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Preface

The problems in The Econometrics of Financial Markets have been tested in PhD courses
at Harvard, MIT, Princeton, and Wharton over a number of years. We are grateful to the
students in these courses who served as guinea pigs for early versions of these problems,
and to our teaching assistants who helped to prepare versions of the solutions. We also
thank Leonid Kogan for assistance with some of the more challenging problems in Chapter
9.
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2 PREFACE



Problems in Chapter 2

Solution 2.1

2.1.1 Recall the martingale property given by (2.1.2) and observe that the mean-squared
error of the time-t forecast Xt of price Pt+1 is

E[(Xt � Pt+1)
2jPt; : : : ] = (Xt � Pt)

2 + E[P 2
t+1 � P 2

t jPt; : : : ] :(S2.1.1)

This expression is minimized by the forecast Xt � Pt.
2.1.2 Let l > 0. Then

E[(Pt � Pt�k)(Pt�k�l � Pt�2k�l)] = E
�
E[Pt � Pt�kjPt�k�l; : : : ]�
(Pt�k�l � Pt�2k�l)

�
(S2.1.2)

= E[0(Pt�k�l � Pt�2k�l)] = 0 :

Solution 2.2

Denote the martingale property (2.1.2) by M. Then

RW1) RW2)M) RW3;(S2.2.1)

and no other implication holds in general. For example, consider the following counter-
examples. Let f�ng1n=1 be a sequence of random variables drawn independently from a
uniform distribution over the interval [�1; 1] and �0 = 0. Then the process with increments
(i) �2n�1 � �n and �2n � j�nj � 1=2 satis�es RW3 but not M; (ii) �n � �n�n�1 satis�es M
but not RW2; (iii) �n � n�n satis�es RW2 but not RW1.

Solution 2.3

A necessary condition for the log-price process pt in (2.2.9) to satisfy RW1 is �+� = 1. Let
c � �+ � and consider the set of all non-RW1 Markov processes (2.2.9), i.e., c 6= 1. The
restriction CJ = 1 is equivalent to �� = c=4. The constraints 0 � �; � � 1 are satis�ed
exactly for c 2 [1; 4=3] and therefore the set of all two-state Markov chains represented by
the pair (�; �) that cannot support any RW1 process but still yields CJ = 1 is simply

f(1�
p
1 � c�1; 1�

p
1� c�1)c=2; 1 < c � 4=3g:(S2.3.1)

Such Markov chains do generate sequences, reversals, etc.

Solution 2.4

For a stationary process, Var[Zt] = Var[Zt�k] and Cov[Zt�k; Zt�l] = Cov[Zt; Zt�l+k].
Thus, we have

Var[Zt(q)] =

q�1X
k=0

Var[Zt�k] + 2

q�1X
k=1

(q � k)Cov[Zt; Zt�k](S2.4.1)

which yields (2.4.19). The coe�cients of Cov[Zt; Zt�k] are simply the number of k-th
order autocovariance terms in the variance of the multiperiod return Zt(q) (recall that this
multiperiod return is the sum of q one-period returns). The coe�cients decline linearly

3



4 PROBLEMS IN CHAPTER 2

Ten individual stocks used for problem 2.5, identi�ed by CRSP permanent number
PERMNO, CUSIP identi�er, (most recent) ticker symbol and abbreviation of full name.

PERMNO CUSIP Ticker Company Name

18075 03203710 AP Ampco-Pittsburgh Corp.

30840 21161520 CUO Continental Materials Corp.

26470 29265N10 EGN Energen Corp.

32096 36480210 GAN Garan Inc.

19174 37006410 GH General Host Corp.

12095 37083810 GSX General Signal Corp.

15747 45870210 IK Interlake Corp.

12490 45920010 IBM International Business Machs. Corp.

18286 75510310 RAY Raytech Corp. De

15472 98252610 WWY Wrigley, William Jr. Co.

Table 2.1. Ten individual stocks for Problem 2.5

Periods P0 to P4 for daily and monthly data.

Daily Periods Monthly Periods

Period Calendar Days Length (Days) Calendar Days Length (Months)

A 620703{941230 8179 620731{941230 390
A1 620703{700923 2045 620731{700831 98
A2 700924{781027 2045 700930{780929 97
A3 781030{861128 2044 781031{861031 97
A4 861201{941230 2045 861128{941230 98

Table 2.2. Periods for Daily and Monthly Data

with k until they reach zero for k = q because there are successively fewer and fewer
higher-order autocovariances.

From (2.4.19) it is apparent that individual autocorrelation coe�cients can be non-
zero but their weighted average can be zero. For example, according to (2.4.19), VR(3) =
1+2( 2

3
�1+

1
3
�2), hence a non-random-walk process with �1 = � 1

4
and �2 =

1
2
will satisfy

VR(3) = 1. Therefore, the variance ratio test will have very lower power against such
alternatives, despite the fact that they violate the random walk hypothesis.

Solution 2.5

We consider the daily and monthly returns of the ten individual stocks considered in
Chapter 1 (see Table 1.1). We use CRSP daily data consisting of 8,179 days from July 3,
1962 to December 30, 1994 and CRSP monthly data consisting of 390 months from July
31, 1962 to December 30, 1994. For these ten stocks there are 23 missing daily returns
and 4 missing monthly returns in our sample. The stocks are identi�ed in Table 2.1, and
we shall refer to them by their ticker symbols (value-weighted and equal-weighted indexes
will be denoted by VW and EW).

Denote the entire sample period by A and the four consecutive subperiods of approx-
imately equal length by A1, A2, A3, A4, respectively (note that these periods di�er for
daily and monthly data). Descriptions of lengths and starting and ending dates of the
periods are given in Table 2.2.



SOLUTION 2.5 5

Statistics for daily and monthly simple and continuously compounded re-
turns. All the statistics �̂, �̂, and �̂(1) are reported in percent.

Security Simple Returns Cont. Comp. Returns
Daily Sampling Monthly Sampling Daily Sampling Monthly Sampling

Period �̂ �̂ �̂(1) �̂ �̂ �̂(1) �̂ �̂ �̂(1) �̂ �̂ �̂(1)

VW A 0.044 0.803 19.4 0.96 4.37 4.8 0.041 0.807 19.3 0.85 4.38 5.8
A1 0.035 0.635 25.9 0.76 3.82 6.2 0.033 0.635 25.9 0.68 3.82 7.1
A2 0.026 0.814 29.4 0.71 4.65 5.3 0.022 0.813 29.4 0.60 4.60 6.6
A3 0.070 0.821 16.0 1.40 4.58 -4.7 0.067 0.822 16.0 1.29 4.55 -4.7
A4 0.045 0.913 11.0 0.95 4.36 9.8 0.040 0.822 11.1 0.85 4.49 -7.2

EW A 0.078 0.685 38.6 1.25 5.67 22.0 0.075 0.687 38.7 1.08 5.67 22.2
A1 0.069 0.728 38.8 1.18 5.44 18.9 0.066 0.728 38.8 1.03 5.44 20.3
A2 0.060 0.696 49.5 1.37 6.61 19.6 0.057 0.696 49.5 1.16 6.39 21.2
A3 0.082 0.644 33.1 1.54 5.51 16.4 0.079 0.646 33.1 1.38 5.55 15.0
A4 0.100 0.669 30.4 0.91 5.00 33.6 0.097 0.676 30.9 0.77 5.22 31.7

AP A 0.053 2.411 -3.7 1.06 10.62 0.3 0.024 2.396 -4.1 0.52 10.31 0.2
A1 0.076 2.983 -6.2 1.33 12.14 1.9 0.032 2.952 -6.9 0.63 11.58 2.4
A2 0.070 2.313 -6.5 1.54 9.15 -7.1 0.044 2.295 -6.9 1.13 8.82 -6.6
A3 0.042 1.701 7.5 0.94 9.50 3.9 0.028 1.694 7.4 0.50 9.34 3.7
A4 0.024 2.472 -2.8 0.45 11.37 -0.9 -0.007 2.470 -3.2 -0.18 11.19 -2.1

CUO A 0.143 5.239 -20.9 1.65 17.76 -7.0 0.009 5.155 -21.8 0.19 16.96 -9.7
A1 0.241 6.722 -26.7 2.02 18.92 -1.6 0.022 6.590 -28.5 0.46 17.14 -5.1
A2 0.191 6.699 -29.2 1.39 19.60 -11.1 -0.027 6.577 -30.2 -0.25 17.52 -12.4
A3 0.140 3.523 9.5 3.11 18.47 -3.5 0.079 3.497 8.4 1.43 18.36 -7.9
A4 -0.001 2.692 13.8 0.09 13.22 -14.1 -0.038 2.714 15.2 -0.88 14.49 -12.8

EGN A 0.054 1.407 -6.8 1.09 5.75 -7.0 0.044 1.405 -6.9 0.94 5.55 -6.8
A1 0.022 1.083 -8.3 0.43 3.65 -14.9 0.051 1.080 -8.3 0.36 3.60 -14.7
A2 0.047 1.636 -12.4 0.97 6.80 3.2 0.034 1.637 -12.5 0.76 6.19 4.4
A3 0.091 1.437 -8.6 1.79 5.45 -12.9 0.081 1.434 -8.8 1.63 5.31 -13.2
A4 0.056 1.415 2.8 1.20 6.51 -14.0 0.046 1.411 2.8 0.99 14.49 -12.4

GAN A 0.079 2.349 4.4 1.65 11.30 2.8 0.051 2.333 4.1 1.03 10.92 4.2
A1 0.088 2.886 8.2 1.76 14.12 12.0 0.047 2.852 7.8 0.84 13.34 14.3
A2 0.085 2.729 -0.7 1.95 11.71 -5.7 0.047 2.723 -1.2 1.29 11.18 -5.1
A3 0.106 1.918 -0.3 1.95 8.64 -2.5 0.088 1.910 -0.2 1.56 8.61 -1.0
A4 0.036 1.614 14.8 0.93 9.94 4.9 0.023 1.601 15.1 0.44 9.94 5.5

GH A 0.070 2.790 -2.2 1.33 11.65 6.3 0.032 2.768 -2.4 0.66 11.53 5.7
A1 0.069 3.103 -6.0 1.06 11.91 3.4 0.022 3.074 -6.2 0.35 12.00 3.6
A2 0.060 2.936 4.3 1.30 12.68 19.1 0.018 2.890 3.7 0.55 12.05 17.6
A3 0.060 2.389 -1.0 3.27 10.94 -12.5 0.126 2.373 -1.2 2.64 10.94 -12.0
A4 -0.001 2.677 -6.0 -0.29 10.69 5.3 -0.037 2.682 -5.6 -0.87 10.78 5.4

GSX A 0.054 1.660 11.6 1.17 8.18 2.7 0.040 1.661 11.7 0.83 8.21 3.7
A1 0.063 1.866 7.4 1.45 9.04 1.6 0.046 1.862 7.3 0.89 8.82 2.1
A2 0.055 1.710 19.7 1.37 8.96 6.6 0.041 1.710 19.8 1.05 8.85 7.8
A3 0.042 1.600 6.5 0.92 6.75 -7.2 0.042 1.599 6.5 0.69 6.67 -5.9
A4 0.042 1.436 13.4 1.03 7.74 3.6 0.031 1.443 14.1 0.70 8.30 4.9

IK A 0.043 2.156 0.4 0.86 9.37 -6.5 0.020 2.145 0.3 0.43 9.22 -5.0
A1 0.031 1.395 -0.7 0.69 6.42 -15.1 0.022 1.391 -0.8 0.49 6.31 -14.0
A2 0.064 1.475 6.0 0.71 7.19 -2.2 0.040 1.470 5.8 1.12 6.79 -3.9
A3 0.102 1.441 8.6 2.12 4.58 -6.4 0.041 1.431 8.5 1.85 7.03 -6.7
A4 -0.025 3.518 -1.8 -0.73 14.18 -8.4 0.031 3.498 -2.1 -1.73 14.02 -7.2

IBM A 0.039 1.423 -0.4 0.81 6.17 6.6 0.029 1.427 -0.4 0.61 6.19 6.9
A1 0.068 1.257 6.2 1.39 5.62 6.9 0.060 1.255 6.2 1.22 5.56 7.5
A2 0.028 1.355 3.8 0.66 5.97 -1.6 0.019 1.351 3.8 0.48 5.90 -1.4
A3 0.058 1.375 -6.7 1.10 5.46 14.4 0.048 1.370 -6.7 0.95 5.37 14.5
A4 0.002 1.670 -2.8 0.07 7.35 5.1 -0.012 1.690 -2.8 -0.20 7.57 5.1

RAY A 0.050 3.388 -0.6 0.83 14.88 -12.0 -0.008 3.362 -1.4 -0.13 13.65 -11.7
A1 0.014 1.426 10.3 0.32 6.63 15.2 0.004 1.449 10.0 0.08 6.97 18.0
A2 0.062 1.914 12.1 1.53 8.59 -9.9 0.043 1.904 12.1 1.17 8.47 -8.7
A3 -0.014 3.051 8.6 -0.43 15.28 -20.7 -0.060 3.027 7.9 -1.57 15.00 -18.1
A4 0.137 5.558 -5.6 1.88 22.98 -11.1 -0.014 5.505 -6.6 -0.23 19.83 -12.5

WWY A 0.072 1.446 5.6 1.51 6.67 2.8 0.061 1.447 5.6 1.29 6.55 2.0
A1 0.026 0.864 5.2 0.56 3.61 -3.8 0.022 0.862 5.2 0.50 3.58 -3.2
A2 0.036 1.355 12.4 0.90 7.47 17.6 0.027 1.361 12.3 0.62 7.40 15.7
A3 0.110 1.510 7.2 2.20 6.21 -10.0 0.099 1.504 7.1 1.99 6.10 -10.3
A4 0.116 1.868 0.5 2.49 8.25 -5.4 0.098 1.873 0.7 2.05 8.08 -5.6

Table 2.3. Statistics for Daily and Monthly Simple and Continuously
Compounded Returns

2.5.1 See the left side of Table 2.3 for the required statistics.
2.5.2 See the right side of Table 2.3. If r denotes net simple return in percent, then
100� log(1 + r=100) is the corresponding continuously compounded return in percent.



