
Online Appendix to

Portfolio Choice with Sustainable Spending:

A Model of Reaching for Yield

John Y. Campbell and Roman Sigalov1

1 First draft: January 2020. This version: December 2020. Campbell: Department of Economics, Littauer Center,
Harvard University, Cambridge MA 02138, USA, and NBER. Email: john campbell@harvard.edu. Sigalov: Depart-
ment of Economics, Littauer Center, Harvard University, Cambridge MA 02138, USA. Email: rsigalov@g.harvard.edu.
This paper originated in a May 2019 presentation by Campbell to the NBER Conference on Long-Term Asset Man-
agement, available online at https://scholar.harvard.edu/files/campbell/files/nber ltamkeynoteslides.pdf. We are
grateful to seminar participants at Harvard Business School, the Virtual Finance Workshop, and UNC for comments
and to Malcolm Baker, Eduardo Davila, Xavier Gabaix, Robin Greenwood, Sam Hanson, Gur Huberman, Yueran
Ma, Ian Martin, Egil Matsen, Carolin Pflueger, Tarun Ramadorai, Adriano Rampini, Rob Sitkoff, Jeremy Stein,
Larry Summers, Luis Viceira, Wei Xiong, and Mao Ye for helpful conversations and correspondence on this topic.



This online appendix contains notes on data collection, proofs of propositions from the main text
as well as additional details on derivations omitted in main text. The order and section numbering
follow the main text.

Contents

1 Data Sources 2

1.1 Expected Returns and Risks of Portfolios . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Are Institutions’ Asset Allocations Consistent with the Merton Rule? . . . . . . . . 3

2 Comparative Statics with Power Utility 5

2.1 The Standard Unconstrained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 An Arithmetic Sustainable Spending Constraint: Proof of Proposition 1 . . . . . . . 7

2.3 A Geometric Sustainable Spending Constraint: Proof of Proposition 2 . . . . . . . . 10

2.4 The Welfare Cost of Sustainable Spending . . . . . . . . . . . . . . . . . . . . . . . 15

3 Extensions of the Static Model 17

3.1 A One-Sided Sustainable Spending Constraint . . . . . . . . . . . . . . . . . . . . . 17

3.2 Donations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 A Nominal Spending Constraint with Inflation . . . . . . . . . . . . . . . . . . . . . 19

3.4 Epstein-Zin Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.1 Arithmetic Average Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2 Geometric Average Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Equilibrium in the Risky Asset Market . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 A Dynamic Model 30

1



1 Data Sources

To construct a 20-year constant maturity TIPS yield, we use TIPS yields from FRED. First, we
linearly interpolate TIPS yields of the nearest maturities for each date available and then aggregate
to the monthly level by taking an average. We construct the final yearly series shown in the upper
panel of Figure 1 by taking the June observation for each year.

We obtain data on the asset allocation of endowments and sovereign wealth funds from their
annual reports. We use the actual asset allocation from the highlights section of the Yale Endowment
Annual Report (link), the target asset allocation from the “Report from Stanford Management
Company” section of the Stanford Treasurer Annual Reports (link), the actual asset allocation of the
General Endowment Pool of the University of California System (link), the actual asset allocation
from the University of Kansas System annual reports (link), the actual asset allocation from annual
reports of the Alaska Permanent Fund (link), the actual asset allocation from annual reports of the
Singapore GIC (link), the actual asset allocation from annual reports of the Australian Future Fund
(link), and the target asset allocation from annual reports of the Norwegian Oil Fund (link). For the
value-weighted asset allocation of US endowments we use public tables from NACUBO’s study of
endowments (link). We construct the risky portfolio share as 100% less allocations to fixed-income
securities and cash.

1.1 Expected Returns and Risks of Portfolios

Figure 1 in the paper shows how the risky share of endowments and sovereign funds evolved over
time. Here we use more detailed information on portfolio composition, along with assumptions
about the expected returns and covariances for different asset classes, to calculate the expected
excess returns, risk, and Sharpe ratios of these portfolios.

Perold and Stafford (2010) and Campbell (2018, section 3.1.3) obtain 2004 forecasts from in-
ternal documents of Harvard Management Company (HMC). In particular, they contain forecasts
of expected returns, standard deviations and correlations of returns for 13 asset classes: domestic
equity, foreign equity, emerging markets equity, private equity, absolute return, high yield, com-
modities, natural resources, real estate, domestic bonds, foreign bonds, inflation indexed bonds and
cash. We use these data as follows.

First, we use the expected return on cash as the riskfree return and calculate the excess return
for each asset class by subtracting the expected return for cash. Second, we match institutions’
reported asset classes to HMC’s asset classes. While in most cases this is straightforward, not all
institutions report their portfolio weights with the same level of detail as HMC. For example, an
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institution might report an overall allocation to bonds or equities without distinguishing domestic
and foreign bonds or equities. In such cases, we assume that all bonds or equities are domestic. The
results are not sensitive to the exact matching of asset classes. Finally, we use each institution’s
reported portfolio weights to calculate the time series of the institution’s expected excess return,
standard deviation, and Sharpe ratio using HMC’s forecasts.

Figure A.1 presents the resulting time series. The expected excess returns plotted in the top
panel have the same trends as the risky shares plotted in Figure 1 in the paper. The standard
deviations plotted in the middle panel decrease for GIC, are flat for the UC system, but increase
for all other institutions. The differences between the expected excess returns and the standard
deviations are easiest to see through the Sharpe ratios presented in the bottom panel. For example,
the NACUBO series features a large increase in Sharpe ratio in the first half of the sample and
a subsequent decline. There has been a large increase in the Sharpe ratio for the University of
California system (UC). Stanford’s target asset allocation features a declining Sharpe ratio in the
later part of the sample.

1.2 Are Institutions’ Asset Allocations Consistent with the Merton
Rule?

The standard Merton rule of portfolio choice prescribes a risky share α = µ/(γσ2). Rearranging,
we get

ασ︸︷︷︸
Portfolio Risk

=
1

γ

µ

σ︸︷︷︸
Portfolio Sharpe Ratio

.

Taking logs and differences, we see that the change in the log risk of the portfolio should equal the
change in the log Sharpe ratio if the investor follows the Merton rule:

∆ log (Portfolio Risk) = ∆ log (Portfolio SR) . (A.1)

Using our data on institutions’ portfolios, and the HMC risk and return assumptions, we can
calculate the left- and right-hand sides of equation (A.1), where the change is calculated by tak-
ing the difference between the last and first observation for each portfolio. We compare the two
quantities in Figure A.2. For NACUBO, the changes in log risk and the log Sharpe ratio are very
close to one another. However, for the majority of institutions including Stanford, Yale, the Alaska
Permanent Fund, the Norway Petroleum Fund and the Australian Future Fund, the increase in
portfolio risk significantly exceeds the increase in the Sharpe ratio. This violates the Merton rule
and is suggestive evidence of reaching for yield.
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Figure A.1: Endowments and Sovereign Wealth Funds Portfolio Characteristics
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Figure A.2: Change in Risk and Sharpe Ratio of Institutions’ Portfolios

2 Comparative Statics with Power Utility

2.1 The Standard Unconstrained Model

Here we show how to derive a closed-form solution for the agent’s lifetime utility for given values
of the consumption-wealth ratio θ and the risky share α. Given a process for consumption

dct
ct

= (rf + αµ)dt+ ασdZt − θdt,

we can write the process for log consumption as

d log ct =

(
rf + αµ− 1

2
α2σ2

)
dt+ ασdZt − θdt.

