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Consider an individual making a portfolio
choice at date T involving two assets. The
(gross) returns at t per unit invested at t ! 1 are
y1t and y2t. The individual has observed these
returns from t " 0 to t " T. He has also
observed the values of the variables y3t, ... ,
yKt, which are thought to be relevant in fore-
casting future returns. Thus, the information
available to him when he makes his portfolio
choice is z # {( y1t, ... , yKt)}t"0

T . He invests
one unit, divided between an amount a in asset
1 and an amount 1 ! a in asset 2, and he then
holds on to the portfolio until date T $ H. Let
w " {( y1t, y2t)}t"T$1

T$H and let h(w, a) denote
the value of the portfolio at t " T $ H:

h%w, a& ! a !
t" T$ 1

T$H

y1t " %1 # a& !
t" T$ 1

T$H

y2t .

How should a be chosen?
Itzhak Gilboa and David Schmeidler (1989)

develop a set of axioms for decision-making
under uncertainty. The axioms imply a utility
function and a set of distributions such that the
preference ordering is obtained by calculating
expected utility with respect to each distribution
in the set, and then taking the minimum of
expected utility over the set. Chamberlain
(2000) applies this framework to obtain a pref-
erence ordering over decision rules, which map
the observation z into a choice a. The decision-
maker’s problem is to choose a decision rule
that maximizes the minimum expected utility.
In the portfolio-choice problem, this gives

max
d! D

min
Q! S

" u%h%w, d%z&&& dQ%z, w&

where d is a decision rule, D is the set of
feasible decision rules, and u is the utility func-
tion. The value ( z, w) is regarded as the real-
ization of a random variable (Z, W) with
distribution Q, and S is the set of distributions.
Let L(w, a) denote the loss function, and

define the risk function as expected loss from
using decision rule d when Q is the joint dis-
tribution of the observation Z and the utility-
relevant variable W:

(1) r%Q, d& ! " L%w, d%z&& dQ%z, w&.

In the portfolio-choice problem, loss would be
the negative of utility: L(w, a) " !u(h(w,
a)). Then, the decision-maker’s problem is

min
d! D

max
Q! S

r%Q, d&.

The use of risk, and hence a minimax criterion,
is traditional, dating back to Abraham Wald
(1950).
Chamberlain (2000) develops an algorithm

for computing a minimax decision rule. Section
I describes this algorithm and Section II applies
it to a stationary autoregression.

I. Algorithm

I shall consider a finite set of distributions,
{Q1, ... , QJ}, and S is the convex hull:

S"# $
j" 1

J

$jQj : 0%$j%1, $
j" 1

J

$j"1% .
Consider a zero-sum game in which the deci-
sion-maker chooses d ! D, nature chooses
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Q ! S, and the payoff to the decision-maker
is !r(Q, d). The minimax (or upper) value of
the game is V! " infd! D supQ! Sr(Q, d). A
minimax decision rule d0 satisfies supQ! Sr(Q,
d0) " V! . The maxmin (or lower) value of the
game is V " supQ! S infd! Dr(Q, d). A least-
favorable distribution Q0 satisfies infd! Dr(Q0,
d) " V. A decision rule dQ is Bayes with
respect to the distribution Q if r(Q, dQ) "
infd! Dr(Q, d).
A decision rule d generates a vector of risk

values [r(Q1, d), ... , r(QJ, d)]. The risk set
consists of all such vectors as d varies over D:

Sr ! '%r%Q1 , d&, ... , r%QJ , d&& ! RJ : d!D(.

One can regard the game as being played as
follows: the decision-maker chooses a point s "
(s1, ... , sJ) ! Sr. Independently of his choice,
nature chooses a coordinate j with probability
$j. David Blackwell and M. A. Girshick (1954
Ch. 2.4) refer to such games, in which nature
has a finite number of pure strategies, as “S-
games.” The minimax theorem for S-games
states that, if the risk set is bounded, then

inf
d! D

sup
Q! S

r%Q, d& ! sup
Q! S

inf
d! D

r%Q, d&

and there exists a least-favorable distribution
Q0. If in addition the risk set is convex and
closed, then there exists a minimax decision
rule d0, and it is Bayes with respect to Q0. I
shall assume that the risk set is convex, closed,
and bounded (see Blackwell and Girshick, 1954
[theorem 2.4.2]; Thomas Ferguson, 1967 [the-
orem 1, p. 82]). The mixed extension of the
game allows the decision-maker to use mixed
strategies, in which case the risk set is automat-
ically convex since it is the convex hull of Sr
(see Blackwell and Girshick, 1954 [theorem
2.4.1]).
Let )J denote the ( J ! 1)-dimensional sim-

plex,

)J ! '$ ! RJ : $j&0, $
j" 1

J

$j"1(

and let Q$ denote the mixture distribution,

Q$ ! $
j" 1

J

$ jQj .

