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I shall work with a multivariate normal linear 
model:

  Y | x ∼    (xβ,  I N   ⊗ Σ) , 
where  Y  is  N × M  ,  x  is  N × K  ,  β  is  K × M  , 
and  Σ  is a  M × M  positive-definite matrix. I 
am interested in applications with large  K . For 
example,   Y ij    could be the score for student  i  
on test  j . The students can be grouped in var-
ious ways, and  x  could include indicator vari-
ables for school, classroom, teacher, and other 
groups. Coefficients on indicator variables are 
sometimes called “fixed effects.” It will be use-
ful to partition  x =  (  x 1     x 2   )  , with  xβ  =   x 1    β 1   +  
 x 2    β 2    , and   β 1    is   K 1   × M  ,   β 2    is   K 2   × M . The indi-
cator variables are in   x 2    (with   K 2    large), and   x 1    
includes a constant (and other variables) so that 
coefficients on indicator variables can be inter-
preted as deviations from an average coefficient.

We can impose the restriction that the same 
fixed effect appears in the predictors for multiple 
test scores:

   β 2   = τ γ  ′, 
where  τ  is the   K 2   × 1  vector of fixed effects 
and  γ  is  M × 1 . More generally, there could be  
l  fixed effects corresponding to each group, with  
1 ≤ l ≤ M  , so that  τ  is   K 2   × l  and  γ  is  M × l . 
We can impose normalizations, because  τ  and  γ  
are not separately identified. If  l = M  , then   β 2    is 
unrestricted.

This is related to the model in Chamberlain 
and Moreira (2009). Their focus is on the 

 estimation of  γ  , treating  τ  as a nuisance param-
eter. Because  τ  has high dimension, there is 
an incidental parameters problem caused by 
the nonlinear term  τ  γ  ′. Their solution is to use 
invariance arguments to construct a statistic 
whose distribution does not depend upon the 
incidental parameters. Then a marginal like-
lihood function can be based on that statistic, 
with a low dimension parameter space. I shall 
use their arguments to deal with  γ  , and my focus 
is on estimating  τ γ   ′.

I. Canonical Form

The model implies the following canonical 
form:

   ( 
 Z 1    
 Z 2  

 )     =     d      ( ωλ′  
0
  )   +   (  V 1    

 V 2  
 )   σ′,

where   V 1   ∼  (0,  I r   ⊗  I M  )  ,   V 2   ∼  (0,  I n−r   ⊗  I M  )  ,  
and   V 1    and   V 2    are independent. The sample 
space is

   {z =  ( z 1  ,  z 2  ) :  z 1   ∈     r × M ,   z 2   ∈     (n−r) × M  } . 

Let  θ  =  (ω, λ, σ)  denote the parameter. The 
parameter space is

  Θ =   l, r   ×   l   ×    T  + , 

where    l, r    is the set of  r × l  matrices with 
orthonormal columns (Stiefel manifold):
    l, r   =  {a ∈     r × l  : a′a =  I l  } , 
   l    is the set of  M × l  matrices with the  l × l  sub-
matrix formed from the first  l  rows a lower tri-
angular matrix with positive diagonal elements, 
and     T  +   is the group of  M × M  lower-triangular 
matrices with positive diagonal elements.
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Let    x ̃   2    =   x 2   −  x 1  a  denote the residual from 
the least-squares projection of   x 2    on   x 1    , with 
  x  1  ′     x ̃   2    = 0. The singular value decomposition 
gives    x ̃   2    =   q 2    d 2    s  2  ′    , where   q 2    is  N × r  with   q  2  ′    q 2  =  I r    ,   d 2    is a  r × r  diagonal matrix with positive 
diagonal elements, and   s 2    is   K 2   × r  with   s  2  ′    s 2   =  I r   . Let   τ ̃   =  d 2    s  2  ′  τ  , with the QR factorization 
  τ ̃   = ωρ′  , where  ω ∈   l, r    and  ρ  is lower triangular 
with positive diagonal elements. Under the nor-
malization that  γ ∈   l    , we have  λ  =  γρ ∈   l   . (  x 1    has rank  h  and  n = N − h .)