Iterating this expression forward we get

log ct = log c0 +

∫ t

0

d log cs = log c0 +

(
rf + αµ− 1

2
α2σ2 − θ

)
t+ ασZt.
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The expectation E0c
1−γ
t is

E0c
1−γ
t = E0e

(1−γ) log ct

= e(1−γ)E0[log ct]+
1
2
(1−γ)2V ar0(log ct)

= e(1−γ) log c0+(1−γ)(rf+αµ− 1
2
α2σ2−θ)t+ 1

2
(1−γ)2α2σ2t

= c1−γ0 e(1−γ)(rf+αµ−
1
2
α2σ2−θ)t+ 1

2
(1−γ)2α2σ2t

Lifetime utility is then

v = E0

∫ ∞
0

e−ρt
c1−γt

1− γ
dt

=
1

1− γ

∫ ∞
0

e−ρtE0

[
c1−γt

]
dt

=
c1−γ0

1− γ

∫ ∞
0

e−ρte(1−γ)(rf+αµ−
1
2
α2σ2−θ)t+ 1

2
(1−γ)2α2σ2tdt

=
c1−γ0

1− γ

∫ ∞
0

e−(ρ−(1−γ)(rf+αµ− 1
2
α2σ2−θ)− 1

2
(1−γ)2α2σ2)tdt

=
c1−γ0

1− γ

(
− e−(ρ−(1−γ)(rf+αµ− 1

2
α2σ2−θ)− 1

2
(1−γ)2α2σ2)t

ρ− (1− γ)
(
rf + αµ− 1

2
α2σ2 − θ

)
− 1

2
(1− γ)2α2σ2

)∣∣∣∣∣
∞

t=0

=
w1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ− 1

2
α2σ2 − θ

)
− 1

2
(1− γ)2α2σ2

.

(A.2)

The first-order condition for α is

−(1− γ)(µ− ασ2)− (1− γ)2ασ2 = 0,

−µ+ ασ2 − ασ2 + γασ2 = 0⇒ α =
µ

γσ2
.

The first-order condition for θ is

(1− γ)θ−γ
(
ρ− (1− γ)

(
rf + αµ− 1

2
α2σ2 − θ

)
− 1

2
(1− γ)2α2σ2

)
− (1− γ)θ1−γ

(denominator)2
= 0.

Substituting in the optimal portfolio rule α = µ/γσ2 and cancelling (1− γ)θ−γ:(
ρ− (1− γ)

(
rf +

µ2

γσ2
− 1

2

µ2

γ2σ2
− θ
)
− 1

2
(1− γ)2

µ2

γ2σ2

)
− θ = 0,
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θ =
ρ

γ
+
γ − 1

γ

(
r +

1

2γ

(µ
σ

)2)
.

Substituting α and θ into the law of motion for consumption (and wealth) we get

dct
ct

=
dwt
wt

=

(
rf +

µ2

γσ2
− ρ

γ
− γ − 1

γ

(
r +

1

2γ

(µ
σ

)2))
+

µ

γσ
dZt

=

(
rf − ρ
γ

+
1 + γ

2γ2

(µ
σ

)2)
dt+

1

γ

(µ
σ

)
dZt

2.2 An Arithmetic Sustainable Spending Constraint: Proof of Propo-
sition 1

To prove proposition 1 we derive a closed form expression for the risky share α. The first-order
condition of the problem with the arithmetic constraint,

max
α

v = max
α

w1−γ
0

1− γ
(rf + αµ)1−γ

ρ− 1
2
γ(γ − 1)α2σ2

,

is
(1− γ)(rf + αµ)−γµ

(
ρ− 1

2
γ(γ − 1)α2σ2

)
+ (rf + αµ)1−γγ(γ − 1)ασ2

(denominator)2
= 0.

We cancel (1− γ)(rf + αµ)−γ to obtain the following quadratic equation:

µ

(
ρ− 1

2
γ(γ − 1)α2σ2

)
− (rf + αµ)γασ2 = 0,

−α2 · 1

2
γ(γ + 1)µσ2 − α · rfγσ2 + µρ = 0.

Two solutions for this quadratic equation are

α =
−rfγσ2 ±

√
(rfγσ2)2 + 41

2
γ(γ + 1)µ2σ2ρ

γ(γ + 1)µσ2
,

α =
−rf ±

√
(rf )2 + 2ρ (γ+1)

γ

(
µ
σ

)2
ρ

(γ + 1)µ
.

We are interested in the solution where α > 0 so that the second-order condition is satisfied.
Therefore, we take the largest solution with the positive sign:

α =
−rf +

√
(rf )2 + 2ρ (γ+1)

γ

(
µ
σ

)2
(γ + 1)µ

.
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Effect of the rate of time preference We see that K is increasing in ρ so that α will be
increasing in ρ :

dα

dρ
> 0.

This means that a more impatient investor has a more aggressive asset allocation.

Effect of the riskfree rate We can also see the effect of the riskfree rate on asset allocation
using the solution above. This is equivalent to considering the derivative of

−rf +
√
r2f +X

with respect to rf where X is a constant. Let’s take that derivative and compare it:

−1 +
rf√
r2f +X

vs. 0,

rf√
r2f +X

vs. 1.

We can see that the left-hand side is smaller than one meaning that the derivative of α w.r.t. rf is
negative.

Taking the second derivative we can see that the relationship between α and rf is convex:√
r2f +X − r2f√

r2f+X

r2f +X
=

(r2f +X)− r2f
(r2f +X)3/2

> 0

Effect of the risk premium Now we consider the effect of the risk premium on the risky share.
We use the first-order condition and implicit function theorem to write

f(α, µ) ≡ α2 · µ(1 + γ)γσ2 + α · 2rfγσ2 − 2ρµ = 0.

dα

dµ
= −∂f/∂µ

∂f/∂α
= − α2(1 + γ)γσ2 − 2ρ

2αµ(1 + γ)γσ2 + 2rγσ2
.

The first-order condition allows us to sign the numerator:

µ(α2 · µ(1 + γ)γσ2 − 2ρ) = −α · 2rfγσ2

8



Under µ > 0 we have α > 0 and, therefore, the numerator is positively proportional to −rf . We
use the notation ∝ to denote this positive proportionality. Now we work with the denominator

∂f

∂α
= 2αµ(1 + γ)γσ2 + 2rfγσ

2

∝ αµ(1 + γ) + rf

[Use solution for α] =
−rf +

√
K

µ(1 + γ)
µ(1 + γ) + rf

=
√
K > 0

Combining both results we get our comparative static:

dα

dµ
∝ rf ,

where as already noted we use ∝ to denote positive proportionality.
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2.3 A Geometric Sustainable Spending Constraint: Proof of Proposi-
tion 2

The first-order condition for the problem with a geometric constraint,

max
α

v = max
α

w1−γ
0

1− γ

(
rf + αµ− 1

2
α2σ2

)1−γ
ρ− 1

2
(1− γ)2α2σ2

, (A.3)

is

(1− γ)
(
rf + αµ− 1

2
α2σ2

)−γ
(µ− ασ2)

(
ρ− 1

2
(1− γ)2α2σ2

)
+ (1− γ)2ασ2

(
rf + αµ− 1

2
α2σ2

)1−γ
(denominator)2

= 0.

