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ABSTRACT

This paper applies some general concepts in decision theory to a simple instrumental variables
model. There are two endogenous variables linked by a single structural equation; k of the exoge-
nous variables are excluded from this structural equation and provide the instrumental variables
(IV). The reduced-form distribution of the endogenous variables conditional on the exogenous vari-
ables corresponds to independent draws from a bivariate normal distribution with linear regression
functions and a known covariance matrix. A canonical form of the model has parameter vector
(ρ, φ, ω), where φ is the parameter of interest and is normalized to be a point on the unit circle.
The reduced-form coefficients on the instrumental variables are split into a scalar parameter ρ and
a parameter vector ω, which is normalized to be a point on the (k − 1)-dimensional unit sphere;
ρ measures the strength of the association between the endogenous variables and the instrumental
variables, and ω is a measure of direction. A prior distribution is introduced for the IV model.
The parameters φ, ρ, and ω are treated as independent random variables. The distribution for φ
is uniform on the unit circle; the distribution for ω is uniform on the unit sphere with dimension
k − 1. These choices arise from the solution of a minimax problem. The prior for ρ is left general.
It turns out that given any positive value for ρ, the Bayes estimator of φ does not depend upon
ρ; it equals the maximum-likelihood estimator. This Bayes estimator has constant risk; since it
minimizes average risk with respect to a proper prior, it is minimax.

The same general concepts are applied to obtain confidence intervals. The prior distribution
is used in two ways. The first way is to integrate out the nuisance parameter ω in the IV model.
That gives an integrated likelihood function with two scalar parameters, φ and ρ. Inverting a
likelihood ratio test, based on the integrated likelihood function, provides a confidence interval for
φ. This lacks finite sample optimality, but invariance arguments show that the risk function only
depends upon ρ and not on φ or ω. The second approach to confidence sets aims for finite sample
optimality by setting up a loss function that trades off coverage against the length of the interval.
The automatic uniform priors are used for φ and ω, but a prior is also needed for the scalar ρ, and
no guidance is offered on this choice. The Bayes rule is a highest posterior density set. Invariance
arguments show that the risk function only depends upon ρ and not on φ or ω. The optimality
result combines average risk and maximum risk. The confidence set minimizes the average–with
respect to the prior distribution for ρ–of the maximum risk, where the maximization is with respect
to φ and ω.
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1. INTRODUCTION

I shall apply some general concepts in decision theory to a simple instrumental variables model.

There are two endogenous variables linked by a single structural equation; k of the exogenous vari-

ables are excluded from this structural equation and provide the instrumental (IV) variables. The

reduced-form distribution of the endogenous variables conditional on the exogenous variables corre-

sponds to independent draws from a bivariate normal distribution with linear regression functions

and a known covariance matrix. Section 2 sets up the model and puts it in a canonical form that

will simplify derivations. In the canonical form, there is a key parameter of interest, φ, which

corresponds to the ratio of coefficients of the two endogenous variables in the single structural

equation. The normalization is that φ is a point on the unit circle. The reduced-form coefficients

on the instrumental variables are split into a scalar parameter ρ and a parameter vector ω, which

is normalized to be a point on the (k − 1)-dimensional unit sphere; ρ measures the strength of the

association between the endogenous variables and the instrumental variables, and ω is a measure

of direction. Section 3 lays out the basic elements of a statistical decision problem, which combine

to provide the risk function. Section 4 provides a simple version of the complete class theorem,

relating admissible decision rules to Bayes decision rules, which minimize average risk.

Section 5 relates the minimization of average risk to the minimization of posterior expected

loss, conditional on the sample. This provides a link between Bayesian statistics and frequentist

decision theory. A prior distribution is introduced for the IV model. The parameters φ, ρ, and ω

are treated as independent random variables. The distribution for φ is uniform on the unit circle;

the distribution for ω is uniform on the unit sphere with dimension k− 1. These choices arise from

the solution of a minimax problem. The prior for ρ is left general. It turns out that given any

positive value for ρ, the Bayes estimator of φ does not depend upon ρ, and this Bayes estimator
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equals the maximum-likelihood estimator. So, for a particular prior distribution and loss function,

the maximum-likelihood estimator has a finite sample optimality property in this simple IV model.

This optimality, however, does not extend to all the parameters. There is an even simpler

model, a version of the k-means model of Stein (1956, 1959) and James and Stein (1961), in which

the parameters consist of the scalar ρ and the point ω on the unit sphere with dimension (k − 1).

The maximum-likelihood estimator of ρ is not admissible in this model. The problem becomes more

serious as the dimension of the parameter space increases. Alternative estimators are considered,

including a Bayes estimator based on a uniform prior distribution for ω. Now, however, the prior

distribution for ρ matters, and there is no specific guidance on the choice of the prior distribution

for ρ. The risk function simplifies, so that it only depends upon ρ and not on ω.

A Bayes decision rule requires a prior distribution on the parameter space. A careful, thoughtful

specification for this distribution may be sufficiently costly that one is interested in alternative

criteria for working with a risk function. An alternative to average risk is maximum risk. Section 6

develops the minimax criterion and its relationship to invariance. The statistical decision problem,

as developed in Section 3, involves three spaces: sample space, parameter space, and action space.

Invariance involves transformations on each of these spaces and leads to a simplification of the

risk function, generalizing the result for the k-means model in Section 5. This simplification of

the risk function leads to an optimality result that combines the average risk and maximum risk

criteria. The Bayes estimator in the k-means model minimizes the average—with respect to the

prior distribution for ρ—of the maximum, over ω, risk. This estimator requires paying the cost of

constructing a prior distribution for ρ. Since ρ is a scalar, perhaps the cost will not be too high.

For ω, which may be of high dimension, the “automatic” prior is used (uniform on the unit sphere

of dimension k − 1). In the IV model, the prior distribution for ρ turns out not to matter for

point estimation of φ. Only the “automatic” uniform priors for φ (on the unit circle) and for ω (on

the unit sphere) are used. The resulting Bayes estimator for φ, which equals the ML estimator, is

optimal in the minimax sense.

Section 7 considers confidence sets. The prior distribution is used in two ways. The first
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way is to integrate out the nuisance parameter ω in the IV model. That gives an integrated

likelihood function with two scalar parameters, φ and ρ. Inverting a likelihood ratio test, based

on the integrated likelihood function, provides a confidence interval for φ. This lacks finite sample

optimality but the invariance arguments show that the risk function only depends upon ρ and not

on φ or ω. It follows that the integrated likelihood function can be used to evaluate the risk of this

procedure, even though risk is defined with respect to the original parameter space that includes

ω. This suggests that large-sample approximations will be more accurate using the integrated

likelihood function, since the dimension of the parameter space is reduced from k + 1 to 2.

The second approach to confidence sets aims for finite sample optimality by setting up a loss

function that trades off coverage against the length of the interval. The automatic uniform priors

are used for φ and ω, but a prior is also needed for the scalar ρ, and, as before, no guidance is

offered on this choice. The Bayes rule is a highest posterior density set. Invariance arguments

show that the risk function only depends upon ρ and not on φ or ω. The optimality result again

combines average risk and maximum risk. The confidence set minimizes the average–with respect

to the prior distribution for ρ–of the maximum risk, where the maximization is with respect to φ

and ω.

Section 8 considers hypothesis tests. The null hypothesis is that φ ∈ A, where A is a given

subset of the unit circle. We can use the automatic uniform prior for ω but not for φ. For example,

if A is a discrete set then the uniform prior assigns it zero probability, whereas the null hypothesis

must be assigned positive prior probability in order to obtain a nontrivial Bayes test. So we must

pay the cost of constructing prior distributions for φ and ρ. Then the risk function for the Bayes test

depends only upon φ and ρ and not on ω. The Bayes test minimizes the average—with respect to

the prior distribution for φ and ρ—of the maximum, over ω, risk. If the primary goal is a confidence

interval, then one could consider inverting the Bayes test to find the set of null hypotheses for φ

that are not rejected. This would be different from the approach to optimal confidence intervals

in Section 7; each of the null hypotheses would involve a different prior distribution for φ, whereas

the Bayes interval in Section 7 uses a single prior distribution for φ, which is uniform on the unit
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circle.

I have tried to make the paper self-contained. The theory I draw on is essentially contained

in Ferguson (1967), which owes much to Wald (1950). The finite-sample optimality results for the

IV model are to my knowledge new. There is some overlap in the Section 8 result on hypothesis

tests with independent work by Andrews, Moreira, and Stock (2006). The first version of the con-

fidence interval procedure in Section 7, which inverts a likelihood ratio test based on the integrated

likelihood function, is in Chamberlain and Imbens (2004).

Gilboa and Schmeidler (1989) provide axioms that are related to Wald’s minimax risk criterion.

Hansen, Sargent, and coauthors use minimax ideas in their work on robust estimation and control;

see, for example, Hansen, Sargent, Turmuhambetova, and Williams (2005) and Hansen and Sargent

(2005). Manski (2004) uses a minimax regret criterion in his work on statistical treatment rules.

Sims (2001) discusses pitfalls in a minimax approach to model uncertainty, but does see a potential

use for automatic procedures to generate priors and associated decision rules.

2. THE MODEL

This section sets up the basic model. Suppose that we have a sample of individuals (i =

1, . . . , n) with the following specification for a regression function:

E(Yi2 |xi1, xi2, Yi1, Ai) = xi1α1 + γYi1 + α2Ai.

Here Yi1, Yi2, and Ai are scalars; xi1 and xi2 are row vectors, α1 is a column vector, and γ and α2

are scalars. We are interested in the coefficient γ on Yi1. The specification imposes an exclusion

restriction: it assumes that xi2 does not help in predicting Yi2, conditional on xi1, Yi1, and Ai. The

regression function for Yi1 conditional on xi1, xi2, and Ai is not restricted, apart from linearity:

E(Yi1 |xi1, xi2, Ai) = xi1α3 + xi2π
∗
1 + α4Ai.

The regression function for Ai conditional on xi1 and xi2 is restricted to exclude xi2:

E(Ai |xi1, xi2) = xi1α5.
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Here α3, π
∗
1 , and α5 are column vectors, and α4 is a scalar.

There is a missing data problem: Ai is not observed, and so, for example, estimation based on a

least-squares regression of Y2 on x1, Y1, and A is not feasible. We can, however, exploit the exclusion

of x2 from the regression functions for Y2 and A. The motivation for the exclusion restriction could

be based on random assignment. Suppose that Yi2 is a measure of earnings for individual i, Yi1

is a measure of his education, and Ai is a measure of ability. The variables in x1 could include a

constant, age, and measures of family background. The variables in x2 reflect a randomly assigned

encouragement (subsidy) for the individual to obtain more education. The exclusion restriction

is that the encouragement itself does not help to predict earnings if we condition on the actual

education attained (and on x1 and A); also the encouragement variables do not help to predict

ability (given x1), due to the random assignment.