II. Invariance

I use standard invariance arguments; see 
Eaton (1989). Consider the group

  G = O (r)  × O (n − r)  ×    T     + , 

where  O (k)  denotes the group of  k × k  orthog-
onal matrices. Let  g  =  ( g 1  ,  g 2  ,  g 3  )  denote an 
 element of  G . Define an action of the group on 
the sample space:

   m 1  (g, z)  =  ( g 1    z 1    g  3  ′  ,  g 2    z 2    g  3  ′  ) , 
and abbreviate   m 1  (g, z)  =  g · z . Define an action 
of the group on the parameter space:

   m 2  (g, θ)  =  ( g 1   ω,  g 3  λ,  g 3  σ) , 
and abbreviate   m 2  (g, θ)  =  g · θ .

Let   P θ    denote the distribution of  Z  (condi-
tional on  x ) when the parameter takes on the 
value  θ :

  Z ∼  P θ    ⇒  g · Z ∼  P g·θ  , 

and so the model is invariant under the actions of  
G  on the sample space and the parameter space.

Consider estimation of  9  =   E θ  ( Z 1  )  =  ωλ′ . 
The action space is      r × M   and the loss function (with  Σ  =  σσ′   ) is
  L (θ, a)  = trace [ Σ   −1 (9 − a)′(9 − a) ] . 
The action of  G  on the action space is  g · a  =   g 1  a g  3  ′   . Then  L (g · θ, g · a)  =  L (θ, a)  , and the 
loss function is invariant.

An estimator maps the sample space into 
the action space. An estimator   9 ˆ    is invariant if 
  9 ˆ  (g · z)  =  g ·  9 ˆ  (z) . The risk function for an 

 estimator   9 ˆ    expresses expected loss as a func-
tion of the parameter:

  R (θ,  9 ˆ  )  =  E θ  [L (θ,  9 ˆ  (Z  ) ) ] . 
If   9 ˆ    is an invariant estimator, then the risk 

function depends on  θ =  (ω, λ, σ)  only through   σ   −1 λ ; it does not depend upon  ω . For all  θ ∈ Θ  ,

  R ( (ω, λ, σ) ,  9 ˆ  )  = R ( ( e l  ,  σ   −1 λ,  I M  ) ,  9 ˆ  ) , 
where   e l    is the matrix formed from the first  l  col-
umns of   I r   . If  M  = 1, the risk function depends 
only on the scalar noncentrality parameter 
 δ  =  9′9/ σ   2   =   λ   2 / σ   2  .

III. Optimality

I construct an oracle estimator    9 ˆ     ∗   that is 
allowed to depend on the following function of  θ  :  α (θ)  =  (λ, σ) . The oracle provides a lower 
bound on risk for invariant estimators   9 ˆ   :
  R ( (ω, α) ,  9 ˆ  )  ≥ R ( (ω, α) ,   9 ˆ     ∗ (· ; α) ) . 

Furthermore,    9 ˆ     ∗   provides a minimax bound: 
for any estimator   9 ˆ    (which need not be invariant),
    sup  

ω∈  l, r  
     R((ω, α),   9 ˆ     ∗ (· ; α)) ≤   sup  

ω∈  l, r  
     R((ω, α),  9 ˆ  ). 

Let  f  (z | θ)  denote the density of   P θ   . The ora-
cle is obtained as the posterior mean of  9  using 
the invariant prior distribution  η :

    9 ˆ     ∗ (z; α)  =    ∫   l, r      ωλ′f  (z | (ω, α) ) η (dω)   ____________________  
 ∫   l, r       f   (z | (ω, α) ) η (dω)  . 

The distribution  η  on    l, r    is invariant in that  
U ∼ η  implies   g 1  U ∼ η  for any   g 1   ∈ O (r) . If 
 M  = 1, there is an explicit formula for    9 ˆ     ∗   using 
a modified Bessel function.

IV. Random Effects Model

I use a random-effects model based on a nor-
mal prior distribution   τ ̃   ∼  (0,  I r   ⊗  I l  ) . The key 
feature of this distribution is that   τ ̃    ( τ ̃    ′  τ ̃  )   −1/2   has 
the invariant distribution  η  on    l, r   . The estimator 
is

    9 ˆ   re  (z)  =  z 1     Σ ˆ     −1
  γ ˆ   ( γ ˆ   ′   Σ ˆ     −1

  γ ˆ   +  I l  )   
−1

  γ ˆ    ′, 
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with   σ ˆ    and   γ ˆ    chosen so that the estimator is 
invariant. If  M = 1  ,

