.034
(0.119) (0.270) (0.065) (0.225) (0.014) (0.355)

NV -0.015 -0.008 0.065 NV -0.121 -0.034 0.025
(0.030) (0.065) (0.030) (0.264) (0.355) (0.007)

Shock corr. NCF NDR NV Functions NCF NDR NV

rM shock 0.497 -0.888 -0.026 rM shock 0.908 -0.092 -0.011
(0.213) (0.045) (0.332) (0.031) (0.031) (0.015)

EV AR shock -0.040 0.564 0.660 RV AR shock -0.300 -0.300 1.280
(0.196) (0.143) (0.174) (1.134) (1.134) (0.571)

PE shock 0.158 -0.960 -0.097 PE shock -0.814 -0.814 0.187
(0.239) (0.044) (0.354) (0.167) (0.167) (0.084)

rTbill shock -0.372 -0.151 -0.034 rTbill shock -4.245 -4.245 0.867
(0.219) (0.142) (0.331) (3.635) (3.635) (1.821)

DEF shock -0.041 0.533 0.751 DEF shock 0.008 0.008 0.079
(0.188) (0.115) (0.223) (0.034) (0.034) (0.017)

V S shock -0.397 -0.165 0.567 V S shock -0.248 -0.248 0.099
(0.187) (0.141) (0.261) (0.127) (0.127) (0.064)64



Table 3: Cash-flow, Discount-rate, and Variance Betas
The table shows the estimated cash-flow (β̂CF ), discount-rate (β̂DR), and variance betas
(β̂V ) for the 25 ME- and BE/ME-sorted portfolios (Panels A and B) and six risk-sorted
portfolios (Panels C and D) for the early (1931:3-1963:2) and modern (1963:3-2011:4) sub-
samples respectively as well as for the 18 BE/ME, IVol, and β̂∆V AR-sorted portfolios in the
modern period (Panel E) and the Fama-French factors RMRF , SMB, HML, high yield
(HY RET ) and investment grade (IGRET ) bond portfolios, the five interest-rate-sorted
portfolios of Lustig, Roussanov, and Verdelhan (2011) and the S&P 100 index straddle
portfolio (STRADDLE) along with three VIX Forward positions (Panel F) over the com-
mon subperiod of 1998:1-2011:4. “Growth”denotes the lowest BE/ME, “Value”the highest
BE/ME, “Small” the lowest ME, and "Large" the highest ME stocks. b̂∆V AR and b̂rM are
past return-loadings on the weighted sum of changes in the VAR state variables, where
the weights are according to λV as estimated in Table 2, and on the market-return shock.
“Diff.”is the difference between the extreme cells. Bootstrapped standard errors [in brack-
ets] are conditional on the estimated news series. Estimates are based on quarterly data
using weighted least squares where the weights are the same as those used to estimate the
VAR.
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25 ME- and BE/ME-sorted portfolios

Panel A: Early Period (1931:3-1963:2)
β̂CF Growth 3 Value Diff
Small 0.49 [0.13] 0.44 [0.11] 0.46 [0.10] -0.04 [0.05]
3 0.32 [0.08] 0.34 [0.09] 0.47 [0.12] 0.15 [0.05]
Large 0.24 [0.07] 0.27 [0.09] 0.40 [0.29] 0.16 [0.04]
Diff -0.26 [0.07] -0.17 [0.04] -0.06 [0.03]

β̂DR Growth 3 Value Diff
Small 1.20 [0.15] 1.20 [0.17] 1.13 [0.17] -0.07 [0.07]
3 0.95 [0.13] 0.97 [0.12] 1.22 [0.16] 0.27 [0.09]
Large 0.70 [0.08] 0.80 [0.12] 0.90 [0.12] 0.20 [0.13]
Diff -0.50 [0.14] -0.40 [0.16] -0.23 [0.08]

