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Abstract

We investigate the properties of the composite likelihood (CL) method for (T ×NT ) GARCH

panels. The defining feature of a GARCH panel with time-series length T is that, while nuisance

parameters are allowed to vary across NT series, other parameters of interest are assumed to

be common. CL pools information across the panel instead of using information available in a

single series only. Simulations and empirical analysis illustrate that when T is reasonably large

CL performs well. However, due to the presence of nuisance parameters, CL is subject to the

“incidental parameter” problem for small T.

Keywords: ARCH models; composite likelihood; nuisance parameters; panel data.

1 Introduction

This study focuses on the application of the composite likelihood (CL) method to GARCH panels.

A GARCH panel is a collection of financial time series that are characterised by time-varying

volatility. The defining feature of a GARCH panel is that, while nuisance parameters are allowed

to vary across series, other parameters of interest are assumed to be common for all series.
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The origins of the composite likelihood method go back to at least Lindsay (1988). See Varin

(2008) and Varin, Reid, and Firth (2009) for a review. The method has recently been introduced to

financial econometrics by Engle, Shephard, and Sheppard (2008) as a basis for pooling information

across not only time, but also cross-section. In GARCH panels, this amounts to estimating the

parameters of interest for all assets simultaneously, instead of individually. This is important

since the common quasi-maximum likelihood estimator (QMLE) for the GARCH model delivers

poor results in samples of a few hundred observations. This study illustrates that CL is capable

of delivering satisfactory results in such samples by pooling information across series, though it

too suffers from error introduced by nuisance parameter estimates. This “incidental parameter”

problem has been mentioned in the financial econometrics literature by Engle and Sheppard (2001),

Engle, Shephard, and Sheppard (2008), and Engle (2009).

An important point in favour of CL is that QMLE-based estimation of GARCH, while satis-

factory in samples with thousands of observations, is unreliable in small samples. For example,

using a sample of 100 or 250 observations, the fitted GARCH is unlikely to adequately model the

conditional heteroskedasticity in data. On the other hand, CL is potentially able to produce a

reasonable conditional heteroskedasticity structure, even when the number of observations is very

small, since it uses information contained in the whole panel. Although assets in the panel are

correlated to some degree, it is implausible that all assets are perfectly correlated. Hence, a panel

of asset prices contains at least as much information as a single asset does.

Forecasters often have to use a short time series or a small-T panel. A recent structural break

in data is one cause. Assuming the break occurred a year ago (corresponding to the availability of

around 250 daily observations following the break), parameters estimated using QMLE most likely

suffer from substantial bias which, in turn, leads to poor forecasting performance. On the other

hand, CL has the potential to work well in this scenario. Another application where CL can be

useful is monthly hedge fund data, which consists of monthly returns on thousands of funds and

hence, is a short, wide panel.

The relevant large sample theory underlying the method used here has already been developed

by Engle, Shephard, and Sheppard (2008), who looked at large dimensional time-varying covari-

ances. They employed CL to produce a computationally feasible estimator, with the CL constructed

by averaging the log-likelihoods for submodels built using bivariate time series. Our study develops

the GARCH panel structure using the theoretical foundations provided by Engle, Shephard, and

Sheppard (2008), and employs Monte Carlo and empirical analysis to examine its properties.

Our Monte Carlo simulations demonstrate that CL is capable of modelling conditional het-

eroskedasticity correctly using previously infeasible sample sizes. Furthermore, forecast compar-
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isons using stock-market data from S&P100 reveal that, even when the parameters of interest are

likely to vary across the panel, CL performs well against QMLE in small-T panels. Nevertheless,

as the sample size increases, information pooling loses its attractiveness, as QMLE performs well

enough in long time series, and is robust to wrongly pooling information between series.

The structure of the paper is as follows. In Section 2 we introduce the GARCH panel model

and the analysis by composite likelihood. In Section 3 we report results from various simulation

experiments. Section 4 then provides an empirical illustration of these methods, and Section 5

draws some conclusions.

2 The GARCH panel

GARCH models are frequently used in financial econometrics. Reviews of the literature include

Bollerslev, Engle, and Nelson (1994), Bauwens, Laurent, and Rombouts (2006), and Silvennoinen

and Teräsvirta (2009). The focus in this paper is on a GARCH panel. The (T ×N) GARCH panel

is a collection of N financial time series that are assumed to have GARCH dynamics and to share

a common set of parameters, θ = (α, β), while the nuisance parameters, {γi}Ni=1, are allowed to be

asset-dependent (in the rest of the paper we will use {·i} as a shorthand for {·i}Ni=1). Our focus in

on fitting a very large number of univariate GARCH models; for example, this would be needed for

the first step of fitting a Dynamic Conditional Correlation model by Engle (2002). For simplicity

of exposition we assume each time series is of length T , although in practice this is of course not

necessary.

Formally, we have a panel of asset returns with T observations for each of the NT assets.

Throughout, it is assumed that the number of series in the cross-section can potentially increase

with the number of observations and so NT has the subscript T . This includes cases where there

are more assets than time-series observations. Moreover, asset returns are assumed to display

conditional heteroskedasticity over time and cross-sectional dependence, where yit is the return on

asset i at time t, i = 1, ..., NT and t = 1, ..., T . We write,

yit = µit + εit, µit = E[yit|Ft−1], (1)

E [εit|Ft−1] = 0 and Var [yit|Ft−1] = Var [εit|Ft−1] ≡ σ2it, (2)

where Ft−1 is the historical information set at time t − 1. As the analysis focuses on conditional

variance, it is assumed that µit = 0. The GARCH panel is based on the GARCH(1,1) specification

given by

σ2it = γi(1− α− β) + αε2i,t−1 + βσ2i,t−1, where γi > 0, α, β ∈ [0, 1), α+ β < 1. (3)
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Here, α and β constitute the parameters of interest, while {γi} are treated as nuisance parameters

that are not of direct interest but, nevertheless, have to be estimated in order to obtain θ̂ =
(
α̂, β̂

)′
.