We cancel (1− γ)
(
rf + αµ− 1

2
α2σ2

)−γ
to get

(µ− ασ2)

(
ρ− 1

2
(1− γ)2α2σ2

)
+ (1− γ)ασ2

(
rf + αµ− 1

2
α2σ2

)
= 0.

Note that for γ = 1 we recover the growth optimal asset allocation α = µ/σ2. We next consider
the case when γ > 1 and return to γ < 1 later.

For certain parts of the derivations it will be easier to work with a modified version of the
first-order condition. We divide through by (1− γ)2ασ2, rearrange and define

h ≡
(
rf + αµ− 1

2
α2σ2

)
1− γ

− 1

2
α(µ− ασ2) + ρ

(µ− ασ2)

(1− γ)2ασ2
. (A.4)

The first order condition is then h = 0.

We now characterize α using the implicit function theorem. It says that

dα

dβ
= −∂h/∂β

∂h/∂α
,

where β is a variable of interest like the riskfree rate.

Since all comparative statics depend on ∂h/∂α we sign this first.

∂h

∂α
=

µ

1− γ
− ασ2

1− γ
− 1

2
(µ− ασ2)− 1

2
α(−σ2)− ρµ

(1− γ)2α2σ2

=
1

1− γ
(µ− ασ2)− 1

2
(µ− ασ2) +

1

2
ασ2 − ρµ

(1− γ)2α2σ2

=

(
1

1− γ
− 1

2

)
(µ− ασ2) +

1

2
ασ2 − ρµ

(1− γ)2α2σ2

=
1 + γ

2(1− γ)
(µ− ασ2) +

1

2
ασ2 − ρµ

(1− γ)2α2σ2
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To proceed, we go back to equation (A.4) and note that(
rf + αµ− 1

2
α2σ2

)
1− γ︸ ︷︷ ︸

<0 for γ > 1

−1

2
α(µ− ασ2) + ρ

(µ− ασ2)

(1− γ)2ασ2
= 0.

Therefore, we should have

−1

2
α(µ− ασ2) + ρ

(µ− ασ2)

(1− γ)2ασ2
> 0,

(µ− ασ2)

(
ρ

(1− γ)2ασ2
− 1

2
α

)
> 0,

(µ− ασ2)︸ ︷︷ ︸
>0 for γ > 1 from eq. (1)

1

(1− γ)ασ2︸ ︷︷ ︸
<0 for γ > 1

(
ρ

1

1− γ
− 1

2
(1− γ)α2σ2

)
> 0,

=⇒ ρ
1

1− γ
− 1

2
(1− γ)α2σ2 < 0 =⇒ 1

2
<

ρ

(1− γ)2α2σ2
.

We multiply both sides by −µ to finally get

− ρ

(1− γ)2α2σ2
< −1

2
µ

and use this for our comparative static

∂h

∂α
<

1 + γ

2(1− γ)
(µ− ασ2) +

1

2
ασ2 − 1

2
µ

=
1 + γ

2(1− γ)
(µ− ασ2)− 1

2
(µ− ασ2)

=

(
1 + γ

2(1− γ)
− 1

2

)
(µ− ασ2)

=
γ

1− γ︸ ︷︷ ︸
<0

(µ− ασ2)︸ ︷︷ ︸
>0

< 0

=⇒ ∂h

∂α
< 0

(A.5)

Thus we have evaluated the denominator of the comparative static and can simplify it to

dα

dβ
∝ ∂h

∂β
.
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Riskfree rate From equation (A.4) ∂h/∂rf < 0, implying that

dα

drf
< 0.

The risky share α decreases in the riskfree rate rf .

Convexity in the riskfree rate We next prove that α(rf ) is a convex function. To do this we
differentiate h from equation (A.4) w.r.t. rf twice to get

0 = h(α(rf ), rf )

0 =

(
∂2h

∂α2

dα

drf
+

∂2h

∂rf∂α

)
dα

drf
+
∂h

∂α

d2α

dr2f
+

∂2h

∂rf∂α

dα

rf
+
∂2h

∂r2f

From equation (A.4) we know that ∂h
∂rf

= 1
1−γ , therefore, ∂2h

∂rf∂α
= ∂2h

∂α∂rf
= ∂2h

∂r2f
= 0. We get

0 =
∂2h

∂α2

(
dα

drf

)2

+
∂h

∂α

d2α

dr2f
,

d2α

dr2f
= −

∂2h
∂α2

(
dα
drf

)2
∂h
∂α

.

We already signed ∂h
∂α
< 0. Hence,

d2α

dr2f
∝ ∂2h

∂α2
= − 1 + γ

2(1− γ)
σ2 +

σ2

2
+ 2

ρµ

(1− γ)2α3σ2
> 0,

since γ > 1 and α > 0.

Rate of time preference From equation (A.4) ∂h/∂ρ < 0, implying that

dα

dρ
> 0.

The risky share α increases in the discount rate ρ.
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Risk premium First we find a value of the riskfree rate r∗f such that the risky share does not
depend on the risk premium. Using equation (A.4) once again and collecting the terms with µ,

h(α, µ) =
rf

1− γ
+ µ

(
α

1− γ
− α

2
+

ρ

(1− γ)2ασ2

)
− 1

2

α2σ2

1− γ
+

1

2
α2σ2 − ρ

(1− γ)2
= 0.

If the optimal α does not depend on µ, then the expression multiplying µ should equal zero.
This gives us a condition for the risky share,

α

1− γ
− α

2
+

ρ

(1− γ)2ασ2
= 0,

α2 1 + γ

2(1− γ)
+

ρ

(1− γ)2σ2
= 0,

α = α∗ ≡

√
2ρ

(γ2 − 1)σ2
,

where we pick a positive solution.

Substituting this into the first-order condition, we can derive the expression for the riskfree rate
that makes α indifferent to µ:

rf
1− γ

− 1

2

α2σ2

1− γ
+

1

2
α2σ2 − ρ

(1− γ)2
= 0,

rf −
1

2
α2σ2 +

1

2
α2σ2(1− γ)− ρ

1− γ
= 0,

rf − γ
1

2
α2σ2 +

ρ

γ − 1
= 0,

rf − γ
ρ

(γ2 − 1)
+

ρ

γ − 1
= 0,

rf =
γρ

(γ2 − 1)
− ρ

γ − 1
= 0,

rf =
γρ− ρ(γ + 1),

(γ2 − 1)

rf = r∗f ≡ −
ρ

γ2 − 1
< 0.

Note that for γ > 1, r∗f < 0.
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Figure A.3: Optimal Risky Share α for γ < 1

We verify that the comparison of rf with r∗f determines whether α increases or decreases with
µ. Using the implicit function theorem we have

dα

dµ
= −∂h/∂µ

∂h/∂α
.