Consider the regression functions of Yi1 and Yi2 conditional on xi1 and xi2, so that the latent

variable Ai is not being used:

E(Yi1 |xi1, xi2) = E[E(Yi1 |xi1, xi2, Ai) |xi1, xi2]

= xi1α3 + xi2π
∗
1 + xi1α5α4

= xi1α
∗
1 + xi2π

∗
1

(with α∗1 = α3 + α5α4). Likewise,

E(Yi2 |xi1, xi2) = xi1α
∗
2 + xi2π

∗
2 ,

where

π∗2 = γπ∗1

(and we shall not need the formula for α∗2). The key point here is that these regression functions

only involve observed variables, and we can obtain γ from the xi2 coefficient vectors π∗1 and π∗2 ,

provided that π∗1 6= 0. We shall refer to the variables in xi2 as instrumental variables.

Suppose that there are k variables in xi2. Let Π∗ = (π∗1 π∗2 ). Π∗ is k × 2 but has rank at

most equal to one, since π∗2 equals a scalar (γ) times π∗1 . It will be useful to express Π∗ as the
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product of a column vector and a row vector:

Π∗ = ω∗φ∗′,

where ω∗ is k × 1 and φ∗ is 2× 1; for example:

ω∗ = π∗1 , φ∗ =

(

1
γ

)

.

This decomposition is not unique, since we can multiply ω∗ by a nonzero constant c and multiply φ∗

by c−1. Nevertheless, given φ∗ up to scale, we can recover γ from the ratio of the second component

of φ∗ divided by the first component: γ = φ∗2/φ
∗
1. (If φ∗1 = 0 then π∗1 = 0; in that case we cannot

recover γ from π∗1 and π∗2 .)

Notation:

Y1 =





Y11
...
Yn1



 , Y2 =





Y12
...
Yn2



 , X1 =





x11
...
xn1



 , X2 =





x12
...
xn2



 .

A classical regression model for (Y1, Y2) conditional on (X1, X2) has the following form:

Y1 = X1α
∗
1 +X2π

∗
1 + U1

Y2 = X1α
∗
2 +X2π

∗
2 + U2,

where the disturbances (U1, U2) have the following multivariate normal distribution:

(

U1
U2

)

| (X1, X2) ∼ N (0,Σ⊗ In).

See, for example, Goldberger (1991). (Here the disturbances are just notation for the difference be-

tween a variable and its conditional expectation: U1 = Y1−E(Y1 |X1, X2), U2 = Y2−E(Y2 |X1, X2).

The role of the latent variable A in the missing data problem is quite different.) Consider estimat-

ing π∗1 and π∗2 with the coefficient vectors on X2 in the least-squares regressions of Y1 and Y2 on

(X1, X2). Using the residual regression result (Goldberger, Chapter 17), we can write this as

π̂∗ =

(

π̂∗1
π̂∗2

)

= (I2 ⊗ (X̃ ′2X̃2)
−1X̃ ′2)

(

Y1
Y2

)

,
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where X̃2 is formed from the residuals in least-squares regressions of the columns of X2 on X1:

X̃2 = (In −X1(X ′1X1)−1X ′1)X2.

The distribution of π̂∗ conditional on (X1, X2) is

π̂∗ |X1, X2 ∼ N (π∗,Σ⊗ (X̃ ′2X̃2)
−1),

where

π∗ =

(

π∗1
π∗2

)

=

(

φ∗1ω
∗

φ∗2ω
∗

)

= φ∗ ⊗ ω∗.

Even if the covariance matrix Σ is given, procedures based on standard large sample approxi-

mations can lead to poor inferences for γ.2 So I shall simplify the analysis by assuming that Σ is

given. There will still be problems in making inferences on γ, and we will have a simpler setting

in which to examine decision theoretic solutions to these problems. With Σ given, we can simplify

the model by choosing nonsingular matrices C and F such that

CΣC ′ = I2, F (X̃ ′2X̃2)
−1F ′ = Ik,

and defining

π = (C ⊗ F )π∗, π̂ = (C ⊗ F )π̂∗, φ = Cφ∗/||Cφ∗||, ω = Fω∗/||Fω∗||.

(||s|| denotes the norm of the column vector s: ||s|| = (s′s)1/2.) Then we have

π̂ ∼ N (Cφ∗ ⊗ Fω∗, CΣC ′ ⊗ F (X̃ ′2X̃2)−1F ′)

= N (ρφ⊗ ω, I2k),

where ρ = ||π|| is a scalar, φ is a 2× 1 vector with ||φ|| = 1, and ω is a k × 1 vector with ||ω|| = 1.

Note that φ and ω are not separately identified since (−φ) ⊗ (−ω) = φ ⊗ ω. The set {φ,−φ} is

determined from φ⊗ ω since ωjφ is determined, where ωj is a nonzero element of ω, and ||ωjφ|| =

|ωj |. The normalization of the structural coefficients to a point on the unit circle is used in Hillier

(1990).

2 See, for example, Bekker (1994) and Staiger and Stock (1997).
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3. BASIC ELEMENTS OF A STATISTICAL DECISION PROBLEM

This section sets up the basic concepts of frequentist decision theory. The IV model is used to

illustrate.

Sample Space: Z. The observation z is some point in the sample space Z. In the IV example, with

π̂ as the observation, the sample space is R2k.

Parameter Space: Θ. There is a set of distributions on the sample space that is indexed by a

parameter θ, which takes on values in the parameter space Θ.

Statistical Model: The statistical model is a mapping from the parameter space Θ into probability

distributions on the sample space Z. A point θ ∈ Θ is mapped into a distribution Pθ. Let P(Z)

denote the set of probability distributions on Z. The statistical model is the mapping P : Θ→ P(Z).

The model implies a set of distributions: {Pθ : θ ∈ Θ} (which is the image of the parameter space

under the mapping).

In the IV example, the parameter space is

Θ = {(ρ, φ, ω) : ρ ∈ R, ρ ≥ 0;φ ∈ R2, ||φ|| = 1;ω ∈ Rk, ||ω|| = 1}.

Let R+ denote the nonnegative real numbers, and let Sm denote the unit sphere of dimension m

in Rm+1:

Sm = {x ∈ Rm+1 : ||x|| = 1}.

Then we can write the parameter space for the IV model as

Θ = R+ × S1 × Sk−1.

With θ = (ρ, φ, ω), the distribution Pθ is N (ρφ⊗ ω, I2k).

Action Space: A. This is the set of actions (choices) available to the statistician. Consider estima-

tion of φ in the IV model. We shall say that a1 and a2 ∈ S1 are equivalent if a1 = a2 or a1 = −a2.

This is an equivalence relation, and it partitions S1 into equivalence classes. Let the action space

A consist of these equivalence classes.
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Loss Function: L: Θ × A → R. The loss function is a real-valued function defined on Θ × A. In

the IV model, a loss function for estimating φ could be

L((ρ, φ, ω), a) = 1− (φ′a)2.

Since ||φ|| = ||a|| = 1, φ′a is the cosine of the angle formed by φ and the estimate a. The minimal

value of the loss is zero, which is attained when a = ±φ. This loss function can be expressed in

terms of the original parametrization. Use

φ = Σ−1/2
(

1
γ

)

/b(γ)1/2, a = Σ−1/2
(

1
γ̂

)

/b(γ̂)1/2,

where

b(γ) =

(

1
γ

)′

Σ−1
(

1
γ

)

and b(γ̂) =

(

1
γ̂

)′

Σ−1
(

1
γ̂

)

.

Then some algebra gives

1− (φ′a)2 = det(Σ−1)(γ − γ̂)2/[b(γ)b(γ̂)].

This loss function differs from squared error, (γ − γ̂)2, by dividing by b(γ)b(γ̂). So it puts less

weight on large values of γ or γ̂.

Decision Rule: d:Z → A. A decision rule (or strategy) is a mapping from the sample space to the

action space. Given an observation z, the statistician chooses an action a = d(z) in A. The set of

feasible decision rules is D. In the IV model, the decision rule d could be some estimator for φ.

Risk Function: R : Θ×D → R. The risk function gives the expected loss from using the decision

rule d when the parameter value is θ:

R(θ, d) =

∫

L(θ, d(z)) dPθ(z).

An expectation notation is useful, and we shall use Eθ to denote expectation with respect to the

Pθ distribution. So if Z is a random variable that takes on values in the sample space Z, we can

write the risk function as

R(θ, d) = Eθ[L(θ, d(Z))].
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Example: Estimation with Quadratic Loss

Θ = R, A = R, L(θ, a) = (θ − a)2, Z = (Z1, ..., Zn)
i.i.d.∼ N(θ, 1)

Consider d(z) = cz̄, where 0 < c ≤ 1 and z̄ =
∑n
i=1 zi/n.

R(θ, d) = Eθ[θ − d(Z)]2 =
c2

n
+ (1− c)2θ2 (3.1)

4. ADMISSIBLE DECISION RULES AND THE COMPLETE CLASS THEOREM

This section follows Ferguson (1967, Chapter 2) in providing a simple version of the funda-

mental complete class theorem.

Given a statistical model P : Θ → P(Z) and a loss function L, what decision rule should the

statistician use? Consider solving mindR(θ, d) for the risk function in equation (3.1):

∂

∂c
[
c2

n
+ (1− c)2θ2] = 0 ⇒ c =

nθ2

1 + nθ2

—but this is not operational since θ is unknown. Or consider using the risk function to compare

two specific decision rules: d(z) = z̄, d∗(z) = 1
2 z̄:

R(θ, d) = 1/n, R(θ, d∗) =
1

4
(
1

n
+ θ2).

d is better if θ2 > 3/n; d∗ is better if θ2 < 3/n. This is the typical situation: risk functions for

different rules cross each other. We can, however, obtain a partial ordering through the concept of

admissibility.

Admissibility : a decision rule d is admissible if there exists no rule that (weakly) dominates d; i.e.,

no rule d∗ with R(θ, d∗) ≤ R(θ, d) for all θ ∈ Θ and R(θ, d∗) < R(θ, d) for some θ ∈ Θ. A decision

rule d is weakly admissible if there exists no rule d∗ that strongly dominates d; i.e., no rule d∗ with

R(θ, d∗) < R(θ, d) for all θ ∈ Θ.

In order to characterize the class of admissible rules, we shall consider putting a distribution

on the parameter space. A distribution on the parameter space is called a prior distribution.
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Average Risk: Given a prior distribution ψ on the parameter space Θ, the average risk of a decision

rule d is

R∗(ψ, d) =

∫

Θ

R(θ, d) dψ(θ),

which is formed by averaging over the different values for the parameter θ, using the weights

supplied by the prior distribution ψ.

Given a prior distribution ψ, we can try to find a decision rule that minimizes the average risk.

Bayes Rule: a decision rule dψ is Bayes with respect to the prior distribution ψ if

R∗(ψ, dψ) = inf
d∈D

R∗(ψ, d).

Theorem 4.1. If dψ is a Bayes rule with respect to the prior distribution ψ, then dψ is weakly

admissible.3

Proof . The proof is by contradiction. Suppose that there is a d∗ ∈ D that strictly dominates dψ,

so that

R(θ, d∗) < R(θ, dψ) for all θ ∈ Θ.