It can be shown that this specification, often called variance-tracking, implies that

E(y2it) = γi, (4)

enabling the use of method of moments (MM) to estimate γi. Here we make the ad-hoc choice

of setting σ2i0 = ⌊T−1/2⌋∑⌊T−1/2⌋
t=1 y2it. Finally {γ∗i }, α∗, and β∗ are defined as the true parameter

values for {γi}, α and β, respectively, while γ∗(NT ) ≡
(
γ∗1, ..., γ

∗
NT

)
.

This panel structure has many similarities with the autoregressive panels commonly used in

economics and statistics. Reviews of that literature include Arellano and Honore (2001) and

Diggle, Liang, and Zeger (1994). We know of only Engle and Mezrich (1996) and Bauwens and

Rombouts (2007) as previous studies on GARCH panels.

Conventionally, estimation of θ can be conducted individually for each asset, using QMLE.

However, this only utilises information available in a single time series. What is preferable in this

situation (where all assets share a common θ) is to estimate θ by pooling all information available

in the panel. This is made possible by CL.

2.1 Estimation procedure

Let f(yit|Ft−1; θ, γi) be the conditional density for yit. The joint density specification for all asset

returns at time t is given by f(y1t, ..., yNT t|Ft−1), which we do not model, noting that knowledge of

all of the NT submodels does not deliver knowledge of f(y1t, ..., yNT t|Ft−1) (the conditional copula

is entirely unspecified) unless the individual components are conditionally independent.

This model is indexed by some common parameters θ and individual effects γi. This type of

assumption appeared first in the influential work of Neyman and Scott (1948). Recent papers on

the analysis of this setup include Barndorff-Nielsen (1996), Lancaster (2000), and Sartori (2003).

In those papers, stochastic independence is assumed over i and t. Then the maximum likelihood

estimator of θ is typically inconsistent for finite T as N → ∞ and needs, when T increases,

N = o(T 1/2) for standard distributional results to hold with rate of convergence
√
NT (see Sartori

(2003)). In our time series situation we are content to allow T to be large, while the important

cross-sectional dependence implied by CL amongst the individual quasi likelihoods reduces the

rate of convergence to
√
T , not

√
NT . Under those circumstances the m-composite likelihood

estimator is consistent and has a simple limit theory however N relates to T (see Engle, Shephard,

and Sheppard (2008) for details). In our framework we have both time-series and cross-sectional

dependence in the yit|Ft−1.
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Define ψi ≡
(
θ′, γi

)′
and ψ(NT ) = (θ′, γ ′(NT ))

′. Then, the normal-density composite likelihood

function is given by

CL(ψ(NT ); y) =
1

T

T∑

t=1

{
1

NT

NT∑

i=1

log f(yit|Ft−1;ψi)

}
=

1

T
l(ψ(NT ); y), where (5)

l(ψ(NT ); y) =

T∑

t=1

lt(ψ(NT ); yt|Ft−1), and

lt(ψ(NT ); yt|Ft−1) =

NT∑

i=1

log f(yit|Ft−1;ψi).

Estimation of ψ(NT ) is based on a two-step estimation procedure. First, {γi} are estimated

using method of moments estimation based on (4) to obtain {γ̂i}. Then, these are substituted for

{γi} in (3), and θ is estimated using (5). A detailed exposition of the theory for two-step estimation

is provided by Newey and McFadden (1994). There NT is fixed so despite similarities in estimation

approach, standard results do not apply to the current case.

Formally, using (4),

mNT
(yt, γ(NT )) =




y21t − γ1
...

y2NT t − γNT


 , implying E(mNT

(yt, γ
∗
(NT ))) = 0. (6)

Equation (6) gives the population moment condition for the nuisance parameters. For θ, the score

function for the normal-density composite-likelihood function is

g(yt, θ, γ(NT )) =
∂

∂θ

1

NT

(
−1

2

NT∑

i=1

log σ2it −
1

2

NT∑

i=1

ε2it
σ2it

)
. (7)

For (6) and (7), respective sample moment conditions are given by

1

T

T∑

t=1

mNT
(yt, γ̂(NT )) = 0, and

1

T

T∑

t=1

g(yt, γ̂(NT ), θ̂) = 0, (8)

where γ̂(NT ) and θ̂ are appropriate estimators for γ∗(NT ) and θ∗ ≡ (α∗, β∗). Stacking (6) and (7),

the population and sample moment conditions are given by

E
[
g̃(yt, θ

∗, γ∗(NT ))
]
= E

[
mNT

(yt, γ
∗
(NT ))

g(yt, θ
∗, γ∗(NT ))

]
= 0, and

1

T

T∑

t=1

g̃t,T (yt, θ̂, γ̂(NT )) = 0.
([NT+2]×1)

We note that (8) is the first order condition for the simple optimization problem

θ̂ = argmax
θ

1

T

T∑

t=1

1

NT

NT∑

i=1

log f(yit|Ft−1, θ, γ̂i). (9)
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Equation (9) is based on an m-profile composite likelihood function, formed by ignoring the po-

tential dependence in the data across individuals; it is an m-profile version as we have plugged the

moment based estimator of γi into the composite likelihood. This provides a statistically ineffi-

cient estimator for θ as it ignores dependence over individuals, employs a moment based estimator

to remove γi, and the submodels for yit|Ft−1 may really be just quasi-likelihoods and not true

likelihoods.

