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ABSTRACT

This paper considers an individual making a treatment choice. The individual has access

to data on other individuals, with values for a list of characteristics, treatment assignments, and

outcomes. The individual knows his value for the list of characteristics. The goal is to use this data

set to guide his treatment choice. The role of treatment assignment is developed, and how it affects

the specification of prior distributions. The likelihood function is the same for random assignment

and for selection on observables, but the prior distributions differ. A question here is whether there

is a value in knowing the propensity score. The propensity score does not appear in the likelihood,

but it does appear in the prior distribution. So there is a value to knowing the propensity score if

the prior is not dominated by the data. In particular, the list of measured characteristics may be

of high dimension, and the paper considers prior distributions that may be effective in this case.

The paper also considers selection on unobservables and the use of instrumental variables.

The prior distribution is not dominated by the data. We make a particular suggestion, in which

the undominated part of the prior shows up in the choice of a functional form, which is then

combined with a maximum-likelihood approximation to obtain a decision rule. We discuss the role

of extrapolation in this decision rule by making a connection with compliers, always-takers, and

never-takers in the local average treatment effect developed by Imbens and Angrist (1994).
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BAYESIAN ASPECTS OF TREATMENT CHOICE

1. INTRODUCTION

An individual is making a choice between two treatments. Data are available in which other

individuals have received one of the treatments and an outcome was recorded. In addition, the data

set contains various characteristics of the individuals. For example, the choice could be between

two medical treatments. The characteristics could include gender, age, body mass index, blood

pressure, lipid profile, smoking history, medical history, and some information on medical history

of relatives. The individual making the choice knows his values on all of these variables.

We shall consider three types of data. They differ in how the treatments were assigned to the

individuals in the data set. The first case is simple random assignment. For example, there could

be a clinical trial in which a group of subjects is selected and then a coin flip determines whether

an individual is assigned treatment 0 or treatment 1. A central question here is the use of the

possibly extensive data on individual characteristics. One possibility is that the decision maker

look only at the subset of the data that exactly matches his values on these characteristics. There

may, however, be only a few such matches, even if the data set has a large number of individuals.

In the second type of data, the assignment probability may depend upon individual charac-

teristics, and we work with the assumption of random assignment conditional on the measured

characteristics. Within a group of individuals with the same measured characteristics, the assump-

tion is that assignment is as if determined by a coin flip, where the probability of heads may depend

upon the measured characteristics. This could correspond to an observational study in which data

are collected on characteristics, treatment, and outcome for a group of individuals. This con-

ditional assignment probability was called “propensity score” by Rosenbaum and Rubin (1983).

They showed that random assignment conditional on the measured characteristics implies random
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assignment conditional on the propensity score. Suppose that the propensity score is known. If the

object of interest is an average treatment effect, averaging over the measured characteristics, then

the Rosenbaum-Rubin result suggests the possibility of a simpler analysis, in which one conditions

only on the propensity score and not on the full set of measured characteristics. But the coun-

terpart of a treatment effect for our decision maker is a conditional treatment effect, conditional

on the measured characteristics being equal to her values, so there is a question of what role, if

any, a known propensity score should play. A related issue is that it may be appropriate to do the

analysis conditional on treatment assignment and on the measured characteristics. This analysis

can resemble a classical regression problem, where one might argue that the distribution of the

regressors is irrelevant, perhaps appealing to a notion of ancillarity. Then the joint distribution of

assignment and measured characteristics would not be relevant, and so the propensity score, which

gives the assignment distribution conditional on measured characteristics, would not be relevant.

We shall be working in a likelihood framework, and the role of the propensity score is a central

question for us.

In the third type of data, treatment assignment depends upon unobservables, but an instrumen-

tal variable is available. In a clinical trial, for example, an intended treatment could be determined

by simple random assignment, but individuals may not comply with the intended treatment. Then

the intended treatment could serve as an instrumental variable. A key issue here is the lack of

identification, and how to deal with it in the context of a decision maker who has to make a choice.

Now I shall introduce some notation and describe the problem in more detail. Data are available

on N individuals. For individual i, we observe a vector of discrete characteristics, which is coded

as Xi ∈ {1, . . . ,K}. There is assignment to one of two treatments: Di ∈ {0, 1}. There is a discrete

outcome, which is coded as Yi ∈ {1, . . . , J}. Let Zi = (Xi,Di, Yi) and let Z = (Z1, . . . , ZN ). So Z

is observed.

An individual, call him α, needs to choose between Dα = 0 and Dα = 1. This individual knows

his value for the characteristics Xα. Let Yα0 denote the outcome if Dα = 0, and let Yα1 denote the

outcome if Dα = 1. The uncertainty the individual faces is over the values of the decision outcomes
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Yα0 and Yα1. The goal of this paper is to provide guidance on how to advise the individual on

making his choice.

We shall work in an expected utility framework:

choose Dα = 1 if E[u1(Yα1) |Z] > E[u0(Yα0) |Z]. (1)

The notation allows for additional consequences of the choice that are known to the decision maker,

such as costs c0 and c1. Then we could have ul(·) = u(·, cl) for l = 0, 1. We shall take the utility

function (u0(·), u1(·)) for α as given, and focus on the expectation. So we need to construct

conditional distributions for Yα0 and for Yα1, conditional on the observation Z.

An immediate issue is that we do not observe (Yi0, Yi1) for the individuals in the data set

(i = 1, . . . , N). Suppose that i is sufficiently similar to α so that we can think about i making a

choice between the two treatments, even though the actual assignment of Di may not have been

through such a choice. For example, the actual value of Di may have been randomly assigned.

Define Yi0 as the outcome if i chooses treatment 0, and Yi1 as the outcome if i chooses treatment

1. We think about these decision outcomes in the same way that we think about Yα0 and Yα1 in

the decision-maker’s problem. Now it becomes a key assumption that if Di = 0, then Yi = Yi0,

regardless of how this assignment of Di = 0 came to be. So we are saying that the outcome that is

observed when i is assigned to treatment 0 is the same as the outcome that would be observed if i

had chosen treatment 0. With a corresponding assumption for treatment 1, we have

Yi = (1 −Di)Yi0 +DiYi1.

To appreciate the force of these assumptions, suppose that immediately after treatment assignment,

individual i can at some cost change the assignment. This is not relevant for unconstrained choice,

but if i is assigned to treatment 0 when he would have chosen treatment 1, then this option may

become relevant and the observed outcome may differ from Yi0. More generally, if i is assigned a

treatment that differs from what he would have chosen, then various actions may become relevant,

even though they are not relevant for the unconstrained choice of the decision-maker α.
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In the literature on evaluating treatment effects, the term “potential outcome” is often used,

in the sense that if Di = 0, the problem is missing data on the potential outcome that would have

been observed under Di = 1. Likewise, if Di = 1, the problem is missing data on the potential

outcome that would have been observed under Di = 0. We could refer to Yi0 and Yi1 as potential

outcomes, but I want to stress that the problem, if Di = 0, is not just that Yi1 is not observed. It

is a key assumption that the decision outcome, Yi0, defined to correspond to Yα0 for the decision

maker, is observed under Di = 0. Likewise, it is a key assumption that the decision outcome Yi1 is

observed under Di = 1.

Section 2 develops a likelihood function for the case of random assignment conditional on

observed characteristics, and then makes the stronger assumption of simple random assignment

in setting up prior distributions. If the number of values K for Xi is large, with a small number

of observations in a typical Xi = k cell, then the prior distribution plays an important role and

is not dominated by the data. Section 3 relaxes the assumption of simple random assignment,

maintaining selection on observables. This does not affect the likelihood function but does affect

the prior distributions. A question here is whether there is a value in knowing the propensity score.

When we condition on X and D, the propensity score does not appear in the likelihood, but it does

appear in the prior distribution. So there is a value to knowing the propensity score if the prior is

not dominated by the data. This would be the case if the number of values for Xi is large, with a

small number of observations in a typical Xi = k cell.

Section 4 considers selection on unobservables. We simplify notation by dropping the X

variable. Either there are no observable characteristics for the data individuals or we work with

a subset that matches the decision maker. There is, however, an additional vector of discrete

variables, which is coded as Wi ∈ {1, . . . ,M}. Wi plays the role of an instrumental variable.

The prior distribution is not dominated by the data. We make a particular suggestion, in which

the undominated part of the prior shows up in the choice of a functional form, which is then

combined with a maximum-likelihood approximation to obtain a decision rule. We discuss the role

of extrapolation in this decision rule by making a connection with compliers, always-takers, and
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never-takers in the local average treatment effect developed by Imbens and Angrist (1994).

Section 5 makes connections with the literature.

