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ABSTRACT

This paper applies some general concepts in decision theory to a linear panel data model. A
simple version of the model is an autoregression with a separate intercept for each unit in the cross
section, with errors that are independent and identically distributed with a normal distribution.
There is a parameter of interest γ and a nuisance parameter τ , a N ×K matrix, where N is the
cross-section sample size. The focus is on dealing with the incidental parameters problem created
by a potentially high-dimension nuisance parameter. We adopt a “fixed-effects” approach, that
seeks to protect against any sequence of incidental parameters. We transform τ to (δ, ρ, ω), where
δ is a J ×K matrix of coefficients from the least squares projection of τ on a N × J matrix x of
strictly exogenous variables, ρ is a K×K symmetric, positive semidefinite matrix obtained from the
residual sums of squares and cross products in the projection of τ on x, and ω is a (N−J)×K matrix
whose columns are orthogonal and have unit length. The model is invariant under the actions of
a group on the sample space and the parameter space, and we find a maximal invariant statistic.
The distribution of the maximal invariant statistic does not depend upon ω. There is a unique
invariant distribution for ω. We use this invariant distribution as a prior distribution to obtain an
integrated likelihood function. It depends upon the observation only through the maximal invariant
statistic. We use the maximal invariant statistic to construct a marginal likelihood function. So we
can eliminate ω by integration with respect to the invariant prior distribution, or by working with
the marginal likelihood function. The two approaches coincide.

Decision rules based on the invariant distribution for ω have a minimax property. Given a loss

function that does not depend upon ω, and given a prior distribution for (γ, δ, ρ), we show how

to minimize the average—with respect to the prior distribution for (γ, δ, ρ)—of the maximum risk,
where the maximum is with respect to ω.

There is a family of prior distributions for (δ, ρ) that leads to a simple closed form for the
integrated likelihood function. This integrated likelihood function coincides with the likelihood
function for a normal, correlated random effects model. Under random sampling, the corresponding
quasi maximum likelihood estimator is consistent for γ as N → ∞, with a standard limiting
distribution. The limit results do not require normality or homoskedasticity (conditional on x)
assumptions.

KEYWORDS: Autoregression, fixed effects, incidental parameters, invariance, minimax, cor-
related random effects
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1. INTRODUCTION

This paper applies some general concepts in decision theory to a linear panel data model.

An example of the model is an autoregression with a separate intercept for each unit in the cross

section, with errors that are independent and identically distributed with a normal distribution.

There is a parameter of interest γ and a nuisance parameter τ , a N ×K matrix, where N is the

cross-section sample size. The focus is on dealing with the incidental parameters problem created

by a potentially high-dimension nuisance parameter.

In our general model, the observation is the realized value of a N ×M matrix Y of random

variables. We shall be conditioning on the value of a N × J matrix x, which is observed and has

rank J . Our model specifies a conditional distribution for Y given x, as a function of the parameter

of interest γ and the nuisance parameter τ :

Y |x d
= xa(γ) + τb(γ) +Wc(γ), (1)

where τ is N × K, W is N × p, and J + K ≤ N , J + M ≤ N , M ≤ p. The components of W ,

conditional on x, are independently and identically distributed N (0, 1), which we shall denote by

L(W ) = N (0, IN ⊗ Ip).

The functions a, b, and c are given. (For a random matrix V , the notation L(V ) = N (µ,Λ)

indicates that the vector formed by joining the rows of V has a multivariate normal distribution

with covariance matrix Λ and mean vector formed by joining the rows of the matrix µ.) All

distributions throughout the paper are conditional on x.

A simple version of our model arises from the reduced form of the following autoregression:

Yit = ψYi,t−1 + αi + Uit (i = 1, . . . , N ; t = 1, . . . , T̄ ),
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where the Uit are independent and identically distributed N (0, σ2). We observe the realized value

of the random variable Yit for i = 1, . . . , N and t = 1, . . . , T̄ . We do not observe Yi0. The reduced

form is

Yi1 = ψYi0 + αi + Ui1,

Yit = ψtYi0 + (1 + ψ + · · · + ψt−1)αi + Uit + ψUi,t−1 + · · · + ψt−1Ui1 (t = 2, . . . , T̄ ).

Conditional on Yi0 = yi0, we can write this as

Y = τb(γ) +Wc(γ), (2)

where γ = (ψ, σ),

Y =







Y11 . . . Y1T̄
...

...
YN1 . . . YNT̄






, τ =







y10 α1
...

...
yN0 αN






, W =







W11 . . . W1T̄
...