From previous derivations we know that ∂h/∂α < 0. Therefore

dα

dµ
∝ ∂h

∂µ
=

α

1− γ
− α

2
+

ρ

(1− γ)2ασ2

= α
1 + γ

2(1− γ)
+

ρ

(1− γ)2ασ2

∝ −α2 1 + γ

2(γ − 1)
+

ρ

(γ − 1)2σ2
=

{
> 0 for α > α∗

< 0 for α < α∗

where α∗ is defined above. Since α decreases in rf , rf > r∗f implies that α < α∗. In this region
∂h
∂µ
> 0 =⇒ dα

dµ
> 0: the optimal risky share increases in the risk premium. When α > α∗, which

happens when rf < r∗f , we have that ∂h
∂µ
< 0 =⇒ dα

dµ
< 0: the optimal risky share decreases in the

risk premium.

Proofs for γ < 1. Figure 1 from the main text presents the optimal risky share as a function of
the risk free rate rf for different values of risk premium µ. Figure A.3 presents an analogous figure
for the case when γ < 1.
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First consider equation (A.4). When γ < 1, α and µ−ασ2 should be of opposite signs. Therefore,
when α > 0 (a sufficient second order condition) we have µ − ασ2 < 0. Using equation (A.4) we
can sign (

rf + αµ− 1
2
α2σ2

)
1− γ︸ ︷︷ ︸
>0

−1

2
α(µ− ασ2) + ρ

(µ− ασ2)

(1− γ)2ασ2
= 0

⇒
(
−1

2
α + ρ

1

(1− γ)2ασ2

)
(µ− ασ2)︸ ︷︷ ︸

<0

< 0⇒ ρ >
1

2
(1− γ)2α2σ2

which is exactly the same condition that we derived for γ > 1. Therefore, we can proceed with
signing ∂h

∂α
in a similar way as we did for the case when γ > 1 to obtain

∂h

∂α
<

γ

1− γ︸ ︷︷ ︸
>0

(µ− ασ2)︸ ︷︷ ︸
<0

< 0

so that a comparative static w.r.t. any parameter β is dα
dβ
∝ ∂h

∂β
. We get

dα

drf
∝ ∂h

∂rf
=

1

1− γ
> 0,

dα

dρ
∝ ∂h

∂ρ
=

µ− ασ2

(1− γ)2ασ2
< 0,

dα

dµ
∝ ∂h

∂µ
=

α

1− γ
− 1

2
α +

ρ

(1− γ)2ασ2
=

1 + γ

2(1− γ)
α︸ ︷︷ ︸

>0

+
ρ

(1− γ)2ασ2︸ ︷︷ ︸
>0

> 0.

We see that the effects of rf and ρ are reversed, so that a lower riskfree rate and a higher rate of
time preference lead to a lower risky share. The effect of the risk premium is now positive for all
levels of the riskfree rate.

2.4 The Welfare Cost of Sustainable Spending

We define lifetime value as a function of arbitrary risky share α, consumption wealth ratio θ, risk
free rate rf and initial wealth w0 as in equation (A.2):

v(α, θ, w0) ≡
w1−γ

0

1− γ
θ1−γ

ρ− (1− γ)
(
rf + αµ− 1

2
α2σ2 − θ

)
− 1

2
(1− γ)2α2σ2

.
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In line with the main text, the welfare loss from the sustainable spending constraint is λ that
solves

v(αUC , θUC , (1− λ)w0) = v(αC , θC , w0)

where UC’s denote the unconstrained (Merton) parameters and C’s denote constrained parameters.
We can then explicitly solve for λ as a function of (αUC , θUC , αC , θC). For arithmetic constraint
we have closed form expressions for αC and θC , for geometric constraint we calculate αC and θC

numerically.

Welfare loss with Merton portfolio rule If the agent in addition is constrained to have a
Merton portfolio choice rule α = αUC = µ

γσ2 , his consumption to wealth ratio is θ(αUC) = rf +αUCµ

under arithmetic constraint and θ(αUC) = rf +αUCµ− 1
2
(αUC)2σ2 under geometric constraint. The

welfare loss is defined as λ that solves

v(αUC , θUC , (1− λ)w0) = v(αUC , θ(αUC), w0)

As previously, we can solve for λ in closed form
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3 Extensions of the Static Model

3.1 A One-Sided Sustainable Spending Constraint

We derive the level of the interest rate that makes the constraint non-binding in the sense that
the constrained agent behaves as if he is unconstrained and has the same portfolio allocation and
consumption-wealth ratio.

Arithmetic average model Consider an arithmetic average model where we have a closed-form
solution. Equating the risky share for the arithmetic model and the Merton portfolio rule we get a
condition

−rf +
√
r2f + 2ρ1+γ

γ

(
µ
σ

)2
µ(1 + γ)

=
µ

γσ2
,

that simplifies to

rf = ρ− 1 + γ

2γ

(µ
σ

)2
. (A.6)

Geometric average model For the geometric average model, consider equation (A.4) that im-
plicitly defines the risky share α and substitute α = µ/γσ2 to get a condition(

rf +
µ

γσ2
µ− 1

2γ2
µ2

σ2

)
− ρ µ− µ/γ

(γ − 1)µ/γ
− 1

2γ

µ

σ2

(
µ− µ

γ

)
(1− γ) = 0,

that simplifies to

rf = ρ− 1

2

(µ
σ

)2
(A.7)

As we discuss in the main text, under our baseline parameter assumptions this level of the riskfree
rate is close to 2%.

3.2 Donations

Arithmetic average model In the presence of donations, the budget constraint and the arith-
metic consumption rule become

dwt = wtdrp,t + wt(gu + ge)− ctdt

17



ctdt = wt(Etdrp,t + gu) = wt(rf + gu + αµ)dt

We substitute the consumption rule into the budget constraint to obtain

dwt = wt(rf + αµ) + wtασdZt + wt(gu + ge)− wt(rf + gu + αµ)dt

= wtgedt+ wtασdZt

The process for log consumption coincides with the process for log wealth

d log(wt) = d log(ct) =

(
ge −

1

2
α2σ2

)
dt+ ασdZt

such that the portfolio constraint and the iso-value curves from the mean-standard deviation analysis
can be written as

c0 = rf + gu +
µ

σ
σc

c0 =

[(
ρ+ (γ − 1)ge − γ(γ − 1)

σ2
c

2

)
(1− γ)v

] 1
1−γ

We see that current-use gifts are equivalent to increasing the riskfree rate and therefore reduce
risktaking. On the other hand, endowment gifts are equivalent to increasing the rate of time
preference and therefore increase risktaking.

Geometric average model In the presence of gifts, the budget constraint and the geometric
consumption rule become

dwt = wtdrp,t + wt(gu + ge)− ctdt,

ctdt = wt

(
Etdrp,t + gu −

1

2
α2σ2dt

)
= wt

(
rf + gu + αµ− 1

2
α2σ2

)
dt.