2. SIMPLE RANDOM ASSIGNMENT

Let Z∗
i = (Xi,Di, Yi0, Yi1). Suppose that the label i conveys no information, so that the joint

distribution of (Z∗
1 , . . . , Z

∗
N ) is exchangeable. If this is to hold for arbitrary N , then conditional

on some distribution F ∗, the Z∗
i are independent and identically distributed according to F ∗.

We can decompose F ∗ into a distribution for (Yi0, Yi1) conditional on (Xi,Di), a distribution

for Di conditional on Xi, and a marginal distribution for Xi. We shall condition throughout on

X = (X1, . . . ,XN ), so the marginal distribution for Xi will not play a role. The observation is Z

= (Z1, . . . , ZN ), with Zi = (Xi,Di, Yi). In order to form a likelihood function for the observation

Z, we do not need the joint distribution of (Yi0, Yi1) conditional on (Xi,Di), just the two margins:

Yi0 conditional on (Xi,Di) and Yi1 conditional on (Xi,Di). Because the distributions are discrete,

we can use the following notation:

Pr(Yi0 = j |Xi = xi,Di = di;π, η) = π0j(xi, di),

Pr(Yi1 = j |Xi = xi,Di = di;π, η) = π1j(xi, di) (j = 1, . . . , J),

where the functions π0j and π1j map {1, . . . ,K} × {0, 1} to the interval [0, 1] and satisfy

J
∑

j=1

π0j(k, d) = 1,
J

∑

j=1

π1j(k, d) = 1 (k = 1, . . . ,K; d = 0, 1).

Our notation for the distribution of Di conditional on Xi is

Pr(Di = 1 |Xi = xi;π, η) = 1 − Pr(Di = 0 |Xi = xi;π, η) = η(xi),

where the function η maps {1, . . . ,K} to the interval [0, 1]. So the parameter space is Θ = Θ1×Θ2,

with

Θ1 = {π : πl(k, d) = (πl1(k, d), . . . , πlJ (k, d)) ∈ SJ−1; l = 0, 1; k = 1, . . . ,K; d = 0, 1} = S4K
J−1,

Θ2 = {η : η(k) ∈ [0, 1], k = 1, . . . ,K} = [0, 1]K ,

5



where SJ−1 is the unit simplex of dimension J − 1 in RJ .

2.1 Likelihood Function

Let z denote the realization of the random variable Z, with zi = (xi, di, yi) and z = (z1, . . . , zN ),

and let θ = (π, η). The likelihood function for the observation Z is

fZ |X(z |x; θ) = Pr(Z = z |X = x; θ)

=

N
∏

i=1

Pr(Yi = yi |Xi = xi,Di = di;π) · Pr(Di = di |Xi = xi; η)

=
N
∏

i=1

( K
∏

k=1

J
∏

j=1

π0j(k, 0)
1(di=0)1(xi=k)1(yi=j)π1j(k, 1)

1(di=1)1(xi=k)1(yi=j)

×
K
∏

k=1

[1 − η(k)]1(di=0)1(xi=k)η(k)1(di=1)1(xi=k)

)

=

K
∏

k=1

J
∏

j=1

π0j(k, 0)
n(0,k,j)π1j(k, 1)

n(1,k,j) ×
K
∏

k=1

(1 − η(k))n(0,k)η(k)n(1,k)

= fY |X,D(y |x, d;π)fD |X(d |x; η), (2)

where

n(0, k, j) =

N
∑

i=1

1(di = 0)1(xi = k)1(yi = j), n(1, k, j) =

N
∑

i=1

1(di = 1)1(xi = k)1(yi = j),

n(0, k) =

N
∑

i=1

1(di = 0)1(xi = k) =

J
∑

j=1

n(0, k, j), n(1, k) =

N
∑

i=1

1(di = 1)1(xi = k) =

J
∑

j=1

n(1, k, j).

The value of Xα for the decision maker is τ . Suppose that the following sequence of random

variables is exchangeable:

((Yα0, Yα1), (Yi0, Yi1) : Xi = τ).

Then the F ∗ distribution of Yi0 conditional on Xi = τ is relevant for the decision maker, and we

shall assume that:

Pr(Yα0 = j |Xα = τ ; θ) = Pr(Yi0 = j |Xi = τ ; θ)

= (1 − η(τ))π0j(τ, 0) + η(τ)π0j(τ, 1).
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Likewise,

Pr(Yα1 = j |Xα = τ ; θ) = Pr(Yi1 = j |Xi = τ ; θ)

= (1 − η(τ))π1j(τ, 0) + η(τ)π1j(τ, 1).

Then, conditional on θ, the decision rule is to choose Dα = 1 if

J
∑

j=1

u1(j)[(1 − η(τ))π1j(τ, 0) + η(τ)π1j(τ, 1)] >

J
∑

j=1

u0(j)[(1 − η(τ))π0j(τ, 0) + η(τ)π0j(τ, 1)]. (3)

We need to obtain a distribution on Θ conditional on the observation Z, in order to go from (3) to

a decision rule that conditions only on the observation, as in (1).

Note that the likelihood function depends upon π only through (π0j(k, 0), π1j (k, 1)) for j =

1, . . . , J and k = 1, . . . ,K. So there is no direct information in the data on the terms π0j(τ, 1)

and π1j(τ, 0) in (3). A tractable special case restricts the F ∗ distribution so that the treatment

assignment Di is independent of the decision outcomes (Yi0, Yi1) conditional on the measured

characteristics Xi. In that case, we have

π0j(k, 0) = π0j(k, 1) ≡ π0j(k), (4)

π1j(k, 0) = π1j(k, 1) ≡ π1j(k) (j = 1, . . . , J ; k = 1, . . . ,K),

and

Θ1 = {π : πl(k) = (πl1(k), . . . , πlJ (k)) ∈ SJ−1; l = 0, 1; k = 1, . . . ,K} = S2K
J−1. (5)

Now the decision rule in (3) becomes: conditional on θ,

choose Dα = 1 if
J

∑

j=1

u1(j)π1j(τ) >
J

∑

j=1

u0(j)π0j(τ). (3′)

In order to examine the assumption in (4), suppose that

Di = 1(Ei[u1(Yi1)] > Ei[u0(Yi0)]),

7



where the operator Ei provides the expectation with respect to the personal (subjective) distribution

of individual i. The assumption in (4) will hold if (Ei[u0(Yi0)], Ei[u1(Yi1)]) is independent of

(Yi0, Yi1) conditional on Xi and π. For example, we could have

Di = 1(

J
∑

j=1

u1(j)π1j(Xi) >

J
∑

j=1

u0(j)π0j(Xi)).

More generally, (4) will hold if the information available to individual i is independent of (Yi0, Yi1)

conditional on Xi and π. The assumption in (4) is commonly referred to as “random assignment

conditional on X” or “selection on observables.” We shall use those terms, but note that although

X is observable, we are also conditioning on π. This conditioning on π will play an important role

when we discuss prior distributions.

2.2 Limited Information

Let πl(k) = (πl1(k), . . . , πlJ (k)) and πl = (πl(1), . . . , πl(K)) for l = 0, 1. The task of specifying

a prior distribution will be easier if we can work with the marginal distributions for π0 and π1

without specifying the joint distribution for π = (π0, π1). We can do this by adopting a limited

information approach. Let

Y
(0)
i =

{

Yi, if Di = 0;
missing, if Di = 1

and

Y
(1)
i =

{

missing, if Di = 0;
Yi, if Di = 1

.

Let Z
(l)
i = (Xi,Di, Y

(l)
i ) and let Z(l) = (Z

(l)
1 , . . . , Z

(l)
N ) for l = 0, 1. We shall condition on Z(0)

in forming a (predictive) distribution for Yα0 and condition on Z(1) in forming a (predictive)

distribution for Yα1. So our limited information decision rule is

choose Dα = 1 if E[u1(Yα1) |Z
(1)] > E[u0(Yα0) |Z

(0)]. (1′)

The likelihood function for Z(0) is

fZ(0) |X(z(0) |x; (π0, η)) = Pr(Z(0) = z(0) |X = x; (π0, η))
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=

K
∏

k=1

J
∏

j=1

π0j(k)
n(0,k,j) ×

K
∏

k=1

(1 − η(k))n(0,k)η(k)n(1,k)

= fY (0) |X,D(y(0) |x, d;π0)fD |X(d |x; η), (6)

and the likelihood function for Z(1) is

fZ(1) |X(z(1) |x; (π1, η)) = Pr(Z(1) = z(1) |X = x; (π1, η))

=
K
∏

k=1

J
∏

j=1

π1j(k)
n(1,k,j) ×

K
∏

k=1

(1 − η(k))n(0,k)η(k)n(1,k)

= fY (1) |X,D(y(1) |x, d;π1)fD |X(d |x; η). (7)

Next we shall develop prior distributions that allow us to go from (3′) to decision rules that

depend only on the observation Z and the prior distribution.