...
WN1 . . . WNT̄






, (3)

b(γ) =

(

ψ ψ2 . . . ψT̄

1 (1 + ψ) . . . (1 + ψ + · · · + ψT̄−1)

)

, c(γ) = σ









1 ψ . . . ψT̄−1

0 1 . . . ψT̄−2

...
...

. . .
...

0 0 . . . 1









, (4)

and the Wit are independent and identically distributed N (0, 1).

The observation is the realized value of Y . The parameters are γ and τ . We shall focus on

inference for γ, and treat the initial conditions and individual effects in τ as nuisance parameters.

We shall try to deal with the large number of incidental parameters in τ that arises when N is large.

We shall adopt a “fixed-effects” approach, that seeks to protect against any sequence of incidental

parameters in τ . There are recent discussions of incidental parameters and panel data in Lancaster

(2000, 2002) and Arellano (2003).

An alternative analysis could be based on the distribution of (Yi2, . . . , YiT̄ ) conditional on the

observed value Yi1 = yi1. This can fit into our framework by removing the first column of Y and

including yi1 in the ith row of x. We prefer to work with the full distribution of the observed Y in

order to avoid possible loss of information from conditioning.

2



Now consider a second-order autoregression with time-varying coefficients on the individual

effect (a factor model), and time-varying variances for the innovations:

Yit = ψ1Yi,t−1 + ψ2Yi,t−2 + αiζt + Uit (t = 1, . . . , T̄ ),

where Yi0 = yi0 and Yi,−1 = yi,−1 are not observed, and the Uit are mutually independent with

Uit ∼ N (0, σ2
t ). With Y and W defined as above, we can write this as

Y d(ψ) = τ b̃(ψ, ζ) +Wc̃(σ),

where

τ =







y10 y1,−1 α1

...
...

...
yN0 yN,−1 αN






, d(ψ) =





















1 −ψ1 −ψ2 . . . 0
0 1 −ψ1 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . −ψ2

0 0 0 . . . −ψ1

0 0 0 . . . 1





















,

b̃(ψ, ζ) =





ψ1 ψ2 0 . . . 0
ψ2 0 0 . . . 0
ζ1 ζ2 ζ3 . . . ζT̄



 , c̃(σ) = diag(σ1, . . . , σT̄ ).

We can impose a normalization such as
∑T̄

t=1 ζ
2
t = 1. The reduced form of the model is

Y = τb(γ) +Wc(γ),

with γ = (ψ, ζ, σ) and

b(γ) = b̃(ψ, ζ)d(ψ)−1, c(γ) = c̃(σ)d(ψ)−1 .

We can include strictly exogenous variables xit:

Yit = x′itξ + ψ1Yi,t−1 + ψ2Yi,t−2 + αiζt + Uit,

where xit and ξ are L× 1 matrices,

x =







x′11 . . . x′
1T̄

...
...

x′N1 . . . x′
NT̄






,
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and conditional on x, the Uit are mutually independent with Uit ∼ N (0, σ2
t ). The reduced form of

this model is

Y = xa(γ) + τb(γ) +Wc(γ),

with γ = (ξ, ψ, ζ, σ), ã(ξ) = IT̄ ⊗ ξ, and

a(γ) = ã(ξ)d(ψ)−1, b(γ) = b̃(ψ, ζ)d(ψ)−1 , c(γ) = c̃(σ)d(ψ)−1.

Note that if ψ1 or ψ2 is not equal to zero, then the reduced form has a distributed lag: the

conditional expectation of Yit given x depends upon xi1, . . . , xit. An alternative model has

Yit = x′itξ + αiζt + Uit,

where, conditional on x, the vector (Ui1, . . . , UiT̄ ) is independent and identically distributed with

a multivariate normal distribution:

(Ui1, . . . , UiT̄ )
i.i.d.∼ N (0,Λ(χ)).

The function Λ is given and specifies the variances and serial correlations of the errors Uit as a

function of the parameter vector χ with fixed dimension. We can write this as

Y = xã(ξ) + τ b̃(ψ, ζ) +Wc̃(χ),

where c̃(χ) is the symmetric square root of Λ(χ): c̃(χ)2 = Λ(χ).

In our general model, the observation is the realized value of a N ×M matrix Y of random

variables. For example, in a vector autoregression involving the variables Y (1), . . . , Y (k), the ith

row of Y could be

(Y
(1)
i1 , . . . , Y

(k)
i1 , . . . , Y

(1)

iT̄
, . . . , Y

(k)

iT̄
),

so that M = kT̄ . We only consider linear, complete systems whose reduced forms match equation

(1). See Arellano’s (2003, p. 144) discussion of incomplete systems with unspecified feedback

processes.
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The next section shows that the model is invariant under the actions of a group. This group

is isomorphic to O(N − J), the group of orthogonal matrices with N − J rows and columns.