6 PROBLEMS IN CHAPTER 2

2.5.3 See Figure 2.1 for the required plots. Returns are truncated to �t in the interval
[�3%; 3%], i.e., returns smaller than �3% are replaced by a return of �3%, and returns
larger than 3% are replaced by a return of 3%.
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8 PROBLEMS IN CHAPTER 2

2.5.4 Use results from Problems 2.5.1 and 2.5.2 (i.e., Table 2.3), counts from Table 2.2, the
assumption that returns are IID, and the asymptotic normality of �̂ to obtain estimates
of the 99% con�dence intervals.
2.5.5 Compute the statistics of interest as in Problem 2.5.1. See also Table 1.1 in the
text for the statistics for the entire sample period. The variances of your estimates can be
estimated via the bootstrap (see Efron and Tibshirani [1993]) under the assumption that
returns are temporally IID. Computing the exact variances for estimators of skewness,
kurtosis, and the studentized range is possible under certain distributional assumptions
for returns, but is quite involved so the bootstrap is the preferred method|it simpli�es
the estimation greatly: no additional sampling theory is needed). Use the asymptotic
normality of your estimators to perform the tests.



Problems in Chapter 3

Solution 3.1

Using (3.1.4), we obtain

E[roit] =
1X
k=0

E[Xit(k)]E[ri;t�k] =
1X
k=0

(1� �i)�
k
i �i = �i(S3.1.1)

as in (3.1.9). Observe that

E[(roit)
2] =

1X
k;l=0

E[Xit(k)Xit(l)]E[ri;t�kri;t�l]

=

1X
k=0

E[Xit(k)]E[r
2
i;t�k] +

2
1X
k=0

X
l>k

E[Xit(k)Xit(l)]E[ri;t�k]E[ri;t�l](S3.1.2)

= �2i + 2�2i

1X
k=0

X
l>k

(1� �i)�
k
i �

l�k
i

= �2i + 2�2i =(1� �i) ;

hence

Var[roit] = E[(roit)
2]� �2i = �2i + 2�i�

2
i =(1� �i)(S3.1.3)

as in (3.1.10). Next, for n > 0 we have

E[roitr
o
i;t�n] =

1X
k=0

1X
l=0

E[Xit(k)Xi;t�n(l)]E[ri;t�kri;t�n�l]

=

n�1X
k=0

1X
l=0

(1� �i)�
k
i (1� �i)�

l
i�

2
i(S3.1.4)

= �2i (1� �ni ) ;

which yields the �rst part of (3.1.11). For i 6= j and n � 0 we have

E[roitr
o
j;t�n] =

1X
k=0

1X
l=0

E[Xit(k)]E[Xj;t�k(l)]

= �i�j +

1X
l=0

(1� �i)�
l+n
i (1� �j)�

l
j�i�j�

2
f(S3.1.5)

= �i�j + �ni
(1� �i)(1� �j)

1� �i�j
�i�j�

2
f

and the second part of (3.1.11) follows. Equation (3.1.12) is direct consequence of (3.1.10)
and the �rst part of (3.1.11).

9



10 PROBLEMS IN CHAPTER 3

Solution 3.2

Consider the case where the common factor ft is the (observable) market portfolio. Then
the true beta of security i is �i as in (3.1.1) and the beta computed from observed returns
�oi is given by

�oi = Cov[roit; ft]=Var[ft]

= E[ft

1X
k=0

Xit(k)ri;t�k]=�
2
f(S3.2.1)

= (1� �i)�i :

Thus, the beta will be biased towards 0 if nonsynchronous trading is not properly ac-
counted for.

Solution 3.3

3.3.1 Let Pit and Qit denote the unconditional probabilities that �it = 0 and �it = 1,
respectively and let Pi and Qi be the corresponding steady-state probabilities. Then
(3.5.1) yields

Pit = �iPi;t�1 + (1� �0i)Qi;t�1(S3.3.1)

and similarly for Z. In steady state, Pi = Pit = Pi;t�1 and Qi = Qit = Qi;t�1, hence

Pi =
1� �0i

2� (�i + �0i)
(S3.3.2)

Qi =
1� �i

2� (�i + �0i)
:

Therefore, the unconditional steady-state mean, variance, and �rst-order autocorrelation
of �it is

��i = Qi(S3.3.3)

�2�i = E[�2it]� E[�it]
2 = Qi(1�Qi)(S3.3.4)

�ii(1) = E[�it�i;t�1]� �2�i = Qi(�
0
i �Qi) :(S3.3.5)

3.3.2 To calculate the statistics of observed returns, use (3.1.4). For the mean we have

�Ri =
1X
k=0

E[Xit(k)]E[Ri;t�k](S3.3.6)

= �i

 
�0iQi +

1X
k=1

Pi�
k�1
i (1� �i)

!
= �i(�

0
iQi + Pi) ;

for the variance

�2Ri = E

" 1X
k=0

Xit(k)Ri;t�k

!2#
� �2Ri

= �2i

0
@�0iQi +

1X
k;l=1

E[Xit (max(k; l))]

1
A� �2Ri(S3.3.7)

= �2i

�
Pi

�i(1� �i)
+ �0iQi � (�0iQi + Pi)

2

�
;



SOLUTION 3.4 11

and for the �rst-order autocovariance

ii(1) = E

2
4 1X
k;l=0

Xit(k)Xi;t+1Ri;t�kRi;t�k�1

3
5� �2Ri

= �2i

1X
l=0

�0iE[Xi;t�1(l)]� �2Ri(S3.3.8)

= �2i
�
�0i � (�0iQi + Pi)

2� :

Thus, serial correlation in �it decreases the mean �Ri as compared to the case of no
nonsynchronous-trading e�ects, ceteris paribus, since �0iQi + Pi < 1 for 0 < �i; �

0
i < 1.

3.3.3 Assume we are given a sequence f�itgTt=0 of no-trade indicators. For convenience,
we shall condition on the initial no-trade indicator �i0 (the extension to the general
case is straightforward). Denote by ni00; ni01; ni10, and ni00 the counts of all pairs of
consecutive days with no-trade patterns `00',`01',`10', and `11', respectively. Therefore,P

j;k=0;1 nijk = T . Since �it follows the Markov process (3.5.1), the log-likelihood function

of the sequence f�itgTt=1 is
L
�
f�itgTt=1j�i0

�
= ni00 log �i + ni01 log(1� �i) +(S3.3.9)

ni10 log(1� �0i) + n11 log �
0
i :

The maximum likelihood estimators of �i; �
0
i are

�̂i =
ni00

ni00 + ni01
(S3.3.10)

�̂0i =
ni11

ni10 + ni11
:

and the Fisher information matrix is

i(�i; �
0
i) = E

" ni00
�2
i

+ ni01
(1��i)2 0

0 ni10
(1��0

i
)2
+ ni11

�0
i
2

!#
(S3.3.11)

so that our estimates �̂i; �̂
0
i are asymptotically independent and normal, with asymptotic

variances estimated e�ciently by

�̂2�̂i = (�̂i(1� �̂i)(ni00 + ni01))
�1(S3.3.12)

�̂2�̂0
i

=
�
�̂0i(1� �̂0i)(ni10 + ni11)

��1
:

The results of the empirical analysis are given in Tables 3.1 and 3.2. In Table 3.1, the non-
trading counts are reported for six securities using �ve years of daily data from January 4,
1988 to December 31, 1992. The data was extracted from the CRSP daily master �le: out
of 1,120 ordinary common shares continuously listed on the NYSE over this time span,
360 did not trade at least on one of the NYSE trading dates, and 56 did not trade on
at least 100 days out of 1,517 days in total. Our sample is a randomized selection of six
stocks from the latter set. Values for ni0 and ni1, de�ned analogously to ni00 etc., are
also provided for convenience. Note that ni01 and ni10 coincide in some cases.

Estimates of �i and �0i are given in Table 3.2.

Solution 3.4

Let the Markov process for It be given by the transition probability matrix

C �
�

p 1� p
1� q q

�
;(S3.4.1)

with steady-state probabilities of It being �1 and 1 given by P � (1� q)=(2� p� q) and
Q � (1� p)=(2� p� q), respectively.
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Input Data for Problem 3.1.3. Representative sample from infrequently traded (at
least 100 no-trade days in the sample interval) ordinary common shares continuously
listed on the NYSE from 1988 to 1992. Each stock is identi�ed by its ticker symbol and
CUSIP number. Counts of days a stock did not trade ni0, did trade ni1, and patterns
of non-trading for all pairs of consecutive days ni00, ni01, ni10, ni11 are reported.

Ticker CUSIP ni0 ni1 ni00 ni01 ni10 ni11

ZMX 98991710 390 1127 129 260 261 867
UNF 90470810 244 1273 67 177 177 1096
JII 47936810 220 1297 70 150 150 1147
MBC 59478010 173 1344 25 148 148 1196
ADU 02342610 136 1381 33 103 103 1278
LVI 50243910 117 1400 35 82 82 1318

Table 3.1. Input Data for Problem 3.1.3

Parameter Estimates for Problem 3.1.3. Maximum likelihood estimates of proba-
bilities �i, �0i for representative sample of infrequently traded stock are reported, together
with estimates of their standard deviations �.

Ticker �̂i �̂�̂i �̂0i �̂�̂0
i

ZMX 0.327 0.108 0.769 0.071
UNF 0.275 0.143 0.861 0.081
JII 0.318 0.145 0.884 0.087
MBC 0.145 0.216 0.890 0.087
ADU 0.243 0.200 0.925 0.102
LVI 0.299 0.202 0.941 0.114

Table 3.2. Resulting Statistics for Problem 3.1.3

Then �Pt is a four-state Markov process where the quasi-state �Pt = 0 is in fact two
distinct states according to whether the pair (It�1; It) is (�1;�1) or (1; 1). In the steady
state, we have the following transition probability matrix:0

B@
0 p 1� p

(1�p)q(1�q)
p(1�q)+q(1�p)

p2(1�q)+q2(1�p)
p(1�q)+q(1�p)

p(1�p)(1�q)
p(1�q)+q(1�p)

1� q q 0

1
CA :(S3.4.2)

The moments of �Pt are then

E[�Pt] = 0;

Var[�Pt] =
2s2(1� p)(1� q)

2� p� q
;(S3.4.3)

Cov[�Pt;�Pt�k] = �s2(1� p)(1� q)

2� p� q
�

(1;�1)Ck�1(1 � p; q � 1)0; k > 0;

Corr[�Pt;�Pt�k] =
�(1;�1)Ck�1(1� p; q � 1)0

2(2� p� q)
; k > 0 :

Observe that the �rst autocorrelation coe�cient equals �1=2 as in the IID case, but the
higher-order autocorrelations are nonzero in general.
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Solution 3.5

We will show how discreteness can inuence and bias several popular stock price statis-
tics. Consider a stock with a virtual price process that follows a continuous geometric
Brownian motion, with a net expected annual return and standard deviation of return
(not continuously compounded) of � = 10% and � = 20%, respectively.

Assume the observer has available daily-sampled prices rounded to the closest eighth
of a dollar (or to $0.125 if the virtual price is less than $0.125) for a period of ten years.
For purposes of this exercise we neglect the complications of non-trading days and assume
the year consists of 253 equally-spaced trading days.

We shall focus on the estimator �̂i of the expected annual returns de�ned as rescaled
arithmetic average of daily returns, and the estimator �̂ of the volatility of annual returns
de�ned as a rescaled standard deviation of daily returns. The rescaling is as follows: the
average of daily returns is multiplied by the number of trading days 253, and the standard
deviation of daily returns is multiplied by

p
253. While such estimators might be suitable

for slowly-changing and continuous price processes, they are badly biased estimators of
the theoretical 10% expected return and 20% standard deviation, respectively.

Expressing the parameters of the underlying geometric Brownian motion process as

�0 = log
�+ 1p

1 + �=(�+ 1)
(S3.5.1)

�0 = log (1 + �=(�+ 1))(S3.5.2)

and running 4,000 replications of the simulation described above, we report the means of
the statistics for a hypothetical stock with various initial prices in the Table 3.3.

Estimates of return, standard deviation, and autocorrelation are highly biased for
low-priced stocks. Indeed, the hypothetical $0:25 stock exhibits apparent return of almost
50%. For higher stock prices the discreteness biases subside. Nevertheless, we see that
even for high-priced stocks the estimates are still biased due to the way we rescaled daily
estimates to yield annual �gures (these estimates would be unbiased if we had assumed
arithmetic instead of geometric Brownian motion).

Problem 3.5 shows that the e�ects of price discreteness can be substantial for stock-
return statistics and that appropriate care has to be taken to avoid such biases.

Solution 3.6

3.6.1 From the histogram of IBM transaction stock prices on January 4th and 5th, 1988
(Figure 3.1) we observe price clustering around $120 and $123. These clusters correspond
to trades taking place on di�erent days.

On the other hand, the histogram of price changes (Figure 3.2) does not exhibit any
apparent clustering, leaving aside the discretization to eighths of dollars (or \ticks"), i.e.,
the smallest price variation possible from one trade to the next. We see that most of
changes fall in the range from �2 to +2 ticks.

When we compare the two histograms of price changes conditional on prices falling
on an odd or an even eighth (Figure 3.3), we see a di�erent pattern: there are fewer
zero-tick price changes that fall on odd eighths than on even eighths, and relatively more
one-tick price changes that fall on odd eighths than on even eighths. Overall, even-eighth
prices are signi�cantly more frequent then odd-eighth ones. These regularities underscore
the potentially important impact that discreteness can have on statistical inference for
transactions data.
3.6.2 The histogram of times between trades for IBM stock (Figure 3.4) shows that the
majority of trades take place within intervals shorter than one minute. Based on n = 2;746
time intervals, the estimate of the expected time between trades is �̂� = 16:86 and the
estimate of the standard deviation of the time between trades is �̂� = 19:46. The 95%
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Figure 3.1. Histogram for IBM Stock Price
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Figure 3.2. Histogram of IBM Price Changes
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Figure 3.3. Histogram of IBM Price Changes Falling on Odd or Even Eighth
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Simulations Results for Problem 3.5. The impact of discretization of prices to
a $1/8 grid on naive estimates of annual mean and standard deviation based on daily
returns data is simulated for a hypothetical stock following a continuous time geometric
Brownian motion price process with an annual expected return of 10% and an annual
standard deviation of 20%. For a low-priced stock discreteness biases are substantial.
For a high-priced stock the main source of bias is the misspeci�cation of the process for
purposes of estimation, e.g. taking arithmetic means instead of geometric. The statistics
are based on 4,000 replications of 10 years of daily price data for each row.