In this setting, there are NT moment conditions coming from the nuisance parameters and two

moment conditions coming from the score vector. An important observation is that for each asset

in the panel, there is a nuisance parameter estimation.

2.2 Large sample distribution

If we ignore the estimation of the nuisance parameters, then this is just a time-series extension of

the analysis of Cox and Reid (2004). In that case, the score for the t-th observation is given by

st,N =
1

N

N∑

i=1

∂ log f (yit|Ft−1,i; θ)

∂θ
,

which is a triangular array martingale difference sequence. We assume that it obeys a central limit

theorem,

1

T

√
T

T∑

t=1

st,N
d→ N(0,I), where I = p lim

[
1

T

T∑

t=1

Var (st,N |Ft−1,N )

]
.

Here N can increase with T , but we assume that I is positive definite. The latter assumption is

not trivial; for example, it would not be expected if the data are i.i.d. in the cross section. More

formally, we assume that if N increases the cross sectional average st,N does not obey a law of large

numbers.

Based on the normal limit, it follows that

√
T
(
θ̂ − θ

)
d→ N(0,J −1IJ−1), (10)

where

J = p lim
1

T

T∑

t=1

E

[
∂st,N
∂θ′

∣∣∣Ft−1,N

]
,

assuming that J > 0. Notice that J is approximately the average of Hessians of a randomly

chosen submodel at a random time ∂2 log f(yit;ψ)/∂θ∂θ
′, and that the CLT is only for θ̂, it makes

no statement about the γi. To account for the nuisance parameters, a modified estimator for the

score covariance is required:
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zt,N =
1

N

N∑

i=1

{
∂ log f (yit|Ft−1,i;ψ)

∂θ
+

[
T∑

t=1

∂2 log f (yit|Ft−1,i;ψ)

∂θ ∂γi

]
(
y2it − γi

)
}
,

1

T

√
T

T∑

t=1

zt,N
d→ N(0, Ĩ), where Ĩ = p lim

[
1

T

T∑

t=1

Var (zt,N |Ft−1,N )

]
.

Here, zt,N is different from st,N in that it contains a correction term given by

[
T∑

t=1

∂2 log f (yit|Ft−1,i;ψ)

∂θ ∂γi

]
(
y2it − γi

)
.

The first term accounts for the influence of estimating γi on estimating θ. As such, if θ and γi are

orthogonal, then there is no such influence and the correction term disappears. The second term

can be related to estimation of γi by the method of moments. If the data provide an accurate

estimate of γi, then this term is small, making the correction term small as well. The correction

term may also be small, even when the data yield a very inaccurate estimate of γi, if γi and θ are

nearly orthogonal.

An important point of (10) is that the rate of convergence of the estimator is not improved

by having a cross-section. Instead the cross-section influences the size of I, but its impact is

limited. For a more detailed exposition of the related large sample theory, see Engle, Shephard,

and Sheppard (2008).

In practice, to make inference we need estimators for Ĩ and J . An estimator for J can be

obtained by evaluating the Hessian at sample observations. Ĩ on the other hand requires the use

of a HAC estimator. Examples of such estimators are provided by Newey and West (1987) and

Andrews (1991).

3 Simulation analysis

3.1 The setting

The asset panel was generated using the specification described in (1)-(3). For most stock returns

annual volatility is in the range 15% and 60%, so we took γi
iid∼ U [0.02, 0.05]. This is suggested

by σD =
√
σA/252, where σD and σA are daily and annual volatility, respectively. For an annual

volatility of 15%, daily volatility according to this method is 0.0244, while for 60% the daily volatility

is 0.0488. For each series the γi were used as the initial values for the conditional variances, hi,0.

Cross-sectional dependence was generated by a single-factor model where

εit = ρiut +
√

1− ρ2i τ it, τ it, ut
iid∼ N(0, 1), (11)
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implying

E (εit|ρi) = 0, Var

[(
εit

εjt

)∣∣∣∣∣ ρi, ρj

]
=

[
1 ρiρj

ρiρj 1

]
∀ i 6= j and ∀t,

and Cov(εit, εjs|ρi, ρj) = 0 for all t 6= s and all i, j.

The choice of the ρi in a way that ensures neither perfect correlation nor independence can be

done in various ways. A restrictive option is to assume that the ρi are equal. Engle, Shephard, and

Sheppard (2008) considered a truncated normal distribution to generate the ρi, where truncation

occurs at 0.1 and 0.9. Our study used ρi ∼ U [0.5, 0.9] for all i, ensuring that the lowest and highest

correlation between two assets were 0.25 and 0.81, respectively. Lastly, α and β were chosen from

three alternatives that cover the range of parameter values found in asset data:

[
α

β

]
∈
{
θ(1), θ(2), θ(3)

}
=

{[
0.02

0.97

]
,

[
0.05

0.93

]
,

[
0.10

0.80

]}
. (12)

3.2 The results

All results are based on 2,500 replications. Average biases of estimates and their Monte Carlo

standard deviations (MCSD) are amongst obvious criteria for comparison. To investigate whether

the theoretical large sample properties of CL hold in finite samples, asymptotic standard deviation

(ASD) and root mean squared error (RMSE) statistics are also provided:

MCSD : σ̄κ̂ =

√
1

Z

∑Z

z=1

(
κ̂z −

1

Z

∑Z

z=1
κ̂z

)2

,

ASD : σ̂κ̂ =
1

Z

√∑Z

z=1
σ̂2κ̂,z,

RMSE : Rκ̂ =

√
1

Z

∑Z

z=1
(κ̂z − κ)2,

where Z is the number of replications, α̂z and β̂z are the estimates for replication z, z = 1, ..., Z,

and κ̂z ∈{α̂z, β̂z}. σ̂2κ̂,z is the estimated asymptotic variance for κ̂z. ASD serves as an average

measure of the asymptotic standard deviation across all replications. In addition, coverage rates

of sample confidence interval statistics (CI) are provided as a further measure of the finite sample

performance of the asymptotic distribution for the CL based upon σ̂2κ̂,z. All results are calculated

for 95% confidence intervals.