This isomorphism suggests a canonical form for the model, based on a one-to-one transformation,

which simplifies the subsequent analysis. We transform τ to (δ, ρ, ω), where δ is a J ×K matrix of

coefficients from the least squares projection of τ on x, ρ is a K×K symmetric, positive semidefinite

matrix obtained from the residual sums of squares and cross products in the projection of τ on x,

and ω is a (N − J) ×K matrix whose columns are orthogonal and have unit length. Only ω has

a dimension that increases with N . Section 3 finds a maximal invariant statistic. The distribution

of the maximal invariant statistic does not depend upon ω. Section 4 obtains the unique, invariant

distribution for ω. We use this invariant distribution as a prior distribution to obtain an integrated

likelihood function. It depends upon the observation only through the maximal invariant statistic.

We use the maximal invariant statistic to construct a marginal likelihood function. So we can

eliminate ω by integration with respect to the invariant prior distribution, or by working with the

marginal likelihood function. The two approaches coincide.

Section 5 shows that decision rules based on the invariant distribution for ω have a minimax

property. Given a loss function that does not depend upon ω, and given a prior distribution for

(γ, δ, ρ), we show how to minimize the average—with respect to the prior distribution for (γ, δ, ρ)—

of the maximum risk, where the maximum is with respect to ω.

Section 6 shows that there is a family of prior distributions for (δ, ρ) that leads to a simple

closed form for the integrated likelihood function. This integrated likelihood function coincides

with the likelihood function for a normal, correlated random effects model.

Section 7 develops the example of a simple autoregression and relates our results to the litera-

ture. Under random sampling, the quasi maximum likelihood estimator for the correlated random

effects model is consistent for γ as N → ∞, with a standard limiting distribution. The limit results

do not require normality or homoskedasticity (conditional on x) assumptions.
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2. MODEL INVARIANCE AND CANONICAL FORM

This section shows that the model is invariant under the actions of a group. This group

invariance implies a maximal invariant statistic and an invariant prior distribution. Their derivation

is simplified by working with a canonical form for the model, based on a one-to-one transformation.

We shall briefly describe invariance in the original form of the model, and then provide more detail

in the canonical form, where most of the subsequent analysis takes place.

Let O(N) denote the group of N ×N orthogonal matrices (gg′ = g′g = IN ). The group G̃ is

the subgroup of O(N) that preserves x:

G̃ = {g̃ ∈ O(N) : g̃x = x}.

The action of G̃ on the sample space maps y to g̃y. Note that

g̃Y |x d
= xa(γ) + (g̃τ)b(γ) +Wc(γ)

(because L(g̃W ) = L(W )). The action of G̃ on the parameter space maps (γ, τ) to (γ, g̃τ). So the

model is invariant under the actions of G̃ on the sample space and the parameter space.

The canonical form follows from recognizing that the group G̃ is in fact isomorphic to O(N−J).

To see this, use the polar decomposition of x to obtain

x = q

(

s
0

)

,

where q ∈ O(N) and s is the unique symmetric, positive semidefinite square root of x′x: s =

(x′x)1/2, with ss = x′x. (See Golub and Van Loan (1996, p. 149).) The J × J matrix s is positive

definite because x has full column rank J . Then g̃x = x is equivalent to

(q′g̃q)

(

s
0

)

=

(

s
0

)

.

Let

q′g̃q =

(

h11 h12

h21 h22

)

.
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Then we have

h11s = s ⇒ h11 = IJ ,

h21s = 0 ⇒ h21 = 0,

and so q′g̃q ∈ O(N) implies that

q′g̃q =

(

IJ 0
0 g

)

, (5)

where g ∈ O(N − J). Define G = O(N − J) and define the map ι: G̃ → G by using (5) to map g̃

to g. It is straightforward to check that this map is bijective. In addition,

q′(g̃1g̃2)q = (q′g̃1q)(q
′g̃2q)

=

(

IJ 0
0 g1

)(

IJ 0
0 g2

)

=

(

IJ 0
0 g1g2

)

,

so that ι is a group homomorphism:

ι(g̃1g̃2) = g1g2 = ι(g̃1)ι(g̃2).

Since ι is a bijective homomorphism, the groups G̃ and G are isomorphic.