2.3 Prior Distributions

We shall begin with a prior distribution that leads to a closed-form expression for the decision

rule. Impose the restriction in (4) on the likelihood function, corresponding to random assignment

conditional on X. Let

Θ10 = {π0 : π0(k) = (π01(k), . . . , π0J (k)) ∈ SJ−1; k = 1, . . . ,K} = SK
J−1,

Θ11 = {π1 : π1(k) = (π11(k), . . . , π1J (k)) ∈ SJ−1; k = 1, . . . ,K} = SK
J−1,

so that Θ1 = Θ10 × Θ11. Let T0 denote a random variable that has the prior distribution on Θ10

and let T1 denote a random variable that has the prior distribution on Θ11. We shall use the limited

information approach, so that we only specify the marginal distributions for T0 and for T1, and do

not specify a joint distribution for T = (T0, T1). Let X = (X1, . . . ,XN ), D = (D1, . . . ,DN ), and

Y (0) = (Y
(0)
1 , . . . , Y

(0)
N ). We shall work with the distribution of Y (0) conditional on (X,D), so the

distribution of D conditional on X will not play a role, and we can set the parameter space equal

to Θ10. We shall combine the distribution of Y (0) conditional on (X = x,D = d;T0 = π0) with a

distribution for T0 conditional on (X = x,D = d), to obtain a distribution for T0 conditional on
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(X = x,D = d, Y (0) = y(0)). Likewise, we shall combine the distribution of Y (1) conditional on

(X = x,D = d;T1 = π1) with a distribution for T1 conditional on (X = x,D = d), to obtain a

distribution for T1 conditional on (X = x,D = d, Y (1) = y(1)).

The distributions for T0 and T1 conditional on (X = x,D = d) are restricted to not depend

upon (x, d). This corresponds to simple random assignment. The assumption that (Yi0, Yi1) is

independent of Di conditional on Xi is implicitly conditioning on T = π. If we do not condition

on T = π, then Di and (Yi0, Yi1) can fail to be independent conditional on Xi because D helps to

predict T . For example, if

Di = 1(

J
∑

j=1

u1(j)T1j(Xi) >

J
∑

j=1

u0(j)T0j(Xi)),

then (Yi0, Yi1) is independent of Di conditional on (X = x, T = π), but Di is not independent of

T (k) conditional on Xi = k.

We shall assume simple random assignment, so that D is independent of Tl conditional on X

for l = 0, 1, and we assume in addition that Tl is independent of X. With

Pr(Di = 1 |Xi = xi;π, η) = 1 − Pr(Di = 0 |Xi = xi;π, η) = η(xi),

the key is that the randomization probabilities (η(1), . . . , η(K)) are fixed by design in such a way

that the decision maker is confident in assessing Tl independent of η in his personal distribution;

for example, η(k) = 1/2 for k = 1, . . . ,K. The distribution of Tl has density pl which specifies that

(Tl(k) : k = 1, . . . ,K) are mutually independent with distributions in the Dirichlet family, where

Tl(k) = (Tl1(k), . . . , TlJ (k)) for l = 0, 1:

pl(πl |x, d;βl) = pl(πl |βl) =
K
∏

k=1

hDir(πl1(k), . . . , πlJ (k) |βl1(k), . . . , βlJ (k)), (8)

where βlj(k) > 0 and hDir(· | ζ) is the Dirichlet density with parameter ζ:

hDir(w1, . . . , wJ | ζ1, . . . , ζJ ) =
Γ(

∑J
j=1 ζj)

∏J
j=1 Γ(ζj)

J
∏

j=1

w
(ζj−1)
j ,
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for (w1, . . . , wJ ) in the simplex SJ−1 and ζj > 0.

The conditional density of Tl given Z(l) = z(l) is

p̄l(πl | z
(l);βl)

= fY (l) |X,D(y(l) |x, d;πl)pl(πl |x, d;βl)

/
∫

Θ1l

fY (l) |X,D(y(l) |x, d;πl)pl(πl |x, d;βl) dπl.

Inspecting the product of fY (l) |X,D(y(l) |x, d;πl) from (6) and (7) with pl(πl |x, d;βl) from (8)

shows that the conditional density is a product of Dirichlet densities:

p̄l(πl | z
(l);βl) =

K
∏

k=1

hDir(πl1(k), . . . , πlJ (k) | β̄l1(k), . . . , β̄lJ (k)) (l = 0, 1), (9)

where

β̄lj(k) = βlj(k) + n(l, k, j) with n(l, k, j) =
N

∑

i=1

1(di = l)1(xi = k)1(yi = j).

Applying iterated expectations, we can go from the decision rule in (3′) to the limited infor-

mation rule in (1′), that depends only upon the observation and the prior distribution:

choose Dα = 1 if
J

∑

j=1

u1(j)E[T1j (τ) |Z
(1) = z(1);β1] >

J
∑

j=1

u0(j)E[T0j(τ) |Z
(0) = z(0);β0].

(10)

If (W1, . . . ,WJ ) has a Dirichlet distribution with parameter (ζ1, . . . , ζJ ), then E(Wj) = ζj/(ζ1 +

. . .+ ζJ ). So evaluating the conditional expectations in (10) gives the decision rule:

choose Dα = 1 if

J
∑

j=1

u1(j)
β1j(τ) + n(1, τ, j)

∑J
j=1[β1j(τ) + n(1, τ, j)]

>

J
∑

j=1

u0(j)
β0j(τ) + n(0, τ, j)

∑J
j=1[β0j(τ) + n(0, τ, j)]

. (11)

Note that this decision rule uses only the data on the subset of individuals with Xi = τ—the

individuals who exactly match the decision maker α on the measured characteristics. This aspect

11



of the decision rule arises from the prior specification that π0(k) are mutually independent for

k = 1, . . . ,K and, likewise, that π1(k) are mutually independent. We shall consider an alternative

prior distribution below that relaxes this independence.

A potential approximation to the decision rule in (11) is

choose Dα = 1 if

J
∑

j=1

u1(j)
n(1, τ, j)

∑J
j=1 n(1, τ, j)

>

J
∑

j=1

u0(j)
n(0, τ, j)

∑J
j=1 n(0, τ, j)

. (12)

Here the conditional probabilities that Y0α = j and Y1α = j in (3′) are replaced by sample frequen-

cies. For a given utility function (u0, u1), the approximation in (12) coincides with the rule in (11)

if βlj(τ)/n(l, τ, j) is sufficiently small (l = 0, 1; j = 1, . . . , J). On the other hand, for given values

of βl(τ)/n(l, τ) =
∑J

j=1 βlj(τ)/
∑J

j=1 n(l, τ, j), there can, depending on the utility function, be

extreme sensitivity to the prior distribution. Suppose, for example, that n(0, τ) = n(1, τ) ≡ n(τ),

so that there are the same number of observations with Di = 0 and with Di = 1 in the cell with

Xi = τ . Then

β̄1j(τ)

β̄1(τ)
−
β̄0j(τ)

β̄0(τ)
=

1

n(τ)

(

β1j(τ) + n(1, τ, j)
β1(τ)
n(τ)

+ 1
−
β0j(τ) + n(0, τ, j)

β0(τ)
n(τ)

+ 1

)

.

If β0(τ)/n(τ) and β1(τ)/n(τ) are sufficiently small, then the sign of this term is determined by the

sign of

β1j(τ) − β0j(τ) + n(1, τ, j) − n(0, τ, j) (13)

(provided that (13) is nonzero). If there are no observations with Xi = τ and Yi = j, then

n(0, τ, j) = n(1, τ, j) = 0 and, if β0j(τ) 6= β1j(τ), the sign is determined by

β1j(τ) − β0j(τ).