Initial price Expected Return Standard Deviation Autocorrelation

0.25
0.4949
(0.0043)

0.9170
(0.0049)

-0.2609
(0.0010)

0.50
0.2893
(0.0012)

0.6454
(0.0021)

-0.2821
(0.0007)

1.00
0.1847
(0.0006)

0.4537
(0.0012)

-0.2886
(0.0005)

2.00
0.1327
(0.0007)

0.3236
(0.0008)

-0.2734
(0.0005)

5.00
0.1038
(0.0008)

0.2210
(0.0003)

-0.1562
(0.0009)

10.00
0.0977
(0.0009)

0.1918
(0.0001)

-0.0562
(0.0006)

20.00
0.0963
(0.0009)

0.1834
(0.0000)

-0.0167
(0.0003)

50.00
0.0969
(0.0009)

0.1808
(0.0000)

-0.0033
(0.0003)

100.00
0.0934
(0.0009)

0.1805
(0.0000)

-0.0010
(0.0003)

Table 3.3. Simulation Results for Problem 3.5

con�dence interval for the expected time can be therefore estimated as

(�̂� � 1:96�̂�=n
1=2; �̂� + 1:96�̂�=n

1=2) = (16:23; 17:49) :(S3.6.1)

Suppose that trade times follow a Poisson process with parameter �. That is, assume
that the probability Pk of exactly k trades occurring during any one-minute interval is
given by

Pk = e��
�k

k!
:(S3.6.2)

The sample average time between trades �̂� is a su�cient statistic for �; in fact, �̂ = 60=�̂�
is a consistent and e�cient estimator of �. Note that the number 60 is the result of
rescaling time from seconds to minutes. For our sample, �̂ = 3:56. We can map the 95%
con�dence interval (S3.6.1) of �� derived above into the following 95% con�dence interval
for � �

60

�̂+ 1:96�̂
;

60

�̂� 1:96�̂

�
= (3:43; 3:69) :(S3.6.3)
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Figure 3.5. IBM Price and Volume on Jan 4, 1988

Note that this con�dence interval is not centered on �̂, but has the advantage of following so

directly from the con�dence interval for �̂�. As n!1, both �̂� and �̂ are asymptotically
normal consistent estimates of �� and �.

It also follows from the de�nition of the Poisson distribution that the probability of
no trade during a one-minute interval can be estimated by

P̂0 = e��̂ = 0:0285(S3.6.4)

with a 95% con�dence interval of (0:0248; 0:0324).
Dividing the two trading dates into one-minute intervals and counting the number of

trades, we get a total of 776 minutes (excluding possible opening and closing lags each day).
A trade occurred in 733 of them. Furthermore, 697 minutes in which a trade occurred
were immediately preceded by a minute in which a trade occurred as well. Therefore, the
estimate of the probability of a trade occurring within a particular minute is 0:0554 with a
95% con�dence interval of (0:0393; 0:0715), and the estimate of the probability of a trade
occurring within a particular minute conditional on a trade occurring in previous minute
is 0:0491 with a 95% con�dence interval of (0:0335; 0:0648). Estimates of conditional
and unconditional probabilities do not di�er statistically signi�cantly, hence we cannot
reject the hypothesis of independence on these grounds. On the other hand, there is a
statistically signi�cant discrepancy between these sample probabilities and the estimate
based on the Poisson assumption. Thus, we can reject the independence of trades in that
sense.
3.6.3 Plots of price and volume against time-of-day for both days exhibit certain patterns
(Figures 3.5, and 3.6). Price discreteness is visible from its price path; volume exhibits
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Figure 3.6. IBM Price and Volume on Jan 5, 1988

large skewness and kurtosis; there is apparently less volume around lunchtime. Time-of-
day phenomena are probably untestable from a sample of two days. There is no apparent

relationship between price movements and volume visible by naked eye.
Consider the simple qualitative hypothesis that large-volume trades are accompanied

by price movements of di�erent magnitude than small-volume trades. Let us partition
sample of 2,746 trades into nb = 42 block trades (trades that are greater than or equal to

100 round lots) and ns = 2;704 smaller trades, and compute the sample means �̂b, �̂s and
standard errors of absolute price changes immediately following the trades, expressed in
dollars:

�̂b = 0:0446 (0:0102)

�̂s = 0:0675 (0:0019) :
(S3.6.5)

The di�erence of these averages is 0:0229 with a standard error of 0:0104, which is signif-
icantly di�erent from zero at the 5% level. Therefore, trading volume is indeed linked to
subsequent price changes. Note that block trades are followed by smaller price changes
than the majority of small volume trades.
3.6.4 Consider the following simple model for estimating the price impact of selling IBM
stock. Assume that we cannot distinguish whether a trade was \seller-initiated" or \buyer-
initiated" from the data, so that we will relate only the absolute magnitude of trading
volume to the absolute magnitude of price change as in the previous part. Moreover, as-
sume that the (absolute) price impact of a trade is proportional to volume, ceteris paribus,
and that errors of measurement are, after division by volume, independent and identically
distributed. Under these strong but simple conditions we can estimate e�ciently the co-
e�cient of proportionality � between volume and its price impact as the sample mean �̂
of ratios of absolute price changes to volume, according to the Gauss-Markov theorem.
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Figure 3.7. IBM Bid/Ask Spread Histogram on Jan 5, 1988

In our data �̂ = 0:0310 (in dollars per one round lot) with a standard error of 0:0013.
Thus, we can conclude that the seller of one round lot e�ectively pays three cents per
share less than marginal seller. This amount becomes economically interesting in the case
of block trades where the loss is of the order of $3 per $120-share of stock.

Solution 3.7

3.7.1 The structure of individual bid/ask spread data is particularly simple. During
January 4th and 5th, 1988, only four sizes of spreads occurred among 1,327 quotes. There
were 748 quotes with a spread of one tick, 502 with two ticks, 65 with three ticks, and 11
with four ticks. A histogram (Figure 3.7) shows that one-tick and two-tick spreads were
by far the most common.

Bid-ask spread dynamics are not IID. Table 3.4 displays the empirical distribution of
bid/ask spreads both unconditionally and conditionally on the previous quote's spread. It
is apparent that the conditional distributions di�er signi�cantly from the unconditional
distribution.
3.7.2 The question of \causality" between quote revisions and transactions is di�cult to
answer with the data at hand if we wish to take into account agents' expectations about
future events. Thus, for simplicity we shall consider \causality" strictly in the temporal
sense: does an increase in the spread come before or after an increase in trading volume,
ceteris paribus?

First, for simplicity let us measure intensity of transactions activity at any time
interval by the number of shares traded in that interval, independently of how the volume
is broken up to individual trades and independently of the stock price.

Let us partition the trading day to n = 1; : : : ; N , roughly 15-second intervals delim-
ited by a subset of quotes. Let variables sn, v

+
n and v�n indicate changes in quote spread



20 PROBLEMS IN CHAPTER 3

Unconditional and Conditional Distributions of Bid/Ask Spreads for IBM
stock during January 4th and 5th, 1988. Relative frequencies of bid/ask spreads condi-
tional on preceding quote's spread are expressed in percent. Spreads are denominated
in ticks.

Previous Current Spread
Spread 1 2 3 4

1 71.4 27.1 1.5 0.0
2 40.0 51.6 7.2 1.2
3 18.5 52.3 23.1 6.2
4 9.1 54.5 27.3 9.1

Any 56.4 37.9 4.9 0.8

Table 3.4. Unconditional and Conditional Distributions of Bid/Ask Spreads

and transaction volume related to nth interval. More speci�cally, let sn be UP, if quote
spread increases between quotes delimiting nth interval, UNCH if spread does not change,
and DOWN if spread decreases. Also, v+n is UP if trading volume at interval n is smaller
than that in n+ 1, etc. Analogously, v�n be UP if trading volume in n� 1 is smaller than
that in n.

Estimates of joint probabilities of s, v+ and v� allow some statistical inference about
the relation between spreads and transactions. In particular, if quote revisions a�ect only
subsequent transactions but do not inuence previous one, the variables s and v� should
be statistically independent. On the other hand, if quotes reect previous transaction
activity, s and v+ should be statistically independent. The empirical distribution of the
27 triples [v�; s; v+], under assumption that their realizations at triples of consecutive
15-second intervals are IID, allow us to test the proposed hypotheses.

However, it is well possible that transaction activity and quote revisions inuence
temporally each other. That being the case, testing existence of unilateral causality may be
next to meaningless. Therefore, let us test \causality" in each direction separately, against
alternative hypothesis of no relation between quote revisions and transaction activity. In
another words, let us test whether variables s and v+ are dependent, to see whether current
quote revisions inuence future transactions. Similarly, let us test whether variables s and
v� are dependent, to see whether current quote revision is inuenced by past transactions.

Using a standard asymptotic test of independence for a contingency table as described
in Rao (1973, pp. 404{412), we have, under the null hypothesis of independence, that:

�2(r�1)(s�1) =
rX
i=1

sX
j=1

(nij � ni:n:j=n::)
2

ni:n:j=n::
(S3.7.1)

has �2 distribution with (r� 1)(s� 1) degrees of freedom. In our case r = s = 3 we have
�24. The contingency tables (Tables 3.5) provide a summary of the data.

It turns out that �24 statistics for the �rst table is 13.6, and for the second 17.9 so that
we reject the hypothesis of no dependence between s and v� on 0.9% signi�cance level
and that of s and v+ on 1.2% signi�cance level. Thus we have shown that quote revisions
\inuence" future transactions, and past transactions \inuence" quote revisions.

The next step of the analysis may be to postulate a particular model that involves
both e�ects between transactions and quotes, and perform another round of the statistical
analysis.
3.7.3 This part is very similar to 3.7.2, hence we omit the solution.
3.7.4 Let us assume that the investor starts with the bond position and that considers
the quotes as the relevant price information sense: the investors account only for the
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Contingency Tables for causal relationship between transactions activity and quote
revisions. The trading day Jan 4, 1988 is divided to quote-to-quote intervals of roughly
15 seconds apart and changes of bid/ask spread together with changes in the trade
volume in these intervals are counted. Tables show relationship between past/future
changes in transactions activity against the spread change in the intervals.

Past Current Spread
Trading UP UNCH DOWN

UP 23 59 10
UNCH 3 12 2
DOWN 21 50 32

Future Current Spread
Trading UP UNCH DOWN

UP 20 51 33
UNCH 2 2 2
DOWN 25 68 9

Table 3.5. Contingency Tables

rise or decline of the mid-price given as average of the bid/ask spread. Quotes that do
not change the mid-price are e�ectively ignored. Further assume that at the end of the
two-day trading period the stock position is liquidated into bonds.

A simulation of such a trading strategy shows: (1) if the investor is allowed to buy
and sell at the average, he is left with $101,899 at the end; (2) if the bid/ask prices are
used, he is left with $97,769. We see that the bid/ask spread does matter.

It would be di�cult to perform any sensible statistical analysis based on the one
simulation performed. In particular, it is incorrect to assert that the strategy in (1) that
led to nearly a 1% return over one day would dominate a buy-and-hold strategy for a
di�erent data set or over a di�erent time span. Nevertheless, the gap between the pro�ts
of (1) and (2) are real: frequent trading and large spreads do create signi�cant losses
compared to the \frictionless" case.
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Problems in Chapter 4

Solution 4.1

Because OLS is consistent, we have �̂i ! �i in probability as L1 !1 from (4.5.3). Thus,

for �̂�i from (4.5.7) we have �̂�i = R�i �X�
i �̂i ! R�i �X�

i �i = ��i in probability, as L1 !1.
Because abnormal returns ��i are independent (across time), the sample abnormal returns
�̂�i are asymptotically independent as L1 !1.

Solution 4.2

We assume that the cumulative abnormal return test statistics are calculated using the
known standard deviation of the abnormal returns, that the abnormal returns are inde-
pendent through time and across observations and normally distributed, and that the
abnormal returns are measured without parameter sampling error (L1 is large). Denote
L2 = 3 as the length of the event window and N as the number of event observations.
Designate group 1 as the observations with low standard deviation and group 2 as the
observations with high standard deviation. For the group means and standard deviations
we have �1 = 0:003, �2 = 0:003, �1 = 0:03, and �2 = 0:06 where the subscript indicates
the group. N1 = 25 and N2 = 25 are the number of observations in groups 1 and 2
respectively.

To calculate the power against the given alternative, we need to derive the distribu-
tions of the test statistics under that alternative. First, we aggregate the abnormal returns
over the event window for each observation which gives

CARi =

L2X
l=1

��il:(S4.2.1)

Given the assumptions, E[CARi] = L2�g(i) and Var[CARi] = L2�
2
g(i) where g(i) equals

the group of observation i.
Then, we aggregate across observations to form the test statistics (modi�ed to reect

the above assumptions). The aggregation of abnormal returns corresponding to J1 in
(4.4.22) is

J1 =

�
L2(N1�

2
1 +N2�

2
2)

N2

��1=2 "
1

N

NX
i=1

CARi

#
;(S4.2.2)

The aggregation corresponding to J2 in (4.4.24) is:

J2 =
p
N

2
4 1

N

NX
i=1

CARiq
L2�2g(i)

3
5 :(S4.2.3)

23
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Under the speci�ed alternative hypothesis, the distributions of the test statistics J1
and J2 are

J1 � N (��1; 1) = N (

p
L2(N1�1 +N2�2)

(N1�21 +N2�22)
1=2

; 1);(S4.2.4)

J2 � N (��2; 1) = N (

p
L2p
N

(N1
�1
�1

+N2
�2
�2

); 1):(S4.2.5)

Substituting in the alternative parameter values, for the means of J1 and J2 we have
��1 = 0:775 and ��2 = 0:919, respectively.

Consider a two-sided test of size � based on J1 and J2, respectively, of the null
hypothesis H0 : [�1 �2] = [0 0] against the alternative hypothesis HA : [�1 �2] =
[0:003 0:003]. Using equation (4.6.1), the powers of the tests, P1 and P2 are

P1 = Pr[J1 < ��1(�=2)] + Pr[J1 > ��1(1� �=2)]

= [�(���1 +��1(�=2))] + [1� �(��1 +��1(1 � �=2))];(S4.2.6)

P2 = Pr[J2 < ��1(�=2)] + Pr[J2 > ��1(1� �=2)]

= [�(���2 +��1(�=2))] + [1� �(��2 +��1(1 � �=2))]:

Evaluation of these expressions for � = 0:05 gives P1 = 12:1% and P2 = 15:1%.