It follows that

R∗(ψ, d∗) =

∫

Θ

R(θ, d∗) dψ(θ) <

∫

Θ

R(θ, dψ) dψ(θ) = R∗(ψ, dψ);

but then dψ is not Bayes with respect to ψ. ¦

It will be convenient to allow for randomization over a finite set of decision rules. For any

finite set {d1, . . . , dm} ⊂ D and probability vector (α1, . . . , αm) (with αi ≥ 0 for i = 1, . . . ,m and

∑m
i=1 αi = 1), we allow the randomized decision rule δ that employs di with probability αi, and we

define

R(θ, δ) =

m
∑

i=1

αiR(θ, di).

3 There is a related result in Ferguson (1967, Theorem 2, p. 60).
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D∗ is the set consisting of all such randomized decision rules. (Note thatD ⊂ D∗, since a randomized

rule can assign probability one to a single element of D.)

Risk Set: with Θ = {θ1, . . . , θk} finite, the risk set consists of the risk vectors that correspond to

some decision rule:

S = {(y1, . . . , yk) ∈ Rk : for some δ ∈ D∗, yj = R(θj , δ) for j = 1, . . . , k}.

Lemma. The risk set S is convex.4

Proof . Given any y ∈ S and y∗ ∈ S, and any number β between zero and one, we need to show

that βy + (1 − β)y∗ ∈ S. There are decision rules δ and δ∗ in D∗ for which yj = R(θj , δ) and

y∗j = R(θj , δ
∗) for j = 1, . . . , k. By combining the finite sets of nonrandom decision rules used by δ

and δ∗, we have a set {d1, . . . , dm} ⊂ D such that δ assigns probabilities (α1, . . . , αm) to these rules

and δ∗ assigns probabilities (α∗1, . . . , α
∗
m). Consider the randomized rule δβ that assigns probabilities

(βα1 + (1− β)α∗1, . . . , βαm + (1− β)α∗m) to these rules. (We can regard δβ as randomizing over δ

and δ∗ with probabilities β and 1− β.) Then

R(θ, δβ) =
m
∑

i=1

(βαi + (1− β)α∗i )R(θ, di)

= β
m
∑

i=1

αiR(θ, di) + (1− β)
m
∑

i=1

α∗iR(θ, di)

= βR(θ, δ) + (1− β)R(θ, δ∗).

So if w is the risk vector for δβ , with wj = R(θj , δβ), then w = βy + (1− β)y∗ ∈ S. ¦

Theorem 4.2 . (Complete Class) If Θ is finite and δ ∈ D∗ is admissible, then δ is Bayes (with respect

to some prior distribution).5

Proof . Let a = (R(θ1, δ), . . . , R(θk, δ)) denote the risk vector for δ, and let Qa denote the set of

risk vectors that are at least as good as a:

Qa = {x ∈ Rk : xj ≤ aj for j = 1, . . . , k}.
4 See Ferguson (1967, Lemma 1, p. 35).
5 See Ferguson (1967, Theorem 1, p. 86).
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Since δ is admissible, Qa ∩ S = {a}. Since Qa − {a} and S are disjoint convex sets, the separating

hyperplane theorem asserts that there is a p 6= 0 in Rk such that p′x ≤ p′y for all x ∈ Qa − {a}

and y ∈ S (and hence for x = a). If some coordinate pl of the p vector were negative, then
∑

j pjxj >
∑

j pjyj by taking xl sufficiently negative. Hence pj ≥ 0 for j = 1, . . . , k, and we can

normalize p so that
∑

j pj = 1. Now p corresponds to a probability distribution ψ over Θ (with

ψ{θj} = pj), and

R∗(ψ, δ) =
∑

j

pjR(θj , δ) = p′a ≤ p′y

for all y ∈ S implies that δ is a Bayes rule with respect to ψ. ¦

There are general versions of the complete class theorem in Wald (1950, Chapter 3.6), Le Cam

(1986, Chapter 2.2), and Strasser (1985, Chapter 8, Section 47).

5. AVERAGE RISK OPTIMALITY

We have seen that a Bayes rule plays a fundamental role in achieving admissibility. This

section develops a result on the calculation of Bayes rules.

5.1. Calculation of Bayes Rules

Once we have a definition of risk, it is natural to want to minimize risk. There is an obstacle,

however, because risk depends upon the unknown distribution that is generating the data. The risk

R(θ, d) of a decision rule d depends upon the value of the parameter θ that indexes the distribution

Pθ. Our observation z is drawn from the distribution Pθ for some value of the parameter θ in the

parameter space Θ, and R(θ, d) =
∫

Z
L(θ, d(z)) dPθ(z) depends (in general) on the value of θ.

One response to this obstacle is to consider a weaker notion of optimality, namely admissibility.

But that only gives us a partial ordering of decision rules. It eliminates ones that are dominated

for all θ, but many decision rules remain. The admissible set will typically include some decision

rules that are not very appealing. In the problem of estimating θ under quadratic loss, the decision

rule (estimator) d(z) = 4 would be admissible (if 4 ∈ Θ), even though it does not use the data at

all. No other estimator will be as good at θ = 4.
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One way to choose a single, optimal decision rule is to focus on average risk. We reduce the

risk function R( · , d) to a single number (for a given d) by averaging over the parameter space.

This requires a set of weights to attach to the different values of θ—a prior distribution ψ. Then

average risk with respect to ψ is

R∗(ψ, d) =

∫

Θ

R(θ, d) dψ(θ).

Now we have a real-valued objective function, and we can try to solve the problem

min
d∈D

R∗(ψ, d).

This problem has a solution, at least in the sense of there being decision rules with average risk

arbitrarily close to infd∈D R
∗(ψ, d). The problem now is computational: d(·) is a function defined

on the sample space Z, and the optimization is over a space of functions.

Fortunately, this function-space optimization can be reduced to an “ordinary” optimization

over a subset of a finite-dimensional Euclidean space. The algorithm for minimizing average risk

requires a likelihood function. We shall assume that each distribution Pθ in the statistical model

has a density with respect to the same measure m.

Likelihood Function: f :Z × Θ → R. For any value of the parameter θ ∈ Θ, f(· | θ) is the density

function (with respect to the measurem) of the distribution Pθ, so that for any (measurable) subset

B of the sample space Z:

Pθ(B) =

∫

B

f(z | θ)dm(z).

In the discrete case, m is counting measure: Pθ(B) =
∑

z∈B f(z | θ). In the (absolutely)

continuous case, m is Lebesgue measure: Pθ(B) =
∫

B
f(z | θ) dz. The IV model has this form, with

m equal to Lebesgue measure on R2k and

f(z | (ρ, φ, ω)) = (2π)−k exp(−1

2
||z − ρ(φ⊗ ω)||2).
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The key step in minimizing the average risk is to reverse the order of integration, so we first

average over Θ for a given value z of the observation, and then average over the sample space:6

R∗(ψ, d) =

∫

Θ

[∫

Z

L(θ, d(z))f(z | θ) dm(z)

]

dψ(θ)

=

∫

Z

[∫

Θ

L(θ, d(z))f(z | θ) dψ(θ)
]

dm(z).

Now consider minimizing the inner integral for fixed z:

∫

Θ

L(θ, d(z))f(z | θ) dψ(θ) ≥ inf
a∈A

∫

Θ

L(θ, a)f(z | θ) dψ(θ).

This inequality holds for every z, and so it holds when we average over z:

R∗(ψ, d) ≥
∫

Z

[

inf
a∈A

∫

Θ

L(θ, a)f(z | θ) dψ(θ)
]

dm(z).

We shall assume that the infimum of the inner integral is in fact obtained for some choice a ∈ A.

Then, if D is unrestricted, a Bayes rule with respect to ψ satisfies

dψ(z) = argmin
a∈A

∫

Θ

L(θ, a)f(z | θ) dψ(θ). (5.1)

In our applications the action space A will have finite dimension, and so (5.1) reduces the function

minimization problem to an ordinary minimization problem. We need to assume that the set

of decision rules is unrestricted to ensure that the solution in (5.1) is in D. For example, an

unbiasedness restriction in an estimation problem would require that Eθd(Z) = θ for all θ ∈ Θ.

The decision rule in (5.1) would not in general satisfy that restriction.

For a given value z of the observation Z, define the posterior distribution on Θ as follows:

ψ̄(B | z) =
∫

B

f(z | θ) dψ(θ)
/ ∫

Θ

f(z | θ) dψ(θ),

for B ⊂ Θ. It is convenient to write this as

ψ̄(B | z) = c(z)

∫

B

f(z | θ) dψ(θ),

6 See Ferguson (1967, p. 44).
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where the function c(z) does not depend upon θ. For a fixed value of z, the minimizing value for

a in (5.1) is not affected if we multiply f(z | θ) by c(z), and so

dψ(z) = argmin
a∈A

∫

Θ

L(θ, a) dψ̄(θ | z). (5.1′)

The Bayes rule evaluated at the observation value z is obtained by choosing the action to minimize

expected loss, where the expectation is taken with respect to the posterior distribution.

Suppose that the prior distribution ψ has a density π with respect to a measure υ: for B ⊂ Θ,

ψ(B) =

∫

B

π(θ) dυ(θ)

(=
∫

B
π(θ) dθ for Lebesgue measure, and =

∑

B p(θ) for counting measure). Then the density (with

respect to υ) of the posterior distribution is

π̄(θ | z) = c(z)f(z | θ)π(θ). (5.2)

A convenient restatement of (5.2) is

π̄(θ | z) ∝ f(z | θ)π(θ) (5.2′)

—the posterior density is proportional to the likelihood times the prior density, where the propor-

tionality constant is c(z), which does not depend upon θ. Here likelihood refers to f(z | θ), which

is regarded as a function of θ with z fixed.

It is significant that a conditional distribution on the parameter space Θ emerges from the

minimization of average risk. The complete class theorem motivates the focus on minimizing

average risk. But that does not by itself lead to a posterior distribution on the parameter space. It

is necessary that the form of the decision rule not be restricted. Average risk is a double integral,

over the parameter space and the sample space. If the form of the decision rule is not restricted,

then the optimal rule is obtained by minimizing the integral over the parameter space, separately

for each point in the sample space. It is this minimization that corresponds to the conditional
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(posterior) distribution on the parameter space. The optimal rule evaluated at a point z in the

sample space minimizes expected loss, where the expectation is with respect to the conditional

(posterior) distribution on the parameter space, given z.

An alternative starting point is to regard the prior distribution as representing subjective

opinion or beliefs about θ before observing z. The prior density π(θ) gives a density for the

marginal distribution on Θ, the likelihood f(z | θ) gives a density for the conditional distribution on

the sample space Z given θ, and their product f(z | θ)π(θ) is the joint density for the distribution

on Θ × Z. The density for the marginal distribution on Z is obtained by integrating θ out of the

joint density: q(z) =
∫

f(z | θ)π(θ) dυ(θ) = 1/c(z). Then we obtain the density for the conditional

distribution on Θ given z from Bayes’ Theorem: π̄(θ | z) = f(z | θ)π(θ)/q(z) = c(z)f(z | θ)π(θ).