β̂V Growth 3 Value Diff
Small -0.14 [0.05] -0.15 [0.05] -0.14 [0.04] 0.00 [0.02]
3 -0.09 [0.03] -0.09 [0.03] -0.14 [0.04] -0.05 [0.02]
Large -0.05 [0.02] -0.09 [0.04] -0.11 [0.03] -0.07 [0.03]
Diff 0.09 [0.04] 0.06 [0.02] 0.03 [0.02]

Panel B: Modern Period (1963:3-2011:4)
β̂CF Growth 3 Value Diff
Small 0.23 [0.06] 0.26 [0.05] 0.28 [0.05] 0.05 [0.04]
3 0.21 [0.05] 0.24 [0.05] 0.27 [0.05] 0.06 [0.03]
Large 0.15 [0.04] 0.18 [0.03] 0.20 [0.04] 0.05 [0.03]
Diff -0.08 [0.04] -0.08 [0.03] -0.07 [0.03]

β̂DR Growth 3 Value Diff
Small 1.30 [0.11] 0.87 [0.07] 0.86 [0.09] -0.44 [0.08]
3 1.11 [0.08] 0.73 [0.06] 0.69 [0.07] -0.42 [0.08]
Large 0.82 [0.05] 0.60 [0.05] 0.64 [0.06] -0.18 [0.06]
Diff -0.48 [0.10] -0.26 [0.06] -0.23 [0.08]

β̂V Growth 3 Value Diff
Small 0.13 [0.07] 0.05 [0.05] 0.01 [0.07] -0.13 [0.03]
3 0.14 [0.06] 0.05 [0.05] 0.04 [0.04] -0.10 [0.03]
Large 0.09 [0.05] 0.03 [0.04] 0.02 [0.04] -0.08 [0.02]
Diff -0.04 [0.03] -0.02 [0.02] 0.01 [0.03]



6 risk-sorted portfolios

Panel C: Early Period (1931:3-1963:2)
β̂CF Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.23 [0.07] 0.34 [0.09] 0.42 [0.11] 0.19 [0.04]
Hi b̂V AR 0.21 [0.06] 0.28 [0.08] 0.41 [0.11] 0.20 [0.05]
Diff -0.02 [0.02] -0.05 [0.03] -0.01 [0.02]

β̂DR Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.60 [0.06] 0.89 [0.11] 1.13 [0.13] 0.54 [0.11]
Hi b̂V AR 0.58 [0.07] 0.83 [0.10] 1.11 [0.16] 0.54 [0.13]
Diff -0.02 [0.04] -0.06 [0.08] -0.02 [0.06]

β̂V Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR -0.04 [0.02] -0.07 [0.03] -0.10 [0.04] -0.06 [0.02]
Hi b̂V AR -0.05 [0.02] -0.07 [0.03] -0.11 [0.04] -0.06 [0.03]
Diff -0.01 [0.02] 0.00 [0.02] -0.01 [0.02]

Panel D: Modern Period (1963:3-2011:4)
β̂CF Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.20 [0.04] 0.20 [0.04] 0.26 [0.06] 0.06 [0.04]
Hi b̂V AR 0.17 [0.03] 0.21 [0.04] 0.21 [0.06] 0.05 [0.05]
Diff -0.04 [0.03] 0.01 [0.02] -0.05 [0.02]

β̂DR Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.63 [0.06] 0.79 [0.06] 1.18 [0.09] 0.56 [0.08]
Hi b̂V AR 0.58 [0.06] 0.85 [0.05] 1.24 [0.09] 0.66 [0.11]
Diff -0.04 [0.09] 0.06 [0.06] 0.06 [0.05]