Solution 4.3

The solution is the same as for Problem 4.2 except that �2 = 0:006 instead of 0:003. Using
this value for �2, we have �

�
1 = 1:162 and ��2 = 1:225 giving P1 = 21:3% and P2 = 23:3%.
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Solution 5.1

For the regression equation

Ra = �0 + �1Rop + �2Rp + �p(S5.1.1)

using well-known regression results, we have

�1 = Cov[Ra; Rop]=Var[Rop] = �aop;(S5.1.2)

�2 = Cov[Ra; Rp]=Var[Rp] = �ap;(S5.1.3)

�0 = �a � (�aop�op + �ap�p);(S5.1.4)

since Cov[Rp; Rop] = 0. The result �2 = �ap is immediate, thus we need to show that
�1 = 1� �ap and �0 = 0 to complete the solution.

Let r be the minimum variance portfolio with expected return equal to that of portfo-
lio a, �a = �r. From the form of the solution for the minimum variance portfolio weights
in (5.2.6), Rr can be expressed as

Rr = (1� �)Rop + �Rp(S5.1.5)

where � = (�r � �op)=(�p � �op). Using Cov[Rp; Rop] = 0 and �r = (1 � �)�op + ��p we
have

�rop = Cov[Rr; Rop]=Var[Rop]

= Cov[(1� �)Rop + �Rp; Rop]]=Var[Rop]

= (1� �)(S5.1.6)

�rp = Cov[Rr; Rp]=Var[Rp]

= Cov[(1� �)Rop + �Rp; Rp]]=Var[Rp]

= �(S5.1.7)

�r = �rop�op + �rp�p:(S5.1.8)

Portfolio a can be expressed as portfolio r plus an arbitrage (zero-investment) portfolio
a� composed of portfolio a minus portfolio r (long a and short r). The return of a� is

Ra� = Ra �Rr:(S5.1.9)

Since �a = �r, the expected return of a� is zero. Because a� is an arbitrage portfolio
with an expected return of zero, for any minimum variance portfolio q, the solution to the
optimization problem

min
c

Var[Rq + cRa� ](S5.1.10)
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is c = 0. Any other solution would contradict q being minimum variance. Noting that
Var[Rq + cRa� ] = Var[Rq ] + 2cCov[Rq ; Ra� ] + c2Var[Ra� ] we have

@

@c
Var[Rq + cRa� ] = 2Cov[Rq; Ra� ] + 2cVar[Ra� ]:(S5.1.11)

Setting this derivative equal to zero and substituting in the solution c = 0 gives

Cov[Rq; Ra� ] = 0:(S5.1.12)

Thus the return of a� is uncorrelated with the return of all minimum variance portfolios.
Using this result we have

Cov[Ra; Rp] = Cov[Rr +Ra� ; Rp]

= Cov[Rr; Rp](S5.1.13)

Cov[Ra; Rop] = Cov[Rr +Ra� ; Rop]:

= Cov[Rr; Rop](S5.1.14)

From (S5.1.13) and (S5.1.14) it follows that

�aop = �rop(S5.1.15)

�ap = �rp:(S5.1.16)

Combining (S5.1.2) with (S5.1.6), (S5.1.7), (S5.1.15) and (S5.1.16) we have �1 = �aop =
1 � �ap. Since �r = �a, combining (S5.1.4) with (S5.1.8), (S5.1.15), and (S5.1.16) gives
�0 = 0 which completes the solution.

Solution 5.2

Begin with the excess return market model from (5.3.1) for N assets. Taking unconditional
expectations of both sides and rearranging gives

� = �� ��m:(S5.2.1)

Given that the market portfolio is the tangency portfolio, from (5.2.28) we have the (N�1)
weight vector of the market portfolio

!m =
1

�0
�1�

�1�:(S5.2.2)

Using !m we can calculate the (N � 1) vector of covariances of the N asset returns with
the market portfolio return, the expected excess return of the market, and the variance of
the market return,

Cov[Z; Zm] = 
!m =
1

�0
�1�
�(S5.2.3)

�m = !
0
m� =

�0
�1�
�0
�1�

(S5.2.4)

Var[Zm] = !
0
m
!m =

�0
�1�
(�0
�1�)2

:(S5.2.5)

Combining (S5.2.3) and (S5.2.5) we have

�m =
Cov[Z; Zm]

Var[Zm]
=

�0
�1�
�0
�1�

�:(S5.2.6)

and combining (S5.2.6) and (S5.2.4) we have

�m�m = �:(S5.2.7)

From (S5.2.1) and (S5.2.7) the result � = 0 is immediate.
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Solution 5.3

The solution draws on the statistical analysis of Section 5.3. The calculations for three
selected stocks are left to the reader.

Solution 5.4

Let Z�t be a (N+1�1) vector of excess asset returns with mean �� and covariance matrix

�. Designate asset N +1 as the market portfolio m. Assume that 
� is full rank. (If the
market portfolio is a combination of the N included assets, this assumption can be met
by eliminating one asset.)

From (5.2.28) the tangency portfolio q of these N + 1 assets has weight vector

!q =
1

�0
��1��

��1��:(S5.4.1)

Using straight forward algebra we have

�2q
�2q

=
(!0q�

�)2

!0q
�!q
= �

�0
��1��(S5.4.2)

The covariance matrix 
� can be partitioned in the �rst N assets and the market portfolio,


� �
2
4 
 ��2m

�0�2m �2m

3
5(S5.4.3)

(S5.4.4)

�
2
4 ��0�2m +� ��2m

�0�2m �2m

3
5(S5.4.5)

where 
 = ��0�2m +� is substituted.
Using the formula for a partitioned inverse (see Morrison (1990) page 69) we have


��1 �
�

��1 ��1�
�0��1 1

�2m
+ �0��1�

�
(S5.4.6)

(S5.4.7)

Using ��0 = [�0 �m] and (S5.4.6) we have

�
�0
��1�� =

�2m
�2m

+ (�� ��m)
0��1(�� ��m):(S5.4.8)

Substituting � = �� ��m gives

�
�0
��1�� =

�2m
�2m

+�
0��1�:(S5.4.9)

From (S5.4.2) and (S5.4.9) we have

�
0��1� =

�2q
�2q

� �2m
�2m

(S5.4.10)

which is the result in (5.5.3).
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Problems in Chapter 6

Solution 6.1

Let the number of portfolios in the set be K and let RKt be the (K � 1) vector of
time period t returns for the portfolios. Since the entire minimum variance boundary can
be generated from the K portfolios, for any value of the constant �y, there exists a combi-
nation of the portfolios with expected return �y which is minimum variance with respect
to the K portfolios plus the N assets. Choose �y to be any value but the global minimum
variance portfolio expected return (see equation (5.2.11)) and denote this portfolio op.
Corresponding to op is a minimum variance portfolio p whose return is uncorrelated with
the return of op (see Section 5.2). Since p and op are minimum variance portfolios their
returns are linear combinations of the elements of RKt,

Rpt = R
0
Kt!

K
p(S6.1.1)

Ropt = R
0
Kt!

K
op;(S6.1.2)

where !K
p and !K

op are (K � 1) vectors of portfolio weights. Because p and op are uncor-
related minimum variance portfolios, we have

� = ��op + �p(�p � �op)(S6.1.3)

where

�p =
Cov[Rt; Rpt]

�2p

=
1

�2p
Cov[Rt;R

0
Kt!

K
p ]

=
1

�2p
Cov[Rt;R

0
Kt]!

K
p :(S6.1.4)

(See Section 5.2.) Substituting (S6.1.4) into (S6.1.3) gives

� = ��op +Cov[Rt;R
0
Kt]!

K
p
(�p � �op)

�2p
:(S6.1.5)

Analogous to (S6.1.5) for the K portfolios we have

�K = ��op +Cov[RKt;R
0
Kt]!

K
p

(�p � �op)

�2p
:(S6.1.6)

Rearranging (S6.1.6) gives

!
K
p
(�p � �op)

�2p
= Cov[RKt;R

0
Kt]

�1(�K � ��op):(S6.1.7)

Substituting (S6.1.7) into (S6.1.5) gives

� = ��op +Cov[Rt;R
0
Kt]Cov[RKt;R

0
Kt]

�1(�K � ��op):(S6.1.8)

Now consider the multivariate regression of N assets on K factor portfolios,

Rt = a+BRKt + �t(S6.1.9)
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where a is the (N � 1) intercept vector, B is the (N � K) matrix of factor regression
coe�cients, and �t is the time period t residual vector. From regression theory we have

B = Cov[Rt;R
0
Kt]Cov[RKt;R

0
Kt]

�1(S6.1.10)

a = ��B�K :(S6.1.11)

From (S6.1.8) and (S6.1.10), we have

� = ��op +B(�K � ��op)

= (��B�)�op +B�K(S6.1.12)

Since (S6.1.12) holds for di�erent values of �op it must be the case that (� � B�) = 0,
that is the factor regression coe�cients for each asset, including asset a, sum to one. If
(��B�) = 0, then (S6.1.12) reduces to � = B�K and thus from (S6.1.11) we have a = 0,
that is the regression intercept will be zero for all assets including asset a.

Solution 6.2

Let �� and 
� be the mean excess return vector and the covariance matrix respectively
for the N assets and portfolio p,

��0 �
2
4 �

�p

3
5(S6.2.1)


� �
2
4 
 �0�2p

��2p �2p

3
5(S6.2.2)

(S6.2.3)

�
2
4 ��0�2p +� �0�2p

��2p �2p

3
5(S6.2.4)

where 
 = ��0�2p +� and � = ��0�2h + I�2� .

Given the N+1 assets, the maximum squared Sharpe ratio is ��0
��1�� which is the
squared Sharpe ratio of the tangency portfolio. As demonstrated in problem 5.4, given
� = a+ ��p and 
 = ��0�2p +� this ratio can be expressed as

s2I = �
�0
��1�� =

�2p
�2p

+ a
0��1a(S6.2.5)

where s2I is the maximum squared Sharpe ratio for economy I, I = A;B: Analytically
inverting � = ��0�2h + I�2� and simplifying, s2I can be expressed as

s2I = s2p +
1

�2�

�
a
0
a +

�2h(a
0�)2

(�2� + �2h�
0�)

�
:(S6.2.6)

where s2p is the squared Sharpe ratio of portfolio p.

Solution 6.3

Using (S6.2.6) and the cross-sectional distributional properties of the elements of a and �,
an approximation for the maximum squared Sharpe measure for each economy can be de-
rived. For both economies, 1

N
a
0
a converges to �2a, and

1
N
�0� converges to �2a. For economy

A, 1
N2 (a

0�)2 converges to �4
a
, and for economy B, 1

N
(a0�)2 converges to �4a. Substituting

these limits into (S6.2.6) gives approximations of the maximum squared Sharpe measures
squared for each economy. Substitution into (S6.2.6) gives

s2A = s2p +
N�2a

�2� +N�2h�
2
a

(S6.3.1)
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s2B = s2p + N
�2a
�2�

�
1� �2h�

2
a

�2� +N�2h�
2
a

�
:(S6.3.2)

Thus we have the squared Sharpe ratios for economies A and B, respectively. The squared
Sharpe ratios for large N follow from (S6.3.1) and (S6.3.2). For economy A we have

s2A = s2p +
1

�2h
;(S6.3.3)

and for economy B we have

s2B = s2p + N
��2a
�2�

�
:(S6.3.4)

The maximum squared Sharpe measure is bounded as N increases for economy A and
unbounded for economy B. Examples of economies A and B are discussed in section
6.6.3.
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Problems in Chapter 7

Solution 7.1

Each period, the corporation repurchases shares worth �X while the total stock is worth
V � X=(1 � (1 + R)�1) = (1 + R)X=R. Therefore, the number of shares outstanding
follows the \law of motion"

Nt+1 =

�
1� �

R

1 +R

�
Nt:(S7.1.1)

7.1.1 Price per share is Pt � V=Nt, and dividend per share is Dt � (1 � �)X=Nt+1.
(Note that dividends are paid after repurchases, on the remaining shares only). Hence the
growth rate of dividends per share, G, satis�es

1 +G =
Nt

Nt+1
=

1 +R

1 +R(1� �)
:(S7.1.2)

Dividends per share grow, even though total dividends do not, because the number of
shares is shrinking over time.
7.1.2 The dividend-price ratio is

DP � Dt=Pt =
(1� �)X

V

�
Nt

Nt+1

�
:(S7.1.3)

Manipulating this equation yields

DP =
R �G

1 +R
;(S7.1.4)

which is consistent with equation (7.1.9) after accounting for the fact that prices here are
cum-dividend, whereas the discussion in the text applies to ex-dividend prices.
7.1.3 This follows immediately from the results of the previous subsection, because if price
is the present value of discounted future dividends, including the dividend paid today, then

Pt =
1X
t=0

Dt+i

(1 +R)i
=

1X
t=0

Dt
(1 +G)i

(1 +R)i
= Dt

�
1 +R

R�G

�
;(S7.1.5)

which is what we showed in the previous subsection.
Intuitively, shares must have the same value to shareholders who sell shares to the

repurchasing �rm and to shareholders who do not. A shareholder who sells a fraction �
of his shares to the �rm each period receives a constant fraction of total dividends and
repurchase payments, that is, a constant fraction of the �rm's cash ow. A shareholder
who sells no shares to the �rm receives a growing fraction of total dividends, because the
total number of shares is shrinking over time. The value of the shares is the same in either
case.

33
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Solution 7.2

7.2.1 Denoting the discount rate R = er, we can write

Ft = Et[
1X

�=t+1

D�

R��t ] =
1X
n=1

Et[e
dt+
Pn
k=1(�+�t+k�r)](S7.2.1)

= Dt

1X
n=1

en(�+�
2=2�r):

The condition �+ �2=2 < r is necessary for the sum to converge. It follows that the ratio
of fundamental value to dividend is

Ft
Dt

=
e�+�

2=2�r

1� e�+�2=2�r
:(S7.2.2)

7.2.2 Since

Ft + cD�
t = e�rE[Ft+1 + cD�

t+1 +Dt+1](S7.2.3)

and

Ft = e�rEt[Ft+1 +Dt+1];(S7.2.4)

we have

D�
t = e�rEt[D

�
t+1]:(S7.2.5)

Since

Et[D
�
t+1] = eEt[�dt+1]+Vart[�dt+1]=2 = e��+�dt+�

2�2=2;(S7.2.6)

we get a quadratic equation for the parameter �,

�2�2=2 + ��� r = 0:(S7.2.7)

For such a parameter �, the price process Pt = Ft + cD�
t indeed gives the same expected

rate of return as the process Pt = Ft.
7.2.3 The Froot-Obstfeld bubble requires a very speci�c dividend process. However, the
bubble is strongly correlated with the dividend, capturing the e�ect of dividend \overre-
action". The bubble never bursts for a strictly positive dividend stream.