Tables 1 and 2 present the results for the three parameter values in (12), where T = 2, 000.

Tables 3 and 4 look at the implications of varying T where T ∈ {100, 250, 500, 1000, 2000} (this

second analysis is conducted for θ(2) only, due to space restrictions). In all cases, results for NT = 1

are also provided, which corresponds to using QMLE instead of CL.

Simulation results presented in Table 1 show that when T = 2, 000, CL generally leads to
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θ = (0.02, 0.97) (0.05, 0.93) (0.10, 0.80) (0.02, 0.97) (0.05, 0.93) (0.10, 0.80)

Bias MCSD
NT α̂ β̂ α̂ β̂ α̂ β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂
1 3.3% -.81% .15% -.49% .16% -1.2% .007 .019 .010 .017 .020 .050

10 .42% -.29% -.08% -.21% -.40% -.29% .002 .005 .004 .006 .008 .017

50 .17% -.26% -.12% -.19% -.32% -.28% .002 .003 .003 .005 .006 .013

100 .08% -.25% -.19% -.18% -.29% -.27% .002 .003 .003 .004 .005 .012

Table 1: Monte Carlo simulation results for fixed T using the three parameter sets given in (12): average

biases for α̂ and β̂ in percentages and Monte Carlo standard deviations (σ̄α̂ and σ̄
β̂
). T = 2, 000 in all cases,

while NT gives the number of series in the cross-section. Based on 2, 500 replications.

NT σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ Rα̂ Rβ̂ CIα̂ CI β̂
α = 0.02 β = 0.97

1 .007 .019 .030 .107 .007 .021 .922 .928

10 .002 .005 .002 .005 .002 .005 .936 .948

50 .002 .003 .002 .003 .002 .004 .938 .937

100 .002 .003 .002 .003 .002 .004 .943 .941

α = 0.05 β = 0.93

1 .010 .017 1.71 12.9 .010 .018 .933 .945

10 .004 .006 .004 .006 .004 .007 .938 .952

50 .003 .005 .003 .005 .003 .005 .941 .937

100 .003 .004 .003 .004 .003 .005 .946 .943

α = 0.10 β = 0.80

1 .020 .050 .020 .052 .020 .051 .933 .924

10 .008 .017 .008 .017 .008 .018 .954 .944

50 .006 .013 .006 .013 .006 .013 .968 .954

100 .005 .012 .006 .012 .005 .012 .970 .954

Table 2: Monte Carlo simulation results: Monte Carlo standard deviation (σ̄α̂ and σ̄
β̂
), asymptotic standard

deviation (σ̂α̂ and σ̂
β̂
), root mean squared error (Rα̂ and R

β̂
) and sample confidence interval (CI) statistics.

T = 2, 000 in all cases, while NT gives the number of series in the cross-section. Based on 2, 500 replications.
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NT= 1 (QMLE) NT= 10 NT= 50 NT= 100

Bias
T α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂

100 1.41% -15.9% -23.6% -15.2% -26.7% -16.2% -27.2% -16.5%

250 11.3% -10.6% -1.38% -3.50% -3.46% -2.71% -3.61% -2.61%

500 5.34% -4.57% -.157% -1.15% -.650% -.976% -.695% -.955%

1,000 2.37% -1.53% -.004% -.484% -.221% -.406% -.306% -.393%

2,000 .534% -.561% -.076% -.225% -.050% -.185% -.082% -.181%

MCSD
T σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂ σ̄α̂ σ̄β̂
100 .069 .227 .030 .169 .023 .163 .022 .160

250 .043 .186 .014 .052 .010 .028 .010 .021

500 .026 .109 .009 .016 .006 .011 .006 .010

1,000 .016 .042 .006 .010 .004 .007 .004 .007

2,000 .010 .019 .004 .006 .003 .004 .003 .004

Table 3: Monte Carlo simulation results for θ = (0.05, 0.93): average biases for α̂ and β̂ in percentages
and Monte Carlo standard deviations (σ̄α̂ and σ̄

β̂
). T and NT give the number of observations in each time

series and the number of series in the cross-section, respectively. Based on 2, 500 replications.

low average bias across all parameter values, with the highest average bias being .42% for α̂ and

−.29% for β̂. In contrast, the average bias due to QMLE reaches levels as high as 3.3% for α̂

and −1.2% for β̂. An interesting observation is that, when β̂ is concerned, there is a general

tendency for the average bias to initially decrease and then plateau as NT increases. For example,

for θ(1) = (0.02, 0.97), the change in bias when NT increases from 50 to 100 is .01%. Moreover,

taking NT = 1 as a reference, when the panel size increases to NT = 10 the change in bias is .52%,

while when the size is increased to NT = 100, bias is reduced by .56%. This shows that the speed

of decline falls with NT . These results also suggest that there are substantial gains in shifting

from time series (QMLE) to a panel (CL) structure, in terms of both the average bias and sample

standard deviation.

Sample standard deviations (MCSD) are also generally low and decrease with NT . This is not

surprising as an increase in NT implies that there is more information to use. Moreover, the decrease

in MCSDs is not large enough to imply that the speed of convergence in finite samples is
√
TNT

as opposed to
√
T . Similar to the previous discussion for average bias, sample standard deviations

exhibit a pattern of convergence to some non-zero limit. Therefore, increasing NT beyond 100 does

not lead to substantial decreases in MCSD. These results are all in accordance with the asymptotic

theory in Engle, Shephard, and Sheppard (2008).