β̂V Lo b̂rM 2 Hi b̂rM Diff
Lo b̂V AR 0.04 [0.05] 0.06 [0.05] 0.09 [0.07] 0.05 [0.03]
Hi b̂V AR 0.06 [0.04] 0.09 [0.05] 0.12 [0.07] 0.06 [0.04]
Diff 0.02 [0.02] 0.03 [0.02] 0.03 [0.02]
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Table 4: Asset Pricing Tests
The table reports GMM estimates of the CAPM, the 2-beta ICAPM, the 3-beta volatility ICAPM, a factor model where
only the b premium is restricted, and an unrestricted factor model for the early (Panel A: 1931:3-1963:2) and modern
(Panel B: 1963:3-2011:4) subsamples. The test assets are 25 ME- and BE/ME-sorted portfolios and the T-bill, 6 risk-
sorted portfolios, 18 characteristic and risk-sorted assets, and managed versions of these portfolios, scaled by  ,
while the reference asset is the market portfolio. The 5% critical value for the test of overidentifying restrictions is 121.0
in columns 1, 2, and 3; 119.9 in column 4; and 118.8 in column 5.

Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
Panel A: Early Periodb premium (1) 0.037 0.105 0.081 0.058 0.101

Std. err. (0.016) (0.071) (0.037) (0.052) (0.067)b premium (2) 0.037 0.016 0.016 0.016 -0.016
Std. err. (0.016) 0 0 0 (0.017)b  premium (3) -0.049 -0.094 -0.197
Std. err. (0.068) (0.126) (0.142)c2 74% 78% 79% 79% 81%
J statistic 735.9 844.6 824.7 811.1 849.4
Implied  2.4 6.6 5.1 N/A N/A
Implied  N/A N/A 6.2 N/A N/Ac2: 26 unscaled char. 64% 66% 67% 68% 69%c2: 6 unscaled risk 57% 35% 53% 67% 73%c2: 18 unscaled char./risk 67% 73% 75% 75% 83%c2: 50 unscaled 66% 68% 70% 71% 74%c2: 50 scaled 67% 72% 73% 74% 77%



Parameter CAPM 2-beta ICAPM 3-beta ICAPM Constrained Unrestricted
Panel B: Modern Periodb premium (1) 0.014 0.118 0.055 0.099 0.104

Std. err. (0.010) (0.056) (0.000) (0.040) (0.030)b premium (2) 0.014 0.008 0.008 0.008 0.004
Std. err. (0.010) 0 0 0 (0.014)b  premium (3) -0.096 -0.120 -0.116
Std. err. (0.035) (0.034) (0.041)c2 -20% 25% 60% 71% 72%
J statistic 499.2 364.7 495.3 383.8 342.0
Implied  1.9 15.2 7.2 N/A N/A
Implied  N/A N/A 24.9 N/A N/Ac2: 26 unscaled char. -51% 45% 48% 74% 73%c2: 6 unscaled risk -10% 23% 49% 71% 67%c2: 18 unscaled char./risk -27% 26% 62% 71% 75%c2: 50 unscaled -31% 36% 57% 73% 75%c2: 50 scaled -16% 17% 62% 69% 69%
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Table 5: Pricing Popular Equity Strategies
The table decomposes the average quarterly returns on well-known equity strategies using the CAPM, the two-
beta ICAPM, and our three-beta ICAPM. We estimate  using a standard time-series regression. We
estimate 2− and 3− using the corresponding estimates of  from Table 4 Panel B. The sample covers
the 1963:3-2011:4 time period during which the market variance is 0.0077. The strategies include the market
(RMRF), size (SMB), value (HML), profitability (RMW), investment (CMA), momentum (UMD) , short-term
reversal (STR), and long-term reversal (LTR) factors as well as zero-cost portfolios formed from value-weight
quintiles sorted on beta (BETA), accruals (ACC), net issuance (NI), or idiosyncratic volatility (IVOL). We also
consider a dynamic portfolio that varies its exposure to the equity premium based on 


, where  is chosen so

that the resulting managed portfolio has the same unconditional volatility as  . We refer to this portfolio
as  . All return data are from Ken French’s website. We report the average absolute model ’s
for various subsets of the strategies, considering not only the raw strategies but also when the strategies are
rescaled to have the same volatility as  . As part of the comparison, we also calculate model ’s using the
constrained and unrestricted models of Table 4 Panel B as well as the three- and five-factor models of Fama and
French.