Solution 7.3

7.3.1 Using approximate formula (7.1.30), we have for k > 1

Cov[rt; rt+k]

= E

��
xt�1 + �d;t � ��t

1� ��

��
xt+k�1 + �d;t+k � ��t+k

1� ��

��
(S7.3.1)

= E

�
xt�1xt+k�1 � ��t

1� ��
xt+k�1

�
:

Because xt =
P1

n=0 �
n�t�n, we have

E[xt�1xt+k�1] =
�k�2�
1� �2

(S7.3.2)

and

E[�txt+k�1] = �k�1�2� :(S7.3.3)

Thus the return autocovariance is

Cov[rt; rt+k] = �k�1
�

�

1� �2
� �

1� ��

�
�2� :(S7.3.4)

This is negative when � < �. The autocorrelation of stock returns is determined by the
balance of two opposing e�ects. Expected stock returns are positively autocorrelated,
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and this creates positive autocorrelation in realized stock returns. However innovations
in expected future stock returns are negatively correlated with current unexpected stock
returns, and this creates negative autocorrelation in realized stock returns. The latter
e�ect dominates when � < �.
7.3.2 Assume now that

Cov[�d;t; �t] = ��;� > 0:(S7.3.5)

We have

Cov[rt; rt+k] = �k�1
 
��;�
�2�

+
�

1� �2
� �

1� ��

!
�2� :(S7.3.6)

If ��;� is large enough, the �rst term can dominate the others, giving positive return
autocovariances.

Solution 7.4

7.4.1 Equation (7.1.19) implies that for pt = vt,

rt+1 � k + �pt+1 + (1� �)dt+1 � pt = k + ��+ ��t+1:(S7.4.1)

We see that rt+1 is just a constant plus a white noise component | the log stock return
rt+1 is therefore unforecastable.
7.4.2 Let us rewrite the formula for vt and substitute in the dividend rule. We get

vt � dt =
1� �

�
(vt�1 � dt�1) + �� c

�
� �t

�
+ �t;(S7.4.2)

so the log dividend-price ratio dt�vt follows an AR(1) process with persistence coe�cient
(1� �)=�.
7.4.3 The log dividend-price ratio is

dt � pt = dt � (vt � (dt � vt)) = (1 + )(dt � vt):(S7.4.3)

Because dt� vt is an AR(1) process and the log dividend-price ratio dt� pt is a (positive)
multiple of dt � vt, it is also an AR(1) process.

The approximate log stock return can be rewritten, using the formulas for dt and pt,
as

rt+1 � k + �(pt+1 � dt+1) + (dt+1 � pt)

= k + �(1 + )(vt+1 � dt+1) + c+ (1� �+ )(dt � vt) + �t+1

= constant +
�

1 + 
(dt � pt)� �t+1 + �(1 + )�t+1:(S7.4.4)

Setting xt � (�=(1+ ))(dt� pt), we get a model of the form (7.1.27) and (7.1.28), with
xt being the optimal forecasting variable for rt+1 up to a constant.
7.4.4 From the above we have

rt+1 � Et[rt+1] = ��t+1 + �(1 + )�t+1;(S7.4.5)

and

xt+1 � Et[xt+1] = �

�
�t+1
�

� �t+1

�
;(S7.4.6)

so that the covariance of the innovations is always negative.
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Solution 7.5

Let us denote the expectation conditional on the full information set at time t as Et[�]
and the expectation conditional on information Jt as EJt [�]. Thus, we have E[Et[�]] =
E[�], EJt [Et[�]] = EJt [�], and so forth, by the law of iterated expectations. In particular,
E[pt] = E[Et[p

�
t ]] = E[p�t ]. Note that the following \prices" are expectations listed in order

of decreasing conditioning information: p�t , pt = Et[p
�
t ], p̂t = EJt [p

�
t ], and E[p�t ].

7.5.1 Calculate

Var[pt] = E[((Et[p
�
t ]� EJt [p

�
t ]) + (EJt [p

�
t ]� E[p�t ]))

2
]

= E[Et[p
�
t ]� EJt [p

�
t ])

2] + E[(EJt [p
�
t ] � E[p�t ])

2](S7.5.1)

� E[(EJt [p
�
t ]� E[EJt [p

�
t ]])

2
]

= Var[p̂t]:

where the cross term at the second step was eliminated using the fact that

E[EJt [(Et[p
�
t ]� EJt [p

�
t ])(EJt [p

�
t ]� E[p�t ])]] = 0(S7.5.2)

as EJt [p
�
t ]� EJt [p

�
t ] conditional on Jt is a constant and EJt [Et[p

�
t ] � EJt [p

�
t ]] = 0. Calcu-

lations in other parts of the problem are similar.
Intuitively, a price forecast based on less information is less volatile.

7.5.2 Calculate

Var[p�t � p̂t] = E[((p�t � pt) + (pt � p̂t))
2]

= E[(p�t � pt)
2] + E[(pt � p̂t)

2](S7.5.3)

= Var[p�t � pt]:

It follows that

Var[p�t � p̂t] � Var[pt � p̂t](S7.5.4)

and

Var[p�t � p̂t] � Var[pt � p̂t](S7.5.5)

as was to be shown.
Intuitively, a forecast based on inferior information has a larger error variance. Also,

the error variance for a forecast of the actual realization of an uncertain price is larger
than the error variance for a forecast of a superior-information forecast.

Stock prices, referred to in Problem 7.5.1, are usually considered nonstationary so
that their conditional variances do not converge to a �nite unconditional variance. On
the other hand, forecast errors, referred to in Problem 7.5.2 may plausibly be assumed
stationary. Therefore, the framework of Problem 7.5.2 seems more suitable for econometric
analysis.
7.5.3 Note that p̂t+1 is de�ned to be EJt [p

�
t+1]. Using the approximation

E[rt+1] = E[EJt [rt+1]] = E[r̂t+1](S7.5.6)

that follows from (7.1.19) we get

Var[rt+1] = E[((rt+1 � r̂t+1) + (r̂t+1 � E[r̂t+1]))
2]

= E[(rr+1 � r̂t+1)
2] + E[(r̂t+1 � E[r̂t+1])

2](S7.5.7)

� Var[r̂t+1]:

Intuitively, the variance of a return forecast is less volatile than the return itself. Just
as in Problem 7.5.2, this result is more useful than that in Problem 7.5.1 because the
stochastic processes for returns do not seem to have the unit roots characteristic of price
processes.
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Solution 8.1

8.1.1 Recall that �M = 
�1(��ME[�+Rt]), M
�
t =M + (Rt � E[Rt])

0�M . Therefore

E[M�
t (M)2] =M

2
+ �0M
�M =M

2
+ (��ME[� +Rt])

0
�1(��ME[� +Rt]):(S8.1.1)

Note in particular that E[M�
t (M )2] �M

2
.

First, we will show that in the market augmented by a risk-free asset with return
1 +RFt = 1=M , there exists a benchmark portfolio with return

1 +Rbt =
M�

t (M)

E[M�
t (M)2]

:(S8.1.2)

Consider a portfolio with dollar weights �M on the risky assets and M
2 � E[� + Rt]

0�M
on the risk free asset. Such a portfolio has payo� M�

t (M) and value

�0�M +M
2 � E[�+Rt]

0�M

= M
2
+ (��ME[�+Rt])

0
�1(� �ME[�+Rt])(S8.1.3)

= E[M�
t (M)2]:

Thus the portfolio return is exactly 1 +Rbt, and the proof of existence is complete.
Next, consider any portfolio Rpt such that E[Rpt] = E[Rbt]. The properties ofM

�
t (M)

and Rbt imply that

Var[Rpt] = E[((Rpt �Rbt) + (Rbt � E[Rbt]))
2]

= E[(Rpt �Rbt)
2] + E[(Rbt � E[Rbt])

2](S8.1.4)

= Var[Rpt �Rbt] + Var[Rbt]:

The only nontrivial step was to eliminate the cross term

E[(Rpt �Rbt)(Rbt � E[Rbt])]

= E[Rpt �Rbt]
M�

t (M)

E[M�
t (M)2]

� E[Rpt �Rbt]E[1 +Rbt](S8.1.5)

= 0:

Thus Var[Rpt] � Var[Rbt] whenever E[Rpt] = E[Rbt], so the benchmark portfolio is on the
mean-variance frontier.
8.1.2 First note that E[(Mt(M)�M�

t (M))(1 +Rpt)] = 0 for any portfolio return Rpt. It
follows that

Cov[Mt(M); Rpt] = Cov[M�
t (M); Rpt] � Var[M�

t (M)]1=2 Var[Rpt]
1=2;(S8.1.6)

where equality is attained iff M�
t (M) is perfectly correlated with Rpt. In particular, we

have Cov[Mt(M); Rbt] = Var[M�
t (M)]1=2 Var[Rbt]

1=2 and therefore

Corr[Mt(M); Rpt] � Var[M�
t (M)]1=2

Var[Mt(M)]1=2
= Corr[Mt(M); Rbt];(S8.1.7)
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so that Rbt is a maximum correlation portfolio among all Rpt's with respect to any sto-
chastic discount factor Mt(M).

8.1.3 From E[M�
t (M)(�+Rit)] = 1 we get

Cov[M�
t (M); Rit] = 1� E[M�

t (M)]E[1 +Rit](S8.1.8)

and similarly for Rbt. Therefore

Cov[M�
t (M); Rit]

Cov[M�
t (M); Rbt]

=
1� E[M�

t (M)]E[1 +Rit]

1� E[M�
t (M)]E[1 +Rbt]

:(S8.1.9)

Note that E[M�
t (M)] = M and M�

t (M) = c(1 + Rbt), where c = E[M�
t (M)2]�1 > 0 is a

constant. Thus, the above expression simpli�es to

Cov[Rbt; Rit]

Cov[Rbt; Rbt]
=

1=M � E[1 +Rit]

1=M � E[1 +Rbt]
(S8.1.10)

which yields (8.1.17).
8.1.4 Indeed,

E[1 +Rbt] = E

�
M�

t (M)

E[M�
t (M)2]

�
=

M

E[M�
t (M)2]

;(S8.1.11)

and

�(Rbt) =

 
E[M�

t (M)(1 +Rbt)]

E[M�
t (M)2]

� M
2�

E[M�
t (M)2]

�
!1=2

=

�
E[M�

t (M)2]�M
2
�1=2

E[M�
t (M)2]

(S8.1.12)

so that

�(Rbt)

E[1 +Rbt]
=

�
E[M�

t (M)2]

M
2 � 1

�1=2
:(S8.1.13)

Similarly,

1=M � E[1 +Rbt]

�(Rbt)
=

E[M�

t (M)2]

M
�M�

E[M�
t (M)2]�M

2
�1=2(S8.1.14)

=

�
E[M�

t (M)2]

M
2

� 1

�1=2
:

8.1.5 Note that

E[Mt(M)] =M = E[M�
t (M)](S8.1.15)

and

E[Mt(M)2] = E[
�
M�

t (M) +
�
Mt(M)�M�

t (M)
��2

]

= E[M�
t (M)2] + E[

�
Mt(M)�M�

t (M)
�2
](S8.1.16)

� E[M�
t (M)2]:

Therefore �
�
Mt(M)

� � �
�
M�

t (M)
�
and �nally

�(Rbt)

E[1 +Rbt]
=

�
�
M�

t (M)
�

E[M�
t (M)]

� �
�
Mt(M)

�
E[Mt(M)]

:(S8.1.17)
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Solution 8.2

8.2.1 Assume a representative-agent utility function as in (8.2.2),

u (fCg) =
1X
j=0

�j
C1�
t+j

1� 
=

1X
j=0

�jv(C);(S8.2.1)

and consider the maximization problem

max
fCg;fwg

Et[u (fCg)](S8.2.2)

subject to Wt+1 + Ct+1 = w0t(�+Rt+1)Wt and Wt � 0.
Consider a single intertemporal sub-problem involving incremental investment of an

amount x in a speci�c asset i from period t to t + 1, at the cost of time-t consumption,
the proceeds of the investment to be consumed at t+ 1:

max
x

Et[v(Ct � x) + �v(Ct+1 + x(1 +Ri;t+1))]:(S8.2.3)

At the optimum of the previous problem, x = 0 has to be optimal here, so that

@

@x
Et[v(Ct � x) + �v(Ct+1 + x(1 +Ri;t+1))]

����
x=0

= 0;(S8.2.4)

which implies

Et[C
�
t + �(1 +Ri;t+1)C

�
t+1] = 0;(S8.2.5)

from which (8.2.3) follows. Note that (8.2.3) is not only necessary but also su�cient for
the optimum once it holds for all i's and t's.

Assuming that asset returns and consumption are jointly log-normal, the quantity

(1 +Ri;t+1)�(Ct+1=Ct)
�(S8.2.6)

is also log-normal and therefore by taking logs of (8.2.3)

Et[log
�
(1 +Ri;t+1)�(Ct+1=Ct)

��] + 1

2
Vart[log

�
(1 +Ri;t+1)�(Ct+1=Ct)

��] = 0;

(S8.2.7)

so that

Et[ri;t+1] + log � � Et[�ct+1] +(S8.2.8)

1

2

�
Vart[ri;t+1] + 2Vart[�ct+1]� 2Covt[ri;t+1�ct+1]

�
= 0

which gives (8.2.5).
Assuming that conditional variances and covariances

Vii = Vart[ri;t+1];

Vcc = Vart[�ct+1];(S8.2.9)

Vic = Covt[ri;t+1;�ct+1]

are all constants, we can write (8.2.5) as

Et[ri;t+1] = Et[�ct+1] +

�
� log � � 1

2

�
Vii + 2Vcc � 2Vic

��
;(S8.2.10)

which is a linear function of Et[�ct+1] with slope coe�cient |the coe�cient of risk
aversion for the power utility function. This solves part (i). Subtracting (8.2.6), the
riskfree asset equation, we get as in (8.2.7)

Et[ri;t+1 � rf;t+1] +
1

2
Vii = Vic;(S8.2.11)

so that the \premium" of the asset is proportional to the conditional covariance of the log
asset return with consumption growth, with coe�cient of proportionality . This solves
part (ii).
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8.2.2 Part (i). Let aggregate equity e pay a log dividend equal to log aggregate con-
sumption, so that �de;t = �ct. From the previous part we know that Et[re;t+1+j ] =
Et[�ct+1+j ], up to a constant. Then (7.1.25) implies that

re;t+1+j � Etre;t+1+j = �ct+1 � Et�ct+1 + (1 � )

1X
j=1

�j [Et+1�ct+1+j � Et�ct+1+j ] :

(S8.2.12)

By simple algebraic manipulation of the process for �ct+1, we obtain the following
expression for �ct+1+j :

�ct+1+j = �

 
jX

i=0

�i
!
+ �j+1�ct +

jX
i=0

�j�iut+i+1;(S8.2.13)

so by the Law of Iterated Expectations we have that

Et�ct+1+j = �

 
jX

i=0

�i
!
+ �j+1�ct(S8.2.14)

and

Et+1�ct+1+j = �

 
jX

i=0

�i
!
+ �j+1�ct + �jut+1;(S8.2.15)

which in turn implies

Et+1�ct+1+j � Et�ct+1+j = �jut+1:(S8.2.16)

Substituting in this expression, and noting that �ct+1 � Et�ct+1 = ut+1, we obtain

re;t+1+j � Etre;t+1+j = ut+1 + (1 � )
1X
j=1

�j�jut+1

= ut+1 + (1 � )
��

1� ��
ut+1(S8.2.17)

=

�
1� ��

1� ��

�
ut+1:

Part (ii). For a real consol paying a �xed real dividend we have that �di;t+1+j = 0,
so the unexpected return is inuenced only by changes in expected future interest rates.
Similar reasoning as in part (i) gives the unexpected real consol bond return as

rb;t+1+j � Etrb;t+1+j =

� ���
1� ��

�
ut+1:(S8.2.18)

8.2.3 Part (i). From equation (8.2.7), the equity premium is given by Vce, where

Vce = Covt (�ct+1 � Et�ct+1; re;t+1 � Etre;t+1)

= Cov

�
ut+1;

1 � ��

1� ��
ut+1

�
(S8.2.19)

=
1� ��

1� ��
�2u;

and we may write Cov(�; �) instead of Covt(�; �) because the process for �ct+1 is ho-
moskedastic.