    9 ˆ   re  (z)  =  (1 − 1/ F stat  )   +    9 ˆ   ls  (z), 
where the least-squares estimate of  9  is    9 ˆ   ls  (z)   =   z 1    , and the  F -statistic for testing  9  = 0 is 
  F stat    =  ( z  1  ′    z 1  /r) / ( z  2  ′    z 2  / (n − r)) . (  t   +   =  
max {t, 0}  for  t ∈  .) This estimator is in the 
James and Stein (1961) family of (positive-part) 
estimators:

    9 ˆ   JS+  (z)  =   (1 − c   
 z  2  ′    z 2   ____  z  1  ′    z 1  

  )    
+
  z 1  , 

which dominate    9 ˆ   ls    if  r ≥ 3  and  c  is any number 
in the interval  0 < c < 2 (r − 2)/(n − r + 2) . 
See Sclove (1968) for a discussion of this result. 
Our estimator    9 ˆ   re    has  c  =  r/ (n − r)  and sat-
isfies the dominance condition if  r ≥ 5  and  
n − r > 10 .

V. Application

I draw on work by Chetty et al. (2014) and 
Chetty and Hendren (2015). Chetty and Hendren 
use data constructed in Chetty et al. (2014) to 
form a sample of parents moving from commut-
ing zone  o  to commuting zone  d  with children of 
age less than 23. As in the earlier paper, there is 
a measure of parent income rank (  p ) and there 
are child outcome measures ( c ) such as an indi-
cator for college attendance at ages 18–23 and 
the child’s income rank at age 26. A variable is 
constructed that measures the exposure ( ex ) of 
the child to the new neighborhood. The number 
of families moving from origin  o  to destination  
d  is   n od    , and I shall use the  (o, d)  pairs with   
n od   ≥ 100 . For each of these  (o, d)  pairs, a least-
squares projection of  c  on a constant,  ex  ,  ex · p  , 
and additional variables in  m  gives

    c ˆ   i   =  b 1, od   · e x i   +  b 2, od   · e x i   ·  p i   +  b  3, od  ′   ·  m i   

 (i = 1, … ,  n od  ) . Here  e x i    is the amount of time 
that child  i  spent growing up in the destina-
tion neighborhood:  e x i    =  (23 − child   i  ’s age at 
move)  , and   p i    is the parent income rank in the 
national distribution. The additional variables 
in the vector   m i    are a constant,   p i    ,   s i    ,   s  i  

2   ,   s i   ·  p i    , 
  s  i  

2  ·  p i    , where   s i    is the child’s cohort. Let   S od    
denote the statistic   b 1, od   + 0.25 ·  b 2, od   . In com-
paring two children (from the same cohort) for 

whom  ex  differs by one year, with both  children 
having parents at the 0.25 quantile of the 
income distribution (  p = 0.25 ), the predicted 
difference in the outcomes is   S od   . The vector  Y  
and the matrix  x  are formed using the weights 
  w od    =    √ 

_
 n   od   . Each element of  Y  corresponds 

to an  (o, d)  pair, and the  (o, d)  element of  Y  is 
  w od    S od   . The  x  matrix has a column for each com-
muting zone. Row  (o, d)  of  x  has   w od    in the col-
umn for commuting zone  d  , with  − w od    in the 
column for commuting zone  o  , and zeros in the 
other columns. In the notation of our general 
model,  M  = 1,  x  =   x 2    =    x ̃   2    ,   x 1    is null,  K  =   K 2    , 
and  β  =   β 2    , which is unrestricted. The regres-
sion function is

  E ( Y od   | x)  =  w od  ( β d   −  β o  ); 
 β  provides place effects that summarize differ-
ences across commuting zones in intergenera-
tional mobility.

To go from our estimates of  9  to estimates 
of  β  , we need a normalization, because the col-
umns of  x  sum to zero. We can normalize the 
place effects to sum to 0, with  β  =   s 2    d    2  

−1 9 . 
The least-squares estimate of  9  is    9 ˆ   ls    =   Z 1   . Let 
   β ˆ   ls    =   s 2    d  2  

−1   9 ˆ   ls    and    β ˆ   re    =   s 2    d  2  
−1   9 ˆ   re   .