Strategies   b
b b  2− 3−   2− 3−

RMRF 1.39% 8.69% 0.78 0.19 0.07 0.60% 2.25% 1.06% -0.70% 0% -1.45% 0.44%
SMB 0.78% 5.65% 0.22 0.06 0.02 0.17% 0.67% 0.32% -0.17% 0.35% -0.07% 0.45%
HML 1.18% 5.92% -0.26 0.05 -0.10 -0.20% 0.55% 0.26% 0.94% 1.50% 0.83% 0.18%
RMW 0.83% 4.17% -0.09 -0.01 0.01 -0.07% -0.14% -0.07% -0.10% 0.99% 1.04% 1.06%
CMA 1.02% 4.21% -0.21 0.02 -0.05 -0.16% 0.22% 0.10% 0.47% 1.30% 0.96% 0.61%
UMD 2.18% 7.78% -0.14 -0.03 0.03 -0.11% -0.35% -0.16% -0.26% 2.46% 2.64% 2.71%
BETA -0.20% 10.90% -0.74 -0.08 -0.05 -0.57% -0.91% -0.43% 0.50% 1.01% 1.28% 0.30%
STR 1.58% 5.66% 0.15 0.05 -0.01 0.12% 0.55% 0.26% 0.07% 1.28% 0.91% 1.14%
LTR 0.92% 5.27% -0.09 0.05 -0.05 -0.07% 0.56% 0.26% 0.47% 0.97% 0.43% 0.26%
ACC 1.14% 4.29% -0.08 -0.03 -0.02 -0.06% -0.34% -0.16% 0.21% 1.29% 1.54% 1.15%
NI 1.19% 5.59% -0.21 -0.03 -0.02 -0.16% -0.33% -0.16% 0.21% 1.57% 1.68% 1.30%

IVOL 1.02% 11.61% -0.76 -0.07 -0.05 -0.58% -0.87% -0.41% 0.52% 2.26% 2.47% 1.50%
MANRMRF 1.48% 8.69% 0.76 0.20 0.08 0.58% 2.29% 1.08% -0.74% 0.10% -1.39% 0.56%

Average Absolute Alpha
Strategies Scaled  2− 3− 3− 3− 3 5
All N 1.16% 1.28% 0.90% 0.85% 0.80% 0.90% 0.57%
All Y 1.65% 1.69% 1.26% 1.18% 1.13% 1.23% 0.80%

3-factor model N 0.62% 0.78% 0.36% 0.25% 0.23% 0% 0%
3-factor model Y 0.91% 0.93% 0.47% 0.33% 0.34% 0% 0%
5-factor model N 0.83% 0.87% 0.55% 0.46% 0.43% 0.32% 0%
5-factor model Y 1.50% 1.39% 0.98% 0.84% 0.81% 0.67% 0%



Table 6: Pricing Popular Non-Equity Strategies
The table decomposes the average quarterly returns on well-known non-equity strategies using the CAPM, the
two-beta ICAPM, and our three-beta ICAPM. We estimate  using a standard time-series regression. We
estimate 2− and 3− using the corresponding estimates of  from Table 4 Panel B. The strategies
are a risky bond factor (HY-IG) that buys high yield bonds and shorts investment grade bonds, a carry factor
(CARRY) from the cross-section of developed-country currencies, a short position in an S&P100 index straddle
(STRADDLE), and a term bet on S&P500 synthetic variance forwards (VIXF2-VIXF0). The sample periods and
market variance (in parentheses) corresponding to these four strategies are 1983:3-2011:4 (0.0077), 1984:1-2011:4
(0.0078), 1986:1-2011:4 (0.0.0080), and 1998:1-2011:4 (0.0101). The text provides more details on the source of each
of these four non-equity strategies. We report the average absolute model ’s for various subsets of the strategies,
considering not only the raw strategies but also when the strategies are rescaled to have the same volatility as
 . As part of the comparison, we also calculate model ’s using the constrained and unrestricted models
of Table 4 Panel B as well as the three- and five-factor models of Fama and French.