Table 2 presents further results for the same simulation exercise. The MCSD and ASD statistics

for both α̂ and β̂ are generally very close to each other, implying that the simulation results are in

line with the relevant asymptotic theory. The RMSE statistics confirm the earlier observation of a
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T σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ Rα̂ Rβ̂ CI α̂ CI β̂ σ̄α̂ σ̄β̂ σ̂α̂ σ̂β̂ Rα̂ Rβ̂ CIα̂ CI β̂
NT= 1 (QMLE) NT= 10

100 .069 .227 .111 2.25 .069 .272 .551 .863 .030 .169 .072 1.67 .032 .220 .791 .832

250 .043 .186 .187 7.75 .043 .210 .842 .866 .014 .052 .017 .129 .014 .061 .911 .920

500 .026 .109 .028 .143 .026 .117 .889 .905 .009 .016 .009 .018 .009 .019 .931 .937

1,000 .016 .042 .018 .057 .016 .044 .909 .916 .006 .010 .006 .010 .006 .011 .934 .945

2,000 .010 .019 .011 .021 .010 .019 .923 .932 .004 .006 .004 .006 .004 .007 .940 .948

NT= 50 NT= 100

100 .023 .163 .283 5.15 .026 .222 .786 .759 .022 .160 .078 5.81 .026 .222 .769 .718

250 .010 .028 .010 .026 .010 .037 .912 .897 .010 .021 .010 .026 .010 .032 .908 .877

500 .006 .011 .006 .011 .006 .014 .930 .926 .006 .010 .006 .011 .006 .014 .934 .926

1,000 .004 .007 .004 .007 .004 .008 .933 .936 .004 .007 .004 .007 .004 .007 .932 .938

2,000 .003 .004 .003 .005 .003 .005 .942 .952 .003 .004 .003 .004 .003 .004 .947 .950

Table 4: Monte Carlo simulation results for θ = (0.05, 0.93): Monte Carlo standard deviation (σ̄α̂ and
σ̄
β̂
), asymptotic standard deviation (σ̂α̂ and σ̂

β̂
), root mean squared error (RMSE) and sample confidence

interval (CI) statistics. T and NT give the number of observations in each time series and the number of
series in the cross-section, respectively. Based on 2, 500 replications.

non-vanishing bias as NT → ∞, since in some cases there is a slight difference between MCSD and

RMSE that suggests some very small bias. As for QMLE, although MCSD and RMSE values are

close to each other, ASD is very high for θ(1) and, especially, θ(2). This is another point in favour

of using the panel structure instead of focusing on the series individually. Also, CI statistics are

very satisfactory, ranging between 92% and 97% across all cases.

Now, we turn to the implications of varying both the number of assets and the observations per

asset by using NT ∈ {1, 10, 50, 100} and T ∈ {100, 250, 500, 1000, 2000}. Table 3 shows that average

bias decreases with T . This is not unanticipated as fitted GARCH usually models the conditional

heteroskedasticity dynamics much better when longer time series are used. Unsurprisingly, both

σ̄α and σ̄β decrease with T . Clearly, having a larger number of observations for each series delivers

less biased and more efficient estimators.

Table 4 reveals that CL performs well when there are around at least 500 observations in the

time series. However, in the remaining cases the large sample theory gives poor finite sample results,

as reflected in the discrepancy between MCSD and ASD. The sample confidence interval statistics

agree with these results. As T decreases, sample confidence intervals move further away from 95%

and become more conservative. Similarly, the discrepancy between the RMSE and MCSD statistics,

especially for β̂, increases as T decreases, pointing to a negative correlation between average bias

and sample size.

Comparing CL to QMLE, QMLE’s relative performance is very poor, especially when average

bias is concerned (except when T = 100, which is due to the optimisation routine’s sensitivity

to the starting values of the algorithm). Clearly, CL is preferable to QMLE, in the hypothetical
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situation that all series share a common set of parameters of interest. The general message of the

simulation results so far is that CL performs well when T ≥ 500. The reason for CL’s biases in

small-T panels is discussed next.

3.3 Nuisance parameters and estimation error

As stressed previously, CL pools all information available in the panel to form a single likelihood

function. Therefore, one would intuitively expect CL to be successful even when T is small but

there are indications of significant bias when T < 250. Is this caused by the estimation of the γi

for each model?

Figure 1 presents sampling distributions of the estimators of θ using (i) the method of moments

estimator for the nuisance parameter (CL1), and (ii) the true value of the nuisance parameter (CL2)

which corresponds to infeasible estimation of the nuisance parameter. The sample distribution

graphs reveal why CL performs worse when T is very small: sample distributions are not centered

around α and β, and there is high dispersion. Some improvement can be observed as T increases

to 250. However, β̂ is prone to exhibit some mild bias even when T is high. In accordance with

observations in the previous simulation study, while average bias decreases with T , an increase in

NT (for a given T ) leads to higher precision. However, here, high precision is not always a desirable

property. In a slightly counter-intuitive way, although higher NT increases estimator precision, it

also make a biased estimator more precise, causing more harm than good. As such, having a larger

number of assets is very useful when T is very large, ensuring that the estimator is both unbiased

and more efficient in the sense of having a smaller asymptotic standard deviation. It must be

noted that increasing NT beyond a certain number of assets does not lead to any improvement in

efficiency.

