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A Appendix A: Derivation of Main Equations in
Text

We first summarize three results on matrix algebra that will be convenient in deriving the expressions
given in the text.

Result 1.
2121 — Bt (2012, 1) = (o + P12¢ + Vi) (Po + P12 + V1) — By (ze112041)
= @0@6 + ®1th>6 + Vt+1¢’6 + @()Z;/CI’II + (I>1ztz;<I>'1
V12 P+ Qv + Pizevig g +Vip1 Vi — By (2e112041)
= Vi1 @+ vz 4+ Povi g + Pizy v + ViV — S
|
Result 2.
Tigd1 — By (rigs1) = xii}” + i1 — By (xﬁ’gf) + 7“1,t+1)
_ (1) (1)
= Vi + Vi

where xgi‘f) denotes the (i — 1)th element of the excess return vector x; 41 and likewise with v;41.H

Result 3. Any quadratic form z;, Mz, admits the following vector form representation:
2y Mz = vec (M) vec (24412} ,,) ,
where vec(+) is the vectorization operator.ll

Result 4. (Muirhead, 1982, pp.518)

m

Vary (vec (vig1viyy)) = [ In2 + Z (Qi;®Qj) | (B, ®@%y),
i,J

where Q;; is a m x m zero matrix except for the (7, j)th element which is equal to 1, and ® is the
kronecker product operator.l

Unconditional distribution of the state vector z;.

The linearity of the VAR system (4) implies that the state vector z; inherits the normality of
the shocks v¢y1. It has unconditional mean p, and variance-covariance matrix X,, given by

p, = (I,—®1) " &, (30)
vee(2..) = (L — 810 &) 'vee(T,).



|
Derivation of Equation (10)
The log return on the portfolio 7, ;41 is a discrete-time approximation to its continuous-time

counterpart. We begin by specifying the return processes for the short-term instrument B; and
other risky assets P; in continuous time:

dB

— =y, dt+ opdWy, (31)
By ’

P

% = pdt+odW,, (32)
t

where 1, ; and p, are the drifts, o and o are the diffusion, and W, is a m-dimensional standard
Brownian motion.!> We allow the drifts to depend on other state variables, but for notational
simplicity, we suppress this dependency and simply use the time subscript. Moreover, note that the
same W, appears in the two equations.

We can obtain the log return on each asset using Ito’s Lemma:

dB 1

dlog B, = <?tt) ~3 (opoy,) dt, (33)
P; 1

aogp, = (i) Lo, (34)
’ Py 2

where o; is the ith row of the diffusion matrix o, and i = 1,..,n — 1.

Let V; be the value of the portfolio at time ¢t. We will use dlog V; to approximate rp ;1. By

Ito’s Lemma,
N ANENIAY
v = (1) L (" -

We will now derive these two terms in order:

avi  , (dPy /)y AB:
v, = at(Pt>+(1 ajL) B,

1 1
= aj (dlog P, + 5 [oi0)] dt> +(1—aje) (dlog B + 3 (opoy) dt)

= a;(dlogP; —dlog B; - ¢) + dlog By

1 1
+§a2 ([oioh] — ooy, - 1) dt + §o'baédt,
where ¢ is a n x 1 vector of ones and the bracket [-] denotes a vector with o;07; the ith entry. Next,
thQ_ i (dlogP; — dlog B dlogP; — dlog B; - 1)’ dlog By)?
v, = oy (dlogPy —dlog By - v) (dlog Py — dlog By - ¢) o + (dlog By)

+2a) (dlog Py — dlog By - ¢) (dlog By) + o (dt),

15The dimensions of y,, p, o, 0 are 1 x 1, (n — 1) x 1,1 x m, (n — 1) x m, respectively.



where the o(dt) terms vanish because they involve either (dt)? or (dt) (dW,) .

Now, from equation (31)—(33) and ignoring dt terms,
dlogP; —dlogB; -t = (o — - o) dWy.
Thus,
(dlogP; —dlog B; - 1) (dlogP; —dlogB; -t) = (0 —t-0p) (0 —t-0p),
(dlogP; —dlog By - ) (dlogBy) = (o0 —1t-01)-0).

Collecting these results and using our notation for excess returns: x;11 = dlogP; — dlog B; - ¢,
r14+1 = dlog (By) and dt =1,

Tprr1 = dlogVy
1
= aXer1 + i+ 5 ([oi0] - o0y - 0)
1
-3 [} (0=t 0p) (0 —t-03) o +2a) (o0 — v o) 0]

Using the notation in the VAR system with the Cholesky decomposition for ¥, = GG’, o; — o,
is equal to the ith row of G, G;. Hence,

(U — L Ub) (U — L Ub)/ = Gay /2:n = Xy,
oyo, = G1G| =07,
oo, = GG+ 00,G,+ G0+ opoy,
(00 = 024201, + 0,
(c—t-op)o, = Go2,G| =01,

where Gs.,, denotes the submatrix formed by taking the 2nd to nth rows of G.
With these terms, the return on the portfolio is

1 1
/ / 2 / /
Tpi+l = OuXpqy1 +7T1441+ Dha (07 +201,) — §at2;cwat — o,

1
/ / 2
= O0yXgt1 + T1,t+1 + §at (O'x — Zmat) .
|

Solving for the Optimal Portfolio Rule.