If the absolute value of u1(j) is sufficiently large relative to |u1(j) − u0(j)|, then this sign will

determine whether the decision rule in (11) chooses Dα = 1 or Dα = 0. This could correspond to

a rare but catastrophic event.
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The prior distribution we have been using specifies that (πl(1), . . . , πl(K)) are mutually inde-

pendent conditional on β (for l = 0, 1). We can relax this independence by following Good (1965,

p. 28) in putting a prior distribution on the Dirichlet parameter β. A simple version restricts

βlj(k) to be constant across k: βlj(k) = βlj . Let βl = (βl1, . . . , βlJ ) for l = 0, 1. Following our

limited information approach, we shall only need the marginal distribution for βl and not the joint

distribution for (β1, β2). As βl varies, we generate a set of distributions for Y (l) conditional on

(X = x,D = d). The densities of these conditional distributions form a Type II likelihood function

(in Good’s terminology) for βl:

gY (l) |X,D(y(l) |x, d;βl) =

∫

Θ1l

fY (l) |X,D(y(l) |x, d;πl)pl(πl |x, d;βl) dπl (14)

=
K
∏

k=1

Γ(
∑J

j=1 βlj)
∏J

j=1 Γ(βlj)

∏J
j=1 Γ(βlj + n(l, k, j))

Γ(
∑J

j=1(βlj + n(l, k, j)))

=

K
∏

k=1

∏J
j=1

(

1(n(l, k, j) = 0) + 1(n(l, k, j) 6= 0)
∏n(l,k,j)−1

m=0 (βlj +m)

)

1(n(l, k) = 0) + 1(n(l, k) 6= 0)
∏n(l,k)−1

m=0 [(
∑J

j=1 βlj) +m]
.

The (Type II) parameter space is

Λl = {βl = (βl1, . . . , βlJ ) ∈ RJ
+} = RJ

+ (l = 0, 1),

where R+ is the positive real line.

Let Ql denote a random variable that has the prior distribution on Λl. Suppose that the prior

density ψl for Ql conditional on (X = x,D = d) does not depend upon (x, d): ψl(βl |x, d) = ψl(βl).

Then the conditional density for Ql given Z(l) = z(l) is

ψ̄l(βl | z
(l)) = gY (l) |X,D(y(l) |x, d;βl)ψl(βl)

/
∫

Λl

gY (l) |X,D(y(l) |x, d;βl)ψl(βl) dβl, (15)

which can be combined with (11) to form the decision rule

choose Dα = 1 if
J

∑

j=1

u1(j)

∫

Λ1

β1j + n(1, τ, j)
∑J

j=1[β1j + n(1, τ, j)]
ψ̄1(β1 | z

(1)) dβ1

>

J
∑

j=1

u0(j)

∫

Λ0

β0j + n(0, τ, j)
∑J

j=1[β0j + n(0, τ, j)]
ψ̄0(β0 | z

(0)) dβ0. (16)

13



A potential approximation to this rule can be based on the maximum-likelihood (Type II)

estimate of βl:

β̂l = arg max
βl∈Λl

gY (l) |X,D(y(l) |x, d;βl).

If ψ̄l(· | z
(l)) is concentrated around β̂l, then an approximation to the decision rule in (16) is

choose Dα = 1 if

J
∑

j=1

u1(j)
β̂1j + n(1, τ, j)

∑J
j=1[β̂1j + n(1, τ, j)]

>
J

∑

j=1

u0(j)
β̂0j + n(0, τ, j)

∑J
j=1[β̂0j + n(0, τ, j)]

. (17)

The restriction that βlj(xi) does not vary with xi can be replaced by a parametric model:

βlj(xi) = hlj(xi; γ), where hlj is a given function and γ is a parameter vector. Suppose, for

example, that we start with M binary variables and, allowing for all possible interactions, let Xi

take on K = 2M values. Then we could consider parametric models that allow for main effects but

restrict the interactions. The parametric model plays the role of a prior distribution that can be

dominated by the data.

3. RANDOM ASSIGNMENT CONDITIONAL ON MEASURED CHARACTERISTICS

Now consider relaxing the restriction that the prior distribution on Θ1l conditional on (X,D)

= (x, d) does not depend upon (x, d) for l = 0, 1. We will maintain the assumption in (4) of selection

on observables, so that the assignment Di is independent of the potential outcomes (Y0i, Y1i)

conditional on the measured characteristics Xi and on π. The parameter space for θl = (πl, η)

is Θl = Θ1l × Θ2 = SK
J−1 × [0, 1]K . Let (Tl, S) denote a random variable that has the prior

distribution on Θ1l × Θ2. We shall continue to use the limited information approach, in order

to avoid having to specify a joint distribution for T = (T1, T2). The assumption of selection on

observables is implicitly conditioning on π as well as X. If we do not condition on T = π, then Di

and (Yi0, Yi1) can fail to be independent conditional on Xi because D helps to predict S, which is

related to T . D and T are independent conditional on X and S, but in general we want to allow

T and S to be correlated.

14



So we specify that the distribution of Tl conditional on (X = x,D = d;S = η) does not

depend upon (x, d) but may depend upon η. The distribution has density pTl |S which specifies

that (Tl(k) : k = 1, . . . ,K) are mutually independent with distributions in the Dirichlet family,

where Tl(k) = (Tl1(k), . . . , TlJ (k)):

pTl |S(πl |x, d; η, βl) = pTl |S(πl | η, βl)

=
K
∏

k=1

hDir(πl1(k), . . . , πlJ (k) |βl1(k, η(k)), . . . , βlJ (k, η(k))) (18)

for l = 0, 1, where βlj(k, ·) is a function mapping [0, 1] into the positive real line, and hDir(· | ζ) is

the Dirichlet density with parameter ζ.

As above, the conditional density of Tl given (Z(l) = z(l);S = η) is a product of Dirichlet

densities:

p̄Tl |S(πl | z
(l); η, βl) =

K
∏

k=1

hDir(πl1(k), . . . , πlJ (k) | β̄l1(k, η(k)), . . . , β̄lJ (k, η(k))) (19)

for l = 0, 1, where

β̄lj(k, · ) = βlj(k, · ) + n(l, k, j) with n(l, k, j) =

N
∑

i=1

1(di = l)1(xi = k)1(yi = j).

The corresponding decision rule, given (β0, β1, η), is

choose Dα = 1 if

J
∑

j=1

u1(j)(β̄1j (τ, η(τ))/β̄1(τ, η(τ))) >

J
∑

j=1

u0(j)(β̄0j (τ, η(τ))/β̄0(τ, η(τ))),

(20)

with

β̄0(k, · ) =

J
∑

j=1

β̄0j(k, · ), β̄1(k, · ) =

J
∑

j=1

β̄1j(k, · ) (k = 1, . . . ,K).

We can still consider using the decision rule in (12) as an approximation, in which the conditional

probabilities that Y0α = j and Y1α = j in (3′) are replaced by sample frequencies. For a given utility

15



function (u0, u1), the approximation in (12) coincides with the rule in (20) if βlj(τ, η(τ))/n(l, τ, j)

is sufficiently small (l = 0, 1; j = 1, . . . , J).

3.1 Known Propensity Score

Now suppose that the prior is not dominated by the data. There may, for example, be a large

number K of values for Xi, with a small number of observations in a typical Xi = k cell. We shall

assume initially that η is known, so that the propensity score,

Pr(Di = 1 |Xi = xi; η) = η(xi),

is given. Then we can build on the results for this case when we introduce a prior distribution for

η.

Suppose that βlj(k, ·) does not depend upon k and has the following form:

βlj(k, u) = βlj(u) = exp(
O

∑

m=1

β
(m)
lj r

(m)
lj (u)) (l = 0, 1; j = 1, . . . , J ; k = 1, . . . ,K; 0 ≤ u ≤ 1),

where r
(m)
lj (·) is a given function mapping [0, 1] into R. For example, we could have a polynomial,

with r
(m)
lj (u) = um−1. If O is sufficiently large, then this specification can be very flexible. Let βl

= {β
(m)
lj : j = 1, . . . , J ; m = 1, . . . , O} for l = 0, 1. We can form a Type II likelihood function for

βl:

gY (l) |X,D(y(l) |x, d; η, βl) =

∫

Θ1l

fY (l) |X,D(y(l) |x, d;πl)pTl |S(πl |x, d; η, βl) dπl (21)

=
K
∏

k=1

Γ(
∑J

j=1 βlj(η(k)))
∏J

j=1 Γ(βlj(η(k)))

∏J
j=1 Γ(βlj(η(k)) + n(l, k, j))

Γ(
∑J

j=1(βlj(η(k)) + n(l, k, j)))

for l = 0, 1. The (Type II) parameter space is

Λl = {β
(m)
lj ∈ R : j = 1, . . . , J ; m = 1, . . . , O} = RJO.

Given a prior distribution for βl, we can form a decision rule. A potential approximation to that

rule can be based on the maximum-likelihood (Type II) estimate of βl:

β̂l = arg max
βl∈Λl

gY (l) |X,D(y(l) |x, d; η, βl).
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Let

π̂lj(k) =
exp(

∑O
m=1 β̂

(m)
lj r

(m)
lj (η(k))) + n(l, k, j)

∑J
j=1[exp(

∑O
m=1 β̂

(m)
lj r

(m)
lj (η(k))) + n(l, k, j)]

(l = 0, 1; j = 1, . . . , J ; k = 1, . . . ,K).