Similarly, the consol bond premium is Vcb, where

Vcb =
���
1� ��

�2u:(S8.2.20)

Part (ii). The bond premium has the opposite sign to � because a positive � implies
that a positive endowment shock increases future consumption more than current con-
sumption, so real interest rates rise and bond prices fall when consumption rises. Real
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bonds thus provide a hedge against endowment risk and they have a negative premium.
The bond premium is proportional to the square of  because a larger  both increases
the variability of real interest rates and bond returns, and increases the premium required
by investors for bearing a unit of risk.

Part (iii). The premium of equity over the consol is

 (Vce � Vbe) =
�2u

(1� ��)
;(S8.2.21)

so the equity premium is just the bond premium plus a premium related to dividend
uncertainty, which is always positive and proportional to .

Part (iv). The lesson for the equity premium literature is that models with high
degrees of risk aversion tend to imply a high bond premium as well as a high equity
premium. This is a counterfactual implication.

Solution 8.3

8.3.1 The second-period endowment ism with probability 1
2
and (1�a)m with probability

1
2
. This can be written as

w =

8<
:

m; 1
2

(1� a)m; 1
2

(S8.3.1)

where w is both the individual and aggregate second period endowment.
Consider buying � of the asset. The asset price is paid in the second period, so the

expected utility cost is

1

2
U 0 (m) p�+

1

2
U 0 ((1� a)m) p� =

1

2
p�

�
1

m
+

1

(1� a)m

�
(S8.3.2)

=
1

2
p�

�
2� a

(1� a)m

�
:

The expected utility gain is

1

2
U 0 (m)m�+

1

2
U 0 ((1� a)m) (1� a)m� =

1

2
� [1 + 1](S8.3.3)

= �:(S8.3.4)

In equilibrium, the expected utility cost must equal the expected utility bene�t, so

1

2
p�

�
2� a

(1� a)m

�
= �;(S8.3.5)

which implies

p =

�
2 (1� a)

2� a

�
m:(S8.3.6)

The expected gross return on the claim is the ratio between its expected payo� and
its price:

1 +R(a) =
1
2
m+ 1

2
(1� a)m

p
= 1 +

a2

4 (1� a)
;(S8.3.7)

which rises with a (a measure of aggregate risk) as we would expect.
8.3.2 Now we have that the individual second period endowment is:

wI =

8<
:

m; 1
2

m; (1� b) 1
2�

1� a
b

�
m; b 1

2

(S8.3.8)
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while the aggregate endowment is still as before:

wA =

8<
:

m; 1
2

(1� a)m; 1
2

(S8.3.9)

Note that we must have b > a so the individual endowment is always non-negative and
log utility is de�ned. If b = 1 then we are back to the previous case.

Since all agents have the same utility function and face the same probability of being
in each group, they all have the same expected endowment and are identical ex-ante.
However, ex-post their endowments will di�er,so there will be ex-post heterogeneity.

As before, consider buying � of the asset. The expected utility cost is

1

2
U 0 (m) p�+

1

2
(1� b)U 0 (m) p�+

1

2
bU 0

��
1� a

b

�
m
�
p�(S8.3.10)

=
1

2

p�

m

�
1 + (1� b) +

b

1� a
b

�
=

1

2

p�

m

�
2 +

a

1� a
b

�
:

The expected utility gain is

1

2
U 0 (m)m�+

1

2
(1� b)U 0 (m) (1� a)m�+

1

2
bU 0

��
1� a

b

�
m
�
(1� a)m�(S8.3.11)

=
1

2
�

�
1 + (1� b) (1� a) +

b (1� a)

1� a
b

�
:

In equilibrium, expected cost equals expected gain so

1

2

p�

m

�
2 +

a

1� a
b

�
=

1

2
�

�
1 + (1� b) (1� a) +

b (1� a)

1� a
b

�
:(S8.3.12)

Thus

p =

�
2 (b� a) + a2 (1� b)

2 (b� a) + ba

�
m;(S8.3.13)

which gives the previous result when b = 1, and p = (1� a)m when b = a.
The expected gross return on the claim is :

1 +R(b) =
1
2
m+ 1

2
(1� a)m

p
(S8.3.14)

=
(2� a) [2 (b� a) + ba]

4 (b� a) + 2a2 (1� b)
;(S8.3.15)

so when b = 1 we obtain the same result as before,

1 +R(b) =
(2� a)2

4 (1� a)
= 1 +R(a);(S8.3.16)

and when b = a,

1 +R(b) =
(2� a)

2 (1 � a)
=

2

(2� a)
(1 +R(a)):(S8.3.17)

Since 0 < a � 1, R(b) � R(a). Therefore, heterogeneity in the form of individual
uninsurable risk increases the expected return on the asset.
8.3.3 The literature on representative agent models tends to �nd that average stock re-
turns are higher than can be explained with plausible degrees of risk aversion. Uninsurable
individual risk might be one explanation.

This problem is based on N. Gregory Mankiw's \The Equity Premium and the
Concentration of Aggregate Shocks", Journal of Financial Economics, September 1986.

Mankiw shows that one gets similar results for any utility function with U
000

> 0. Qua-
dratic utility has U 000 = 0 (\certainty equivalence") and uninsurable individual risk has
no e�ect.
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The result also depends on the fact that there is more dispersion of individual endow-
ments in bad times than in good times.
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Problems in Chapter 9

Solution 9.1

Without loss of generality, let us consider the random variable pn(T ) (the derivation for
pn(t) is analogous). Denote the moment-generating functions of the increments �k in
(9.1.1) and pn(T ) in (9.1.2) as M�(� ) and Mp(�) respectively, where

M�(�) = E[e��k ](S9.1.1)

= pe�� + qe���(S9.1.2)

Mp(�) = E[e�pn(T )] = E[e�
Pn
k=1 �k ](S9.1.3)

= E[
nY

k=1

e��k ] =
nY

k=1

E[e��k ](S9.1.4)

=

�
�e�� + (1� �)e���

�n
(S9.1.5)

Recall from (9.1.7) that � = 1
2
(1 + �

p
h

�
) and � = �

p
h. This implies

Mp(�) =

�
1

2
(1 +

�
p
h

�
)e��

p
h +

1

2
(1� �

p
h

�
)e���

p
h

�n
(S9.1.6)

=

�
cosh(��

p
h) +

�
p
h

�
sinh(��

p
h)

�n
(S9.1.7)

where cosh(x) and sinh(x) are the hyperbolic sine and cosine functions

cosh(x) =
ex + e�x

2
= 1 +

x2

2!
+
x4

4!
+ � � �

sinh(x) =
ex � e�x

2
= x+

x3

3!
+
x5

5!
+ � � �

Simplifying and letting n!1 yields

Mp(�) =

�
1 + (

�2�2

2
+ ��)

T

n
+ o(

1

n
)

�n
(S9.1.8)

! e(��+
�2�2

2
)T(S9.1.9)

which is the moment-generating function for a normal random variable with mean �T and
variance �2T .

Solution 9.2

Denote by � � [ � �2 ]0 and observe that

I(�) = lim
n!1

� E

�
1

n

@2L(�)
@�@�0

�
=

�
T
n�2

0
0 1

2�4

�
:(S9.2.1)
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Therefore, the inverse is simply

I�1(�) =
�

n�2

T
0

0 2�4

�
:(S9.2.2)

Solution 9.3

Consider n observations in the interval [0; T ] equally spaced at intervals h � T=n, and let
p(0) = 0 to simplify the algebra. Let pk � p(kh). Using (9.3.48) we �nd that

pk � e�hpk�1 = �h(k � e�h(k � 1)) + �

Z kh

kh�h
e�(kh�s)dB(s) :(S9.3.1)

Now let � = e�h. Then we can rewrite (S9.3.1) as

pk � �pk�1 � �h(k � �(k � 1)) = ���k ;(S9.3.2)

where �k � N (0; 1) and

�2� = Var

�
�

Z kh

kh�h
e�(kh�s)dB(s)

�
=

�2


(1� e�2h) :(S9.3.3)

We now derive the maximum likelihood estimators �̂, �̂ and �̂2� from which we can obtain
̂ and �̂2 as:

̂ = � 1

h
log(�̂); �̂2 =

2̂�̂2�
(1� e�2̂h)

(S9.3.4)

by the Principle of Invariance (see Zehna [1966]). The log-likelihood function is given by

L(�; �; �2� ) = �n

2
log(2��2� )� 1

2�2�

nX
k=1

[pk � �pk�1 � �h(k � �(k � 1))]2(S9.3.5)

and the necessary �rst-order conditions for the maximum of the log-likelihood function
are

@L
@�

=
1

�2�

nX
k=1

[pk � �pk�1 � �h(k � �(k � 1))]h(k � �(k � 1)) = 0;

@L
@�

=
1

�2�

nX
k=1

[pk � �pk�1 � �h(k � �(k � 1))](pk�1 � �h(k � 1)) = 0;

@L
@�2�

= �n

2

1

�2�
+

1

2�4�

nX
k=1

[pk � �pk�1 � �h(k � �(k � 1))]2 = 0:

These conditions can be written as a system of equations in (�̂; �̂; �̂2� ):

�̂ =

Pn
k=1(pk � �̂pk�1)(k � �̂(k � 1))Pn

k=1[k � �̂(k � 1)]2
;(S9.3.6)

�̂ =

Pn
k=1(pk � �̂hk)(pk�1 � �̂h(k � 1))Pn

k=1[pk�1 � �̂h(k � 1)]2
;(S9.3.7)

�̂2� =
1

n

nX
k=1

[pk � �̂pk�1 � �̂h(k � �̂(k � 1))]2:(S9.3.8)
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From here we will assume that the trend � is known exactly. Then we can calculate

@2L
@�2

= � 1

�2�

nX
k=1

[pk�1 � �h(k � 1)]2;

@2L
@�@�2�

= � 1

�2�

@L
@�

;

@2L
@(�2� )2

=
n

2

1

�4�
� 1

�6�

nX
k=1

[pk � �pk�1 � �h(k � �(k � 1))]2:

But observe that

lim
n!1

�E
"
1

n

@2L
@�2

����
(�̂;�̂2� )

#
=

limn!1 1
n

Pn
k=1(pk�1 � �h(k � 1))2

limn!1 �̂2�

=
1

1� e�2h
;

lim
n!1

�E
"
1

n

@2L
@�@�2�

����
(�̂;�̂2� )

#
= 0;

lim
n!1

�E
"
1

n

@2L
@(�2� )2

����
(�̂;�̂2� )

#
= lim

n!1
�E

�
1

n
(�n

2

1

�̂4�
)

�
=

1

2�4�
:

Using (9.3.7), we conclude that
p
n(�̂� �)

a� N (0; 1� e�2h);(S9.3.9) p
n(�̂2� � �2� )

a� N (0; 2�4� ):(S9.3.10)

The asymptotic distribution of  and �2 can now be obtained using (S9.3.4) and the delta
method described in the Appendix A.4:

p
n(̂ � )

a� N
�
0;

1

h2
(e2h � 1)

�
;(S9.3.11)

p
n(�̂2 � �2)

a� N
�
0; 2�4

�
1 +

e4h

22h2
[1� e�2h(1 + 2h)]2

��
:(S9.3.12)

To derive the continuous-record asymptotics of ̂ and �̂2� , we let n ! 1 while T is
held �xed, hence h = T=n! 0. Since

̂ = � 1

h
log(1� (1� �̂)) =

1

h
(1� �̂) + o(h) =

(1� �̂)
1
n

+ o(
1

n
);(S9.3.13)

we conclude that

̂
a� �

Pn
k=1(pk � pk�1 � � 1

n
)(pk�1 � � k�1

n
)

1
n

Pn
k=1[pk�1 � � k�1

n
]2

:(S9.3.14)

The denominator converges to Z T

0

(p(s)� �s)2 ds;(S9.3.15)

while the numerator converges toZ T

0

(p(s)� �s) dp(s)� �

Z T

0

(p(s)� �s) ds:(S9.3.16)

We conclude that

̂
a� �

R T
0
(p(s)� �s) dp(s)� �

R T
0
(p(s)� �s) dsR T

0
(p(s)� �s)2 ds

:(S9.3.17)



48 PROBLEMS IN CHAPTER 9

which simpli�es to

̂
a� �

R T
0
q(s)dq(s)R T

0
q(s)2 ds

:(S9.3.18)

where q(t) � p(t)� �t. Finally, it can be shown that

�̂2� =
1

n

nX
k=1

[qk � �̂qk�1]
2 a� �2:(S9.3.19)

Solution 9.4

9.4.1 The maximum likelihood estimates (9.3.27), (9.3.28) are evaluated using daily re-
turns from January 2, 1991 to December 29, 1995 and assuming h = 1=253, i.e., 253
trading periods in a year. The riskfree interest rate is set to r = 5%. The estimates are:

�̂2 = 0:074 ; �̂ � r� �̂2

2
= 0:0131 :

9.4.2 Two variants of the Monte Carlo method are used:

1. The crude method of Section 9.4.1.
2. The antithetic variates method of Section 9.4.4.

The initial stock price (the closing price on December 29, 1995) is $91.375. 100; 000
replications are used in both cases (m = 100; 000). The number of discrete intervals is
n = 253.