Subtracting the log Euler equation (12) with ¢ = 1 from (12), we obtain

9

G
0

—Covy EACHI + (1 =0)rpi41,71,041

1
Et (Tit41 — 1.041) + §Vart (rige1 —r1441) = Covy ( Acip1 + (1 —0) Tp,t—i—lvri,t-&-l) (36)

1
—3 (Vary (ri441) — Varg (11,041) — Vare(riee1 — m1,641)) -

3



Using the budget constraint (11) and the trivial identity Aciy1 = (crp1 — wig1) — (60 — we) + Awypy g,
0

0 .
EACtH +(1—=0)rpi41 = — (Ct41 — Weg1) +Y7pe+1 + time ¢ terms and constants.

(0

Thus, equation (36) can be written as

1 0
E¢ (rijp41 — rieq1) + avaft (Pig41 —T1g41) = — [Cic—wit — Olc—w,t] Y [Cipt — O1pt)

(8

1
—5 (Vart (ri,t+1) — Var; (Tl,t+1) - Vart(Tz‘,tH - 7"1,t+1)) .
We will derive these terms now.

Using the equation for log return on the portfolio and ignoring time ¢ terms and constants,

!
Oipt = Covi(apXep1 +71e41,70641)
/ i—1 (i—1) 2
o, (Eu(LuL )+0-1L)+0-1L +0'1,
!
o1pt = Covi(Xer1 +71,0401,71,641)
/ 2
= 01+ 07.

To evaluate the conditional covariances o; c—w,r and o1,c—w,, We use the conjectured policy rule for
the consumption-wealth ratio.

Oi.c—w,t
= Covy (ci41 — wir1 — B¢ (41 — wig1) s i i+1 — Ee(ries1))
= Cov, (B/1Vt+1 + (@0 + ®12; +viy1) Bo (®o + @12, + viy) 7V§i)1 + vt(}‘r)l)
= Covy (B'lvtﬂ + ®(Bovit1 + 2, P1Bovi + vi  Ba®o + vi  Ba® 7z, Vg?l + VS&)
B (s 80 g (50 4500+ (504350 By
+2; 2B, (25}') + ES})) + (ESj) + 25,1))/ By®, 7,

where the second equality follows from using Result 1 and 2, and 25,“ denotes the ith column of
Y.». Note that Bs is not necessarily symmetric, so that we cannot combine any of the terms in the
expression above. Similarly, for the return on the short-term bond we have

remws = BLSW + @LBox () 4 (Eﬁ,”)' By®, + 7,8 B,x() + (25,1))' By®, 7.
Therefore
it — O1ewi = BIZW + (®)By + 2,8, By) S + (25}'))' (Bo®y + Bo®12,)
B1Z{) + (8 +2,®7) (B2 + By) X
= (30) Byt (30) (B, + BY) (20 + B12)

4



Stacked, this equations give

Oc—w,t — Ol,c—w,tl

il il =
= : B, +2 (BQ"‘BIQ) b | + (B2+B/2)<I’1 Zy
E1(}71)/ E1(}n)/ Zg}”)’

!’

— [(ZHL) Bi+ (S,HY) By + BY) | + [(5,HL)' (Bs + BY) @1 2
= AO + A]_Zt, (37)

as claimed in equation (17).H
Solving for the Optimal Consumption Rule.

We derive first equation (26). To derive this equation, note that log consumption growth verifies
the following trivial identity: Aciy1 = (c41 — wiy1) — (¢ — wy) + Awgyy. Substituting the log-
linearized budget constraint (11) into this equation and taking expectations we obtain

Ei(Acir1) = Ei(ct41 —wir1) — (a0 — wi) + B (Awgyq) (38)

1
= Et (Ct+1 — wt+1) — (Ct — ’lUt) -+ Et('l’p7t+1) —+ (1 — ;) (Ct — ’UJt) + k.

Combining the two equations (24) and (38), we obtain a difference equation in ¢; — wy, given in (26).

Next we show that both the expected log return on the wealth portfolio E;rp, +11 and the variance
term X, , in equation (24) for expected log consumption growth are quadratic functions of the vector
of state variables.

Taking conditional expectations of equation (10) and substituting the portfolio policy rule a; =
Ao+ Ayzy,

1
Ei (rpat1) = ogBEy (xeq1) + Ep (r1e41) + 504 (03 — Sewen)

= (A + 2z A H, (90 + Pizy) + Hy (o + Prz4)

1
— 5 (A6 + Z;A/l) Eau (A(] —+ Alzt)
= To+T1z + Davec (zizy) ,

1
+3 (Al +ziAY) o

where
— / 1 ! 2 1 !/
I'y = AoncI)O +H Py + §A00x — §A02wa0,
1
I = OH,A +AH,® +H D + §U§A1 — A)Y, A,
1
Iy = vec(A/H,®,) — S vec (A} S..A)



and H; and H, are selection matrices that select the short-term real interest rate and the vector of
excess returns from the full state vector.