In Bayesian statistics, the conditional distribution on Θ given z is treated as a complete descrip-

tion of beliefs about θ that combines the prior beliefs with the information from the observation.

Given a loss function, the optimal action is chosen to minimize posterior (or conditional) expected

loss. This corresponds exactly with the Bayes rule dψ for minimizing average risk, when dψ is

evaluated at the observation z. It also provides a link between frequentist decision theory, which

focuses on the risk function R(θ, d), and Bayesian statistics. The frequentist aspect is that R(θ, d)

= Eθ[L(θ, d(Z)] involves averaging over the sample space Z. One can think of repeated samples

{Z(j)}Jj=1 drawn from Pθ, and an average loss 1
J

∑J
j=1 L(θ, d(Z

(j))). Then, by a law of large num-

bers, the long-run average loss in repeated samples from Pθ would converge to our risk R(θ, d) as

J → ∞. A Bayesian statistician with prior beliefs ψ will choose the same action as a frequentist

decision theorist who minimizes average risk, using ψ for the weights.

5.2. Application: IV Model

The likelihood function is

f(z | (ρ, φ, ω)) = (2π)−k exp(−1

2
||z − ρ(φ⊗ ω)||2),

where

ρ ≥ 0, φ ∈ S1 = {x ∈ R2 : ||x|| = 1}, ω ∈ Sk−1 = {x ∈ Rk : ||x|| = 1}.
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Let ψ1 denote the prior distribution for ρ on R+; I shall leave this general, and not make a specific

choice. I will, however, make specific choices for prior distributions for φ and ω; namely, uniform

distributions on the unit circle in R2 and on the unit sphere in Rk. The joint prior distribution

will be formed from the product of these distributions. Let

λSj = surface measure on Sj .

Then for A ⊂ R+, B ⊂ S1, C ⊂ Sk−1, we have

ψ(A×B × C) = ψ1(A)τ1(B)τk−1(C)

where

τ1(B) =
λS1(B)

λS1(S1)
and τk−1(C) =

λSk−1(C)

λSk−1(Sk−1)
.

Our result on calculating the Bayes rule gives

dψ(z) = arg min
a∈S1

∫

[1− (φ′a)2]f(z | (ρ, φ, ω)) dψ1(ρ) dτ1(φ) dτk−1(ω). (5.3)

Let dψ,ρ denote the Bayes rule when the prior ψ1 for ρ is a point mass:

dψ,ρ(z) = arg min
a∈S1

∫

[1− (φ′a)2]f(z | (ρ, φ, ω)) dτ1(φ) dτk−1(ω). (5.4)

We shall see that this Bayes rule in fact does not depend upon the value of ρ as long as ρ > 0.

Maximum Likelihood . I want to compare the Bayes estimator in (5.4) with the maximum-likelihood

estimator. The general results for maximum likelihood are based on large-sample approximations.

The maximum-likelihood estimator for θ is obtained from

(ρ̂ML(z), φ̂ML(z), ω̂ML(z)) = arg max
ρ≥0,||φ||=1,||ω||=1

f(z | (ρ, φ, ω))

= arg min
ρ≥0,||φ||=1,||ω||=1

(z − ρφ⊗ ω)′(z − ρφ⊗ ω)

= arg min
ρ≥0,||φ||=1,||ω||=1

[z′z + ρ2 − 2ρz′(φ⊗ ω)].
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So the maximum-likelihood estimator for φ and ω is obtained from

(φ̂ML(z), ω̂ML(z)) = arg max
||φ||=1,||ω||=1

z′(φ⊗ ω).

Note that this is true even if ρ is given. The maximum-likelihood estimator for (φ, ω) given ρ does

not depend upon ρ.

We shall use the following notation:

z =

(

z1
z2

)

, D(z) = ( z1 z2 ) ,

where z1 and z2 are k × 1 and D(z) is k × 2, and

D(z)′D(z) =

(

z′1z1 z′1z2
z′2z1 z′2z2

)

.

LetQ(z) = ( q1(z) q2(z) ) be an orthogonal matrix whose columns are the eigenvectors ofD(z)′D(z):

Q(z)′(D(z)′D(z))Q(z) =

(

ζ1(z) 0
0 ζ2(z)

)

, Q(z)′Q(z) = I2,

where the eigenvalues ζ1(z) and ζ2(z) are ordered so that ζ1(z) ≥ ζ2(z). The maximum likelihood

estimator of φ is the eigenvector q1 corresponding to the largest eigenvalue.7 To see this, note that

max
α∈S1

α′D(z)′D(z)α = q1(z)
′D(z)′D(z)q1(z) = ζ1(z).

A bit of algebra shows that

z′(φ⊗ ω) = (D(z)φ)′ω. (5.5)

The Cauchy-Schwarz inequality gives (suppressing the z argument)

(Dφ)′ω ≤ [φ′D′Dφ]1/2(ω′ω)1/2 = [φ′D′Dφ]1/2.

7 See Anderson and Rubin (1949) and Goldberger and Olkin (1971) for eigenvector solutions to

similar problems.
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So we have

z′(φ⊗ ω) = (Dφ)′ω ≤ [φ′(D′D)φ]1/2 ≤ [q′1(D
′D)q1]

1/2 =
√

ζ1.

Setting φ = q1 and ω = Dq1/
√
ζ1 gives (Dφ)′ω =

√
ζ1. So φ̂ML(z) = q1(z) and ω̂ML(z) =

D(z)q1(z)/
√

ζ1(z).

It is shown in the Appendix that the Bayes estimator of φ in (5.4) does not depend upon ρ; it

equals the maximum-likelihood estimator:

Theorem 5.1 . For any ρ > 0, dψ,ρ(z) = q1(z).

So the ML estimator of φ in the IV model has a finite sample optimality property. If we

consider estimation of (φ, ω) for a given value of ρ, the ML estimator of φ minimizes average risk

for the prior distribution τ1 × τk−1. This ML estimator does not depend upon ρ, and equals the

eigenvector q1 corresponding to the maximum eigenvalue.

The ML estimator is not so attractive if we consider estimating ρ in the IV model. We can

make this point in a simpler model, the k-means model, which we shall develop next.

5.3 Application: k-Means Model

One version of the k-means model has sample space Z = Rk, parameter space Θ = Rk, and

Pθ = N (θ, Ik). The observation is a k × 1 vector z, which is regarded as the realized value of the

random variable Z, with

Z ∼ N (θ, Ik) for some θ ∈ Θ.

This is the model in Stein (1956) and James and Stein (1961). I shall use a slightly different version,

following Stein (1959), in order to make connections with the IV model. The sample space is still

Z = Rk, but the parameter space is Θ = R+×Sk−1, and Pθ = N (ρω, Ik) with θ = (ρ, ω). So now

Z ∼ N (ρω, Ik) for some ρ ∈ R+ and ω ∈ Sk−1.

The likelihood function is

f(z | (ρ, ω)) = (2π)−k/2 exp(−1

2
||z − ρω||2).
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The ML estimator of (ρ, ω) is obtained from

(ρ̂ML(z), ω̂ML(z)) = arg min
ρ≥0,||ω||=1

||z − ρω||.

We can attain the lower bound of 0 for ||z − ρω|| by setting

ρ̂ML(z) = ||z||, ω̂ML(z) = z/||z||.

Suppose that the loss function is

L(θ, a) = (ρ2 − a)2

(with θ = (ρ, ω)). Then the risk function is the mean-square error in estimating ρ2:

R(θ, d) = Eθ[ρ
2 − d(Z)]2

= Varθ[d(Z)] + [ρ2 − Eθd(Z)]2.

The ML estimator of ρ2 is ρ̂2ML, with

Eθ[ρ̂ML(Z)
2] =

k
∑

j=1

Eθ(Z
2
j ) =

k
∑

j=1

[Varθ(Zj) + (EθZj)
2]

=
k
∑

j=1

(1 + ρ2ω2j ) = k + ρ2.

So the ML estimator of ρ2 is biased upward by the amount k. The risk function of this ML estimator

is

R(θ, ρ̂2ML) = Varθ(ρ̂
2
ML) + k2.

Consider an alternative estimator for ρ2 that removes the bias from the ML estimator:

d∗(z) = ρ̂ML(z)
2 − k.

Compare the risk functions for the two estimators:

R(θ, d∗) = Varθ(ρ̂
2
ML) < R(θ, ρ̂2ML) for all θ ∈ Θ.
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So the ML estimator of ρ2 is not admissible; it is dominated by d∗.

A problem with the unbiased estimator d∗ is that it can be negative. This suggests using the

biased estimator max{d∗(z), 0}. I would like to compare these estimators with Bayes estimators

that minimize average risk. The prior distribution is similar to the one used in the IV model:

ψ = ψ1 × τk−1, where τk−1 denotes the uniform distribution on Sk−1, the unit sphere in Rk. Such

a uniform distribution on the unit sphere is used in Stein (1962, p. 281). The prior distribution for

ρ is ψ1; it is left general. The loss function depends on θ only through ρ: L((ρ, ω), a) = L̃(ρ, a).

The Bayes estimator (if D is unrestricted) is obtained from

dψ(z) = argmin
a≥0

∫

R+

L̃(ρ, a)

[∫

Sk−1

f(z | (ρ, ω)) dτk−1(ω)
]

dψ1(ρ)

= argmin
a≥0

∫

R+

L̃(ρ, a)fI(z | ρ) dψ1(ρ),

where

fI(z | ρ) =
∫

Sk−1

f(z | (ρ, ω)) dτk−1(ω).

We shall refer to fI as the integrated likelihood function.8 Note that it behaves like a standard

likelihood function, in that for any ρ ≥ 0, fI(· | ρ) is the density function for a distribution on the

sample space:

fI(z | ρ) ≥ 0 for all z ∈ Rk and

∫

Rk

fI(z | ρ) dz = 1.

This corresponds to a statistical model in which a value for ω is drawn from the uniform distribution

on Sk−1, and then Z is drawn from the distribution with density function f(z | (ρ, ω)). So having

chosen the uniform prior distribution for ω, the problem of finding a Bayes estimator reduces to a

problem with a one-dimensional parameter space, with fI(z | ρ) as the likelihood function and ψ1

as the prior distribution for ρ.

We can simplify the evaluation of fI. First note that

f(z | (ρ, ω)) = (2π)−k/2 exp[−1

2
||z − ρω||2]

8 The use of an integrated likelihood function in this model is discussed in Berger, Liseo, and

Wolpert (1999, p. 9).
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= (2π)−k/2 exp[−1

2
(z′z + ρ2 − 2ρz′ω)]

= c(z) exp[−1

2
(ρ2 − 2ρz′ω)],

where c(z) denotes some function of z that does not depend upon θ. So

fI(z | ρ) = c(z) exp(−1

2
ρ2)

∫

Sk−1

exp(ρ||z||(z/||z||)′ω) dλSk−1(ω).