The crude Monte Carlo method produces an estimate according to (9.4.6) of:

Ĥ(0) = $17:70 :

The standard deviation of the estimate Ĥ(0) is estimated according to (9.4.10) as:

�̂y(253) = $19:60 :

Therefore, according to (9.4.8), a 95% con�dence interval is

$17:58 � H(0) � $17:82 :

The minimum number of replications necessary to yield a price estimate within $0:05 of
the true price is estimated according to (9.4.9):

m � 5:905 � 105 :

The antithetic variates method produces an estimate according to (9.4.13):

Ĥ(0) = $17:63 :

Standard deviation of the estimate Ĥ(0) is estimated according to (9.4.15):

�̂y(253) = $8:56 :

As a result, according to (9.4.8), a 95% con�dence interval is

$17:58 � H(0) � $17:69 :

The minimum number of replications necessary to yield a price estimate within $0:05 of
the true price is estimated according to (9.4.9) as:

m � 1:126 � 105 :

9.4.3 The closed-form solution for the option price is given by the Goldman-Sosin-Gatto
formula (9.4.11) and is evaluated using the estimate of �2 obtained in Problem 9.4.1:

H(0) = $18:91 :

The di�erence between the theoretical price H(0) and our estimate Ĥ(0) arises from
the di�erence between the maximum of discretely-sampled and continuously-sampled
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prices. Speci�cally, the theoretical price H(0) of the option is evaluated under the as-
sumption that the option allows one to sell the stock at the maximum price observed over
the course of the entire year. The estimate Ĥ(0) was obtained under the assumption that
only daily closing prices are used to evaluate the maximum. Obviously, the �rst de�nition
always leads to a higher option price than the second.

In the context of this particular problem the second de�nition of the option (the one
used in Monte Carlo simulations) is more relevant, since it is based on the de�nition of
the actual option. The Goldman-Sosin-Gatto formula is a continuous-time approximation
to this option. Therefore, the Monte Carlo estimator of the option price should be used
to decide whether to accept or reject CLM's proposal.



50 PROBLEMS IN CHAPTER 9



Problems in Chapter 10

Solution 10.1

10.1.1 Prices of the zero-coupon bonds are PA = e�8�0:091 � 0:4829 and PB = e�9�0:080 �
0:4868 per dollar of their face values. Since nominal interest rates cannot be negative, the
�nding that PA < PB implies an arbitrage opportunity and is inconsistent with any ex-
pectations theory.
10.1.2 Prices of zero-coupon bonds are now P 0A = e�7�0:091 � 0:5289 and P 0B = e�8�0:08 �
0:5273 per dollar of their face values. As P 0A � P 0B in this case, the prices do not imply
an arbitrage opportunity and may be consistent with the pure expectations hypothesis.
10.1.3 Let us assume the coupon payments are annual and are made at the end of the
year. Consider �rst the case analogous to Problem 10.1.1. Prices do not now imply an
arbitrage opportunity. As an example, assume that all one- to eight-year zero-coupon
bonds have price P8 per one dollar of their face value, and that the nine-year zero-coupon
bond has price P9. Under these assumptions we can express the prices as

P8 =
PA

1 + 8� 0:08
� 0:2944;(S10.1.1)

P9 =
PB � 8� 0:08P8

1 + 0:08
� 0:2752:(S10.1.2)

We see that, under this non-stochastic term structure given by P8 and P9, all interest
rates are nonnegative and P8 � P9, so that no arbitrage opportunity exists.

Now, consider the case analogous to Problem 10.1.2. Assume that all one- to seven-
year zero-coupon bonds have price P 07 per one dollar of their face value and that eight-year
zero-coupon bond has price P 08. Under these assumptions we can express the prices as

P 07 =
P 0A

1 + 7� 0:08
� 0:3390;(S10.1.3)

P 08 =
P 0B � 7� 0:08P 07

1 + 0:08
� 0:3125:(S10.1.4)

P 07 � P 08, so again there is no arbitrage opportunity.
Note however that the assumptions required to rationalize these bond prices are rather

extreme, since they require zero nominal interest rates between one and eight years. The
loglinear approximate model for coupon bonds presented in (10.1.20) gives a di�erent
answer. This model e�ectively imposes \smoothness" on the term structure. Equation
(10.1.20) allows us to compute the implicit n-period-ahead 1-period log forward rate given
the coupon-bond duration Dcnt in (10.1.10), which in turn requires the coupon-bond price
Pcnt in (10.1.9).

For the data in Problem 10.1.1 we have

Pc8t = :9171; Dc9t = 6:1186 years(S10.1.5)

Pc9t = :9797; Dc9t = 6:7212 years;

so (10.1.20) gives

f8t � �3:1684% < 0

51
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Notice that the bonds are not selling at par, so it is not correct to use the simpler formula
for Dcnt that obtains in this case. This result again implies under the log pure expectations
hypothesis a negative one-period log yield 8 periods ahead.

Similarly, for the data in Problem 10.1.2 we have

Pc7t = :9245; Dc7t = 5:5615 years(S10.1.6)

Pc8t = :9813; Dc8t = 6:1876 years;

so (10.1.20) gives

f7t � �1:7711% < 0

which implies under the log pure expectations hypothesis a negative one-period log yield
7 periods ahead. Using this approach, we �nd that coupon bonds violate the log PEH
more than zero-coupon bonds. The reason is that the duration of coupon bonds does
not increase linearly with their maturity, but increases at a decreasing rate. That is,
Dc;n+1;t �Dc;n;t < 1. This in turn makes it easier to get negative forward rates for given
yields.

Solution 10.2

10.2.1 Assume the postulated process and simplify notation, introducing at � yt1�y1;t�1
and bt � y2t � y1t. The equations of the model can then be written as

I at = �bt + �t;

II bt =
1

2
Et[at+1] + xt;(S10.2.1)

III xt = �xt�1 + �t;

IV at = xt + �t:

>From the �rst and fourth equations we get bt = ��1xt; from the third and fourth
equations we get Et[at+1] = �xt; the second equation then gives an expression for the
coe�cient  in terms of the other parameters of the model,

 =

�
2�

2� ��

�
:(S10.2.2)

It is straightforward to verify that with this value for , the y1t process satis�es all the
equations of the model, provided that �� < 2.
10.2.2 Using notation from Problem 10.2.1, the regression has the form

at+1=2 = �+ �bt + ut+1:(S10.2.3)

As Et[at+1] = �xt and bt = ��1xt, we see that the population parameters are � = 0
and � = ��=2. Clearly � < 1 since we have required �� < 2.
10.2.3 Assume the process of the given form and simplify notation, introducing at �
y1t � y1;t�1 and bt � ynt � y1t. Note that

yn;t+1 � ynt = bt+1 + at+1 � bt:(S10.2.4)

The equations of the model and of the postulated process are then

I at = �bt + �t;

II bt = (n� 1)Et[bt+1 + at+1 � bt] + xt;(S10.2.5)

II xt = �xt�1 + �t;

IV at = xt + �t:

>From the �rst and fourth equations we get bt = ��1xt; from the third we get Et[bt+1] =
��1�xt; from the third and fourth we get Et[at+1] = �xt; and the second equation then
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gives the condition for the parameter :

 =
�

n� (n� 1)�(1 + �)
:(S10.2.6)

It is straightforward to verify that with this value of , the y1t process satis�es all the
equations of the model, provided that (1 + �)�(n� 1) < n.

In our notation, the regression takes the form

bt+1 + at+1 � bt = �+ �
bt

n� 1
+ ut+1:(S10.2.7)

As E[bt+1+at+1�bt] = (��1�+����1)xt and bt = ��1xt, we see that the population
parameters are � = 0 and � = (1 + �)�(n� 1)� (n� 1). The parameter restrictions we
have imposed allow � to be either positive or negative.
10.2.4 The model does explain why short-rate regressions of the type explored in Problem
10.2.2 give coe�cients positive but less than one, while long-rate regressions of the type
explored in Problem 10.2.3 often give negative coe�cients. The underlying mechanism is
a time-varying term premium, interacting with the desire of the monetary authority to
smooth interest rates.

A limitation of this model is that it assumes a nonstationary interest rate process,
which has unsatisfactory long-run properties. For example, with probability one the in-
terest rate eventually becomes negative. Bennett McCallum, \Monetary Policy and the
Term Structure of Interest Rates", NBER Working Paper No. 4938, 1994, works out a
stationary version of this model; the algebra is more complicated but the properties of the
model are similar.
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Problems in Chapter 11

Solution 11.1

11.1.1 We assume throughout the problem that bond prices are determined by the ho-
moskedastic lognormal model implied by equations (11.1.5) and (11.1.3),

�mt+1 = xt + ��t+1(S11.1.1)

xt+1 = (1� �)�+ �xt + �t+1;(S11.1.2)

with �t � N(0; �2), but to �t the current term structure of interest rates we assume instead
that the state variable follows the process given in equation (11.3.4):

xt+i = xt+i�1 + gt+i + �t+i:(S11.1.3)

A useful way to relate the deterministic drift terms gt+i and the parameters of the
true pricing model when �tting the term structure of interest rates is to compute the
forward rates implied by the assumed model (S11.1.1) and (S11.1.3), and compare them
with those implied by the true model (S11.1.1) and (S11.1.2). To compute the forward
rates implied by the assumed model we need �rst to compute the log bond prices, since
fn;t = pn;t � pn+1;t. Using equality (11.0.2) and the lognormal property of the stochastic
discount factor, we have that

pn;t = log Et

"
nY
i=1

Mt+i

#

= Et

"
nX
i=1

mt+i

#
+
1

2
Vart

 
nX
i=1

mt+i

!
:

But from the assumed model for the state variable (S11.1.3) we have

xt+i = xt +

iX
j=1

gt+j +

iX
j=1

�t+j ;(S11.1.4)

so
nX
i=1

mt+i = �
nX
i=1

xt+i�1 � �
nX
i=1

�t+i

= �nxt �
nX
i=1

(n� i) gt+i �
nX
i=1

(� + n� i)2 �t+i

and

pn;t = �nxt �
nX
i=1

(n� i) gt+i +
1

2

nX
i=1

(� + n � i)�2:(S11.1.5)

We can now use (S11.1.5) to compute forward rates implied by the assumed model:

fn;t = pn;t � pn+1;t

= xt +
nX
i=1

gt+i � 1

2
(� + n)2 �2:(S11.1.6)
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Comparing (S11.1.6) with equation (11.1.14), that gives us the forward rates implied by
the true model, we �nd immediately that the drift terms gt+i are related to the parameters
of the true model by the following expression:

nX
i=1

gt+i = � (1� �n) (xt � �)� 1

2

"�
� +

1� �n

1� �

�2
� (� + n)2

#
�2:(S11.1.7)

11.1.2 Since r1;t+1 = �Et[mt+1]�Vart (mt+1) =2, the short term interest rates at (t+1)
implied by the assumed model and the true model are the same:

r1;t+1 = xt � 1

2
�2�2:(S11.1.8)

The dynamics of the state variable in the true model, given by (S11.1.2), and (S11.1.8)
imply that future short rates equal:

r1;t+n+1 = � (1� �n) + �nxt +

nX
i=1

�n�i�t+i � 1

2
�2�2

= r1;t+1 � (1� �n) (xt � �) +

nX
i=1

�n�i�t+i;

so the expected future log short rates in the true model are

Et [r1;t+n+1] = r1;t+1 � (1� �n) (xt � �) :(S11.1.9)

The dynamics of the state variable in the assumed model, given by (S11.1.3), imply:

r1;t+n+1 = xt +
nX
i=1

gt+i +
nX
i=1

�t+i � 1

2
�2�2

= r1;t+1 +

nX
i=1

gt+i +

nX
i=1

�t+i;

so expected future log short rates under the assumed model are

Et [r1;t+n+1] = r1;t+1 +
nX
i=1

gt+i:(S11.1.10)

Therefore, if we choose the drift terms so

nX
i=1

gt+i = � (1� �n) (xt � �) ;(S11.1.11)

the assumed model will be able to reproduce the expected short rates. However, by
comparing (S11.1.7) and (S11.1.11) we can see that it is not possible to choose drift terms
so they match simultaneously both current forward rates and expected future log short
rates, since �

� +
1� �n

1� �

�2
6= (� + n)2

unless �! 1, i.e., unless the state variable in the true model follows a random walk. It is
also interesting to note that the set of deterministic drifts that matches expected future
log short rates|see equation (S11.1.11)|converges to �(xt��) as n!1, while the set
of deterministic drifts that matches forward rates|see equation (S11.1.7)| tends to �1
as n ! 1. Therefore, if we choose the drift terms so they reproduce the forward rate
structure of the true model, this will result in expected future log short rates declining
without bound as we increase the horizon, while the true model implies that the expected
future log short rates converge to a �nite constant.
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11.1.3 >From equation (11.1.8) and (S11.1.2), the time t conditional variance of log bond
prices at time t+ 1 implied by the true bond pricing model is

Vart (pn;t+1) = B2
n�1Et [xt+1 � Etxt+1]

2

=

�
1� �n

1� �

�2
�2;(S11.1.12)

while from (S11.1.5) and (S11.1.3), the time t conditional variance of log bond prices at
time t+ 1 implied by the assumed bond pricing model is

Vart (pn;t+1) = n2�2:(S11.1.13)

Hence (S11.1.13) cannot be equal to (S11.1.12) unless �! 1, i.e. unless the state variable
follows a random walk in the true model. Moreover, for n > 1, the conditional variance
of log bond prices implied by the assumed model is larger than the conditional variance
implied by the true model and, while the true model implies that the conditional variance
of log bond prices is bounded at �2=(1 � �)2 as n ! 1, the assumed model implies an
unbounded conditional variance.
11.1.4 Section 11.3.3 shows that the price of a European call option written on a zero-
coupon that matures n+� periods from now, with n periods to expiration and strike price
X, is given under the true model by