We now evaluate the variance term

176
Xp,t = 5 <E> Vart (Act-‘rl - wrp,t-‘r].) :

Using the trivial identity for Ac;y; and the budget constraint (11), substituting the conjecture for
the consumption rule
Ct — Wy = bO + B’lzt + Z;BQZt
= by + Bz + vec (Bs)' vec (2;2})

and a; = Ag + A1z, and ignoring time ¢ terms and constants, we can write the argument of the
variance as:

ACt+1 - ¢7“p,t+1

= [B]+®; (B2 +Bj) + (1 —¢) AgH, + (1 — %) Hi] via
+z; [®] (B2 + BY) + (1 —¢) ATH, ] viiy
+ vec (By)' vec (Vig1vig1)

= [} + 2,II5] viy1 + vec (By)' vec (Vit1vig) s

where

I, B + @, (B2 + By) + (1 —¢) AgH, + (1 —¢) Hy,
I, = tI)’l(B2+B’2)+(1fw)A’1Hw.

Since vi4; is conditionally normally distributed, all third moments are zero. Thus,

Vart (Act—i-l — '(/JTp,t+1)
= LI 4 211 2,11 2 + vec (T2, I15) vec (z:z})
+vec (By)' Var; (vec (vi11vy, 1)) vec (Ba),
and Vary (Vec (vt+1v; +1)) is given by the expression in Result 4 above. Putting these pieces together,

we have
Xpt = Vo + Vizy + Vavec (z42))

where
Vo = % [HlZvH’l + vec (Bg)' Vary (vec (Vt+1V7/5+1)) vec (Bz)] ,
vV, = % 211, 5, IT4] |
V, = % [Vec (HQZUHQ)/] .



We can now solve for the coefficients of the optimal consumption rule. Simple substitution of the

expressions for E;rp 111 and X, 4, and the expression for the conditional expectation of (¢;41 — wi41)
into the RHS of (26) yields
¢t — wy = Zg + Z12¢ + Epvec (z12y) (39)

where

pl=logéd+k—Vo+ (1 — )T+ by + B P
+ vec (By)' vec(®o®)) + vec (Ba) vec(S,)],
p|=Va+ (1 =) Ty + vec (®)B2®,)'| .

[
o
Il

[1]

1

(1]

2

Equation (39) confirms our initial conjecture on the form of the consumption-wealth ratio. Notice
that Zg, 21,22 depend on by, By and By. Therefore, for the solution to be consistent, {by, B1, B2}
must solve the following set of equations:

bo = Eo, (40)
B, = &,
vec(Bg) = Ei.

The resulting set of values for by, B; and vec (B3) determines the optimal consumption rule.ll
Verification that the optimal portfolio rule is independent of ¥ given p.

>From equations (22) and (23) in text, and equation (37) in the Appendix, we can write Ag
and A as:

1 1 1 “A
Ay = ()2 (H, &0+ 02+ (1— N 1— = )x 20
0 <7) mz( 0+ 505+ ( 7)01)+( 7) -

1 _ 1 1 _ B B, + B!
= (;) D (qu’o +5o0+(1 7)201w> - (1 - ;) Yo [(EUH;.Y — 4 (3, H,) (ﬁ

L=

1\ 1\ _ . —A,
Ay <;) ¥, H, 0 + (1 - ;) b 1=

1 1 / ( By + B!
= N(He) - (1-2 )3 |[(BH) 22 2) ® } :

Thus, showing that the optimal portfolio rule is independent of v given p is equivalent to showing
that B1=B;/(1 — 1) and Bs = By /(1 — ) are independent of ¢ given p.

First, consider Bz. From (40), we have

(1= v)vec(Bz) = p[=Vy + (1 —9)I% + (1 — ) vec () By ®1)] . (41)

)



Using the definition of Vo, we have

-V, = ﬁ vec [(<I>’1 (By +BS) + (1 —¢) AJH,) X, () (By + BY) + (1 — ) A,le),]
— /
- _L) vee [(1—)? (@) (B + B)) + ALHL) 5, (@) (B> + B) + ALHL) |
= 0 ) vee (@) (B> + BY) + ATHL) S, (8] (B + B) + ALHL) |
= (1-9)Vs,

which is independent of 1, since A; does not depend on v, given Bs.

Similarly, using the definition of I'y, we have:
1
(1= )T = (1= 4) |vec(ALH 1) S vec (A1, A1)

which is also independent of v, since A; does not depend on %, given Ba.

Thus, (41) reduces to

vec (B2) = p [V; + I + vec (@132@1)} .

This is a quadratic equation in By, whose coefficients do not depend on 1), except for p. The loglin-
earization coefficient p = 1 — exp(E¢[c; — wy]) does depend ont indirectly, through the dependence
of E¢[e: — wy] on by, By and Ba, which are functions of ¢. Consequently, the solution for By will

also be independent of v given p.

Using the same logic, we can show that B; is independent of ). From (40) we have

(1—=9)Br=p[-Vi+ (1 =) T+ (1 — )@, By + (1 — 1)@} (Bs + BS) By (42)
Now,
Vi = (i 1 [((1 = )T %, (24 By + BY) + ATH)]
= (1-7)(1—v) LX) (@) (B2 + B) + AT H,)|
= 1-)V,
where

I = B} + ®(, (B2 + BS) + AjH,, + H;.
Both V' and II; are also independent of v, since Ag and A; do not depend on 1), given B; and Bs.

Also, I'; is only a function of B; and B; via its dependence on Ay and A1, not of ¥b. Therefore,
(42) becomes

Bi=p [Vi+T}+ @By + @) (By +By) @o|

8



which again implies that the solution for B; does not depend on % given p This completes our
proof.l

Value function when ¢ = 1.