As $ varies over )J, Q$ varies over S. Note that
the risk function is affine in its first argument:
r(Q$, d) " ¥j"1

J $jr(Qj , d). Let d$ denote the
Bayes rule with respect to Q$. Consider the
minimized risk:

'%$& & min
d! D

r%Q$, d& ! r%Q$, d$&.

Since r(Q$, d) is an affine function of $ for
each d, it follows that ' is a concave function.
Therefore, maximizing ' over the convex set )J
is a concave program:

$0 ! arg max$!)J '%$&.

The least favorable distribution is Q0 " ¥ j" 1
J

$0jQj. The concave program can be solved
using a sequential quadratic programming al-
gorithm, as in Robert Wilson (1963). (The
routine used in the application in Section II
is nag_nlp_sol, from the NAG Fortran 90
library.)
The minimax value r(Q0, d0) is with respect

to the set S of distributions. If one considers a
larger set of distributions S* " S, then

V! ! inf
d! D

sup
Q! S

r%Q, d&

% inf
d! D

sup
Q! S*

r%Q, d& ! V! *.

Thus, the minimax value relative to S provides
a lower bound for the minimax value relative to
the larger set S*.
Now fix a decision rule d, and construct an

upper bound:

V! * % sup
Q! S*

r%Q, d&.

This upper bound is useful in that it may be
feasible to maximize r(Q, d) over Q ! S* for
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a fixed d, even though it is not feasible to
compute the minimax value for S*.

II. Application: Stationary Autoregression

I shall work with the following parametric
family: Y " (Y0, ... , YT$H) + {P( : ( ! ,},
with

Y0 ' N%0, 1&

Yt(Y0 ! y0 , ... , Yt! 1 ! yt! 1

' N%(yt! 1 , 1!(2&

t ! 1, ... , T " H.

The parameter space , will be a subset of the
open interval {( ! R : !1 - ( - 1}. The
marginal distribution for Yt is stationary: Yt +
N(0, 1) for 0 % t % T $ H. The observation
is the realized value of Z " (Y0, ... , YT).
I shall consider estimating a power of ( with

squared-error loss, so that the risk function is

r1 %(, d& ! E( .(H # d%Z&/2.

This corresponds to L(w, a) " (wH ! a)2 in
(1), with w " (. (To simplify notation, I shall
use r((, d) interchangeably with r(P(, d).) I
shall also be interested in forecasting YT$H
using squared-error loss, with risk function

r2 %(, d& ! E( .YT$H # d%Z&/2.

This corresponds to L(w, a) " (w ! a)2, with
w " yT$H. Note that

YT$H(Z ! z ' N%(HyT , 1!(2H&.

Hence,

r2 %(, d& ! 1 # (2H " E( .(HYT # d%Z&/2.

I shall let the set D of decision rules be unre-
stricted.

Let Y*t " ) $ *Yt, so that the stationary
distribution of Y*t is a general normal distribu-
tion with mean ) and variance *2, where ) and
* 0 0 are known: Y*t + N(), *2). Consider
the risk function for point estimation when the
observation is Z* " (Y*0, ... , Y*T): r*1((, d) "
E([(H ! d(Z*)]2. Define a function g mapping
D ontoD : g ! d( z) " d(*z $ )). Then r*1((,
d) " r1((, g ! d) and

inf
d! D

sup
( ! ,

r*1 %(, d& ! inf
d! D

sup
( ! ,

r1 %(, d&.

Thus, the minimax value calculated for the
N(0, 1) case applies to the general N(), *2)
case (with ) and * known).
Now consider the risk function for forecast-

ing Y*T$H: r*2((, d) " E([Y*T$H ! d(Z*)]2.
Define a function g mapping D onto D as
follows: g ! d( z) " *!1[d(*z $ )) ! )].
Then, r*2((, d) " *2r2((, g ! d), and

inf
d! D

sup
( ! ,

r*2 %(, d& ! *2 inf
d! D

sup
( ! ,

r2 %(, d&.