Cnt (X) = Pn+�;t� (d1) +X Pn;t � (d2) ;

where Pn;t = expfpn;tg = expfAn + Bnxtg is the price of the bond, �(�) denotes the
cumulative distribution function of a standard normal random variable,

d1 =
pn+�;t � x� pn;t +Vart (p�;t+n) =2p

Vart (p�;t+n)
;

d2 = d1 �
p
Vart (p�;t+n);

x = log(X) and

Vart (p�;t+n) = B2
� Vart (xt+n)

=

�
1� ��

1� �

�2 �
1� �2n

1� �2

�
�2:(S11.1.14)

In our assumed model we use the same formula to value the option, except that we
need to compute Vart (p�;t+n) under our assumed process for the state variable (S11.1.3).
From (S11.1.5), we have

Vart (p�;t+n) = n2 Vart (xt+n)

= � 2n�2;(S11.1.15)

where the second line follows from (S11.1.4).
Obviously, (S11.1.15) di�ers from (S11.1.14), unless �! 1, so in general the assumed

model will misprice options. For � > 1 and/or n > 1, it will overstate the volatility of
the future log bond price, hence overvaluing the option. This overvaluation increases with
the expiration date of the option and/or the maturity of the underlying bond. This is
true no matter what combination of the drift parameters we choose. Backus, Foresi and
Zin (1996) use this result to caution against the popular practice among practitioners of
augmenting standard arbitrage-free bond pricing models with time-dependent parameters
to �t exactly the yield curve. This augmentation may seriously misprice state-contingent
claims, even though it is able to exactly reproduce the prices of some derivative securities.
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Solution 11.2

11.2.1 The homoskedastic single-factor term-structure model of Section 11.1.1 holds:

�mt+1 = xt + ��t+1(S11.2.1)

xt+1 = (1� �)�+ �xt + �t+1:(S11.2.2)

Thus, the price function for an n-period bond is

�pnt = An +Bnxt(S11.2.3)

with

Bn = 1 + �Bn�1 =
1� �n

1� �
;(S11.2.4)

An �An�1 = (1� �)�Bn�1 � (� +Bn�1)
2�2=2;(S11.2.5)

and A0 = B0 = 0.
Equation (11.3.15) in CLM gives the price at time t of an n-period forward contract

on a zero coupon-bond which matures at time t + n + � as G�nt = P�+n;t=Pnt. Taking
logs, g�nt = p�+n;t� pnt. Substituting out p�+n;t and pnt using (S11.2.3)-(S11.2.5) yields:

�g�nt = (An+� �An) + (Bn+� �Bn)xt:(S11.2.6)

Thus, the pricing function for an n-period forward contract on a zero coupon-bond
which matures at time t+ n+ � is given by:

�g�nt = Ag
�n +Bg

�nxt;(S11.2.7)

with
Ag
�n = An+� �An

Bg
�n = Bn+� �Bn;

where (S11.2.4) and (S11.2.5) can be used to write An+� , Bn+� as functions of An, Bn.
Clearly, the log forward price g�nt is a�ne in the state variable xt.

In order to show that the log futures price h�nt is also a�ne in the state variable we
can use equation (11.3.10) in CLM:

H�nt = Et [Mt+1H�;n�1;t+1=P1t](S11.2.8)

Taking logs and assuming joint lognormality:

h�nt = Et [mt+1 + h�;n�1;t+1 � p1t] +
1

2
Vart [mt+1 + h�;n�1;t+1 � p1t] :(S11.2.9)

Let us �rst determine h�1t. Since h�;0;t+1 = p�;t+1we have that:

h�1t = Et [mt+1 + p�;t+1 � p1t] +
1

2
Vart [mt+1 + p�;t+1 � p1t](S11.2.10)

Substituting out mt+1 using (S11.2.1) and p�;t+1, p1t using (S11.2.3) and (S11.2.2) yields:

h�1t = Et

�
�xt � ��t+1 �A� �B� (1� �)��

B��xt �B��t+1 + xt � �2�2=2

�
+(S11.2.11)

1

2
Vart

�
�xt � ��t+1 �A� �B� (1 � �)��

B��xt �B��t+1 + xt � �2�2=2

�
:

Since Et�t+1 = 0 and Vart �t+1 = �2 it follows that:

�h�1t = Ah
�1 +Bh

�1xt(S11.2.12)
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with

Ah
�1 = A� + (1� �)�B� � �2=2

���2 + (� +B� )
2�

Bh
�1 = �B� :

Let us now solve for h�nt. We guess that �h�nt = Ah
�n+Bh

�nxt. We proceed to verify
our guess. At the same time we derive formulas for the coe�cients Ah

�n, B
h
�n as functions

of the term structure coe�cients An, Bn. Proceeding as above:

h�nt = Et [mt+1 + h�;n�1;t+1 � p1t] +
1

2
Vart [mt+1 + h�;n�1;t+1 � p1t](S11.2.13)

and using our guess to substitute out for h�;n�1;t+1:

h�nt = Et

�
�xt � ��t+1 �Ah

�;n�1 �Bh
�;n�1(1� �)��

Bh
�;n�1�xt �Bh

�;n�1�t+1 + xt � �2�2=2

�
+(S11.2.14)

1

2
Vart

�
�xt � ��t+1 �Ah

�;n�1 �Bh
�;n�1(1� �)��

Bh
�;n�1�xt �Bh

�;n�1�t+1 + xt � �2�2=2

�
:

We obtain:

�h�nt = Ah
�;n�1 +Bh

�;n�1(1� �)�� �2=2
h
��2 + (� +Bh

�;n�1)
2
i
+ �Bh

�;n�1xt:

(S11.2.15)

Thus

Ah
�n = Ah

�;n�1 +Bh
�;n�1(1� �)�� �2=2

h
��2 + (� +Bh

�;n�1)
2
i
;

Bh
�n = �Bh

�;n�1:

Solving recursively and using Bh
�1 = �B� yields

Ah
�n �Ah

�;n�1 = Bh
�;n�1(1� �)�� �2=2

���2 + (� + �n�1B� )
2
�
;(S11.2.16)

Bh
�n = �nB� :

This completes Part 11.2.1.
11.2.2 The log ratio of forward to futures prices is given by

g�nt � h�nt = (An �An+� ) + (Bn �Bn+� )xt +Ah
�n +Bh

�nxt:(S11.2.17)

In order to show that this is constant we need to show that Bn �Bn+� +Bh
�n = 0.

Straightforward algebra gives us:

Bn �Bn+� +Bh
�n = Bn �Bn+� + �nB� =(S11.2.18)

=
1� �n � 1 + �n+� + �n � �n+�

1� �
= 0:

Showing that the ratio of forward to future prices is greater than one is equivalent to
showing that the log ratio is greater than zero. In order to do so we write

g�nt � h�nt = An �An+� +Ah
�n =

= An�1 + (1� �)�Bn�1 � (� +Bn�1)
2�2=2

�An+��1 � (1� �)�Bn+��1 + (� +Bn+��1)
2�2=2

+Ah
t;n�1 + (1� �)�Bh

�;n�1 � �2=2
h
��2 + (� +Bh

�;n�1)
2
i
:
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It can easily be checked that the terms in (1 � �)� add up to zero. Given the recursive
nature of the problem and remembering that g�1t � h�1t = 0 we have that

g�nt � h�nt = ��2=2
n�1X
j=0

h
(� +Bj)

2 � (� +Bj+� )
2 � �2 + (� + �jB� )

2
i
:(S11.2.19)

Using the fact that �jB� = Bj+� �Bj , after some algebra, we obtain

g�nt � h�nt =
�2(1� �� )(1� �n�1)(1� �n)�

(1� �)3(1 + �)
:(S11.2.20)

Thus we have that

g�nt � h�nt > 0 when 0 < � < 1(S11.2.21)

g�nt � h�nt < 0 when � 1 < � < 0:

The di�erence between a futures contract and a forward contract is that the �rst is
marked to market each period during the life of the contract, so that the purchaser of
a futures contract receives the futures price increase or pays the futures price decrease
each period. When interest rates are random, these mark-to-market payments may be
correlated with interest rates. When 0 < � < 1, so that Cov(h�nt; y1t) < 0, the purchaser
of a futures contract tends to receive the futures price increase at times when interest rates
are low, and tends to pay the futures price decrease at times when interest rates are high,
making the futures contract worth less than the forward contract. On the other hand,
when �1 < � < 0, the futures contract will be worth more than the forward contract
since its purchaser tends to receive price increases when interest rates are high (so that
the money can be invested at a high rate of return).
11.2.3 The parameter values for this part, � = 0:98 and �2 = 0:000512 , can be found in
Section 11.2.2, page 453 (and not in Section 11.1.2).



Problems in Chapter 12

Solution 12.1

12.1.1 There are several criteria with which random number generators can be judged:

� Stochastic quality of apparent randomness, as reected in the probabilistic prop-
erties of generated sample and assessed by batteries of statistical tests of indepen-
dence, goodness-of-�t to speci�c probability distributions, etc.

� Computational e�ciency, in terms of cost of implementation, resource require-
ments, volume of output per second, volume of output in absolute terms, all with-
out deterioration of stochastic quality.

� Portability of the algorithm.
� Reproducibility of random series (based on the initial \seed" of the random number
generator).

The ultimate introduction to the science and art of pseudorandom number generation
is Chapter 3 of D. E. Knuth's classics The Art of Computer Programming 1969, 1981, where
the most inuential and comprehensive study of the subject is to be found.

One example of the many recent treatises on the state of the art is Fishman (1996),
which emphasizes pseudorandom number generators in Chapter 7. High-quality pseudo-
random number generators also emerge in cryptography. Cryptographically secure gen-
erators, related to stream ciphers and one-way hash functions achieve extraordinary sto-
chastic quality, generally at the expense of increasing computation costs. See for example
Schneier (1996, Chapters 16{18).

There exist batteries of statistical tests intended to measure stochastic quality of pseu-
dorandom number generators; these include tests such as chi-square, Kolmogorov-Smirnov,
frequency, serial, gap, permutation, run, moments, serial correlation, and especially spec-
tral tests (see Knuth [1969] for details); or, for example, an omnibus test assessing joint
independence and one- to three-dimensional uniformity, assembled by Fishman (1996,
Section 7.12).
12.1.2 Generally, very well researched and tested MLCG generators constitute an accepted
pragmatic compromise among the criteria imposed on pseudorandom number generators
discussed in Problem 12.1.1. The proper choice of parameters of MLCG generators is
essential, and theoretical guidelines are readily available in Knuth (1969) and elsewhere.
The quality of the tent- and logistic-map generators is inferior for most purposes, as most
standard statistical tests of randomness will show.

The extra modi�cation of using parameters like 1.99999999 instead of 2 etc. patches
the most obvious aw of the tent- and logistic-map generators: with real numbers rep-
resented in binary form using �nite-length mantissas, repetitive multiplication by 2 de-
teriorates quality of the sequence rapidly, i.e., the sequence degenerates in time that is
proportional to the mantissa length. In most practical cases, though, the use of well-
researched pseudorandom number generators with solid theoretical guarantees of quality,
such as MLCG, is indicated.

If the quality of even properly chosen MLCG is not su�cient for an application at
hand, one may consider using some other classes of well-tested generators with balanced
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Table Estimates of kernel-regression betas of IBM relative to S&P 500 based on monthly
return data from 1965:1 to 1994:12. Each estimate is local to a particular level of S&P
500 monthly return.

SP500 [%] �̂IBM;SP500

�15 1.366
�10 1.395
�5 0.689
0 0.666
5 0.806
10 0.531
15 1.994

Table 12.1. IBM Betas Relative to S&P 500

quality-cost tradeo�s, for example, Marsaglia's lagged-Fibonacci generators (see Marsaglia
and Zaman [1991]).

Solution 12.2

Equations (12.4.1) and (12.4.3) describe one unit. Our case involves ten such units with
J � 5. The output layer is given by equation (12.4.4) with K � 10. For simplicity,
choose h(�) to be the identity, in accord with the discussion on pages 514{542. Thus,
the nonlinear model has 60 parameters to �t. Using a nonlinear optimization technique
of choice, �nd the parameter values that attain the minimum (beware of local minima!)
in-sample root-mean-squared-error (RMSE) of the one-step-ahead estimate, with identical
weights given to each datapoint of S&P 500 returns from 1926:1 to 1985:12. Then, apply
the �tted perceptron parameters on data in period from 1986:1 to 1994:12.

The RMSE will be substantially larger in the out-of sample period than in the in-
sample period. The out-of-sample RMSE 60-parameter perceptron will probably not be
drastically smaller than out-of-sample RMSE of a linear model with less immodest number
of parameters (say, ten (10); consider an OLS regression with �ve lagged returns and
their squares as explanatory variables), but the in-sample RMSE of the former will be
noticeably smaller than RMSE of the latter. This phenomenon can be related to concept
of \over�tting" which occurs when lack of structural, qualitative information of the data
generating stochastic process is countered by increase in number of ad hoc degrees of
freedom in the model: this procedure results in excellent in-sample �t while out-of-sample
performance stays mediocre.

Solution 12.3

First implement the kernel regression estimator m̂h(x) according to formula (12.3.9) with
a Gaussian kernel Kh(x) as in (12.3.10). Second, determine optimal bandwidth by mini-
mizing the cross-validation function CV(h) as in (12.3.13), based on estimator m̂h(x) and
given historical S&P 500 and IBM monthly returns.

Numerically, the appropriate bandwidth for period from 1965:1 to 1994:12 is h =
1:49% (the scale is in monthly returns of S&P 500). The resulting regression is plotted
(Figure 12.1).

The analog of the conventional beta estimate here is the quantity @m̂h(x)=@x, evalu-
ated at particular level of S&P 500 return x. See Section (12.3.3) for a detailed discussion
of average derivative estimators.

Let us replace derivative by its discrete analog with a step length di�erence of 1% of
the S&P 500 monthly return. The resulting estimates of �'s for di�erent levels of S&P
500 returns is shown in Table 12.1.
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Returns in Period 1965:1 - 1994:12; Kernel Regression
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Figure 12.1. Kernel Regression of IBM Returns on S&P 500 Returns

We see that the local estimates of beta vary considerably, most likely due to the
relatively small number of datapoints in the estimation, possible variation in beta over
time, or genuine nonlinearity of the relation between IBM and S&P 500 monthly returns.

Some advantages of kernel regression relative to ordinary least squares are: cross-
validation allows for nonparametric, adaptive and asymptotically consistent estimation of
the true relation between IBM and S&P 500 returns even when this relation is not linear;
the kernel estimator m̂(x) conveys more information about the relationship than a single
parameter (�) and allows easy visualization of the relation.