The approximation to the decision rule is

choose Dα = 1 if
J

∑

j=1

u1(j)π̂1j(τ) >
J

∑

j=1

u0(j)π̂0j(τ). (22)

When the propensity score is given, it does not play a role through the likelihood function,

which is based on the conditional density for the distribution of Y given (X,D). That likelihood

function depends only upon π. The propensity score enters through the prior distribution for

π. If the prior distribution is dominated by the data, then there would not be value in knowing

the propensity score. This corresponds to limit results in Hahn (1998). But if the asymptotic

approximation has K increasing as well as N , then knowing the propensity score could have value

in the limit results.

3.2 Correlated Random Effects

This section examines the role of the propensity score in a random effects model with normal

distributions for the outcomes and the random effects. Some of the issues raised in Section 3.1

show up here in a particularly simple form.

Suppose that

Yi1 |X = x,D = d;π, η, σ
ind
∼ N (π(xi), σ

2),

Di |X = x;π, η, σ
ind
∼ Bern(Φ(η(xi))) (i = 1, . . . , N),

where the discrete characteristics are coded as Xi ∈ {1, . . . ,K} and Φ is the standard normal cdf.

Let Yi = Di ∗ Yi1 and Zi = (Xi,Di, Yi). We observe Z = (Z1, . . . , ZN ). (There could be a parallel

analysis in which we observe Yi0 if Di = 0.)

The correlated random effects model is

(

π(k)
η(k)

)

|X = x;µ,Σ
i.i.d.
∼ N (µ,Σ) (k = 1, . . . ,K),
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with

µ =

(

µ1

µ2

)

, Σ =

(

σ11 σ12

σ12 σ22

)

.

The decision maker, α, is interested in the distribution of Yα1 conditional on the data Z. The

decision maker knows her value, τ , for the characteristics. Assume that

Yα1 |Z;π, η, σ ∼ N (π(τ), σ2).

Suppose that the propensity score is given, so that

η(k) = Φ−1(Pr(Di = 1|Xi = k))

is given, for k = 1, . . . ,K. Then the decision maker can use the distribution of Yα1 conditional on

η and Z. Define

ρ = σ12/σ22, µ̃1 = µ1 − ρµ2, σ̃11 = σ11 − σ2
12/σ22,

and let β = (σ, ρ, µ̃1, σ̃11). Define

n(τ) =
N

∑

i=1

1(Xi = τ,Di = 1), Ȳ (τ) = n(τ)−1
N

∑

i=1

1(Xi = τ,Di = 1)Yi (if n(τ) 6= 0)

and set Ȳ (τ) = 0 if n(τ) = 0. Then we have

π(τ) | η, Z;β ∼ N (c1(β), c2(β)),

where

c1(β) =
(n(τ)/σ2)Ȳ (τ) + σ̃−1

11 [µ̃1 + ρη(τ)]

(n(τ)/σ2) + σ̃−1
11

,

c2(β) = [(n(τ)/σ2) + σ̃−1
11 ]−1.

The corresponding distribution for Yα1 is

Yα1 | η, Z;β ∼ N (c1(β), c2(β) + σ2).
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Let z denote the realization of the random variable Z, with zi = (xi, di, yi) and z = (z1, . . . , zN ).

The random effects likelihood function is

gY |X,D(y|x, d; η, β) =
∏

k:n(k)≥1

(2π)−n(k)/2[det Ω(β)]−1/2

× exp{−
1

2
[y(k) − (µ̃1 + ρη(k))1]′[Ω(β)]−1[y(k) − (µ̃1 + ρη(k))1]},

where n(k) is the number of observations with (xi = k, di = 1), y(k) is the n(k)× 1 matrix formed

from the yi with (xi = k, di = 1),

Ω(β) = σ̃1111
′ + σ2I,

1 is a n(k) × 1 matrix of ones, and I is the identity matrix of order n(k).

A potential approximation for the predictive distribution of Yα1 conditional on η and Z is

Yα1 | η, Z
a
∼ N (c1(β̂), c2(β̂) + σ̂2),

where β̂ maximizes the random-effects likelihood function:

β̂ = arg max
β

gY |X,D(y|x, d; η, β)

(and σ̂ is the first element of β̂).

We can extend the correlated random effects specification so that the constant mean µ is

replaced by a parametric model h(xi; γ):

(

π(k)
η(k)

)

|X = x; γ,Σ
ind
∼ N (h(k; γ),Σ) (k = 1, . . . ,K),

where h( · ; · ) is a given function and γ is a parameter vector. Suppose, for example, that the

underlying characteristics for individual i are in the variables Wi = (Wi1, . . . ,WiM ), and that

Xi = k corresponds to the value Wi = w(k) = (w
(k)
1 , . . . , w

(k)
M ). Then we could have

h(k, γ) = w
(k)
1 γ1 + . . .+ w

(k)
M γM
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(where w
(k)
m is scalar and γm is 2 × 1).

3.3 Unknown Propensity Score

Now suppose that the propensity score is not given. We return to the model in Section 3.1,

where we have prior distributions for T0 and for T1 conditional on X = x, S = η. Suppose that the

prior distribution for S conditional on X = x does not depend upon x. It has density pS which

specifies that (S(k) : k = 1, . . . ,K) are mutually independent with distributions in the beta family:

pS(η |x; γ) = pS(η | γ) =
K
∏

k=1

hBe(η(k) | γ1(k), γ2(k)),

where γ1(k) > 0, γ2(k) > 0, and hBe(· | ζ1, ζ2) is the beta density with parameter (ζ1, ζ2):

hBe(w | ζ1, ζ2) =
Γ(ζ1 + ζ2)

Γ(ζ1)Γ(ζ2)
wζ1−1(1 − w)ζ2−1,

for w ∈ [0, 1] and ζ1 > 0, ζ2 > 0.

For l = 0, 1, this prior distribution for S can be combined with the prior distribution for Tl

conditional on (X,S) to obtain the prior distribution for (Tl, S) conditional on X = x (which in

fact does not depend upon x). This prior distribution for (Tl, S) conditional on X can be combined

with the joint distribution for (Y (l),D) conditional on (X = x;Tl = πl, S = η) in (6) and (7) to

obtain the posterior distribution for (Tl, S) conditional on Z(l) = z(l). The posterior density factors

over k, so that ((Tl(k), S(k)) : k = 1, . . . ,K) are mutually independent conditional on Z(l) = z(l):

p̄Tl,S(πl, η | z
(l);βl, γ) =

K
∏

k=1

p̄Tl(k),S(k)(πl(k), η(k) | z
(l) ;βl, γ),

and

p̄Tl(k),S(k)(πl(k), η(k) | z
(l) ;βl, γ) = p̄Tl(k) |S(k)(πl(k) | z

(l); η(k), βl)p̄S(k)(η(k) | z
(l) ;βl, γ).

The posterior density for Tl(k) conditional on S(k) = η(k) is

p̄Tl(k) |S(k)(πl(k) | z
(l); η(k), βl) = hDir(πl1(k), . . . , πlJ (k) | β̄l1(k, η(k)), . . . , β̄lJ (k, η(k))),
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where

β̄lj(k, u) = βlj(u) + n(l, k, j)

with

βlj(u) = exp(
O

∑

m=1

β
(m)
lj r

(m)
lj (u)) and n(l, k, j) =

N
∑

i=1

1(di = l)1(xi = k)1(yi = j).

The posterior density for S(k) is

p̄S(k)(η(k) | z
(l) ;βl, γ) =

Γ(
∑J

j=1 βlj(η(k)))
∏J

j=1 Γ(βlj(η(k)))

∏J
j=1 Γ(βlj(η(k)) + n(l, k, j))

Γ(
∑J

j=1(βlj(η(k)) + n(l, k, j)))

× hBe(η(k) | γ̄1(k), γ̄2(k))/c
(l)(k;βl, γ),

where

γ̄1(k) = γ1(k) +
N

∑

i=1

1(di = 1)1(xi = k), γ̄2(k) = γ2(k) +
N

∑

i=1

1(di = 0)1(xi = k),

and

c(l)(k;βl, γ) =

∫

[0,1]

(

Γ(
∑J

j=1 βlj(u))
∏J

j=1 Γ(βlj(u))

∏J
j=1 Γ(βlj(u) + n(l, k, j))

Γ(
∑J

j=1(βlj(u) + n(l, k, j)))
(23)

× hBe(u | γ̄1(k), γ̄2(k))

)

du (l = 0, 1).