We substitute the consumption rule into the budget constraint to obtain

dwt = wt(rf + αµ) + wtασdZt + wt(gu + ge)− wt
(
rf + gu + αµ− 1

2
α2σ2

)
dt

= wt

(
ge +

1

2
α2σ2

)
dt+ wtασdZt

The process for log consumption coincides with the process for log wealth

d log(wt) = d log(ct) = gedt+ ασdZt

such that the portfolio constraint and the iso-value curves from the mean-standard deviation analysis
can be written as

c0 = rf + gu +
µ

σ
σc

c0 =

[(
ρ+ (γ − 1)ge − (γ − 1)2

σ2
c

2

)
(1− γ)v

] 1
1−γ
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The effects of gifts are exactly the same as in the arithmetic average model.

3.3 A Nominal Spending Constraint with Inflation

Consider a price level pt following dpt = ptπdt where π is inflation rate. The nominal rate becomes
r$f = rf + π and the nominal return on the risky asset dr$t = (rf + π + µ)dt+ σdZt.

Arithmetic average model Suppose that the investor has a nominal sustainable spending con-
straint

c$tdt = w$
tE[dr$p,t]

where c$t = ctpt and w$
t = wtpt so that

ctdt = wtE[dr$p,t] = wt(r
$
f + αµ)dt

The law of motion for nominal wealth is then

dw$
t

w$
t

= αdr$t + (1− α)r$fdt−
c$t
w$
t

dt

= α(r$f + µ)dt+ ασdZt + (1− α)r$fdt− E[dr$p,t]

= ασdZt

This implies that real wealth follows

dwt
wt

=
dw$

t

w$
t

− πdt = −πdt+ ασdZt

Log consumption then follows

d log(ct) = d log(wt) + d log(E[dr$p,t])

=

(
−π − α2σ2

2

)
︸ ︷︷ ︸

µc

dt+ ασ︸︷︷︸
σc

dZt

We can now rewrite the portfolio constraint and iso-value curves as

c0 = rf + π +
µ

σ
σc

c0 =

[(
ρ− (γ − 1)π − γ(γ − 1)

σ2
c

2

)
(1− γ)v

] 1
1−γ

This shows that a nominal spending rule with positive inflation acts as a higher riskfree rate and
a lower rate of time preference. Both reduce risktaking so that inflation also reduces risktaking.
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Geometric average model Now the spending rule is

c$tdt = w$
tE[d log V $

t ],

where V $
t is defined as the solution to

dV $
t

V $
t

= (r$f + αµ)dt+ ασdZt,

so that

c$tdt = w$
t

(
r$f + αµ− 1

2
α2σ2

)
dt.

The law of motion for nominal wealth is

dw$
t

w$
t

= αdr$t + (1− α)r$fdt−
c$t
w$
t

dt

= (r$f + µ)dt+ ασdZt + (1− α)r$fdt−
(
r$f + αµ− 1

2
α2σ2

)
dt

=
1

2
α2σ2dt+ ασdZt

This implies the following process for log consumption

d log(ct) = d log(wt)

= −π︸︷︷︸
µc

dt+ ασ︸︷︷︸
σc

dZt

We can now rewrite the portfolio constraint and iso-value curves as

c0 = rf + π +
µ

σ
σc −

1

2
α2σ2

c0 =

[(
ρ− (γ − 1)π − (γ − 1)2

σ2
c

2

)
(1− γ)v

] 1
1−γ

Inflation enters in the same way as it did for the arithmetric average model.
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3.4 Epstein-Zin Preferences

In this section we show how to extend the model with a sustainably spending agent to Epstein-Zin
utility. Most importantly, we show that all results derived for power utility still hold regardless of
the Elasticity of Intertemporal Substitution ψ.

Lifetime value Vt for the class of recursive preferences is defined as the solution to

Vt = Et

∫ T

t

f(cs, Vs)ds

where f(·, ·) is the aggregator function. If wealth follows

dwt = µ(wt)dt+ σ(wt)dZt,

the HJB equation is

0 = max
α,c

f(c, V ) +
∂V

∂W
· µ(wt) +

1

2

∂2V

∂W 2
· σ(wt)

2 (A.8)

Epstein-Zin aggregator is defined as

f(c, V ) =
1

1− ψ−1

[
ρc1−ψ

−1

((1− γ)V )
γ−ψ−1

1−γ

− ρ(1− γ)V

]
(A.9)

3.4.1 Arithmetic Average Model

We now proceed to solving for the risky share for an agent with Epstein-Zin utility and an arithmetic
sustainable spending constraint. Our approach will differ from the case of power utility. First, we
conjecture a value function V (w) = Aw1−γ

1−γ . Second, we use the FOC to express A as a function of
all other variables. Third, substitute A back into the HJB equation to solve for α.

Under the arithmetic sustainable spending constraint consumption is c = w(rf +αµ) and wealth
follows

dwt = wtασdZt ⇒ µ(wt) = 0, σ(wt) = wtασ.

Substituting c, µ(wt) and σ(wt) along with our guess for V into the HJB equation we get

0 = max
α

{
1

1− ψ−1

[
ρ(w(rf + αµ))1−ψ

−1

(Aw1−γ)
γ−ψ−1

1−γ

− ρAw1−γ

]
− 1

2
γAw1−γα2σ2

}
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we can factor Aw1−γ out of the maximization problem

0 = Aw1−γ max
α

{
1

1− ψ−1

[
ρ(rf + αµ)1−ψ

−1

A
1−ψ−1

1−γ

− ρ

]
− γ 1

2
α2σ2

}
.

Next, we use the first-order condition for α to express 1/A
1−ψ−1

1−γ as a funcion of other parameters

ρ
(rf + αµ)−ψ

−1
µ

A
1−ψ−1

1−γ

− γασ2 = 0 =⇒ 1

A
1−ψ−1

1−γ

=
γασ2

ρ(rf + αµ)−ψ−1µ
,

and substitute it back into the maximized HJB

0 =
1

1− ψ−1

[
(rf + αµ)γασ2

µ
− ρ
]
− γ 1

2
α2σ2.

Rearrange to get a quadratic equation in α

γσ2 1 + ψ−1

2(1− ψ−1)
α2 +

γσ2rf
(1− ψ−1)µ

α− ρ

1− ψ−1
= 0

∣∣∣∣ · (1− ψ−1)µ
γσ2

,

µ(1 + ψ−1)

2
α2 + rfα−

ρµ

γσ2
= 0,

That can be solved explicitly as

α =
−rf +

√
L

µ(1 + ψ−1)
, L = r2f + 2ρ

1 + ψ−1

γ

(µ
σ

)2
where we chose a positive solution for α. First note that when γ = ψ−1 this solution coincides
with the risky share for the power utility agent. Next, note that rf , ρ, µ and σ enter in exactly the
same way as for the solution to the power utility problem. Therefore, they have the same effect
on the risky share. Using this closed form expression, one can show that the optimal risky share is
increasing in ψ and limψ→0 α = 0.

3.4.2 Geometric Average Model

Next we derive comparative statics for an agent with Epstein-Zin utility and a geometric sustainable
spending constraint. Similarly to the analysis of a power utility agent we are not able to derive a
closed form expression for the risky share. However, we will be able to characterize the solution using
two equations: (1) HJB equation and (2) FOC for α. We make the same guess that V (w) = Aw1−γ

1−γ
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where A is an unknown constant, different from before. Under the geometric sustainable spending
constraint consumption is ct = wt

(
rf + αµ+ 1

2
α2σ2

)
and wealth follows

dwt =
1

2
wtασdt+ wtασdZt ⇒ µ(wt) =

1

2
wtασ, σ(wt) = wtασ.