First, note that we have just proved that B; and By do not depend on 1 given p. We now derive
an expression for the value function when ¢ = 1. The value function is given by

Vi = -9 (1)
t

_ P bo B! vec (By)’ ,
= eXp{_1¢10g<1_5)+1w+1wzt+ T Vec(ztzt)}

= exp{By + Bjz, + vec (Bs) vec (z,2)) } ,

where B, and vec By are independent of ¢ given p, but By does depend on .

We now find the limiting expression for By when ¢ = 1:

By = —1f¢log(1—6)+1lf)¢
= —1f¢log(1—6)
1L[_11/11010(‘;64_%_1‘/()1[}_‘_]1)_‘_1Bllq/}¢>0—i—VelLP;Z)IVec(@o(I)f))—i—VelL]?;Z)Ivec(Zv)
_ liwlfp{lpp¢bgﬂ5)wbg5+k
ﬁ {1 ‘10111 +To+ 1?2}% + Vel%]aq;)/vec(%%) + Vel%BlZ)/vec(Ev) :

Substituting k = log p+ ((1 — p)/p) log(1 — p) into the first term of the last equality, and noting
that p = 6 when 1 = 1, we have

1 p [ 1-p ]
- log (1 —06) —logd+k
T—vi-p| Ylog (1 —6) —¢log
L0 [ P on (1= 6) — logd + log p+ ~—Llog (1 ﬂ
— og(1—-6)—lo 0 og (1 —
ot |, Vs g gp+ —~log(l—p
1 p [1—p }
= 1—1)log(1—46)+ (1 —1)logé
o [ e -0+ -
= log(l—é)—l—liélogé,

which is independent of ).



>From previous results, we know that all the terms in the second term of the last equality are

independent of ¥ given p, except for V/(1 — ). We now verify that this term is also independent
of 9 given p:

VO = 1 ‘f)w
_ 1=y [ILE, I | vec (By)’ vec (Bs)'
= 5 Y T Vart(.)—l_w
B e ) RLER2L /
= ol e + vec (Bz) Vary (.) vec (Bg)] )

where the second term is independent of v given p, and the first one is also verifiably independent

of ¥:
I, 3,11
(1-¢)°

Bll B, + B! B B, + By
= (—— +A/H, +H; + P 2) 3, HA+H +——=9
<a—w*0‘+1+0 bw))”<a—w+ TR R

= (Bl +AH, + Hy + &) (B2+B5)) Ey (B + H,Ag + H| + (B2+B5) 0o)
which does not depend on v given p.

Thus when ¥ = 1 we have:

By = log(l—6)+

6

75 [=Vo + T + Bi®o + vec (Bs)' vec(®o®f) + vec (Bs)' vec(S,)] -

17510g6

Now, since p is independent of ¢ in the special case 1) = 1—because p = §—, we conclude that
Bo, B1 and B> are independent of ¢ when ¢ = 1.

Derivation of E[V{].

>From the previous section, we learn how to obtain the coefficient matrices By, B; and By. Now
we want to evaluate explicitly

E (V;) = E [exp (Bo + Bz + z:B2z:)]
where z; has a multivariate normal distribution
ze ~ N (1, 3z2)
with
pe = (Ln—31) @,
vee (B,,) = (L2 — @, @ ®1) "vec(X).

10



First, consider a change of variable. Define

ht =Zy — L,
Then,
Bo + Bizt + Z;Bgzt =Co+Cih; + h;Cth,
where
Ci = Bi + 2”;82, (44)
CQ = 82. (45)

To calculate E (V;),
E (Vi)
_ /Oo /Oo exp (Bo + Bl z; + z,Baz;)
X (L .. % exp (—l(zt — ) (7 - “z))> dz1g...dzme
NG 2

e e 1 1 1
= / / exp (Co + Cihy + hyCohy) - <—% 1322 exp <—§h22221ht)> dhyg..dhopy

1 1 0 S 1
= _r—27r ‘Ezz| 2. / .. / exXp (CO + Clht - Eh; (22_21 _ 2C2) ht) dhlt...dhmt
| -2

(o] o0 1
= Co+ Cihy — =h! (27} —2C5) hy ) dhyy...dhy,
VI (s —ae) | R A G S I L
5.
(5= 20"
X\/% ‘(22—21 _26’2)71‘75 /_OO/_OO exp <Co+C1ht - %h; (Ez_zl —202) ht> dhit...dhpt
S.F o
= m -E (eXp (CO +Clht)),
zz 2

where the expectation E is taken as if h, is normally distributed with mean zero and covariance
matrix (2} — 2C2)_1. Thus, we immediately have

_1
22| 2

EV))=———=
(222 20,

=

- exp (C() + %Cl (Z;ZI — 262)_1 Ci) . (46)

11



B Appendix B: Numerical Procedure

Equations (21) and (40) show that the coefficients {Ag, A1}, {bo, B1, vec(B2)} in the optimal policy
rules are functions of the underlying parameters. When there is one state variable as in Campbell
and Viceira (1999), solving explicitly for these coefficients is manageable. However, with multiple
state variables, such an exercise is practically impossible. Therefore, we employ a simple numerical
procedure to find these coefficients instead.