For a simple summary measure, I shall use 
the standard deviation (SD) of the estimated 
place effects, weighting by the population in the 
2000 census. The data are from the Chetty and 
Hendren (2015) online data tables 3 and 5. With 
college attendance ( col  ) as the child outcome  
c  , there are  N  = 4,931 commuting zone  (o, d)  
pairs that satisfy the   n od   ≥ 100  requirement. The 
rank of  x  is  r  =  K − 1  = 586. Multiplying by 
100 to convert the probability of college atten-
dance to percentage points, we have

  SD (   β   ˆ    ls  col,0.25  ) = 0.48,  SD (   β ˆ      re  col,0.25  ) = 0.24. 

With the least-squares estimate, a one standard 
deviation increase in a place effect corresponds 
to a predicted increase of 0.48 percentage points 
in the probability of college attendance (per year 
of exposure). With the random effects estimate, 
the predicted increase is 0.24 percentage points. 
With the latter estimate, 20 years of exposure 
imply a predicted increase of 4.7 percentage 
points.

The value for the  F  statistic is   F stat    =  1.96  
with  r  = 586 and  n − r  = 4,345. The  0.95  
interval for the noncentrality parameter  δ  is  
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[0.76 · r, 1.18 · r] . Over this interval, the ratio 
of    9 ˆ   re    risk to oracle risk varies from  1.006  to  
1.004 . So the feasible invariant estimator is 
almost achieving the oracle bound on risk. The 
ratio of least-squares risk to oracle risk varies 
from  2.32  to  1.84 . So the oracle and its feasible 
approximation provide substantial risk improve-
ments over the least-squares estimator.

The unweighted standard deviations of the 
estimated place effects are  SD (  β ˆ    ls  col,0.25 ) = 0.95  ,  
SD (  β ˆ    re  col,0.25 ) = 0.47 . The population weights 
matter because the ratio of largest to smallest 
is over 2,000. The least-squares estimates of 
the individual place effects are all reduced by 
the same factor:  1 − 1/ F stat    =  0.49  , and so the 
ratio of the standard deviations is the same as 
before:  SD (  β ˆ    re  col,0.25 ) /SD (  β ˆ    ls  col,0.25 )  =  0.49 . This 
is a consequence of using an invariant prior in 
the random-effects model, in order to match the 
optimal invariant estimator in the  fixed-effects 
model. The invariant prior implies that the 
covariance matrix for  β  is proportional to 
  s 2    d  2  

−2  s  2  ′   . The invariant prior is not meant to be 
a subjective choice, motivated, for example, by 
exchangeability. Even if an i.i.d. specification 
is adopted for the unconditional distribution of 
place effects, we need a distribution conditional 
on  x  , as in a correlated-random effects model. 
If we did assume that the covariance matrix of  β  conditional on  x  is proportional to an iden-
tity matrix, then the implied covariance matrix 
for   τ ̃    would be proportional to   d  2  

2   instead of the 
invariant prior specification of   I r   . This can make 
a difference, because the ratio of the largest to 
smallest diagonal elements of   d  2  

2   is over 10,000. (The diagonal matrix   d  2  
2   contains the nonzero 

eigenvalues of    x ̃    2  ′     x ̃   2   .)
Now use the  0.75  quantile of the income 

distribution for parents and set   S od    =   b 1, od   + 
0.75 ·  b 2, od   . Using population-weighted stan-
dard deviations gives

  SD (  β ˆ    ls  col,0.75 )  = 0.40,   SD (  β ˆ    re  col,0.75 )  = 0.19. 

With the random effects estimate, 20 years of 
exposure gives a predicted increase of  3.8  per-
centage points in the probability of college 
attendance. The value for the  F  statistic is 
  F stat    =  1.90  with  r  = 586 and  n − r  = 4,345. 
The  0.95  interval for  δ  is  [0.70 · r, 1.12 · r] . 
Over this interval, the ratio of    9 ˆ   re    risk to ora-
cle risk varies from  1.006  to  1.005 . The ratio of 

 least-squares risk to oracle risk varies from  2.42  
to  1.90 .