Substituting c, µ(wt) and σ(wt) along with our guess for V into the HJB equation we get

0 = Aw1−γ max
α

{
1

1− ψ−1

[
ρ
(
rf + αµ− 1

2
α2σ2

)1−ψ−1

A
1−ψ−1

1−γ

− ρ

]
+

1

2
(1− γ)α2σ2

}

Before going further consider a limiting case when ψ → 0⇒ ψ−1 →∞. Then

1

1− ψ−1
→ 0,

(
rf + αµ− 1

2
α2σ2

)1−ψ−1

→ 0, A
1−ψ−1

1−γ →∞

Therefore, the whole first term goes to zero leaving us with

0 = Aw1−γ max
α

{
−1

2
(γ − 1)α2σ2

}
which result in the optimal portfolio rule α = 0. Notice, however, that since consumption should
be positive the limiting case will only have a solution when rf > 0.

Now return to the HJB equation. The first-order condition is

ρ

(
rf + αµ− 1

2
α2σ2

)−ψ−1

(µ− ασ2) + A
1−ψ−1

1−γ (1− γ)ασ2 = 0 (A.10)

This allows to express A
1−ψ−1

1−γ and substitute it back into the HJB equation to get

1

1− ψ−1

[(
rf + αµ− 1

2
α2σ2

)
(γ − 1)ασ2

µ− ασ2
− ρ

]
− 1

2
(γ − 1)α2σ2 = 0

We rearrange it and define

h ≡
(
rf + αµ− 1

2
α2σ2

)
− ρ µ− ασ2

(γ − 1)ασ2
− 1

2
α(µ− ασ2)(1− ψ−1) = 0 (A.11)

First, since consumption c = rf + αµ− 1
2
α2σ2 > 0 is positive, equation (A.11) implies that

ρ
µ− ασ2

(γ − 1)ασ2
+

1

2
α(µ− ασ2)(1− ψ−1) > 0
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ρ > −1

2
α2σ2(1− ψ−1)(γ − 1) (A.12)

We next utilize the implicit function theorem that says

dα

dβ
= −∂h/∂β

∂h/∂α

where β is any parameter, for example, the risk free rate rf . We first sign ∂h
∂α

:

∂h

∂α
= (µ− ασ2)− ρ−σ

2(γ − 1)ασ2 − (γ − 1)σ2(µ− ασ2)

[(γ − 1)ασ2]2
− 1

2
(1− ψ−1)(µ− 2ασ2)

= (µ− ασ2) +
ρµ

(γ − 1)α2σ2
− 1

2
(1− ψ−1)(µ− ασ2) +

1

2
(1− ψ−1)ασ2

=

(
1− 1

2
(1− ψ−1)

)
(µ− ασ2) +

ρµ

(γ − 1)α2σ2
+

1

2
(1− ψ−1)ασ2

=
1

2
(1 + ψ−1)(µ− ασ2) +

µ

(γ − 1)α2σ2
ρ+

1

2
(1− ψ−1)ασ2

.

Next, use the inequality from (A.12)

∂h

∂α
>

1

2
(1 + ψ−1)(µ− ασ2)− µ

(γ − 1)α2σ2

1

2
α2σ2(1− ψ−1)(γ − 1) +

1

2
(1− ψ−1)ασ2

=
1

2
(1 + ψ−1)(µ− ασ2)− µ1

2
(1− ψ−1) +

1

2
(1− ψ−1)ασ2

=
1

2
(1 + ψ−1)(µ− ασ2)− 1

2
(µ− ασ2)(1− ψ−1)

= ψ−1(µ− ασ2) > 0

Therefore, we have
∂h

∂α
> 0 =⇒ dα

dβ
∝ −∂h

∂β

We next use this simplified expression to sign comparative statics.

Risk Free Rate The effect of the riskfree rate on the risky share

dα

drf
∝ − ∂h

∂rf
= −1 < 0

Discount Rate The effect of the discount rate on the risky share

dα

dρ
∝ −∂h

∂ρ
=

µ− ασ2

(γ − 1)ασ2
> 0
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Risk Premium Similarly to the analysis of a power utility agent, the effect of the risk premium
on the risky share depends on the value of risk free rate and, in particular, there is a value of the
risk free rate such that the risky share doesn’t depend on the risk premium.

First, collect all terms with µ in equation (A.11)

h =

(
rf −

1

2
α2σ2

)
+

ρ

γ − 1
+

1

2
α2σ2(1− ψ−1) + µ

[
α− ρ

(γ − 1)ασ2
− 1

2
α(1− ψ−1)

]
= 0

Risky share α doesn’t change with the risk premium µ when α = α∗ such that the expression in
the brackets is exactly zero

α∗ − ρ

(γ − 1)α∗σ2
− 1

2
α∗(1− ψ−1) = 0

(α∗)2 =
2ρ

(γ − 1)(ψ−1 + 1)σ2

To find the risk free rate that implies α = α∗, express rf from h and substitute (α∗)2

r∗f =
ψ−1

2
(α∗)2σ2 − ρ

γ − 1

=
ψ−1

2

2ρ

(γ − 1)(ψ−1 + 1)σ2
σ2 − ρ

γ − 1

=
ψ−1ρ

(γ − 1)(ψ−1 + 1)
− ρ

γ − 1

=
ρ

γ − 1

(
ψ−1

(ψ−1 + 1)
− 1

)
= − ρ

(γ − 1)(ψ−1 + 1)
< 0

Where we used the assumption γ > 1. When rf > r∗f , the risk premium has a standard effect on
the risky share. When rf < r∗f , the effect is reversed: a higher risk premium leads to a lower risky
share.

Elasticity of Intertemporal Substitution The effect of EIS ψ on the risky share is

dα

dψ
∝ −∂h

∂ψ
=

1

2
α(µ− ασ2)ψ−2 > 0

Higher Elasticity of Intertemporal Substitution leads to a larger risky share.
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3.5 Equilibrium in the Risky Asset Market

In this section, we derive existence conditions for the equilibrium in the risky asset market and
derive the relationship between an exogenous risk free rate and the risk premium in equilibrium.

Geometric Constraint We start by looking at γ > 1 case and describe the γ < 1 case below.
We have two existence conditions related to the existence of a solution to the partial equilibrium
problem. When fully invested in the risky asset the lifetime value of the agent should converge. For
α = 1, the denominator in (A.3) is positive when

ρ >
1

2
σ2(γ − 1)2. (A.13)

Second, when fully invested in the risky asset, the agent should have positive consumption

c = rf + αµ− 1

2
α2σ2 = [α = 1] = rf + µ− 1

2
σ2 > 0, (A.14)

where µ is the risk premium that clears the market for the risky asset.