To find the coefficients of the optimal portfolio rule for each value of v, we use the fact that they
are independent of ¥ given p. Thus, for each v, we fix a value for p, choose an arbitrary value for 1),
and start with some initial values for {B1, vec (Bz)}—denote these by {Bgl),vec (Bg)(l)}. Through
equation (21), this implies a set of values for {Ag, Aj }—denote these by {A(()l) , A(ll)}.

With p, {Agl), Agl)}, {Bgl),vec(Bg)(l)}, we can compute the coefficients {Z1,Z2} in the ¢ — w
difference equation (39). By equating these coefficients with the {B1, vec(B2)} in the conjectured
policy function, we have a new set of values for {Bq, vec (Bz)}—call them {B§2),vec(B2)(2)}. Since
the initial values are arbitrary, {B(f),vec(BQ)@)} will be different from {B(ll),vec(Bg)(l)} in general.
Thus, we recompute {Ag, A1} using p,and {BgQ),Vec(Bg)(z)} to get {A((JQ),A?)}. We obtain then a
new set of values for {Z1,22}. We continue until values of {B;, vec(B3)}, and hence {Ag, A},
converge.

The convergence criterion for {B1, vec (B2)} is rather stringent. We first calculate the maximum
of the squared deviations of all elements from 2 consecutive iterations. We then require for parameter
convergence that the sum of 20 such consecutive maxima be less than 0.00001.

Note once again that coefficients {Ag, A1} are the same for all values of ¢ given the loglin-
earization parameter p. In the special case ) = 1, we also have that p = §, so that the solution is
exact, and choosing a value for p is equivalent to choosing a value for . When 1) is not equal to one,
we implement a recursive procedure similar to the one described in Campbell and Viceira (1999,
2001). Given an initial value of p, we compute coefficients {Ag, A1}, {bo, B1, vec(B2)} using the
procedure described above. From {bg, B, vec(B2)}, we can compute E¢[c; — w;], and a new value
of p. We iterate until convergence.

12



C Appendix C: Construction of Hypothetical Real
Bonds

Recall that the first element of our VAR system is the ex post real bill return. Therefore, the ex
ante log real bill return at time ¢ + 1 is the first element of E; (z¢11) = @9 + ®12;. In other words,
the log real yield at time ¢ is given by

it = Hy - Ey (2e41) = Hy - 2441,

where Hy = (1,0, ...,0) and z; ;41 =E; (2441) -

The next step is to assume that the log expectations hypothesis holds for the real term structure;
that is,

n—1

1
Yt = — Z Ei (Y1,644) 5
=0

where y,, ; is the log yield on a real bond with maturity n. Note that we have implicitly assume
that inflation risk premium is zero. An estimate of y, ; can be easily constructed as follows:

n—1 n—1

- 1 - 1 N
Ynt = — E Yigi = — E Hi -2 4i41.
n 4 n -
=0 =0

To compute Z; ¢+;+1, we can iterate the VAR(1) system forward to get

k—1
- E j k
Zit+k = @jl q)o + <I>1zt.
=0

Using this result, log yield can be expressed as a function of current state variables:

n
~ 1 ~
Ynt = —ng Zit t+i
n ‘
=1
1 n i—1
= EHlE E CI){ (I>0+(I>let
i=1 §=0

11 Q.+ Quz)
n

where
Q. = D) P = (L, — ) (L, — DY),
i=1
Qc = (Im - (I)l)il (Im - Qn) q)(]a

13



and I, is the identity matrix, m = dim(z).
Finally, the 1-period return on a hypothetical real n-period bond is calculated as

Tnit+1 = ngn,t - (n - 1) Z/U\n—l,t-s-l
A NYnt — (M= 1) Yn,t+1
And the excess return on the hypothetical real n-period bond is
Tnt+1 — T1,t4+1
(MYnt — (0= 1) Ynt+1) — Y1
n—1
{Hl (Qe + Qunzt) — THl Qe+ QnZt+1)} —H; (P + P12¢) .

The next step is to construct a real perpetuity from these zero-coupon bonds. Campbell, Lo and
MacKinlay (1997) show how to use a loglinearization framework to construct real perpetuity returns.
Specifically,their equations (10.1.16) and (10.1.17) show that the log yield on a real perpetuity or
“consol” Y oo, is given by

oo
Yeoot = (1= p) szraoo,t-i-l-i-i’
i=0
where 7¢ o0 1+ is the one-period log return on a perpetuity at time ¢t+4 and p, = 1 —exp (E[—pe,i)) ,
where p.+ is the log “cum-dividend” price of the perpetuity including its current coupon payout.

Taking conditional expectations at time ¢ and imposing the expectations hypothesis,

oo
Yeoor = (1=p.) ZPZHﬁt,tﬂ'H
i=0

1 (1-p.) ZPLZ@ @y + H; (1 (ZPL@“)

It is straightforward to show that

0o i 1

N = L, —p.®1) "
chz 1 1—p ( Pe 1) )
=0 7=0

c

o0
Zﬂifbi“ = (In— pcq)l)_l ;.