To evaluate the decision rule, we can use iterated expectations:

E(Tlj(k) |Z
(l) = z(l);βl, γ) = E[E(Tlj(k) |Z

(l) = z(l);S(k), βl) |Z
(l) = z(l);βl, γ]

=

∫

[0,1]

(

[

β̄lj(k, η(k))/

J
∑

j=1

β̄lj(k, η(k))
]

p̄S(k)(η(k) | z
(l) ;βl, γ)

)

dη(k).

This only requires one-dimensional numerical integration, which can be done by quadrature. Then,

given (βl, γ), the decision rule is

choose Dα = 1 if

J
∑

j=1

u1(j)E(T1j (τ) |Z
(1) = z(1);β1, γ) >

J
∑

j=1

u0(j)E(T0j (τ) |Z
(0) = z(0);β0, γ). (24)
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Let L(l)(βl, γ) denote the Type II likelihood function for (βl, γ):

L(l)(βl, γ) = gY (l),D |X(y(l), d |x;βl, γ)

=

∫

Θ1l

∫

Θ2

fY (l) |X,D(y(l) |x, d;πl)fD |X(d |x; η)pTl |S(πl | η, βl)pS(η | γ) dπl dη.

It is given by

L(l)(βl, γ) =

K
∏

k=1

c(l)(k;βl, γ)
Γ(γ1(k) + γ2(k))

Γ(γ1(k))Γ(γ2(k))

Γ(γ̄1(k))Γ(γ̄2(k))

Γ(γ̄1(k) + γ̄2(k))
,

where c(l)(k;βl, γ) is in (23). The evaluation of this likelihood at any point (βl, γ) only requires

the calculation of one-dimensional numerical integrals (there are K of them), which can be done

by quadrature.

Suppose that γ1(k) and γ2(k) do not vary with k:

γ1(k) = γ1, γ2(k) = γ2 (k = 1, . . . ,K).

Then the (Type II) parameter space is

Λl = {(βl, γ) : β
(m)
lj ∈ R, j = 1, . . . , J ; m = 1, . . . , O; (γ1, γ2) ∈ R+ ×R+} = RJO ×R2

+,

which has dimension JO + 2. A prior distribution on Λl can be combined with the (Type II)

likelihood function L(l)(βl, γ) to obtain a posterior distribution. Then we can integrate

M
(l)
j (βl, γ) ≡ E(Tlj(τ) |Z

(l) = z(l);βl, γ)

with respect to this posterior distribution to obtain

E(Tlj(τ) |Z
(l) = z(l)) (l = 0, 1),

and the decision rule

choose Dα = 1 if

J
∑

j=1

u1(j)E(T1j (τ) |Z
(1) = z(1)) >

J
∑

j=1

u0(j)E(T0j (τ) |Z
(0) = z(0)). (25)
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A potential approximation to this decision rule can be based on the maximum-likelihood (Type II)

estimate of (βl, γ):

(β̂l, γ̂
(l)) = arg max

(βl,γ)∈Λl

L(l)(βl, γ) (l = 0, 1).

The approximation is

choose Dα = 1 if

J
∑

j=1

u1(j)π̂1j(τ) >

J
∑

j=1

u0(j)π̂0j(τ) (26)

with π̂lj(τ) = M
(l)
j (β̂l, γ̂

(l)).

Another possibility is to use a separate limited-information approach for S, basing its posterior

distribution on (X,D), so that

p̄S(η |x, d; γ) =

K
∏

k=1

hBe(η(k) | γ1 + n(1, k), γ2 + n(0, k)),

where

n(l, k) =

N
∑

i=1

1(di = l)1(xi = k).

We can form a Type II likelihood function for γ:

gD |X(d |x; γ) =

∫

Θ2

fD |X(d |x; η)pS(η |x; γ) dη

=

K
∏

k=1

Γ(γ1 + γ2)

Γ(γ1)Γ(γ2)

Γ(γ1 + n(1, k))Γ(γ2 + n(0, k))

Γ(γ1 + γ2 + n(1, k) + n(0, k))
.

The maximum-likelihood (Type II) estimate of γ = (γ1, γ2) is

γ̂ = arg max
γ∈R2

+

gD |X(d |x; γ). (27)

Given γ, we can form a Type II likelihood function for βl, based on the distribution of Y (l) condi-

tional on (X,D):

L(l)(βl) = gY (l) |X,D(y(l) |x, d;βl, γ)
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=

∫

Θ1l

∫

Θ2

fY (l) |X,D(y(l) |x, d;πl)pTl |S(πl | η, βl)p̄S(η |x, d; γ) dπl dη

=

K
∏

k=1

c(l)(k;βl, γ) (l = 0, 1),

where c(l)(k;βl, γ) is in (23). Set γ = γ̂ from (27) and obtain

β̂∗
l = arg max

βl∈RJO

K
∏

k=1

c(l)(k;βl, γ̂).

Then a potential approximation for the decision rule in (25) is

choose Dα = 1 if
J

∑

j=1

u1(j)M
(1)
j (β̂∗

1 , γ̂) >
J

∑

j=1

u0(j)M
(0)
j (β̂∗

0 , γ̂). (28)

4. SELECTION ON UNOBSERVABLES

Now we are going to drop the assumption of selection on observables. For individual i, we

observe a vector of discrete variables, which is coded as Wi ∈ {1, . . . ,M}. Wi will play the role

of an instrumental variable. As before, there is assignment to one of two treatments: Di ∈ {0, 1}.

There is a discrete outcome, which is coded as Yi ∈ {1, . . . , J}. We shall simplify notation by

dropping the X variable. Either there are no observable characteristics for the data individuals,

or we work with the subset that match the decision maker. Using individuals who do not match

the decision maker involves issues similar to those discussed above. Let Zi = (Wi,Di, Yi) and let

Z = (Z1, . . . , ZN ). So Z is observed.

Let W = (W1, . . . ,WN ). We shall condition throughout on W , so its distribution will not play

a role. The model for treatment assignment uses a latent variable V = (V1, . . . , VN ). Conditional

on W = w = (w1, . . . , wN ), we have

Di = 1(λ(wi) − Vi > 0),
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where the function λ maps {1, . . . ,M} into [0, 1] and the Vi are independently and identically

distributed with a uniform distribution on the interval [0, 1]. So the distribution for Di conditional

on W is

Pr(Di = 1 |W = w;λ) = 1 − Pr(Di = 0 |W = w;λ) = Pr(Vi ≤ λ(wi)) = λ(wi).

This distribution is unrestricted if λ is unrestricted, so that λ(m) can be any value in the interval

[0, 1] (m = 1, . . . ,M).

For example, we could have

Di = 1(c(wi) + Ei[u1(Yi1)] − Ei[u0(Yi0)] > 0),

where the operator Ei provides the expectation with respect to the personal (subjective) distribution

of individual i, and the function c maps {1, . . . ,M} into R. Let Ui = Ei[u0(Yi0)]−Ei[u1(Yi1)] and

suppose that (U1, . . . , UN ) are independent and identically distributed with distribution function

G, which is continuous and strictly increasing. Then

Vi = G(Ui), λ(wi) = G(c(wi)), (29)

and we want to allow Vi to be correlated with (Yi0, Yi1).

We shall assume that Wi is randomly assigned in that (Yi0, Yi1, Vi) is independent of Wi. Then

(Yi0, Yi1) is independent of (Wi,Di) conditional on Vi. As before, in order to form a likelihood

function, we do not need the joint distribution of (Yi0, Yi1), just the two margins. We shall use the

following model:

Pr(Yi0 = j |Wi = wi,Di = di, Vi = vi;β) = h0j(vi;β),

Pr(Yi1 = j |Wi = wi,Di = di, Vi = vi;β) = h1j(vi;β) (j = 1, . . . , J),

where h0j(· ;β) and h1j(· ;β) are functions that map [0, 1] into [0, 1] and satisfy

J
∑

j=1

h0j(v;β) = 1,

J
∑

j=1

h1j(v;β) = 1 (v ∈ [0, 1]).
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The functions h0j and h1j are given up to a parameter β. We could specify

hl1(v;β) =
1

1 +
∑J

j=2 exp(
∑O

k=1 β
(k)
lj r

(k)
lj (v))

, (30)

hlj(v;β) =
exp(

∑O
k=1 β

(k)
lj r

(k)
lj (v))

1 +
∑J

j=2 exp(
∑O

k=1 β
(k)
lj r

(k)
lj (v))

(l = 0, 1; j = 2, . . . , J),

where r
(k)
lj (·) is a given function mapping [0, 1] into R. For example, we could have a polynomial,

with r
(k)
lj (v) = vk−1. If O is sufficiently large, then this specification can be very flexible. The

parameter space is Θ = Θ1 × Θ2 with

Θ1 = {β : βlj = (β
(1)
lj , . . . , β

(O)
lj ) ∈ RO; l = 0, 1; j = 2, . . . , J} = R2O(J−1),

Θ2 = {λ : λ(m) ∈ [0, 1], m = 1, . . . ,M} = [0, 1]M .