Finally, we need to ensure that it is possible to induce the agent to hold all his wealth in the
risky asset by adjusting the risk free rate. As discussed in the main text this requires α∗ > 1 for
rf > r∗f and α∗ < 1 for rf < r∗f . Proof of Proposition 2 derives

α∗ =

√
2ρ

(γ2 − 1)σ2

Therefore, it is possible to clear the market for the risky asset by inducing α = 1 for the agent with
a sustainable spending constraint ifρ >

1

2
σ2(γ2 − 1) when rf > r∗f

ρ <
1

2
σ2(γ2 − 1) when rf < r∗f

(A.15)

We also know from the proof of Proposition 2 that

r∗f = − ρ

γ2 − 1

so that (A.15) implies−
ρ

γ2 − 1
< −1

2
σ2 when rf > r∗f

− ρ

γ2 − 1
> −1

2
σ2 when rf < r∗f

⇒

r∗f < −
1

2
σ2 when rf > r∗f

r∗f > −
1

2
σ2 when rf < r∗f

(A.16)
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Keeping these existence conditions in mind, we now proceed to solving for the risk premium
that will clear the market for risky asset as a function of an exogenous risk free rate. The optimal
risky share α is the solution to maximization problem (A.3) with the following first-order condition

(µ−ασ2)(1−γ)

(
rf + αµ− 1

2
α2σ2

)−γ (
ρ− 1

2
(1− γ)2α2σ2

)
+(1−γ)2ασ2

(
rf + αµ− 1

2
α2σ2

)1−γ

= 0,

(µ− ασ2)

(
ρ− 1

2
(1− γ)2α2σ2

)
+ (1− γ)ασ2

(
rf + αµ− 1

2
α2σ2

)
= 0.

Imposing α = 1 we obtain the following expression relating the risk free rate rf and the risk premium
µ in an affine way:

(µ− σ2)

(
ρ− 1

2
(1− γ)2σ2

)
+ (1− γ)σ2

(
rf + µ− 1

2
σ2

)
= 0 (A.17)

Solving for µ as a function of rf we obtain

µ = σ2

[
ρ− 1

2
σ2(γ2 − γ)

ρ− 1
2
σ2(γ2 − 1)

+
γ − 1

ρ− 1
2
σ2(γ2 − 1)

rf

]
(A.18)

Subsituting (A.18) into condition (A.15) we get(
rf + σ2

2

) (
ρ− 1

2
σ2(γ − 1)2

)(
ρ− 1

2
σ2(γ2 − 1)

) > 0

Combining this with condition (A.13) we obtain condition (A.15) expressed in terms of exogenous
parameters: rf > −

1

2
σ2 when rf > r∗f

rf < −
1

2
σ2 when rf < r∗f

(A.19)

Combining all existence conditions (A.13), (A.15), (A.16) and (A.19) together, when γ > 1,
there exists a level of risk premium µ the clears the market for risky asset defined in (A.18) whenCase 1: r∗f < −

σ2

2
< rf and ρ >

σ2

2
(γ2 − 1)

Case 2: rf < −
σ2

2
< r∗f and

σ2

2
(γ2 − 1) < ρ <

σ2

2
(γ2 − 1)

(A.20)

It is easy to see that under these existence conditions, the risk premium is increasing in the risk
free rate when rf > r∗f and is decreasing in the risk free rate when rf < r∗f .
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Equilibrium for γ < 1 When γ < 1, partial equilibrium risky share always increases in the risk
premium and, as a result, there is no subtle issue with upper and lower bounds for α. Thus, the
only conditions left to ensure the existence of a general equilibrium are the ones that ensure the
existence of the solution to the partial equilibrium problem. First, the lifetime value of the agent
when fully invested in the risky asset should converge. Similarly to before this requires

ρ >
1

2
σ2(γ − 1)2 (A.21)

Second, the portfolio constraint should intersect the x-axis to the left of the “pinned” point where
the indifference curve is equal to zero, requiring

µ

σ
+

√(µ
σ

)2
+ 2rf <

√
2ρ

(γ − 1)2
(A.22)

where µ is equal to (A.18). Under conditions (A.21) and (A.22) the equilibrium risk premium as a
function of the risk free rate is given in equat (A.18).

Arithmetic Constraint Below we derive the relationship between an exogenous risk free rate
and risk premium in equilibrium for the risky asset when the agent follows an arithmetic as opposed
to geometric sustainable spending rule.

Unlike the geometric constraint, the arithmetic constraint allows to solve for the risky share in
closed form:

α =
−rf +

√
K

µ(1 + γ)
where K = r2f + 2ρ

(
1 + γ

γ

)(µ
σ

)2
Similarly to the geometric constraint, there is a level of riskfree rate where the optimal risky share
in the partial equilibrium solution doesn’t depend on the risk premium. This point doesn’t depend
on parameters and is equal to r∗f = 0. Risky share at this point is

α∗ =
1

σ

√
2ρ

γ(γ + 1)

A general equilibrium exists if under full investment in the risky asset the lifetime value converges,
i.e. ρ >

1

2
σ2γ(γ + 1) for rf > 0

ρ <
1

2
σ2γ(γ + 1) for rf < 0

(A.23)
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Finally, for an equilibrium to exist full investment in the risky asset should provide the agent with
positive consumption, i.e. rf + µ > 0 where µ is the risk premium that clears the market for the
risky asset.

By equating the closed form solution for the risky share (2.2) to one we can solve for µ as

µ =
γσ2

ρ− 1
2
σ2γ(γ + 1)

× rf

Hence, for rf > 0, µ is increasing in rf and for rf < 0, µ is decreasing in rf consistent with the
analysis of partial equilibrium.

We can use this expression for µ to derive the condition on parameters that guarantees positive
consumption for the sustainably spending agent inn general equilibrium

rf +
γσ2

ρ− 1
2
σ2γ(γ + 1)

× rf > 0

ρ− 1
2
σ2γ(γ − 1)

ρ− 1
2
σ2γ(γ + 1)

× rf > 0

This is always satisfied if (A.23) is satisfied.
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4 A Dynamic Model

This section presents the approach for solving the dynamic model presented in the main text.

HJB Equation for Multiple States We first show the general form of an HJB equation with
multiple dynamic constraints. The general problem is

v(x0) = max
ct

E

∫ ∞
0

e−ρtu(xt, ct)dt

dxt = f(xt, ct)dt+ σ(xt, ct)dZt

where xt is N × 1, dZt is M × 1 and ct is K × 1. First, we need to define a N ×N matrix

Σ(xt, ct) = σ(xt, ct)σ(xt, ct)
′

Using Σ(xt, ct) we can write the HJB equation as

ρv(x) = max
c

{
u(x, c) +

N∑
i=1

∂v

∂xi
f(x, c) +

1

2

N∑
i=1

N∑
j=1

∂2v

∂xi∂xj
Σij(x, c)

}

where Σij(x, c) is (i, j) element of matrix Σ(x, c).