Thus, one can obtain the minimax value for ) "
0 and * " 1 and then simply multiply by *2 to
obtain the minimax value for general ) and *.
I shall work with a finite set of prior distri-

butions on ,: {+j}j"1
J . Then, Qj is formed as

the joint distribution with P( as the distribution
for Y conditional on ( and with +j as the mar-
ginal distribution on ,. The set S is the convex
hull of {Q1, ... , QJ}. Consider the case T "
15 with the parameter space , equal to the
interval 0 % ( - 1. Initially, I let +j be a point
mass on (j and set up a grid with 100 equally
spaced values for (j: 0, 0.01, ... , 0.99. For
estimating ( (r1 with H " 1), the solution to
the concave program gives a minimax value for
root mean-square-error (MSE) of '0.5($0) "
0.169. Consider the minimax value correspond-
ing to the entire parameter space: V! , " infd
sup( ! , r1((, d). The minimax value relative to
{(1, ... , (J} provides a lower bound on V! ,.
One can obtain an upper bound by calculating
the maximum risk over , of the minimax esti-
mator d0 based on {(1, ... , (J}. The maximum
value for root MSE is 0.171. Thus, the minimax
value is tightly bounded at 0.17, and the
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minimax estimator based on the finite set with
100 points gives a close approximation to the
minimax estimator for the interval [0, 1).
Now consider estimating (H. The lower

bound on V! , based on the discrete minimax
estimator has root MSE equal to 0.113 for H "
5 and equal to 0.108 for H " 10. The upper
bounds based on the maximum risk over [0, 1)
of the discrete minimax estimator are 0.114 for
H " 5 and 0.109 for H " 10. Thus, again the
minimax values are tightly bounded, and the
minimax estimator based on the finite set with
100 points gives a close approximation to the
minimax estimator for the interval [0, 1).
An alternative to the minimax estimator is

maximum likelihood (ML). Let (̂ML( z) denote
the ML estimator of (, so that dML( z) "
[(̂ML( z)]H is the ML estimator of (H. The risk
function r1((, dML) for the ML estimator is
smooth and unimodal on the interval [0, 1). The
maximum values for root MSE with H " 1, 5,
10 are 0.21, 0.15, and 0.14. These maximum
values are attained at ( " 0, 0.78, and 0.89.
Thus, the minimax estimator shows a noticeable
improvement over ML in terms of maximum
risk when T " 15.
The discrete minimax estimator is a Bayes

estimator for the least-favorable prior. Let
F(( ) denote the distribution function for the
least-favorable prior. When T " 15 and H "
1, there is substantial mass at ( " 0 with
F(0) " 0.45. The rest of the distribution is
concentrated on the interval [0.43, 0.71], with
F(0.42) " 0.45, F(0.43) " 0.58, and
F(0.71) " 0.98. As H increases, the distri-
bution puts relatively more weight on larger
values of (. With H " 5, F(0.58) " 0.00,
F(0.59) " 0.05, F(0.82) " 0.50, and
F(0.95) " 0.98. With H " 10, F(0.76) "
0.00, F(0.77) " 0.02, F(0.89) " 0.52, and
F(0.98) " 1.00.
Now consider the forecasting problem, with

squared-error loss and risk function r2. Let the
parameter space be the interval [,, -), where
0 % , - - % 1. The surprising result is that the
least favorable prior assigns probability 1 to the
point ,, so that the minimax forecasting rule is
d0( z) " ,HyT. The risk of this rule is

r2 %(, d0 & ! 1 # (2H " %(H # ,H&2

! 1 # 2(H,H " ,2H.

The maximum risk is 1 ! ,2H, which is at-
tained at ( " ,. Since r2(,, d) 0 1 ! ,2H

unless d( z) " ,HyT (almost everywhere with
respect to Lebesgue measure on RT$1), it fol-
lows that d0 is the unique minimax forecasting
rule. If the lower bound of the parameter space
has !1 - , - 0, then the unique minimax
forecasting rule is d0( z) " 0.
The ML forecast rule is dML(z)" [(̂ML(z)]HyT.