Let z denote the realization of the random variable Z, with zi = (wi, di, yi), and let θ = (β, λ).

The likelihood function for the observation Z is

fZ |W (z |w; θ) = Pr(Z = z |W = w; θ) (31)

=
N
∏

i=1

∫ 1

0

Pr(Yi = yi |Wi = wi,Di = di, Vi = vi;β) · Pr(Di = di |Wi = wi, Vi = vi;λ) dvi

=

N
∏

i=1

∫ 1

0

( J
∏

j=1

h0j(vi;β)1(di=0)1(yi=j)h1j(vi;β)1(di=1)1(yi=j)

×
M
∏

m=1

1(λ(m) − vi ≤ 0)1(di=0)1(wi=m)1(λ(m) − vi > 0)1(di=1)1(wi=m)

)

dvi

=

1
∏

l=0

M
∏

m=1

J
∏

j=1

q(l,m, j;β, λ)n(l,m,j),

where

q(0,m, j;β, λ) =

∫ 1

λ(m)

h0j(v;β) dv,

q(1,m, j;β, λ) =

∫ λ(m)

0

h1j(v;β) dv,
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and

n(l,m, j) =
N

∑

i=1

1(di = l)1(wi = m)1(yi = j).

Suppose that the decision maker α is exchangeable with the data individuals in that the

following sequence of random variables is exchangeable:

(Yα0, Yα1), (Y10, Y11), . . . , (YN0, YN1).

Then the marginal distributions of Yi0 and Yi1 are relevant for the decision maker, and we shall

assume that:

Pr(Yα0 = j |β) = Pr(Yi0 = j |β) =

∫ 1

0

h0j(v;β) dv,

Pr(Yα1 = j |β) = Pr(Yi1 = j |β) =

∫ 1

0

h1j(v;β) dv.

Then, conditional on β, the decision rule is to choose Dα = 1 if

J
∑

j=1

u1(j)

∫ 1

0

h1j(v;β) dv >
J

∑

j=1

u0(j)

∫ 1

0

h0j(v;β) dv. (32)

More generally, the decision maker could use some other distribution Qα and the decision rule

choose Dα = 1 if
J

∑

j=1

u1(j)

∫ 1

0

h1j(v;β) dQα(v) >
J

∑

j=1

u0(j)

∫ 1

0

h0j(v;β) dQα(v). (33)

Suppose that i has a personal distribution H for (Yi0, Yi1, Ri), observes the signal Ri that is

related to (Yi0, Yi1), and then forms Ei[u0(Yi0)] and Ei[u1(Yi1)] by using H to form the conditional

distribution of Yi0 given Ri and the conditional distribution of Yi1 given Ri. Suppose this holds

for i = 1, . . . , N and for the decision maker i = α, with the same personal distribution H. Before

conditioning on Z, the decision maker observes Rα and forms Eα[u0(Yα0)] and Eα[u1(Yα1)] by

using H to form the conditional distribution of Yα0 given Rα and the conditional distribution of

Yα1 given Rα. Suppose that (Yi0, Yi1, Ri) are independent and identically distributed according to
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some (unknown) distribution P , for i = α, 1, . . . , N . This implies that Ui ≡ Ei[u0(Yi0)]−Ei[u1(Yi1)]

is independent and identically distributed, and as above we let G denote the distribution function

and assume it is continuous and strictly increasing. Let Vi = G(Ui) for i = α, 1, . . . , N . Then,

conditional on P , we have (Yi0, Yi1, Vi) independent and identically distributed, with Vi uniform

on [0, 1]. P implies a conditional distribution for (Yi0, Yi1) given Vi, and we assume, as above, that

this implies

Pr(Yi0 = j |Vi = vi;β) = h0j(vi;β), (34)

Pr(Yi1 = j |Vi = vi;β) = h1j(vi;β) (i = α, 1, . . . , N)

for some β ∈ Θ1. Then Qα would be the decision maker’s posterior distribution for Vα. Note that

Vα depends upon Uα and G. The decision maker knows Uα but he does not know G. Furthermore,

G does not appear in the likelihood function, so there is no direct information on G in the data. In

addition, this approach requires a detailed specification of what people knew and when they knew

it. So a limited information approach may be appropriate, simply setting Qα equal to the uniform

distribution.

A prior distribution for (β, λ) can be combined with the likelihood function in (31) to obtain a

posterior distribution. The corresponding decision rule is obtained by integrating both sides of the

inequality in (32) with respect to the posterior distribution for β. In general the prior distribution

will not be dominated by the data. Nevertheless, it may be useful to have a reference decision rule

that does not involve a numerical specification for the prior. One way to do this is to replace β in

(32) by β̂, a maximum-likelihood estimate:

(β̂, λ̂) = arg max
(β,λ)∈Θ1×Θ2

fZ |W (z |w; (β, λ)).

Note that
J

∑

j=1

q(0,m, j;β, λ) = 1 − λ(m),

J
∑

j=1

q(1,m, j;β, λ) = λ(m).

Then q(l,m, j;β, λ) ≥ 0 and

1
∑

l=0

J
∑

j=1

q(l,m, j;β, λ) = 1
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imply that

1
∏

l=0

J
∏

j=1

q(l,m, j;β, λ)n(l,m,j) ≤
1

∏

l=0

J
∏

j=1

[n(l,m, j)/n(m)]n(l,m,j) (m = 1, . . . ,M),

where

n(m) =

1
∑

l=0

J
∑

j=1

n(l,m, j).

Hence

max
(β,λ)∈Θ1×Θ2

fZ |W (z |w; (β, λ)) ≤
1

∏

l=0

M
∏

m=1

J
∏

j=1

[n(l,m, j)/n(m)]n(l,m,j).

So, if we can solve the following equations, we will obtain maximum-likelihood estimates:

q(l,m, j; β̂, λ̂) = n(l,m, j)/n(m) (l = 0, 1; m = 1, . . . ,M ; j = 1, . . . , J).

An equivalent set of equations is

λ̂(m) =
n(1,m)

n(m)
,

q(0,m, j; β̂, λ̂)

1 − λ̂(m)
=

1

1 − λ̂(m)

∫ 1

λ̂(m)

h0j(v; β̂) dv =
n(0,m, j)

n(0,m)
,

q(1,m, j; β̂, λ̂)

λ̂(m)
=

1

λ̂(m)

∫ λ̂(m)

0

h1j(v; β̂) dv =
n(1,m, j)

n(1,m)
,

where

n(l,m) =

J
∑

j=1

n(l,m, j) (l = 0, 1; m = 1, . . . ,M ; j = 1, . . . , J).

Here we obtain λ̂(m) by forming the subgroup whose value for the instrumental variable is Wi = m,

and then calculate the fraction of this subgroup for which the treatment assignment is Di = 1. Then

form the subgroup withWi = m and Di = l, and calculate the fraction of this subgroup with Yi = j.

With λ̂(m) already determined, we try to solve for β̂ by matching the model’s probabilities to these

fractions.
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Consider, for example, the specification for hlj in (30). We set λ̂(m) = n(1,m)/n(m) and try

to solve

1

1 − λ̂(m)

∫ 1

λ̂(m)

exp(
∑O

k=1 β̂
(k)
0j r

(k)
0j (v))

1 +
∑J

j=2 exp(
∑O

k=1 β̂
(k)
0j r

(k)
0j (v))

dv =
n(0,m, j)

n(0,m)
,

1

λ̂(m)

∫ λ̂(m)

0

exp(
∑O

k=1 β̂
(k)
1j r

(k)
1j (v))

1 +
∑J

j=2 exp(
∑O

k=1 β̂
(k)
1j r

(k)
1j (v))

dv =
n(1,m, j)

n(1,m)
(m = 1, . . . ,M ; j = 2, . . . , J).

For each l ∈ {0, 1} and j ∈ {2, . . . , J} there are M equations and O unknowns in (β̂
(1)
lj , . . . , β̂

(O)
lj ).

So we do not expect a unique solution when O is greater than M . The nonuniqueness does not

affect how well we “fit” the data, but different solutions for β imply different decision rules.