Looking at the sample distributions of estimators without nuisance parameter estimation (CL2),

it is encouraging that for both α̂ and β̂ the peak of the sample distributions is always either on or

very close to the real parameter value, even when T = 100. Similar to the previous simulations,

larger T decreases bias while larger NT leads to higher precision. Clearly, nuisance parameter

estimation undermines the statistical properties of the GARCH panel model greatly when T is

small. As suggested by the Associate Editor, using empirical Bayes methods in order to improve the

estimation of these parameters could be beneficial, given the simulation results (see, for example,

Lindsay (1985) and Liang and Tsou (1992)). Dealing with the incidental parameter problem is

already the subject of another ongoing project and therefore, we do not focus on this issue further

in this study.

It is also interesting that when QMLE is used (NT = 1), even when the true nuisance parameter
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is known, the estimators still perform poorly. While nuisance parameter estimation leads to a

significant bias, using true nuisance parameter causes very high dispersion. However, remembering

that the real issue with QMLE is that T is too small to adequately model conditional volatility, it

is obvious that knowledge of the true value of the nuisance parameter does not help.

4 Empirical analysis

In this section, in addition to CL and QMLE, we consider the MacGyver (MG) method introduced

by Engle (2009). This is another information pooling method based on “blending” already available

estimates of a parameter to obtain a new estimate of that parameter.

Let {θ̂k}Kk=1 be K different estimates of θ. These may be obtained by using different methods,

models, or data sets. For the case at hand, NT estimates of θ can be obtained by employing

QMLE for each asset in the panel individually. These estimates are then combined using a “blend

function”, b (·), to obtain a final estimate of θ, θ̂MG = b
(
{θ̂k}Kk=1

)
. Engle (2009) suggests that

three obvious blend functions are the mean, median, and the mean of a trimmed set when the

highest and lowest 5% of the estimates are eliminated. The latter two blending functions serve the

purpose of discarding outliers that could otherwise introduce bias.

For the GARCH panel, θ̂i is estimated using two-step estimation: in the first step, γ̂i is obtained

in the same way as for CL; in the second step, θ̂i is estimated using

θ̂i = argmax
θ∈Θ

1

T

T∑

t=1

log f(yit|Ft−1; θ, γ̂i), i = 1, ..., NT .

It must be noted that there are several practical issues related to this method. First, when the

sample size is not large enough, optimisation may fail and simply yield the initial values used for

optimisation as the parameter estimates (the optimisation procedure used for this study starts at

pre-specified starting values and searches for an optimum. If optimisation fails to find an optimum,

then the starting values are given as the parameter estimates). Following Engle (2009), such

cases are discarded and not used in the blend function. Furthermore, when using the GARCH

specification, if α̂ is equal to zero, then β̂ is not identified and has no interpretation, no matter

what its value. Consequently, this analysis also ignores sets of estimates where α̂ is less than 0.0025.

These issues do not occur rarely. In a simulation analysis not presented here, for 2,500 replications

of a GARCH process with 100 observations in each replication, in more than 1,400 replications

estimators failed to converge while around 100 replications produced α̂ = 0. This particular choice

of the cut-off value and the elimination of non-converging cases reflect the ad-hoc nature of MG.

Nevertheless, the aim of MG is not to have a set of very good estimates, but rather to find a blend
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function that yields a good estimate out of a large pool of estimates.

Considering that both CL and MG are based on “pooling” information, an obvious comparison

of interest is that of CL against MG. MG can be considered as a step between CL and QMLE:

similar to CL, it is based on pooling information, while estimation essentially employs QMLE and

not CL.

Another intriguing analysis is the comparison of the information pooling methods to QMLE,

as the assumption that all assets share a common set of parameters of interest is not necessary

for QMLE. CL and MG, on the other hand, crucially rely on this assumption that is likely to be

violated. As far as empirical performance is concerned, what is also relevant is whether the gains

from using CL and MG are worth making this restrictive assumption, even when there may be no

apparent reason for it to hold.

Several points have to be mentioned. First of all, neither information pooling method is likely

to explain the data perfectly, even in large-T panels. To start with, there is no guarantee that

some or all of the data follows a GARCH process, although this model has been found to be very

successful in practice. Moreover, the assumption of a common set of parameters for all assets is

not likely to hold. Be that as it may, the question remains: despite these issues, can the CL and

MG methods attain better forecasting performance through their data-pooling mechanism?

In light of these points, the questions of interest are whether pooling information in an asset

panel can improve forecasting performance in samples of any size, and whether CL can have an

advantage over the other methods, especially in small-T samples where QMLE is expected to per-

form poorly. The analysis is conducted using stock-market data from S&P100. A recent procedure

due to Giacomini and White (2006) that allows comparison of different methods (such as the CL

and MG methods), as opposed to different models (such as the GARCH and TARCH models), is

used to test equal predictive ability and choose between methods.

4.1 Methodology

In the analysis, two competing τ -period ahead forecasts obtained at time t, Ŷ1,t+τ and Ŷ2,t+τ ,

for a variable of interest, Yt+τ , are under scrutiny. Accuracy of forecasts are measured using loss

functions. “Loss”, in the forecast comparison sense, occurs due to the distance between the forecast

and the true value of the variable of interest. Formally, the loss due to Ŷt+τ is defined as

Lt+τ

(
Yt+τ , Ŷt+τ

)
. (13)

Examples of loss functions used in the literature are many. See Patton (2008) for a more detailed

study of implications of using different loss functions. A prominent example, used here, is the loss
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function

QLIKE : Lt+τ (Yt+τ , Ŷt+τ ) = log Ŷt+τ +
Yt+τ

Ŷt+τ

.