Consider the maximum value of risk for this rule,
with , " [0, 1) and horizons H " 1, 5, 10. The
root MSE values are 1.019, 1.004, and 1.003.
Thus, the percentage increase over the minimax
value of 1 is quite small.
I have been working with a model in which

the variance of the stationary distribution is
given, and fixed at 1. Now consider a model in
which the innovation variance is given, and
fixed at 1:

Y0 ' N%0, 1/.1!(2/&

Yt(Y0 ! y0 , ... , Yt! 1 ! yt! 1 ' N%(yt! 1 , 1&

t"1, ... , T$H.

The marginal distribution of Yt is stationary:
Yt + N(0, 1/[1 ! (2]). Note that now

Yt$H(Z ! z ' N%(HyT , .1!(2H//.1!(2/&

and

r2 %(, d& ! %1 # (2H&/%1 # (2&

$ E( .(HYT # d%Z&/2.

Consider the problem of forecasting YT$H.
Let the parameter space be the interval [0, -],
with - - 1. We have the surprising result that,
when H & 2, the least favorable prior assigns
probability 1 to the point -, so that the minimax
forecasting rule is d0( z) " -HyT. The risk of
this rule is

r2 %(, d0 & ! .%1 # (2H&

$ %(H # -H&2//%1 # (2&.
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The sign of the derivative with respect to ( of
r2((, d0) is the sign of

(.%1 # -H&2 " -H.2 " %H # 2&(H # H(H! 2//

for 0 % ( % - - 1. Thus, the derivative is
nonnegative if H & 2, and the maximum value
for r2((, d0) is (1 ! -2H)/(1 ! -2), which is
attained at ( " -. Since r2(-, d) 0 (1 !
-2H)/(1 ! -2) unless d( z) " -HyT, it follows
that d0 is the unique minimax forecasting rule.
As - increases to 1, the minimax risk ap-
proaches H.
When H " 1, the lower bound based on the

discrete (100-point) minimax estimator gives a
forecast root MSE equal to 1.02. When H " 5
and 10, the minimax values for root MSE are
1H " 2.24 and 3.16, respectively. Now con-
sider the maximum risk of the ML forecast rule,
with , " [0, 1) and horizons H " 1, 5, and 10.
The root MSE values are 1.03, 2.27, and 3.20.
Thus, the percentage increase over the minimax
value is quite small.
In the model where the stationary variance is

given, the minimax forecast rule is based on
assigning probability 1 to a single point in the
parameter space. This is also true when the
innovation variance is given, for forecast hori-
zons H & 2. This aspect of the minimax solu-
tion can be avoided by allowing only
subjectively reasonable distributions in the set
S. One can specify a set of nondegenerate prior
distributions on ,: {+j}j"1

J . Then Qj is formed
as the joint distribution with P( as the distribu-
tion for Y conditional on ( and with +j as the
marginal distribution on ,. For example, with
, " [0, 1), let +1 be a beta(1, 19) distribution
(with mean 0.05 and standard deviation 0.048);
let +2, ... , +5 be beta distributions with means
equal to 0.2, 0.4, 0.6, and 0.8, and with standard
deviations equal to 0.1; and let +6 be a beta(19,
1) distribution (with mean 0.95 and standard
deviation 0.048).
Consider estimating (H. The lower bound on

V! , based on the (100-point) discrete minimax

estimator has root MSE equal to 0.19, 0.22, and
0.25, respectively, for H " 1, 5, 10. The
corresponding maximum values of root MSE
for the ML estimator are 0.22, 0.32, and 0.37.
Now consider the minimax estimator based on
the six beta distributions. The maximum values
for root MSE (over , " [0, 1)) are 0.19, 0.23,
and 0.28. Thus, the minimax estimator based on
the six beta priors shows a noticeable improve-
ment over ML in terms of maximum risk when
T " 15. The least-favorable $ weights on the
beta priors are 0.39, 0, 0.06, 0.33, 0.22, and
0 for H " 1; 0, 0, 0, 0.33, 0.04, and 0.63
for H " 5; and 0, 0, 0, 0.06, 0.27, and 0.68 for
H " 10.
In the forecast problem, the least favorable $

weights put all the weight on a single distribu-
tion (+6) for horizons H " 5 and 10. This is
reasonable to the extent that the six beta distri-
butions are each judged to be subjectively rea-
sonable. It would be interesting to make similar
comparisons between minimax and ML deci-
sion rules in the portfolio-choice problem.
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