The integral can be simplified using the following result:

∫

SN

h(α′ω) dλSN (ω) = λSN−1(SN−1)

∫

[−1,1]

h(s)(1− s2)N
2
−1 ds (5.6)

for all α ∈ SN , N ≥ 1, and all measurable h on ([−1, 1],B[−1,1]) which are either bounded or

non-negative. (BE denotes the Borel σ-algebra over the topological space E.) See Stroock (1999),

pages 88, 89, 213–215. Applying the result in (5.6) with k ≥ 2 gives

fI(z | ρ) = c(z) exp(−1

2
ρ2)Gk(ρ||z||), (5.7)

where Gk:R+ → R is given by

Gk(t) =

∫

[−1,1]

exp(ts)(1− s2)(k−3)/2 ds. (5.8)

Define G1:R+ → R by

G1(t) = exp(t) + exp(−t). (5.9)

Then (5.7) also holds for k = 1 (with S0 equal to {−1, 1} and λS0{−1} = λS0{1} = 1).

Now the Bayes estimator can be obtained from

dψ(z) = argmin
a≥0

∫

R+

L̃(ρ, a) exp(−1

2
ρ2)Gk(ρ||z||) dψ1(ρ).

Note that this estimator only depends on the observation z through its norm: dψ(z) = d̃ψ(||z||).

The ML estimator and the modification of it to remove bias also depend on z only through ||z||.
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This results in a simplification of the risk function. This simplification is related to a general result

in Section 6.2 on the risk function of an invariant decision rule.

Theorem 5.2 . If d(z) = d̃(||z||), then the risk function

R((ρ, ω), d) =

∫

L̃(ρ, d(z))f(z | (ρ, ω)) dz

does not depend upon ω: R((ρ, ω), d) = R̃(ρ, d).

Proof . Given any ω ∈ Sk−1, there is an orthogonal matrix Qω such that

Qωω =









1
0
...
0









≡ e1, QωQ
′
ω = Ik,

where e1 is a k × 1 vector whose elements are all zero except for the first element which equals 1.

If Z ∼ N (ρω, Ik), then QωZ ∼ N (ρe1, Ik), and so the distribution of QωZ does not depend upon

ω. Since Qω is an orthogonal matrix, ||QωZ|| = ||Z||. So the distribution of ||Z|| does not depend

upon ω. Hence

R((ρ, ω), d) = E(ρ,ω)[L̃(ρ, d̃(||Z||)]

does not depend upon ω. ¦

If the risk function for d does not depend upon ω, then we can use the integrated likelihood

function to evaluate risk:

R((ρ, ω), d) = R̃(ρ, d) =

∫

Sk−1

R̃(ρ, d) dτk−1(ω) (5.10)

=

∫

Sk−1

[∫

Z

L̃(ρ, d(z))f(z | (ρ, ω)) dz
]

dτk−1(ω)

=

∫

Z

L̃(ρ, d(z))

[∫

Sk−1

f(z | (ρ, ω)) dτk−1(ω)
]

dz

=

∫

Z

L̃(ρ, d(z))fI(z | ρ) dz.

So we can use the integrated likelihood function to evaluate the risk of an invariant decision rule.

This suggests that large-sample approximations based on a likelihood function can be applied using
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the integrated likelihood function, even though we are using the original model with parameter space

R+ × Sk−1 and likelihood function f(z | (ρ, ω)). To the extent that we can treat fI as a likelihood

function, there is reason to expect that large-sample approximations will be more accurate with

fI than with f , since the parameter space for fI has lower dimension. This difference could be

dramatic if k is large.

6. MINIMAX AND INVARIANCE

6.1. Minimax in the k-Means Model

A Bayes decision rule dψ requires a prior distribution ψ on the parameter space Θ. A careful,

thoughtful specification for this distribution may be sufficiently costly that one is interested in

alternative criteria for working with a risk function. We still face the basic issue that risk depends

upon the distribution Pθ our observation z came from, and our statistical model only assumes that

θ is some point in the parameter space Θ. An alternative to average risk is maximum risk. We

reduce the risk function R(·, d) to a single number (for a given d) by maximizing over the parameter

space:

sup
θ∈Θ

R(θ, d).

Now we have a real-valued objective function, and we can try to solve the problem

min
d∈D

sup
θ∈Θ

R(θ, d).

In Section 5, we considered estimating ρ in the k-means model:

Z ∼ N (ρω, Ik) for some ρ ∈ R+ and ω ∈ Sk−1.

We developed the Bayes estimator

dψ = argmin
d∈D

∫

R(θ, d) dψ(θ)

for the prior distribution ψ = ψ1 × τk−1, where ψ1 is some distribution on R+ and τk−1 is the

uniform distribution on Sk−1. The loss function depended on θ = (ρ, ω) only through ρ: L((ρ, ω), a)
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= L̃(ρ, a). We showed that, for any choice of the prior distribution ψ1, the risk function for this

Bayes estimator does not depend upon ω: R((ρ, ω), dψ) = R̃(ρ, dψ). These results lead to a simple

argument that relates this Bayes estimator to minimax.9

Theorem 6.1 . If R((ρ, ω), dψ) = R̃(ρ, dψ), then dψ solves the following problem, which combines

the average risk and maximum risk criteria:

dψ = argmin
d∈D

∫

R+

[ sup
ω∈Sk−1

R((ρ, ω), d)] dψ1(ρ).

Proof . For any d ∈ D,
∫

R+

[ sup
ω∈Sk−1

R((ρ, ω), d)] dψ1(ρ)

≥
∫

R+

[∫

Sk−1

R((ρ, ω), d) dτk−1(ω)

]

dψ1(ρ)

≥
∫

R+

[∫

Sk−1

R((ρ, ω), dψ) dτk−1(ω)

]

dψ1(ρ)

=

∫

R+

R̃(ρ, dψ) dψ1(ρ)

=

∫

R+

[ sup
ω∈Sk−1

R((ρ, ω), dψ)] dψ1(ρ). ¦

The use of minimax here does not eliminate the choice of a prior distribution; the average risk

criteria on the parameter space R+ for ρ requires that we specify a prior distribution ψ1. But we

can replace the choice of a prior distribution on the parameter space Sk−1 for ω by the maximum

risk criterion. It turns out that the solution to the minimax problem calls for a particular, least-

favorable, distribution on Sk−1: the uniform distribution τk−1.

A key part of the argument is that the risk function for dψ simplifies: the risk at θ = (ρ, ω) is

constant for all θ with the same value for ρ. There is a method, based on invariance, for simplifying a

risk function in this way. This method is developed next; the approach is based on Ferguson (1967,

9 The proof is based on Ferguson (1967, Theorem 1, p. 90).
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Chapter 4). For a general treatment of invariant prior distributions and their role in invariant

decision problems, see Eaton (1989).

6.2. Invariance

In Section 3, we saw that a statistical decision problem involves three spaces: sample space,

parameter space, and action space. Invariance involves transformations on each of these three

spaces. The transformations are connected through an index set G:

m1:G×Z → Z

m2:G×Θ→ Θ

m3:G×A → A.

For each element g ∈ G, m1(g, ·) maps the sample space Z into Z; m2(g, ·) maps the parameter

space Θ into Θ; and m3(g, ·) maps the action space A into A.

Invariant Model. The statistical model (P : Θ → P(Z)) is invariant if, for any g ∈ G and θ ∈ Θ,

Z ∼ Pθ implies that m1(g, Z) ∼ Pm2(g,θ).

Invariant Loss. The loss function is invariant if, for all g ∈ G, θ ∈ Θ, and a ∈ A,

L(m2(g, θ),m3(g, a)) = L(θ, a).

Invariant Decision Rule. The decision rule d ∈ D is invariant if, for all g ∈ G and z ∈ Z,

d(m1(g, z)) = m3(g, d(z)).

Theorem 6.2 .10 If the statistical model P : Θ→ P(Z), the loss function L, and the decision rule d

are invariant, then, for all g ∈ G and θ ∈ Θ,

R(θ, d) = R(m2(g, θ), d).

10 See Ferguson (1967, Theorem 1, p. 150).
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Proof .

R(θ, d) =

∫

Z

L(θ, d(z)) dPθ(z) = Eθ[L(θ, d(Z))]

= Eθ[L(m2(g, θ),m3(g, d(Z)))]

= Eθ[L(m2(g, θ), d(m1(g, Z)))]

= Em2(g,θ)[L(m2(g, θ), d(Z))]

= R(m2(g, θ), d). ¦

The theorem shows how invariance leads to a simplification of the risk function. Risk for an

invariant decision rule is constant for all parameter values of the form m2(g, θ) as g varies over the

index set G.

6.3. Application: k-Means Model

At the end of Section 5, we obtained a simplification of the risk function for estimating ρ in

the k-means model. This simplification can also be obtained by applying the invariance theorem.

The index set G is the set of k × k orthogonal matrices:

G = O(k) = {k × k matrices g : gg′ = Ik}.

The transformation on the sample space is

m1(g, z) = gz for z ∈ Rk.

If Z ∼ Pθ = N (ρω, Ik) (with ρ ∈ R+ and ω ∈ Sk−1), then

m1(g, Z) = gZ ∼ N (ρgω, Ik) = Pm2(g,θ)

with

m2(g, (ρ, ω)) = (ρ, gω).

So the model is invariant. The loss function for estimating ρ does not depend upon ω: L((ρ, ω), a) =

L̃(ρ, a). So we can set m3(g, a) = a and L is invariant. Then an estimator d is invariant if

d(gz) = d(z) for all g ∈ O(k) and z ∈ Rk.

28



For any z ∈ Rk, there is a gz ∈ O(k) such that

gzz = ||z||









1
0
...
0









= ||z||e1,

where e1 is a vector whose elements are all 0 except for the first element which equals 1; here e1

is k × 1. So if d is an invariant estimator, then d(z) = d(gzz) = d(||z||e1) ≡ d̃(||z||). If d(z) only

depends on ||z||, so that d(z) = d̃(||z||), then d is invariant since d(gz) = d̃(||gz||) = d̃(||z||) = d(z).

So d is invariant if and only if d(z) = d̃(||z||).

If d is invariant, then Theorem 6.2 implies that

R((ρ, ω), d) = R((ρ, gωω), d) = R((ρ, e1), d) ≡ R̃(ρ, d).

So the risk function does not depend upon ω.

6.4. Application: IV-Model

The index set is the Cartesian product of O(2) and O(k):

G = O(2)×O(k) = {(g1, g2) : g1g′1 = I2, g2g
′
2 = Ik}.

The transformation on the sample space is (with g = (g1, g2))

m1(g, z) = (g1 ⊗ g2)z for z ∈ R2k.

If Z ∼ Pθ = N (ρφ⊗ ω, I2k) (with ρ ∈ R+, φ ∈ S1, ω ∈ Sk−1), then

m1(g, Z) ∼ N (ρg1φ⊗ g2ω, I2k) = Pm2(g,θ)

with

m2(g, (ρ, φ, ω)) = (ρ, g1φ, g2ω).