A suitable testing framework is due to Giacomini and White (2006) (GW). Unlike the widely

used Diebold-Mariano-West (DMW) framework due to Diebold and Mariano (1995) and West

(1996), the GW test allows for the comparison of two different methods as opposed to two different

models. The Null Hypothesis is

H0 : E
[
Lt+τ (Yt+τ , ft(β̂1t))− Lt+τ (Yt+τ , gt(β̂2t))|Gt

]
= 0, (14)

where Gt is an information set at time t and ft(·) and gt(·) are two (not necessarily different) fore-

casting models. β̂1t and β̂2t are estimates of parameters of interest obtained by using two different

methods. As evident in (14), the GW test allows for a conditional, as well as an unconditional

approach. The latter compares the average performance of two forecasting methods while the for-

mer analyses whether past information can be used to predict which method will provide a better

forecast for a particular date.

An important feature of volatility is that it is a latent variable and is never observed, even

ex-post. Therefore, a proxy should be used for forecast comparison. In this study the squared

return, y2it, is used as proxy, which is a common choice. It must however be noted that there is

now a growing literature suggesting that squared returns may lead to a wrong ranking of forecasts.

Instead, realised volatility is recommended as a better proxy. Very briefly, realised volatility is the

sum of squared high-frequency intra-daily returns. It was formalised from an econometric viewpoint

by Andersen, Bollerslev, Diebold, and Labys (2001) and Barndorff-Nielsen and Shephard (2002).

See Andersen and Benzoni (2009) for a recent survey. This is important for the choice of the loss

function. Hansen and Lunde (2006) show that the use of noisy proxies such as y2it may lead to

inconsistent ranking of volatility models, whereby the empirical ranking may not be the same as

the true ranking. Patton (2008) extends this analysis and focuses on loss functions that are robust

to the choice of the volatility proxy, in the sense that the empirical ranking implied by those loss

functions are the same independent of which proxy is used. He provides a family of homogeneous

and robust loss functions that contains QLIKE, as well. Furthermore, Patton and Sheppard (2009)

provide a Monte Carlo analysis to compare the power of different loss functions from this family

under the DMW framework using realised volatility as the proxy. Their results indicate that the

QLIKE function has the best power performance. Motivated by these results, we employ QLIKE

only, due to space restrictions.
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4.2 Empirical results

The empirical analysis is based on the daily returns for 94 stocks from S&P100 for the period

between 1 April 2000 to 12 January 2008. Data for six firms has been discarded as the stocks

for these firms were not traded in part of the period considered in the analysis. These firms are

Covidien, Google, Kraft Foods, Mastercard, NYSE Euronext and Philip Morris International. Data

were obtained from DataStream. The analysis considers three forecast horizons: one day, five days,

and ten days, where the latter two correspond to one and two working weeks, respectively. To cover

a variety of cases, combinations of different in- and out-of-sample sizes are considered that span a

wide range of possibilities (in-sample corresponds to the part of data which is used for estimation

of the parameters while the out-of-sample is the portion of data that is being forecast; here n and

m, respectively). Seven different comparisons are analysed. Three of them (I, II and III) compare

CL to MG, while the remaining ones (IV, V, VI and VII) compare the two pooling methods to

QMLE.

A “test function” is required for the conditional GW test. We employ a test function which

consists of a constant and the previous period’s loss-difference, namely, ht = (1,∆Lm,t−1+τ )
′ (this

is the same test function used by Giacomini and White (2006). It must be mentioned that the

choice of a test function could perhaps be a separate research topic as Giacomini and White (2006)

explicitly mention both the importance of choosing an appropriate test function and the possible

issues due to choosing an irrelevant one). Possible time-independent difference in the predictive

abilities of the two methods at any point in time is reflected by the constant. Past comparisons

of methods can also give an idea about their relative future performances since a method that has

been superior in the past is more likely to be so in the future, as well. This is reflected by the past

loss difference.

Lastly, all tests are conducted on an asset-by-asset basis; that is, comparison of predictive ability

is conducted for each asset individually, using estimators obtained by the three methods. The test

results are presented in Tables 5 and 6. It is an interesting idea to integrate the GW test into

a pooling framework, where a single test for the whole panel is conducted; this is left for future

research.

Both conditional and unconditional approaches exhibit similar patterns. An immediate obser-

vation is that CL performs distinctively better than both MG and QMLE when the in-sample size

is very small (m ≤ 250). Moreover, MG is also superior to QMLE in most of the cases when

m ≤ 250. This has two implications. First, in small-T panels where QMLE is expected to perform

poorly, information pooling methods deliver better forecasting performance, suggesting that they

provide better estimates in such cases. The second and more interesting implication is that CL
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outperforms MG, again, in small-T panels. This can be explained by the fact that CL uses all

available information to obtain a single estimate while MG use information in a piece-wise fashion.

Thus, even though MG blends all estimates, it is nevertheless based on individual estimates that

are obtained by using limited information.

In larger samples, CL only rarely outperforms other methods. This is not surprising: when T

is large, QMLE models volatility adequately; CL, on the other hand, is based on the restrictive

assumption that parameters of interest are common across series. Therefore, as T gets larger, it

becomes harder for CL to outperform QMLE. The performance of MG against QMLE, compared

to that of CL against QMLE, is also in support of this view since MG performs better than CL

against QMLE when there are sufficiently many observations (m ≥ 1, 000).

It must be noted that here, the assumption that all series share a common θ is almost certainly

violated. Therefore, as QMLE starts working properly with increasing number of observations, it

outperforms the information pooling methods. Moreover, in practice, estimation is always prob-

lematic, putting QMLE at a higher disadvantage when samples are not sufficiently large, making

it easier for MG and CL to outperform QMLE. This also explains why, in smaller samples, CL is

superior to MG, which is essentially based on QMLE.