Thus, the log yield can be expressed as function of the VAR, parameters, current state variables and
the loglinearization constant p,:

Yeoort = Hi (I — p@1) " @0 + Hy (1 p,) (L, — p,D1) " @12
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TABLE A
Variability of Asset Demands

A: Quarterly Sample (1952Q2 - 1999Q4)
v=5,9=1,p=092/4

Var(a™)/Var(a) (%)  Var(a®)/Var(a) (%)  Cov(a™, a”)/Var(a) (%)
Stock 52.00 14.31 16.84
Bond 60.49 21.44 9.03

Percentage of Total Variation Explained By:

Stocks
rtby TTy by Yt (d—p):  spre
rtby 1.22 0.00 0.00 0.00 0.00 0.00
Try 0.58 1.56 0.00 0.00 0.00 0.00
b, 2.94 1.93 13.88  0.00 0.00 0.00
Yt -1.27 3.00 13.59 56.82 0.00 0.00
(d—p) 032 -2.09 115 -64.93 8373  0.00
Spr -1.09 -0.52 -4.07 -11.02 1.20 3.69
Bonds
rtby 0.01 0.00 0.00 0.00 0.00 0.00
Try 0.19 14.11 0.00 0.00 0.00 0.00
xby 0.24 4.25 7.44  0.00 0.00 0.00
Yt -0.15 9.82 10.82 67.20 0.00 0.00
(d—p) 002  -358 048 -40.26 2723 0.00
Spry -0.53 -6.94  -13.27 -53.47 3.06 73.38

Note: rtby = ex post real T-Bill rate, zr; = excess stock return, zbs = excess bond return, (d — p); =
log dividend-price ratio, rb; = relative bill rate, spry = yield spread. The bond is a 5-year nominal bond in

the monthly dataset and a 20-year in the annual dataset.



TABLE A (Ctd.)
Variability of Asset Demands

B: Annual Sample (1890-1998)
y=51=1,p=0.92/4

Var(a™)/Var(a) (%)  Var(a®)/Var(a) (%)  Cov(a™, a”)/Var(a) (%)
Stock 103.17 13.95 -8.56
Bond 96.54 0.40 1.53

Percentage of Total Variation Explained By:

Stocks
rtby TTy by Yt (d—p):  spre
rtby 0.51 0.00 0.00 0.00 0.00 0.00
Try -0.91 13.01 0.00 0.00 0.00 0.00
xby 0.22 -0.60 2.48 0.00 0.00 0.00
Yt -0.68 1.77 -1.78 213 0.00 0.00
(d—p) 101 -814 335 742 8358  0.00
Spr -0.17 0.83 -1.11  0.62 -1.97 0.45
Bonds
rtby 17.59 0.00 0.00 0.00 0.00 0.00
Try -6.76 20.69 0.00 0.00 0.00 0.00
xby 2.50 -1.46 9.21 0.00 0.00 0.00
Yt -0.28 0.16 -0.24 0.01 0.00 0.00
(d—p) -0.76 -1.31 0.82 0.07 1.35 0.00
Spry -13.90 14.86  -30.49 0.62 -3.57 90.88

Note: rtby = ex post real T-Bill rate, zr; = excess stock return, zbs = excess bond return, (d — p); =
log dividend-price ratio, rb; = relative bill rate, spry = yield spread. The bond is a 5-year nominal bond in

the monthly dataset and a 20-year in the annual dataset.



TABLE B

VAR Estimation Results
Nominal Bills, Stocks and Real Consol Bond

A: Quarterly Sample (1952.Q2 - 1999.Q4)

Dependent rtby xry xreby Yt (d—p) Spr R?
Variable (t) (t) (t) (t) (t) (t) (p)
VAR Estimation Results
rtbi41 0.435 0.005 0.015 0.270 -0.001 0.428 0.338

(6.154) (0.775) (0.359) (3.478) (-1.173) (2.261) (0.000)
(6.154) (0.775) (0.359) (3.478) (-1.173) (2.261) (0.000)

T 1.866  0.079 0919 -2341 0050 0201  0.084
(1.559) (0.953) (1.580) (-2.627) (2.404) (0.077) (0.008)
arebig 0.000  0.000 0.000 0.000  0.00  0.00  0.000
(0.000) (0.000) (0.000) (0.000) (0.000)  (0.000) (1.000)
Yit1 -0.001  0.004 -0.000 0.948  0.000  0.120  0.868

(-0.024) (1.505) (-0.009) (18.671)  (0.002) (1.151) (0.000)
(d—p)epr  -1.972  -0072 -0.819 1.640 0959  -0.955  0.932
(-1.615) (-0.803) (-1.333) (1.765) (44.168) (-0.355) (0.000)

SPris 0.009 -0.000 0.009 0.026 -0.000  0.743  0.540
(0.304) (-0.045) (0.586) (0.815) (-0.232) (10.996) (0.000)

Cross-Correlation of Residuals

rtb xr xrch Yy (d—p) spr
rtb 0.551 0.228 -0.465 -0.390 -0.228 0.183
xr - 7.764 -0.351 -0.164 -0.981 0.023
xreh - - 1.236  -0.408 0.333 0.111
Y - - - 0.256 0.196 -0.776
(d—p) - ; ; ; 7946 -0.056
spr - - - - - 0.172

Note: rtby = ex post real T-Bill rate, xr: = excess stock return, xrcbs = excess real consol bond return,
(d — p)¢+ = log dividend-price ratio, y: = nominal T-bill yield, spr¢ = yield spread. The bond is a 5-year
nominal bond in the quarterly dataset and a 20-year for the annual dataset.