So the model is invariant. Let m3(g, a) = g1a for a ∈ S1. Then

L(m2(g, θ),m3(g, a)) = 1− [(g1φ)
′g1a]

2 = 1− (φ′a)2,
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and the loss function is invariant. An estimator d:R2k → S1 is invariant if d((g1 ⊗ g2)z) = g1d(z)

for all g1 ∈ O(2), g2 ∈ O(k), and z ∈ R2k.

Given any φ ∈ S1, there is a gφ ∈ O(2) such that gφφ = ( 1 0 )
′
; given any ω ∈ Sk−1, there is

a gω ∈ O(k) such that gωω = ( 1 0 . . . 0 )
′ ≡ e1. So Theorem 6.2 implies that if d is invariant,

then

R((ρ, φ, ω), d) = R((ρ, gφφ, gωω), d) = R((ρ, ( 1 0 )
′
, e1), d) ≡ R̃(ρ, d).

So the risk function for an invariant estimator depends upon θ = (ρ, φ, ω) only through ρ.

Theorem 6.3 . φ̂ML is invariant.

Proof . For all g1 ∈ O(2), g2 ∈ O(k), and z ∈ R2k,

||(g1 ⊗ g2)z − ρφ⊗ ω|| = ||(g1 ⊗ g2)(z − ρg−11 φ⊗ g−12 ω)||

= ||z − ρg−11 φ⊗ g−12 ω||.

Since every point in Sk−1 equals g−12 ω for some ω ∈ Sk−1,

min
ρ∈R+

min
ω∈Sk−1

||z − ρg−11 φ⊗ g−12 ω|| = min
ρ∈R+

min
ω∈Sk−1

||z − ρg−11 φ⊗ ω||.

If φ∗ is a value for φ that minimizes

min
ρ∈R+

min
ω∈Sk−1

||z − ρφ⊗ ω||,

then g1φ
∗ is a value for φ that minimizes

min
ρ∈R+

min
ω∈Sk−1

||z − ρg−11 φ⊗ ω||.

So

φ̂ML((g1 ⊗ g2)z) = g1φ̂ML(z). ¦

We saw in Section 5.2 that if we consider estimation of (φ, ω) for a given value of ρ, then the

ML estimator of φ does not depend upon ρ. If the prior distribution for (φ, ω) is τ = τ1 × τk−1,
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which is a product of uniform distributions on S1 and Sk−1, then Theorem 5.1 shows that the Bayes

estimator, with ρ > 0 given, equals this ML estimator (= the eigenvector q1 corresponding to the

maximum eigenvalue). Given ρ, the risk of the ML estimator is constant, since φ̂ML is invariant.

Since φ̂ML is a Bayes estimator with constant risk, it is a minimax estimator.

Theorem 6.4 . Given ρ > 0, φ̂ML is minimax: for any estimator d ∈ D,

sup
φ∈S1

sup
ω∈Sk−1

R((ρ, φ, ω), d) ≥ sup
φ∈S1

sup
ω∈Sk−1

R((ρ, φ, ω), φ̂ML).

Proof .

sup
(φ,ω)∈S1×Sk−1

R((ρ, φ, ω), d) ≥
∫

S1×Sk−1

R((ρ, φ, ω), d) dτ(φ, ω)

≥
∫

S1×Sk−1

R((ρ, φ, ω), φ̂ML) dτ(φ, ω)

= sup
(φ,ω)∈S1×Sk−1

R((ρ, φ, ω), φ̂ML). ¦

Here the use of minimax eliminates the choice of a prior distribution (although a particular prior

distribution emerges in the solution to the minimax problem). For any given positive value of ρ,

the ML estimator of φ is optimal in the minimax sense. Since the ML estimator does not depend

upon ρ, it remains a feasible estimator when ρ is not given.

This minimax solution depends upon the loss function, and the solution is associated with

a least favorable prior distribution. In a particular context, such as the example in Section 2

using earnings and education, this loss function may not be appealing and the least favorable prior

distribution may not be subjectively plausible. Minimax solutions could be computed for other loss

functions, but they may not have an explicit, closed form. Apart from tractability, an argument

for the loss function I have chosen, and for the least favorable prior in the minimax solution, is

that they do not depend upon a specific context, and so can provide an automatic procedure for

generating priors and associated decision rules. In a specific context, more relevant loss functions

and prior distributions may certainly be available.
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7. CONFIDENCE SETS

7.1. Confidence Interval for φ in the IV Model

A confidence set can be regarded as a decision rule where the action space consists of subsets

of the parameter space. The parameter space for φ in the IV model is the unit circle S1. So the

action space A will consist of subsets of S1: a ⊂ S1 for a ∈ A. We shall use the following loss

function:

L((ρ, φ, ω), a) =

{

0, if φ ∈ a;
1, if φ /∈ a . (7.1)

Let θ = (ρ, φ, ω). The corresponding risk function is

R(θ, d) = Pθ(φ /∈ d(Z)) = 1− Pθ(φ ∈ d(Z))

= 1− coverage rate.

In Section 7.4, we shall extend this loss function to depend also on the length of a.

Invariance arguments can be used to simplify the risk function. As in Section 6.4, the index

set is the Cartesian product of the set of 2× 2 orthogonal matrices and the set of k× k orthogonal

matrices:

G = O(2)×O(k) = {(g1, g2) : g1g′1 = I2, g2g
′
2 = Ik}.

The transformation on the sample space is (with g = (g1, g2))

m1(g, z) = (g1 ⊗ g2)z for z ∈ R2k.

The transformation on the parameter space is

m2(g, (ρ, φ, ω)) = (ρ, g1φ, g2ω).

The model is invariant under these transformations on the sample space and the parameter space.

The transformation on the action space is

m3(g, a) = g1a = {g1s : s ∈ a} for a ⊂ S1.
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So m3(g, ·) maps subsets of S1 into subsets of S1, by multiplying each element of the subset by g1

(which preserves the unit length and so gives a point in S1). Then the loss function is invariant:

for a ⊂ S1,

φ ∈ a iff g1φ ∈ g1a,

and so

L((ρ, φ, ω), a) = L((ρ, g1φ, g2ω), g1a).

A decision rule d ∈ D is invariant if

d((g1 ⊗ g2)z) = g1d(z) = {g1s : s ∈ d(z)}.

Given any φ ∈ S1, there is a gφ ∈ O(2) such that gφφ = ( 1 0 )
′
; given any ω ∈ Sk−1, there is a

gω ∈ O(k) such that gωω = ( 1 0 . . . 0 )
′ ≡ e1. So Theorem 6.2 implies that if d is invariant,

then

R((ρ, φ, ω), d) = R((ρ, gφφ, gωω), d) = R((ρ, ( 1 0 )
′
, e1), d) ≡ R̃(ρ, d).

So the coverage rate for an invariant confidence set depends upon θ = (ρ, φ, ω) only through ρ.

I should stress that the loss function here is only getting at part of the problem. Coverage

is important and is often the focus in evaluating the performance of a confidence set procedure.

But keep in mind that if coverage were the only consideration, then we could achieve a .95 (for

example) coverage rate without using the data. Simply use a randomized decision rule that selects

S1 95% of the time, and selects the null set 5% of the time.

7.2. Invert a Likelihood Ratio Test

Since our loss function only gets at part of the problem, we shall not try to develop confidence

sets that are optimal under this loss function. Instead we shall focus on some particular confidence

set procedures, and use the invariance result to simplify evaluation of their finite sample coverage

rates. The procedures involve inverting a likelihood ratio test. Inverting the standard likelihood

ratio test gives the following set:

dLR(z) =

{

s ∈ S1 : maxρ≥0,φ∈S1,ω∈Sk−1 f(z | (ρ, φ, ω))
maxρ≥0,ω∈Sk−1 f(z | (ρ, s, ω)) ≤ crit

}

.
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The idea is that if φ = s is the null hypothesis, then we compare the maximized likelihood, with

no restrictions, to the maximized likelihood with φ restricted to equal s. This ratio of maximized

likelihoods has to be greater than or equal to one. If it is bigger than a critical value (crit), then

we conclude that the restriction is not favored by the data and we reject the hypothesis. Then the

confidence set is simply the values for the null hypothesis that are not rejected.

If we were only comparing two values for φ, say φ = s0 and φ = s1, with ρ and ω given, then we

literally would have a likelihood ratio: f(z | (ρ, s1, ω))/f(z | (ρ, s0, ω)), and the likelihood ratio test

would have a finite sample optimality property (Neyman-Pearson Lemma). A test based on a ratio

of maximized likelihoods does not, in general, have finite-sample optimality properties. It does,

however, have large-sample optimality properties and is widely used (and is commonly referred

to as a likelihood ratio test).11 A common choice of the critical value is based on a large-sample

approximation under which two times the log of the ratio of maximized likelihoods has a chi-square

distribution under the null hypothesis; the degrees of freedom for the chi-square distribution is the

difference in dimensions between the unrestricted parameter space and the restricted parameter

space. So in our case it would be a chi-square distribution with one degree of freedom. To achieve a

.95 coverage rate, the approximation suggests setting crit so that 2 log(crit) equals the .95 quantile

of a χ2(1) distribution (= 3.8415), or crit = 6.83.

We have seen in Section 6 that a uniform prior distribution (for ω) on Sk−1 leads to estimators

with invariance and minimax properties. So, for k ≥ 2, it might be of interest to consider a

likelihood ratio test based on the following integrated likelihood function:

fI(z | (ρ, φ)) =
∫

Sk−1

f(z | (ρ, φ, ω)) dτk−1(ω), (7.2)

where τk−1 is the uniform distribution on Sk−1. This is the likelihood function for the statistical

model in which a value for ω is drawn from the uniform distribution on Sk−1, and then Z is drawn

from the distribution with density function f(z | (ρ, φ, ω)). We shall be evaluating risk under the

original model with likelihood function f(z | (ρ, φ, ω)). But if a procedure based on the integrated

11 See, for example, van der Vaart (1998, Chapter 16).

34



likelihood function turns out to have a risk function that does not depend upon ω, then its risk

function under the original model coincides with its risk function under the integrated model. So

good properties under the integrated model will carry over to the original model.

Inverting the integrated likelihood ratio test gives the following set:

dI,LR(z) =

{

s ∈ S1 : maxρ≥0,φ∈S1 fI(z | (ρ, φ))
maxρ≥0 fI(z | (ρ, s))

≤ crit

}

.

7.3. Invariance

We shall show that dLR and dI,LR are both invariant. It then follows that the coverage rates

only depend upon ρ. This greatly simplifies the numerical evaluation of finite-sample coverage rates.

We can set φ and ω at arbitrary values such as φ = ( 1 0 )
′
and ω = e′1. Choose a set of values for

ρ. For each value in this set, form θ = (ρ, φ, ω) and generate a large number of independent samples

from Pθ: Z
j ∼ Pθ (j = 1, . . . , J). Then the coverage rate for that value of ρ is approximately the

fraction of the samples for which φ ∈ d(Zj). The accuracy of this Monte Carlo approximation

becomes arbitrarily good as the number of Monte Carlo samples J →∞.