The above results use the weights   
w od    =    √ 

_
 n   od    in constructing  Y  and  x . An alterna-

tive is to use the estimated covariance matrix of  ( b 1, od  ,  b 2, od  )  to provide an estimated variance for   
S od    =   b 1, od   +p ·  b 2, od    (with  p  =  0.25  or  0.75 ). 
Let   var od    denote this estimated variance and use 
  w od    =   var  od  

−1/2   for the weights. This gives similar  
results:  SD (  β ˆ    ls  col,0.25 )  = 0.48,  SD (  β ˆ    re  col,0.25 )  = 0.24, 
 SD (  β ˆ    ls  col,0.75 )  = 0.38,  SD (  β ˆ    re  col,0.75 )  = 0.16. The  
F  statistics are  2.01  for  p = 0.25  and  1.71  for  
p = 0.75 .

With income rank at age 26 ( kr ) as the child 
outcome  c  , there are  N  = 3,094 commut-
ing zone  (o, d)  pairs that satisfy the   n od   ≥ 100  
requirement. The rank of  x  is  r  =  K − 1  = 508.
Multiply by 100 to convert the income rank 
from quantiles to percentiles. Using the 
weights   w od    =    √ 

_
 n   od    gives  SD (  β ˆ    ls  kr,0.25 )  = 0.33, 

 SD (  β ˆ    re  kr,0.25 )  = 0.038,  SD (  β ˆ    ls  kr,0.75 )  = 0.40,  
SD (  β ˆ    re  kr,0.75 )  = 0.105. Using the weights   w od     
=   var  od  

−1/2   gives  SD (  β ˆ    ls  kr,0.25 )  = 0.33,  SD (  β ˆ    re  kr,0.25 )   
= 0.078,  SD (  β ˆ    ls  kr,0.75 )  = 0.39,  SD (  β ˆ    re  kr,0.75 )   = 0.052. Using the variance weights makes 
more of a difference here than it did with the 
college outcome. With the variance weights, the 
 F -statistics are  1.31  with  p = 0.25  and  1.15  with  
p = 0.75 . The  random-effects estimate with  
p  =  0.25  implies that a one standard deviation 
increase in a place effect corresponds to a pre-
dicted increase of  0.078  percentiles of income 
rank per year of exposure. At the  0.75  quantile 
of the parent income distribution, the predicted 
increase is  0.052  percentiles. With 20 years of 
exposure, the predicted increases in income rank 
are  1.6  and  1.0  percentiles. With  p  =  0.25  , the  
0.95  interval for the noncentrality parameter  δ  
is  [0.15 ⋅ r, 0.50 ⋅ r] . Over this interval, the ratio 
of    9 ˆ   re    risk to oracle risk varies from  1.03  to 
 1.01 . The ratio of least-squares risk to oracle risk 
varies from  7.60  to  3.02 . So the oracle and its 
feasible approximation provide substantial risk 
improvements over the least-squares estimator.

In the multivariate model with  M = 4  , let

  Y =  ( Y   col,0.25    Y   col,0.75    Y   kr,0.25    Y   kr,0.75 ) , 
where   Y   col, p   is the vector constructed above 
using the college outcome and with parents at 
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quantile  p  of the income distribution;   Y   kr, p   is 
constructed in the same way, using the child’s 
income rank at age 26. Imposing the rank 2 
restriction that  β  =  τ γ ′ , where  τ  is  K × 2  and  γ ′ 
is  2 × 4  , corresponds to separate factors for the 
college and income rank outcomes. The results 
are very similar to the unrestricted estimates. 
Restricting to a single factor, so  τ  is  K × 1  and  γ ′ is  1 × 4  , the standard deviations of the place 
effects for the college outcomes are not affected, 
but there is a sharp drop for the income rank out-
comes. The one-factor model does not provide 
a good summary of the unrestricted estimates.

VI. Conclusion

I have developed a fixed-effects model along 
with an oracle bound on the risk of invariant 
estimators. The oracle estimator uses an invari-
ant prior, which I have incorporated into a ran-
dom-effects model to obtain a feasible estimator. 
This estimator almost achieves the oracle bound 
over the relevant part of the (fixed-effects) 
parameter space in the empirical application. 
There is a substantial reduction in risk com-
pared with the least-squares estimator. The ran-
dom-effects estimator requires a specification 
for which variables are in   x 2    (with  xβ  =   x 1   β 1   +  
x 2   β 2   ). This corresponds to assigning a mean of 
zero to   β 2   . The estimator does not require a sep-
arate specification for the covariance matrix of   β 2    conditional on  x  , because this is chosen to 
mimic the oracle in the fixed-effects model.
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