The dynamic model presented in the main text has the following maximization problem

max
αt

E0

∫ ∞
0

e−ρtu(ct)dt

subject to ct = wt

(
rt + αtµ−

1

2
α2
tσ

2

)
(
dwt
drt

)
=

(
1
2
wtα

2
tσ

2

φ(rt)

)
+

(
wtαtσ 0

νrtη νrt
√

1− η2

)(
dZ

(1)
t

dZ
(2)
t

)
Matrix Σ is

Σ ≡

wtαtσ 0

νrtη νrt
√

1− η2

wtαtσ νrtη

0 νrt
√

1− η2

 =

(
w2
tα

2
tσ

2 wtαtσνrtη
wtαtνrtη ν2r2t

)

We can use Σ, the general form of the HJB equation presented above and the guess for value
function v(w, r) = A(r)w

1−γ

1−γ to derive the HJB equation presented in the main text.
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Problem Our goal is to numerically solve the following system of equations(
r + α∗µ− 1

2
(α∗)2σ2

)−γ
(µ− α∗σ2) + A(r)(1− γ)α∗σ2 + A′(r)σνrη = 0

ρA(r)
1

1− γ
=

(
r + α∗µ− 1

2
(α∗)2σ2

)1−γ
1− γ

+ A(r)
1

2
(1− γ)(α∗)2σ2 + A′(r)

1

1− γ
1

2
ν2r

+
1

2
A′′(r)

1

1− γ
ν2r2 + A′(r)σα∗νrη

where the first equation is the FOC and the second equation is the maximized HJB equation, i.e.
the HJB equation evaluated at the optimal risky share α = α∗ that can be derived from the FOC.

Discretization We first discretize the state space r = r1, . . . , rI with equidistant intervals such
that ri − ri−1 = ∆r ∀i. To simplify notation denote A(ri) = Ai. Denote the solution to the FOC
for particular level of the interest rate ri as αi. We approximate the derivatives as follows

(A′)i ≈
Ai+1 − Ai−1

2∆r

(A′′)i ≈
Ai+1 − 2Ai + Ai−1

(∆r)2

With these approximations the FOC becomes

0 =

(
ri + αiµ−

1

2
α2
iσ

2

)−γ
(µ− αiσ2) + Ai(1− γ)αiσ

2 +
Ai+1 − Ai−1

2∆r
σνriη, (A.24)

and the discretized HJB equation becomes

ρAi =

(
ri + αiµ−

1

2
α2
iσ

2

)1−γ

+ Ai
1

2
(1− γ)2α2

iσ
2 +

Ai+1 − Ai−1
2∆r

1

2
ν2r

+
1

2

Ai+1 − 2Ai + Ai−1
(∆r)2

ν2r2i +
Ai+1 − Ai−1

2∆r
(1− γ)αiσriνη,

where we multiplied the whole expression by 1− γ. Collecting the A terms we get

ρAi =

(
ri + αiµ−

1

2
α2
iσ

2

)1−γ

+ Ai−1

[
ν2r2i

2(∆r)2
− (1− γ)αiσriνη

2∆r
− 1

2∆r

ν2ri
2

]
+ Ai

[
1

2
(1− γ)2α2

iσ
2 − ν2r2i

(∆r)2

]
+ Ai+1

[
ν2r2i

2(∆r)2
+

(1− γ)αiσriνη

2∆r
+

1

2∆r

ν2ri
2

]
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We impose the “reflecting barrier” constraints A0 = A1, AI+1 = AI . Under these constraints the
equation for i = 1 and i = I becomes

ρA1 =

(
r1 + α1µ−

1

2
α2
1σ

2

)1−γ

+ A1

[
1

2
(1− γ)2α2

1σ
2 − ν2r21

2(∆r)2
− (1− γ)α1σr1νη

2∆r
− 1

2∆r

ν2r1
2

]
+ A2

[
ν2r21

2(∆r)2
+

(1− γ)α1σr1νη

2∆r
+

1

2∆r

ν2r1
2

]

ρAI =

(
rI + αIµ−

1

2
α2
Iσ

2

)1−γ

+ AI−1

[
ν2r2I

2(∆r)2
− (1− γ)αIσrIνη

2∆r
− 1

2∆r

ν2rI
2

]
+ AI

[
1

2
(1− γ)2α2

Iσ
2 − ν2r2I

2(∆r)2
+

(1− γ)αIσrIνη

2∆r
+

1

2∆r

ν2rI
2

]
Now we write this in matrix notation to get

xi =
ν2r2i

2(∆r)2
− (1− γ)αiσriνη

2∆r
− 1

2∆r

ν2ri
2

yi =
1

2
(1− γ)2α2

iσ
2 − ν2r2i

(∆r)2

zi =
ν2r2i

2(∆r)2
+

(1− γ)αiσriνη

2∆r
+

1

2∆r

ν2ri
2

⇒ Bn =


y1 + x1 z1 0 0 · · ·
x2 y2 z2 0 · · ·
0 x3 y3 z3 · · ·
...

...
...

. . . · · ·
0 · · · 0 xI yI + zI


where n denotes the iteration step and Bn emphasizes that it is calculated using αni that is itself
calculated using An. Using this notation we can write the iteration as

An+1 −An

∆
+ ρA = un +BnA

The explicit method is

An+1 −An

∆
+ ρAn = un +BnAn ⇒ An+1 = An + ∆ (un +BnAn − ρAn)

However, the implicit method has better convergence properties:

An+1 −An

∆
+ ρAn+1 = un +BnAn+1 ⇒ An+1 =

((
1

∆
+ ρ

)
eye(I)−Bn

)−1(
un +

1

∆
An

)
Even though this method requires matrix inversion at every step of the iteration, the matrix is
sparse and can be inverted efficiently using appropriate routines (e.g. ”\” command in Matlab or
Julia uses an iterative solver allowing to avoid the inversion of the full matrix).
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Numerical Algorithm The full algorithm

1. Given An numerically solve for a vector of αni using the first-order condition in equation (A.24)

2. Given a vector αni form vector u and matrix Bn

3. Update A using implicit scheme

An+1 =

((
1

∆
+ ρ

)
eye(I)−Bn

)−1(
un +

1

∆
An

)
4. Iterate until the difference between An and An+1 becomes small, say less than 10−6.

Drift of Log Consumption The drift of log consumption in the dynamic model is

Ed log(c)

dt
=

1

2
ν2rft

f ′(rft)f(r) + f ′′(rft)f(rft)− (f ′(rft))
2

(f(rft))2
(A.25)

where

f(r) = r + α(r)µ− 1

2
α(r)2σ2

f ′(r) = 1 + α′(r)µ− α(r)α′(r)σ2

f ′′(r) = 1 + α′′(r)µ−
(
(α′(r))2 + α(r)α′′(r)

)
σ2

Using the numerical solution for the risky share as a function of the riskfree rate α(r) we can evaluate
(A.25). In Figure A.4 we show drift of log consumption as a function of rf

2. As we mention in the
main text, the drift is not zero and is, in fact, negative. However, the absolute magnitude is small
as can be seen from the y-axis.

Comparing Hedging Demand to Merton Model We numerically solve the same dynamic
model for an unconstrained agent – the standard Merton model – for the same functional forms and
parameters to compare the hedging demand for constrained and unconstrained agents. In Figure
A.5 we plot hedging demand defined as the risky share for a specified correlation less the risky
share for zero correlation. The solid lines show the hedging demand for an agent with a sustainable
consumption constraint and the dashed lines show the hedging demand for an unconstrained agent.
Even though the dashed and solid lines are not identical the difference is very small implying that
the sustainable consumption constraint does not alter the hedging demand in a substantial way.

2We use the parameters from the baseline model in the main text and zero correlation
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Figure A.4: Drift of log consumption in Dynamic Model
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Figure A.5: Hedging Demand for Constrained (Solid) and Unconstrained (Dashed) Agents
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