Theorem 7.1 . dLR is invariant.

Proof . To evaluate dLR((g1 ⊗ g2)z), note that

f(z | (ρ, φ, ω)) = (2π)−k exp(−1

2
||z − ρφ⊗ ω||2),

||(g1 ⊗ g2)z − ρφ⊗ ω|| = ||(g1 ⊗ g2)(z − ρg−11 φ⊗ g−12 ω)|| = ||z − ρg−11 φ⊗ g−12 ω||.

Since multiplication by the orthogonal matrix g−11 maps S1 onto itself, and multiplication by the

orthogonal matrix g−12 maps Sk−1 onto itself,

min
ρ≥0,φ∈S1,ω∈Sk−1

||z − ρg−11 φ⊗ g−12 ω|| = min
ρ≥0,φ∈S1,ω∈Sk−1

||z − ρφ⊗ ω||

and

min
ρ≥0,ω∈Sk−1

||z − ρg−11 s⊗ g−12 ω|| = min
ρ≥0,ω∈Sk−1

||z − ρg−11 s⊗ ω||.
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So

s ∈ dLR((g1 ⊗ g2)z) iff g−11 s ∈ dLR(z) iff s ∈ g1dLR(z).

Hence

dLR((g1 ⊗ g2)z) = g1dLR(z). ¦

Theorem 7.2 . dI,LR is invariant.

Proof . The likelihood function simplifies:

f(z | (ρ, φ, ω)) = c(z) exp[−ρ2/2 + ρz′(φ⊗ ω)],

where we shall use c(z) to denote any function of z that does not depend upon θ. So we need to

evaluate
∫

exp(ρz′(φ⊗ ω)) dλSk−1(ω).

Note that, as in (5.5),

z′(φ⊗ ω) = (D(z)φ)′ω,

where D(z) = ( z1 z2 ). The integral can be simplified by applying (5.6) (with k ≥ 2):

∫

exp(ρz′(φ⊗ ω)) dλSk−1(ω) = λSk−2(Sk−2)Gk(ρ||Dφ||),

where Gk:R+ → R is given by

Gk(t) =

∫

[−1,1]

exp(ts)(1− s2)(k−3)/2 ds.

For k = 1, use

G1(t) = exp(t) + exp(−t).

Then we have

fI(z | (ρ, φ)) = c(z) exp(−ρ2/2)Gk(ρ||D(z)φ||). (7.3)
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Note that

D((g1 ⊗ g2)z) = g2D(z)g′1 and ||g2D(z)g′1φ|| = ||D(z)g−11 φ||. (7.4)

Hence

max
ρ≥0,φ∈S1

fI((g1 ⊗ g2)z | (ρ, φ)) = c((g1 ⊗ g2)z) max
ρ≥0,φ∈S1

exp(−ρ2/2)Gk(ρ||D(z)g−11 φ||)

= c((g1 ⊗ g2)z) max
ρ≥0,φ∈S1

exp(−ρ2/2)Gk(ρ||D(z)φ||)

and

max
ρ≥0

fI((g1 ⊗ g2)z | (ρ, s)) = c((g1 ⊗ g2)z)max
ρ≥0

exp(−ρ2/2)Gk(ρ||D(z)g−11 s||).

So

s ∈ dI,LR((g1 ⊗ g2)z) iff g−11 s ∈ dI,LR(z) iff s ∈ g1dI,LR(z),

which implies that

dI,LR((g1 ⊗ g2)z) = g1dI,LR(z). ¦

If d is an invariant decision rule, then its risk function does not depend upon φ or ω. Since it

does not depend upon ω, we have

R((ρ, φ, ω), d) =

∫

Z

L̃(φ, d(z))fI(z | (ρ, φ)) dz

(as in (5.10)). So we can use the integrated likelihood function to evaluate the risk of an invariant

decision rule. This suggests that large-sample approximations based on a likelihood function can

be applied using the integrated likelihood function, even though we are using the original model

with parameter space R+ × S1 × Sk−1 and likelihood function f(z | (ρ, φ, ω)). In particular, this

suggests setting the critical value for dI,LR based on the same χ2(1) approximation used for dLR. To

the extent that we can treat fI as a likelihood function, there is reason to expect that large-sample

approximations will be more accurate with fI than with f , since the parameter space for fI has

lower dimension.
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7.4 Posterior Interval

Consider the following loss function:

Lb((ρ, φ, ω), a) = 1(φ /∈ a) + b

∫

a

dλS1 , (7.5)

where b is a nonnegative number. The loss is b times the length of the set plus an indicator function

that equals one if the set fails to cover φ and equals zero otherwise. The loss function in (7.1) is

a special case with b = 0. As in Section 5.2, consider the prior distribution ψ1 × τ , where ψ1

is the prior distribution for ρ and the prior distribution for (φ, ω) is τ = τ1 × τk−1, the uniform

distribution on S1 × Sk−1. The marginal posterior distribution for φ has a density π̄2(φ | z) with

respect to λS1 :

π̄2(φ | z) =
∫

R+

fI(z | (ρ, φ)) dψ1(ρ)
/ ∫

S1

∫

R+

fI(z | (ρ, φ)) dψ1(ρ) dλS1(φ),

where fI from (7.2) is the integrated likelihood based on the uniform distribution for ω on Sk−1.

With the loss function in (7.5), the posterior expected loss is

1−
∫

a

[π̄2(φ | z)− b] dλS1(φ).

The Bayes rule dψ is obtained by minimizing the posterior expected loss; this gives a highest

posterior density set:

dψ(z) = {φ ∈ S1 : π̄2(φ | z) ≥ b}.

Theorem 7.3 . dψ is invariant.

Proof . For any g1 ∈ O(2) and g2 ∈ O(k), it follows from (7.3) and (7.4) that

π̄2(φ | (g1 ⊗ g2)z)

=

∫

R+

fI((g1 ⊗ g2)z | (ρ, φ)) dψ1(ρ)
/ ∫

S1

∫

R+

fI((g1 ⊗ g2)z | (ρ, φ)) dψ1(ρ) dλS1(φ)

=

∫

R+

fI(z | (ρ, g−11 φ)) dψ1(ρ)

/ ∫

S1

∫

R+

fI(z | (ρ, g−11 φ)) dψ1(ρ) dλS1(φ).
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If φ has a uniform distribution on S1, then g−11 φ also has a uniform distribution on S1. Hence

π̄2(φ | (g1 ⊗ g2)z) =
∫

R+

fI(z | (ρ, g−11 φ)) dψ1(ρ)

/ ∫

S1

∫

R+

fI(z | (ρ, φ)) dψ1(ρ) dλS1(φ)

= π̄2(g
−1
1 φ | z).

So

s ∈ dψ((g1 ⊗ g2)z) iff g−11 s ∈ dψ(z) iff s ∈ g1dψ(z),

which implies that

dψ((g1 ⊗ g2)z) = g1dψ(z). ¦

Then, as in the proof of Theorem 6.1,

dψ = argmin
d∈D

∫

R+

[ sup
(φ,ω)∈S1×Sk−1

R((ρ, φ, ω), d)] dψ1(ρ).

The use of minimax here does not eliminate the choice of a prior distribution; the average risk

criteria on the parameter space R+ for ρ requires that we specify a prior distribution ψ1. But we

can replace the choice of a prior distribution on the parameter space S1 × Sk−1 for (φ, ω) by the

maximum risk criterion.

8. HYPOTHESIS TESTS

8.1. Bayes Tests

The statistical model specifies that

Z ∼ Pθ for some θ ∈ Θ.

The hypothesis H is a subset of the parameter space: H ⊂ Θ. The only actions available are to

accept H (a = 0) or to reject H (a = 1). So the action space is A = {0, 1}. We shall use the

following loss function:

L(θ, a) =











0, if θ ∈ H, a = 0;
1, if θ ∈ H, a = 1;
b, if θ /∈ H, a = 0;
0, if θ /∈ H, a = 1,
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with b > 0. There are two types of error: rejecting H when it is true (type 1 error) and accepting

H when it is false (type 2 error); the magnitude of b reflects the relative importance of these two

types of error.

This loss function implies the following risk function:

R(θ, d) = Eθ[L(θ, d(Z))] =

{

Pθ{d(Z) = 1}, if θ ∈ H;
b[1− Pθ{d(Z) = 1}], if θ /∈ H.

The decision rule or test d corresponds to a critical region: {z ∈ Z : d(z) = 1}; this is the subset

of the sample space where the test rejects the hypothesis. The probability that Pθ attaches to this

set is the power function of the test: Pθ{d(Z) = 1}. The risk function depends upon the statistical

model only through this power function.

Given a prior distribution ψ on the parameter space Θ, the average risk is

R∗(ψ, d) =

∫

Θ

R(θ, d) dψ(θ)

=

∫

H

Pθ{d(Z) = 1} dψ(θ) + b

∫

Θ−H

[1− Pθ{d(Z) = 1}] dψ(θ).

A Bayes test corresponding to the prior distribution ψ minimizes the average risk:

dψ = argmin
d∈D

R∗(ψ, d).

If the set of feasible tests D is unrestricted, then the Bayes test can be obtained by minimizing

posterior expected loss. This gives

dψ(z) = arg min
a∈{0,1}

∫

Θ

L(θ, a)f(z | θ) dψ(θ).

Note that
∫

Θ

L(θ, 0)f(z | θ) dψ(θ) = b

∫

Θ−H

f(z | θ) dψ(θ)

and
∫

Θ

L(θ, 1)f(z | θ) dψ(θ) =
∫

H

f(z | θ) dψ(θ).
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So

dψ(z) = 1 if

∫

H
f(z | θ) dψ(θ)

∫

Θ−H
f(z | θ) dψ(θ) ≤ b, (8.1)

and dψ(z) = 0 otherwise.12

8.2. Neyman-Pearson Lemma

Suppose that the parameter space consists of two points: Θ = {θH , θJ} and H = {θH}. Then

the Bayes test in (8.1) becomes

dψ(z) = 1 if
f(z | θH)ψ(H)

f(z | θJ )(1− ψ(H))
≤ b,

and dψ(z) = 0 otherwise. So we reject H if the likelihood ratio for θH compared to θJ is less than

a critical value:

f(z | θH)

f(z | θJ)
≤ b · 1− ψ(H)

ψ(H)
. (8.2)

Since Θ is a finite set, the simple version of the complete class theorem in Theorem 4.2 applies

here. The admissible tests correspond to Bayes tests for some prior distribution ψ. As ψ(H) varies

from 0 to 1, the right-hand side of the inequality in (8.2) varies from ∞ to 0. So the admissible

tests have the form

dψ(z) = 1 if
f(z | θH)

f(z | θJ)
≤ crit

for crit ∈ [0,∞].13

8.3. Application: IV Model

The model is

Z ∼ N (ρφ⊗ ω, I2k) for some ρ ∈ R+, φ ∈ S1, ω ∈ Sk−1.