Strategies   b
b b  2− 3−   2− 3−

HY-IG 0.23% 4.47% 0.25 0.01 -0.06 0.19% 0.15% 0.07% 0.61% -0.27% -0.12% -0.65%
CARRY 1.48% 5.37% 0.19 0.01 -0.07 0.15% 0.12% 0.06% 0.72% 1.11% 1.20% 0.55%
STRAD 21.66% 47.10% 1.90 0.18 -0.29 1.53% 2.19% 1.03% 2.89% 17.71% 17.94% 16.21%
VF2-VF0 26.84% 48.41% 2.74 0.24 -0.25 2.77% 3.66% 1.72% 3.20% 24.56% 20.40% 19.14%

Average Absolute Alpha
Strategies Scaled  2− 3− 3− 3− 3 5
All N 10.91% 9.92% 9.14% 8.69% 9.30% 10.73% 12.01%
All Y 2.50% 2.29% 2.15% 2.08% 2.18% 2.43% 2.53%
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Figure 1: This figure shows the results from forecasting RVAR. The top panel plots quarterly
observations of realized within-quarter daily return variance over the sample period 1926:2-
2011:4 and the expected variance implied by the model estimated in Table 1 Panel A. The
middle panel shows the full scatter plot corresponding to the regression in Table 1 Panel A.
The R2 from this regression is 38%. The bottom panel is similar to the top panel but zooms
in on forecasts from 0 to 0.02.
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Figure 2: This figure plots cash-flow news, the negative of discount-rate news, and variance
news. The series are first normalized by their standard deviations and then smoothed with a
trailing exponentially-weighted moving average where the decay parameter is set to 0.08 per
quarter, and the smoothed normalized news series is generated as MAt(N) = 0.08Nt + (1−
0.08)MAt−1(N). This decay parameter implies a half-life of two years. The sample period
is 1926:2-2011:4.
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Figure 3: We measure long-horizon realized variance (LHRV AR) as the annualized dis-

counted sum of within-quarter daily return variance, LHRV ARh =
4∗Σhj=1ρj−1RV ARt+j

Σhj=1ρ
j−1 . Each

panel of this figure plots quarterly observations of ten-year realized variance, LHRV AR40,
over the sample period 1930:1-2001:1. In Panel A, in addition to LHRV AR40, we also plot
lagged PE and DEF . In Panel B, in addition to LHRV AR40, we also plot the fitted value
from a regression forecasting LHRV AR40 with DEFO, defined as DEF orthogonalized to
demeaned PE. The appendix reports the WLS estimates of this forecasting regression.
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Figure 4: Each diagram plots sample against predicted average excess returns. Test assets in
the top row are the 25 ME- and BE/ME-sorted portfolios (asterisks), plus the t-bill return
(triangle) and in the bottom row, both unscaled and scaled by EV AR versions of the 25 ME-
and BE/ME-sorted portfolios (asterisks), six risk-sorted portfolios (circles), 18 characteristic-
and risk-sorted portfolios (crosses), and t-bill return (triangles). Predicted values are from
Table 4 for 1963:3-2011:4. From left to right, the models tested are the CAPM, the two-beta
ICAPM, and the three-beta ICAPM.
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Figure 5: This figure plots the time-series of the smoothed combined shock for the CAPM
(NCF−NDR), the two-beta ICAPM (γNCF−NDR), and the three-beta ICAPM that includes
stochastic volatility (γNCF − NDR − 1

2
ωNV ) estimated in Table 4 Panel B for the sample

period 1963:3-2011:4. For each model the shock is first normalized by its standard deviation
and then smoothed with a trailing exponentially-weighted moving average. The decay para-
meter is set to 0.08 per quarter, and the smoothed normalized shock series is generated as
MAt(SDF ) = 0.08SDFt+(1−0.08)MAt−1(SDF ). This decay parameter implies a half-life
of approximately two years.
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