TABLE B (Ctd.)

VAR Estimation Results
Nominal Bills, Stocks and Real Consol Bond

B: Annual Sample (1890 - 1998)

Dependent rtby xry xreby Yt (d—p) Spr R?
Variable (t) (t) (t) (t) (t) (t) (p)
VAR Estimation Results
rtbi41 0.309  -0.056 0.000 0.604 -0.009 -0.548 0.235
(2.299) (-1.467) (0.004) (2.546) (-0.320) (-1.081) (0.000)
Treg1 -0.096 0.078 -0.211 0.052 0.136 1.682 0.058
(-0.270) (0.650) (-1.100) (0.080) (2.385) (1.217) (0.314)
xrcbyy 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000)
Yt+1 -0.058 -0.013 -0.017 0.897 -0.006 0.098 0.774

(-2.142) (-1.928) (-1.035) (11.157) (-1.343) (0.956) (0.000)

(d—p)yr  -0362 -0.136  0.192 -0.928  0.826 -1.505  0.719
(-1.202) (-1.310) (1.047) (-1.498) (12.505) (-1.113) (0.000)

SPris1 0.030 0.003 0011 0093 0004  0.767 0.541
(1.565) (0.500) (0.962) (1.672) (1.245) (9.785) (0.000)

Cross-Correlation of Residuals

rth xr xreb Yy (d—p) spr
rtb 7.619 -0.169 -0.839 0.126 0.109 -0.160
xr - 17.429 0.166  -0.149 -0.721 0.196
xreb - - 12.416  -0.579 -0.026 0.617
Y - - - 1.235 0.205 -0.892
(d—p) - ; ; ; 16.104  -0.185
spr - - - - - 0.977

Note: rtby = ex post real T-Bill rate, xry = excess stock return, xrcb: = excess real consol bond return,
(d — p)¢+ = log dividend-price ratio, y; = nominal T-bill yield, spr¢ = yield spread. The bond is a 5-year

nominal bond in the quarterly dataset and a 20-year for the annual dataset.



TABLE C

VAR Estimation Results
Nominal Bills, Stocks, Real Consol Bond, and Nominal Bond

A: Quarterly Sample (1952.Q2 - 1999.Q4)

Dependent rtby TTy xnby xreby i (d—p); spry R?
Variable (t) (t) (t) (t) (t) (t) (t) (p)
VAR Estimation Results
rtbyy 0.593 0.012  -0.058 0.128 0.236 -0.001 0.409 0.352
(5.344) (1.984) (-1.929) (1.967) (3.129) (-0.721) (2.178) (0.000)
TTeq1 0.962 0.038 0.329 0.276  -2.148 0.047 0.310 0.087
(0.558) (0.394) (0.720) (0.261) (-2.286) (2.277) (0.119) (0.006)
xnbi41 0.375 -0.038 -0.189 0.280 0.314 0.003 2.968 0.099
(0.727) (-1.473) (-1.128) (0.866) (0.731) (0.441) (2.700) (0.002)
xrchig 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)  (0.000) (1.000)
Ye+1 -0.042 0.002 0.015 -0.029 0.957 -0.000 0.125 0.869
(0.769) (0.816) (0.778) (-0.935) (19.692) (-0.260) (1.204) (0.000)
(d—p)y1 -0.980 -0.027 -0.362 -0.112 1.428 0.962 -1.074 0.932
(10.539) (-0.262) (-0.757) (-0.102) (1.457) (44.524) (-0.401) (0.000)
SPri+1 0.019 0.000 -0.004 0.017 0.024 -0.000 0.741 0.540
(0.506) (0.175) (-0.298) (0.802) (0.779) (-0.138) (10.975) (0.000)

Cross-Correlation of Residuals

rtb xr axnb xrch Yy (d—p) spr
rtb 0.545 0.239 0.389 -0.462 -0.384 -0.240 0.181
xr - 7.751 0.228 -0.355 -0.170 -0.981 0.025
xnb - - 2.670 0.543 -0.764 -0.245 0.195
xreb - - - 1.236 -0.414 0.337 0.112
Y - - - - 0.255 0.202 -0.776
(d—p) - - - - - 7.932  -0.058
spr - - - - - - 0.172

Note: rtby = ex post real T-Bill rate, xry = excess stock return, xrcb: = excess real consol bond return,

(d —p)¢ = log dividend-price ratio, y¢ = nominal T-bill yield, znb; = excess nominal long bond return, spr¢

= yield spread. The bond is a 5-year nominal bond in the quarterly dataset and a 20-year for the annual

dataset.



TABLE C (Ctd.)

VAR Estimation Results
Nominal Bills, Stocks, Real Consol Bond, and Nominal Bond

B: Annual Sample (1890 - 1998)

Dependent rtby TTy xnby xreby i (d—p); spry R?