The hypothesis is that φ ∈ A ⊂ S1:

H = {(ρ, φ, ω) ∈ R+ × S1 × Sk−1 : φ ∈ A}.
12 See Wald (1950, p. 132).
13 See Wald (1950, p. 127).
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We shall develop a Bayes test for a prior distribution of the form

ψ = ψ1 × ψ2 × τk−1 where τk−1 = Uniform(Sk−1).

The prior distributions ψ1 for ρ and ψ2 for φ are left unspecified. The numerator in (8.1) is

∫

H

f(z | (ρ, φ, ω)) dψ(ρ, φ, ω) =
∫

A

∫

R+

fI(z | (ρ, φ)) dψ1(ρ) dψ2(φ)

using the integrated likelihood function fI from (7.3):

fI(z | (ρ, φ)) = c(z) exp(−ρ2/2)Gk(ρ||D(z)φ||).

The denominator in (8.1) is

∫

Θ−H

f(z | (ρ, φ, ω)) dψ(ρ, φ, ω) =
∫

S1−A

∫

R+

fI(z | (ρ, φ)) dψ1(ρ) dψ2(φ).

So the Bayes test is

dψ(z) = 1 if

∫

A

∫

R+
fI(z | (ρ, φ)) dψ1(ρ) dψ2(φ)

∫

S1−A

∫

R+
fI(z | (ρ, φ)) dψ1(ρ) dψ2(φ)

≤ b. (8.3)

Invariance can be used to simplify the risk function. The index set G is the set of k × k

orthogonal matrices:

G = O(k) = {k × k matrices g : gg′ = Ik}.

The transformation on the sample space is

m1(g, z) = (I2 ⊗ g)z for z ∈ R2k.

If Z ∼ Pθ = N (ρφ⊗ ω, I2k), then

m1(g, Z) = (I2 ⊗ g)Z ∼ N (ρφ⊗ gω, I2k) = Pm2(g,θ)

with

m2(g, (ρ, φ, ω)) = (ρ, φ, gω).
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So the model is invariant. The loss function for testing φ ∈ A does not depend upon ω (or ρ):

L((ρ, φ, ω), a) = L̃(φ, a). So we can set m3(g, a) = a and L is invariant. Then a test d is invariant

if d((I2 ⊗ g)z) = d(z) for all g ∈ O(k) and z ∈ R2k.

For any choice of ψ1 and ψ2, our Bayes test dψ is invariant. This follows since dψ(z) depends

upon z only through ||D(z)φ||, and (as in (7.4))

D((I2 ⊗ g)z) = gD(z)

||D((I2 ⊗ g)z)φ|| = ||gD(z)φ|| = ||D(z)φ||.

The invariance Theorem 6.2 implies that

R((ρ, φ, ω), dψ) = R((ρ, φ, gωω), dψ) = R((ρ, φ, e1), dψ) ≡ R̃((ρ, φ), dψ),

where gω is an orthogonal matrix with gωω = e1, and e1 is a k × 1 vector whose elements are all 0

except for the first element which equals 1. So the risk function does not depend upon ω. Then,

as in the proof of Theorem 6.1, it follows that

dψ = argmin
d∈D

∫

S1

∫

R+

[ sup
ω∈Sk−1

R((ρ, φ, ω), d)] dψ1(ρ) dψ2(φ). (8.4)

This is true for any choice of ψ1 and ψ2, provided that ψ3 equals the uniform distribution on Sk−1.

9. CONCLUSION

In the simple IV model, the dimension (k+1) of the parameter space can be arbitrarily large.

The minimax results are most useful when they provide a way of dealing with a large number of

nuisance parameters in ω. A related application might include incidental parameters in a panel

data model, where the minimax criterion bears some resemblance to a “fixed-effects” approach,

that seeks to protect against any sequence of incidental parameters. There are recent discussions

of incidental parameters and panel data in Lancaster (2002) and Arellano (2003).

Even in the simple IV model, with the loss functions I have chosen, the optimality results

typically cannot be applied without further input: for example, a prior distribution for the scalar
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parameter ρ is needed for the optimal confidence set. Point estimation of φ is the exception, where

the minimax result does not require additional input. I expect a minimax treatment of part of the

parameter space to be useful in other applications, but that, typically, finite sample optimality will

involve a combination of the average risk and maximum risk criteria.

As for invariance, my preference is to regard invariance arguments as a step in the derivation of

minimax results. Other models need not have the invariance structure, but, if minimax is appealing

for part of the parameter space, then numerical methods can be used. An algorithm is developed in

Chamberlain (2000), using the minimax theorem for S-games (Blackwell and Girshick, 1954) and a

concave programming algorithm, as in Wilson (1963). An appeal of the average risk and maximum

risk criteria is that there is an explicit objective function to be minimized. Approximations may

be needed due to computational constraints, but those constraints should become less binding as

computational costs continue to decline.

Once one focuses on a risk function, it is natural to think about criteria, like average risk and

maximum risk, that lend themselves to optimization. But decision theory can guide the evaluation

of procedures, whether or not optimality plays a role. Consider for example the first approach to

confidence sets in Section 7. The risk function is simply one minus the coverage rate, so the focus

is not on an optimal procedure. But given a candidate procedure, such as inverting a likelihood

ratio test, evaluating the risk function calls for determining the coverage rate at each point in the

parameter space. A procedure may be motivated by an asymptotic argument that the limiting

coverage rate is .95, without the need to specify a likelihood function. Nevertheless, it would be

good to know how the finite sample coverage rate varies over the parameter space, which requires

that there be a parameter space. A key component of decision theory is the evaluation of the risk of

a decision rule over a set of distributions provided by the image under the model of the parameter

space.
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APPENDIX

Proof of Theorem 5.1. We can use (7.3) to simplify the integral in (5.4):
∫

[1− (φ′a)2]

[∫

f(z | (ρ, φ, ω)) dτk−1(ω)
]

dτ1(φ)

=

∫

[1− (φ′a)2]fI(z | (ρ, φ)) dτ1(φ)

= c(z) exp(−ρ2/2)
∫

[1− (φ′a)2]Gk(ρ||D(z)φ||) dτ1(φ),

with

G1(t) = exp(t) + exp(−t)

and

Gk(t) =

∫

[−1,1]

exp(ts)(1− s2)(k−3)/2 ds

=

∫

[0,1]

[exp(ts) + exp(−ts)](1− s2)(k−3)/2 ds

for k > 1. Note that Gk is an increasing function.

Let Q(z) = ( q1(z) q2(z) ) be an orthogonal matrix whose columns are the eigenvectors of

D(z)′D(z):

Q(z)′(D(z)′D(z))Q(z) =

(

ζ1(z) 0
0 ζ2(z)

)

, Q(z)′Q(z) = I2,

where the eigenvalues ζ1(z) and ζ2(z) are ordered so that ζ1(z) ≥ ζ2(z). If φ has a uniform

distribution on S1, then Q−1(z)φ has a uniform distribution on S1 (for any value of z). So we have
∫

(φ′a)2Gk(ρ||Dφ||) dτ1(φ) =
∫

[(Q−1φ)′(Q−1a)]2Gk(ρ||(DQ)(Q−1φ)||) dτ1(φ)

=

∫

[φ′(Q−1a)]2Gk(ρ||(DQ)φ||) dτ1(φ)

=

∫

[φ′(Q−1a)]2Gk(ρ(ζ1φ
2
1 + ζ2φ

2
2)
1/2) dτ1(φ),

where φ′ = (φ1 φ2 ) and we have simplified the notation by suppressing the z argument in D(z),

Q(z), ζ1(z), and ζ2(z).
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dψ,ρ(z) is a solution to

max
a∈S1

∫

[φ′(Q−1a)]2Gk(ρ(ζ1φ
2
1 + ζ2φ

2
2)
1/2) dτ1(φ). (A.1)

We shall show that

max
a∈S1

∫

(φ′a)2Gk(ρ(ζ1φ
2
1 + ζ2φ

2
2)
1/2) dτ1(φ) (A.2)

is attained at a = ( 1 0 )
′
. Then dψ,ρ(z) = Q(z) ( 1 0 )

′
= q1(z) is a solution to (A.1).

Define bρk(t) = Gk(ρ
√
t) for k ≥ 1, and note that for a given value of ρ > 0, bρk(·):R+ → R

is an increasing function. Represent φ and a in S1 as follows:

φ =

(

cos(s)
sin(s)

)

, a =

(

cos(t)
sin(t)

)

,

and note that

φ′a = cos(s) cos(t) + sin(s) sin(t) = cos(s− t).

Then we have

max
a∈S1

∫

S1

(φ′a)2Gk(ρ(ζ1φ
2
1 + ζ2φ

2
2)
1/2) dλS1(φ)

= max
t∈[−π,π]

∫

[−π,π]

cos(s− t)2bρk(ζ1 cos(s)2 + ζ2 sin(s)
2) ds. (A.3)

Lemma.
∫

[−π,π]

cos(s)2bρk(ζ1 cos(s)
2 + ζ2 sin(s)

2) ds

≥
∫

[−π,π]

cos(s− t)2bρk(ζ1 cos(s)2 + ζ2 sin(s)
2) ds for t ∈ [−π, π], ρ > 0, k ≥ 1.

Proof .

cos(s)2 − cos(s− t)2 = (1− cos(t)2)(2 cos(s)2 − 1)− 2 cos(t) sin(t) cos(s) sin(s).

Let

w(s) = bρk(ζ1 cos(s)
2 + ζ2 sin(s)

2) = bρk((ζ1 − ζ2) cos(s)2 + ζ2).
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Since cos(−s) sin(−s)w(−s) = − cos(s) sin(s)w(s),

∫

[−π,π]

cos(s) sin(s)w(s) ds = 0

and so

∫

[−π,π]

(cos(s)2 − cos(s− t)2)w(s) ds = (1− cos(t)2)

∫

[−π,π]

(2 cos(s)2 − 1)w(s) ds.

Consider the interval [π/2, π]. The functions 2(cos(·))2 − 1 and w(·) are increasing on this

interval, and

∫

[π/2,π]

(2 cos(s)2 − 1) ds =

∫

[π/2,π]

cos(2s) ds =
1

2
sin(2s)

∣

∣

∣

∣

π

π/2

= 0.

Hence
∫

[π/2,π]

(2 cos(s)2 − 1)w(s) ds ≥ 0.

A similar argument applies to the intervals [−π,−π/2], [−π/2, 0], and [0, π/2], since, on each of

these intervals, the functions 2(cos(·))2 − 1 and w(·) are either both increasing or both decreasing,

and the integral of 2(cos(·))2 − 1 is zero. (When both functions are decreasing, multiply each of

them by −1 to obtain two increasing functions.) This completes the proof of the Lemma.

It follows from the Lemma that the maximizing value for t in (A.3) is t = 0, and so the

maximizing value for a in (A.2) is a = ( 1 0 )
′
. Hence

dψ,ρ(z) = Q(z)

(

1
0

)

= q1(z)

is a solution to (A.1). ¦
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