One possibility is to set β
(k)
lj = 0 for M < k ≤ O. Then the prior is reflected in a careful choice

of the basis elements r
(k)
lj (·) for k = 1, . . . ,M . It may be useful to consider prior distributions

on the coefficients β
(k)
lj , particularly if some of the cell counts n(l,m, j) are small. Also, a prior

distribution on the coefficients could downweight the contribution of later basis elements, without

the need for a sharp cutoff that sets β
(k)
lj = 0 for k > M . We shall leave the development of such

prior distributions on the coefficients for future work. The main point here is that given the lack

of identification, there will be aspects of the prior that are not dominated by the data.

To get a sense of the extrapolation that the model provides, we can make a connection with the

role of compliers, always-takers, and never-takers in the local average treatment effect developed

by Imbens and Angrist (1994). Note that

Pr(Di = 0, Yi = j |Wi = m;β, λ) =

∫ 1

λ(m)

h0j(v;β) dv.

Suppose that λ(m′) < λ(m′′). Then we have

Pr(Di = 0, Yi = j |Wi = m′;β, λ) − Pr(Di = 0, Yi = j |Wi = m′′;β, λ)

Pr(Di = 0 |Wi = m′;λ) − Pr(Di = 0 |Wi = m′′;λ)
(35)

=
1

λ(m′′) − λ(m′)

∫ λ(m′′)

λ(m′)

h0j(v;β) dv

= Pr(Yi0 = j |λ(m′) < Vi < λ(m′′);β, λ).
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The condition that λ(m′) < Vi < λ(m′′) corresponds to the compliers. There is a direct estimate

of the probability that Yi0 = j for compliers, in which the probabilities of observable events in (35)

are replaced by sample frequencies:

n(0,m′,j)
n(m′) − n(0,m′′,j)

n(m′′)

n(0,m′)
n(m′) − n(0,m′′)

n(m′′)

.

We also have

Pr(Yi = j |Di = 0,Wi = m′′;β, λ) =
1

1 − λ(m′′)

∫ 1

λ(m′′)

h0j(v;β) dv

= Pr(Yi0 = j |λ(m′′) < Vi;β, λ).

The condition that λ(m′′) < Vi corresponds to the never-takers. There is a direct estimate of the

probability that Yi0 = j for never-takers, using sample frequencies :

n(0,m′′, j)

n(0,m′′)
.

No direct estimate, however, is available for

1

λ(m′)

∫ λ(m′)

0

h0j(v;β) dv, (36)

which is the probability that Yi0 = j for always-takers. The role of the model is to provide an

extrapolation for this term. An estimate of β is obtained by fitting the sample frequencies, and

then h0j(v; β̂) can be used to evaluate the integral in (36). Likewise, no direct estimate is available

for

1

1 − λ(m′′)

∫ 1

λ(m′′)

h1j(v;β) dv, (37)

which is the probability that Yi1 = j for never-takers. The model provides an extrapolation for this

term, using h1j(v; β̂) to evaluate the integral in (37).

31



5. CONNECTIONS WITH THE LITERATURE

Dehejia (2005) applies Bayesian decision theory to program evaluation. The Greater Avenues

for Independence (GAIN) program began operating in California in 1986 with the aim of increas-

ing employment and earnings among welfare (AFDC) recipients. Dehejia considers a caseworker

choosing whether to assign a welfare recipient into GAIN or AFDC. The caseworker knows a list of

characteristics of the individual including age, ethnicity, educational attainment, score on reading

and mathematics tests, sex, an indicator for previous participation in other training programs, and

pre-assignment earnings history. The caseworker has access to data on welfare recipients in which

half were randomly assigned into the GAIN program and the other half were assigned to a control

group that was prohibited from receiving GAIN services. An earnings outcome is observed for the

treatment group and the control group, as well as the list of characteristics. So the caseworker’s

decision problem resembles the one I have developed in Section 2, using random assignment. De-

hejia uses diffuse priors for the parameters of his model. In the discrete data case I consider, this

could correspond to the decision rule in (12). Dehejia goes on to consider the implications for

social welfare of different assignment mechanisms, such as making all assignments to GAIN, or all

to AFDC, or having the caseworker make assignments for each individual based on comparing the

individual’s (predictive) distribution of future earnings under GAIN with his distribution of future

earnings under AFDC.

Manski (2004) considers a planner who wants to maximize population mean welfare. The

planner observes a list of discrete covariates for each person and can design treatment rules that

differentiate between persons based on their covariate values. The planner has access to a data set

in which individuals were randomly assigned a treatment, and values were recorded for covariates,

treatment, and outcome. Manski focuses on conditional empirical success rules, in which conditional

expectations are replaced by sample averages and treatments are chosen to maximize empirical

success. He notes that conditioning tends to diminish the statistical precision of sample averages

and that conditioning on only some part of the observed covariates may be preferable when making
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treatment choices. He uses a minimax regret criterion and develops bounds which give sufficient

conditions on sample size in order for it to be optimal to condition treatment choices on all observed

covariates. This corresponds to my decision rule in (12), which does not use Good’s (1965) Type

II likelihood function. Stoye (2009) obtains exact results on minimax regret rules. In assigning

treatment to an individual with covariate value x, only the subset of the data which matches that

covariate value is used, no matter how small the subset. As the number of values that the discrete

covariate can take on increases, a minimax regret rule approaches a no data rule.

Angrist and Hahn (2004) are motivated by the result in Hahn (1998) that knowledge of the

propensity score does not lower the semiparametric efficiency bound for the average treatment effect.

They say that (page 58): “In short, conventional asymptotic arguments would appear to offer no

justification for anything other than full control for covariates in estimation of average treatment

effects.” They argue (page 58) that “...because covariate cells may be small or empty, in finite

samples there is a cost to covariate matching, even if covariates are discrete and exact matching is

feasible.” They work with a multinomial covariate that takes K possible values, and they develop

an alternative asymptotic approximation where cell sizes are fixed but the number of cells becomes

infinitely large. They refer to this as “panel asymptotics,” because of the similarity to large cross-

section, small time-series asymptotics used with panel data models. Their treatment-assignment

mechanism has a constant propensity score, so random assignment. They consider an estimator

with full control for covariates (covariate matching) and one which ignores the covariates (matching

on the propensity score, which is constant). In analogy with random effects estimators for panel

data, they also consider a linear combination of these estimators, that is more efficient than either

one under their asymptotic sequence. Their focus is on estimating an average treatment effect,

whereas the decision problem in my paper is more related to a treatment effect for a particular

covariate cell. Nevertheless, their panel data analogy is relevant for my paper and the Type II

likelihood function can be given a random effects interpretation, as I have done in Section 3.2.

Hirano and Porter (2009) develop an asymptotic theory explicitly for treatment choice. They

establish an asymptotic optimality for Manski’s (2004) conditional empirical success rule, in the
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case where a multinomial covariate takes on K possible values, where K is fixed as sample size

N tends to infinity. It would be of interest to have results here under the Angrist-Hahn (2004)

asymptotic sequence, where cell sizes are fixed and K tends to infinity.

Rubin (1978) discusses the role of randomization in Bayesian inference for causal effects. In the

case of selection on observables, where the treatment assignment Di is independent of the decision

outcomes (Yi0, Yi1) conditional on the measured characteristics Xi (as in (4)), it follows from

Rosenbaum and Rubin (1983) that this independence holds conditional on the propensity score.

Rubin (1985) notes that (page 463): “It has often been argued that randomization probabilities

in surveys or experiments are irrelevant to a Bayesian statistician.” This issue is also discussed in

Robins and and Ritov (1997). Rubin (1985) argues for a limited information approach in which

the analysis proceeds as if only the propensity score and not Xi had been observed. Robins and

Ritov (1997) relate the use of the propensity score to a minimax criterion. They have a discussion

of dependent priors (Section 6) that relates to the dependence on η that I allow for in specifying a

prior for π in (18). Sims (2006) discusses an example from Wasserman (2004). The arguments that

Sims gives for dependence in Section III of his paper (Dependence: Direct Approach) are similar

to my motivation for allowing for dependence on η in the prior for π when there is selection on

observables. Sims (2006) also discusses a limited information approach.

The latent variable model of selection in Section 4 follows Heckman and Vytlacil (1999, 2005).

The connection with the Imbens and Angrist (1994) model is developed in Vytlacil (2002). Manski

(1990, 1996) discusses the lack of point identification for average treatment effects, and Manski

(2000) discusses implications for decision making.

My use of expected utility maximization is motivated by the Savage (1972) axioms for rational

behavior. Some of the decision rules I have provided can be used as “automatic” reference rules in a

range of contexts, without needing any additional specification. So risk functions can be calculated

for these rules. Chamberlain (2000) discusses the role of risk robustness and regret risk in decision

making.
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