Comparing the CL and QMLE methods at m ≤ 250, both the number of cases where equal

predictive ability is rejected and the ratio of rejections in favour of CL increase with the out-

of-sample size, n. This supports the validity of the test results, as Giacomini and White (2006)

mention that, based on their analysis, their test has better size properties as n increases. It must

be noted that Giacomini and White (2006) use different loss functions and, of course, focus on an

entirely different case. However, this result is still not surprising since the asymptotic theory is

more relevant as n→ ∞.

Our analysis of 1-week and 2-week ahead forecasts, available upon request, reveals that in all

seven comparisons the number of rejections of equal predictive ability decreases. This is more pro-

nounced for the comparison between CL and MG, where in some cases only a handful of rejections

remain. This is most likely due to the increase in volatility as the forecast horizon increases. Never-

theless, the pattern of preference between two methods does not change much and CL still performs

better when both m is very low and n is very high. This issue is less severe for the comparison of

CL and MG to QMLE, and the GW test is still able to distinguish the forecasting performances of

different methods.

To summarise, information pooling methods perform well in small-T panels while they fail to

outperform QMLE in large-T panels. Within the information pooling methods, as expected, CL

delivers satisfactory performance against MG in smaller samples, despite the incidental parameter
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problem.

Empirical results support the view that assuming a common set of parameters is the cost of

using the information pooling methods. However, the analysis also strongly suggests that when the

sample consists of a small number of observations, these costs are outweighed by the advantages of

the information pooling mechanism and the problems faced by QMLE. On the other hand, when

the sample is sufficiently large for QMLE to work well, empirical results confirm that the cost of

assuming common parameters of interest is high.

5 Conclusion

This paper studied the theoretical and empirical properties of the composite likelihood (CL) method

on the special case of GARCH panels. The MacGyver (MG) method has also been included in the

empirical analysis as it is the only known alternative information pooling method.

Simulation and empirical analyses reveal that using the panel structure and CL instead of

employing QMLE on a single series delivers better results. Both methods suffer from the incidental

parameter problem when T is small, but the CL is much more accurate. These observations are

very encouraging as they imply that CL can successfully estimate conditional volatility using panels

where T is as low as 250. Furthermore, forecast comparison analysis demonstrates that even when

the assets are likely to be characterised by different parameter sets, both pooling methods perform

well against QMLE in small-T panels.
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Figure 1: Sample distribution graphs for α̂ (left) and β̂. α = 0.05, β = 0.93, based on 2,500 replications.
CL1 gives the sample distribution for the case with nuisance parameter estimation, whereas CL2 is the
sample distribution for the case where nuisance parameter estimation is by-passed. Values of α̂ and β̂ are
given in the horizontal axis, while respective frequencies are given in the vertical axis. Vertical lines are
drawn at the true value of each parameter.
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I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 60 3.33 63 0.00 61 0.00 50 10.00 44 68.18 44 38.64 42 52.38

2,000 1,000 59 25.42 42 16.67 57 15.79 51 21.57 47 46.81 53 33.96 44 47.73

1,000 500 44 11.36 36 41.67 43 9.30 30 60.00 30 83.33 35 62.86 29 82.76

2,000 250 18 94.44 35 97.14 19 94.74 78 100.00 74 100.00 75 98.67 75 98.67

1,000 250 20 90.00 41 92.68 31 96.77 50 100.00 42 97.62 42 97.62 42 97.62

500 250 8 100.00 46 100.00 18 100.00 36 94.44 38 92.11 30 80.00 38 89.47

1,000 100 25 96.00 31 100.00 22 95.45 49 100.00 46 100.00 49 97.96 50 96.00

500 100 29 100.00 42 100.00 37 100.00 45 97.78 38 100.00 33 100.00 35 100.00

250 100 9 77.78 14 64.29 12 75.00 22 86.36 28 67.86 20 80.00 25 68.00

Table 5: Conditional test results for 1-Step forecasts. T is the total number of observations while m gives the in-sample size. Mn, Md, and Tr stand for
‘mean’, ‘median’, and ‘trimmed’, respectively. The total number of assets is 94. For each comparison, ‘Rej’ gives the number of assets for which the null
hypothesis of equal predictive ability is rejected. % gives the percentage of the cases where the first method is preferred to the second method. For example,
in comparison III when T=2000 and m=250, equal predictive ability is rejected in 19 out of 94 comparisons and 94.74% of these rejections are in favour of
the first method, CL (or, equivalently, 5.26% of the rejections are in favour of the second method, MG-Tr).

I II III IV V VI VII

CL vs MG-Mn CL vs MG-Md CL vs MG-Tr CL vs QMLE Mn vs QMLE Md vs QMLE Tr vs QMLE

T m Rej % Rej % Rej % Rej % Rej % Rej % Rej %

2,000 1,500 53 0.00 56 0.00 56 0.00 44 4.55 40 67.50 34 35.29 36 50.00

2,000 1,000 47 17.02 27 18.52 49 12.24 39 12.82 41 51.22 50 34.00 43 48.84

1,000 500 40 7.50 21 38.10 38 5.26 27 55.56 29 86.21 32 62.50 30 80.00

2,000 250 14 85.71 31 100.00 18 88.89 73 100.00 67 100.00 73 100.00 69 100.00

1,000 250 19 94.74 46 97.83 26 96.15 50 100.00 39 100.00 38 100.00 40 100.00

500 250 10 90.00 50 100.00 18 100.00 31 100.00 34 94.12 25 92.00 34 91.18

1,000 100 29 96.55 29 100.00 26 96.15 48 100.00 41 100.00 45 100.00 45 100.00

500 100 29 100.00 40 100.00 32 100.00 43 100.00 38 100.00 32 100.00 37 100.00

250 100 10 70.00 16 68.75 10 70.00 23 78.26 27 74.07 20 80.00 26 76.92

Table 6: Unconditional test results for 1-Step forecasts. See Table 5 for explanations.
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