Variable (t) (t) (t) (t) (t) (t) (t) (p)

VAR Estimation Results

rtbysy 0.305 -0.052 0.122 0.002 0700 -0.004 -0.781  0.240
(2.258) (-1.314) (0.902) (0.026) (2.380) (-0.147) (-1.177) (0.000)
ar -0.093 0074 -0.098 -0.212 -0.025  0.132  1.869  0.059
(-0.262) (0.616) (-0.332) (-1.114) (-0.036) (2.371) (1.251) (0.305)
anbii1 0223 0.106 -0.196 0.023 -0.117 0012 2566  0.393
(1.890) (2.954) (-1.485) (0.274) (-0.333) (0.612) (5.118) (0.000)
archysy 0.000  0.000 0.000 0.000 0.000  0.000  0.000  0.000
(0.000)  (0.000) (0.000) (0.000) (0.000)  (0.000)  (0.000) (1.000)
Yit1 -0.059 -0.012 0.036 -0.017 0925 -0.005  0.029  0.779

(-2.239) (-1.746) (1.280) (-1.037) (12.568) (-1.115)  (0.249) (0.000)

(d—p)iy1  -0.373  -0.124 0363  0.197 -0.642  0.840 -2.198  0.723
(-1.260) (-1.174) (1.163) (1.103) (-0.992) (13.412) (-1.459) (0.000)

SPTris1 0.030 0.002 -0.013 0011 0083 0004 0791 0.543
(1.593) (0.415) (-0.649) (0.953) (1.557) (1.142) (8.432) (0.000)

Cross-Correlation of Residuals

rtb xr axnb xrch Yy (d—p) spr
rtb 7.592  -0.168 -0.020 -0.842 0.115 0.101 -0.155
xr - 17.422  -0.017 0.166  -0.146 -0.723 0.195
xnb - - 5.099 0.257  -0.651 -0.059 0.262
xreh - - - 12.416  -0.585 -0.026 0.618
Y - - - - 1.221 0.191 -0.894
(d—p) - - - - - 15.996  -0.179
spr - - - - - - 0.975

Note: rtby = ex post real T-Bill rate, xry = excess stock return, xrcb: = excess real consol bond return,
(d —p)¢ = log dividend-price ratio, y¢ = nominal T-bill yield, znb; = excess nominal long bond return, spr¢
= yield spread. The bond is a 5-year nominal bond in the quarterly dataset and a 20-year for the annual

dataset.



TABLE D

Mean Asset Demands with Hypothetical Real Bonds
(Annual Sample: 1890 - 1998)

A: Nominal Bills, Stocks, and Real Consol Bond
State Variables: Constant Full VAR

y=1,9%=1,p=0.92

Stocks 200.45 226.91
Real Consol Bond -54.43 -64.46
Cash -46.02 -62.45

y=2,9%=1,p=0.92

Stocks 100.58 140.21
Real Consol Bond -1.02 -10.05
Cash 0.43 -30.16

vy=51Y=1,p=0.92

Stocks 40.67 65.69
Real Consol Bond 31.03 44.67
Cash 28.30 -10.36

v =20, =1,p=0092

Stocks 10.71 17.40
Real Consol Bond 47.06 82.94
Cash 42.24 -0.34

v =2000,9 =1,p=0.92

Stocks 0.82 -0.84
Real Consol Bond 52.34 97.86
Cash 46.84 2.98

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in
each regression, corresponding to the case in which risk premia are constant and realized returns on all
assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands
when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the

quarterly dataset and a 20-year in the annual dataset.



TABLE D (ctd.)

Mean Asset Demands with Hypothetical Real Bonds
(Annual Sample: 1890 - 1998)

B: Nominal Bills, Stocks, Real Consol Bond and Nominal Bond
State Variables: Constant Full VAR

y=1,9%=1,p=0.92

Stocks 198.39 232.42
Real Consol Bond -68.22 -97.56
Nominal Bond 143.96 301.23
Cash -174.13 -336.09

y=2,9%=1,p=0.92

Stocks 99.61 137.51
Real Consol Bond -7.54 -30.05
Nominal Bond 68.06 163.36
Cash -60.13 -170.81

y=519Y=1p=0.92

Stocks 40.34 60.01
Real Consol Bond 28.87 39.15
Nominal Bond 22.51 64.02
Cash 8.27 -63.18

v =20, =1,p=0092

Stocks 10.71 15.95
Real Consol Bond 47.08 81.05
Nominal Bond -0.26 19.78
Cash 42.47 -16.79

v = 2000, =1,p=0.92

Stocks 0.93 0.61
Real Consol Bond 53.09 95.75
Nominal Bond =777 7.58
Cash 53.75 -3.94

Note: “Constant” column reports mean asset demands when the VAR system only has a constant in
each regression, corresponding to the case in which risk premia are constant and realized returns on all
assets, including the short-term real interest rate, are i.i.d. “Full VAR” column reports mean asset demands
when the VAR system includes all state variables. The nominal bond is a 5-year nominal bond in the
quarterly dataset and a 20-year in the annual dataset.



TABLE E

Mean Value Function () =1 Case)
(Annual Sample: 1890 - 1998)

gl E[V]
Nominal Bills and Stocks
1 0.164
2 0.088
5 0.050
20 0.015
2000 0.000
Nominal Bills, Stocks, and Nominal Bond
1 14.911
2 0.446
5 0.086
20 0.018
2000 0.000
Nominal Bills, Stocks, and Real Consol Bond
1 0.175
2 0.090
5 0.053
20 0.038
2000 0.014
Nominal Bills, Stocks, Nominal Bond, and Real Consol Bond
1 37.37
2 0.526
5 0.095
20 0.023

2000 0.014