Because of this isomorphism, the action of G̃ on the sample space implies an action of G on

the sample space:

g̃y = q(q′g̃q)q′y = q

(

IJ 0
0 g

)(

z1
z2

)

= q

(

z1
gz2

)

,

where z = q′y. This applies the orthogonal transformation q′ to y, multiplies the last N − J rows

by the orthogonal matrix g, and then uses q to transform back. So we can simplify notation by

working with the one-to-one transformation Z ≡ q′Y , with

Z |x d
=

(

s
0

)

a(γ) + τ̃ b(γ) +Wc(γ)

and τ̃ = q′τ . Let Z = RN×M denote the sample space and partition a point z ∈ Z as

z =

(

z1
z2

)

,
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where z1 is J ×M and z2 is (N − J) ×M . Then the action of G on the sample space is given by

m1:G× Z → Z, m1(g, z) =

(

IJ 0
0 g

)

z =

(

z1
gz2

)

.

We shall abbreviate m1(g, z) = g · z. This defines a group action because for all g1, g2 ∈ G and

z ∈ Z, we have e · z = z and (g1g2) · z = g1 · (g2 · z), where e = IN−J is the identity element in G.

Partition τ̃ as

τ̃ =

(

τ̃1
τ̃2

)

,

where τ̃1 is J ×K and τ̃2 is (N − J) ×K. Note that

g · Z |x d
=

(

s
0

)

a(γ) +

(

τ̃1
gτ̃2

)

b(γ) +Wc(γ) (6)

(because L(g ·W ) = L(W )). It is convenient to define δ = s−1τ̃1 and write (6) as

g · Z |x d
=

(

s
0

)

π(γ, δ) +

(

0
gτ̃2

)

b(γ) +Wc(γ),

where

π(γ, δ) = a(γ) + δb(γ).

Note that the least-squares projection coefficient of τ on x is

(x′x)−1x′τ = s−1τ̃1 = δ.

So δ captures a linear relationship between the individual effects τ and x.

Let FK,N−J denote the set of (N − J) ×K matrices whose columns are orthogonal and have

unit length:

FK,N−J = {d ∈ R(N−J)×K : d′d = IK}.

(FK,N−J is the Stiefel manifold of ordered sets of K orthonormal vectors in RN−J ; see Bishop and

Crittenden (1964, p. 137).) The matrix τ̃2 has polar decomposition

τ̃2 = ωρ, ω ∈ FK,N−J , ρ = (τ̃ ′2τ̃2)
1/2,
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where ρ is the unique, symmetric positive semidefinite square root of τ̃ ′2τ̃2. Partition q = ( q1 q2 ),

where q1 is N × J and q2 is N × (N − J). Note that x = q1s implies that

x(x′x)−1x′ = q1q
′
1,

and qq′ = IN implies that

q2q
′
2 = IN − x(x′x)−1x′,

ρ2 = τ̃ ′2τ̃2 = τ ′q2q
′
2τ = τ ′(IN − x(x′x)−1x′)τ.

So ρ2 is formed from the residual sums of squares and cross products in the least squares projection

of τ on x.

Then we can write the model in (1) as

Z |x d
=

(

s
0

)

π(γ, δ) +

(

0
ω

)

ρb(γ) +Wc(γ), L(W ) = N (0, IN ⊗ Ip). (7)

Let θ = (β, ω) denote the parameter, with β = (γ, δ, ρ). The parameter space is

Θ = Θ1 × Θ2 with Θ2 = FK,N−J

(and Θ1 is a subset of some Euclidean space). We shall let Pθ denote the distribution of Z

(conditional on x) when the parameter takes on the value θ: L(Z) = Pθ.

The action of the group G on the parameter space is given by

m2:G × Θ → Θ, m2(g, θ) = m2(g, (β, ω)) = (β, gω).

We shall abbreviate m2(g, θ) = g · θ. This defines a group action because for all g1, g2 ∈ G and

θ ∈ Θ, we have e · θ = θ and (g1g2) · θ = g1 · (g2 · θ). Then

g · Z |x d
=

(

s
0

)

π(γ, δ) +

(

0
gω

)

ρb(γ) +Wc(γ), L(W ) = N (0, IN ⊗ Ip),

and so

L(Z) = Pθ implies L(g · Z) = Pg·θ,

and the model is invariant under the actions of G on the sample space and the parameter space.
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3. MAXIMAL INVARIANT STATISTIC

A statistic S is a (measurable) function defined on the sample space. S is invariant if S(g ·z) =

S(z) for all g ∈ G and z ∈ Z. Let PS
θ denote the distribution of S(Z) when L(Z) = Pθ. If S is an

invariant statistic, then for all g ∈ G and θ ∈ Θ:

PS
θ = L(S(Z)) = L(S(g · Z)) = PS

g·θ.

The orbit of a point θ ∈ Θ under the action of G is the set {g · θ : g ∈ G}. Note that for any

ω1, ω2 ∈ Θ2, there exists a g ∈ G such that gω1 = ω2, and hence for any β ∈ Θ1, the points (β, ω)

are in the same orbit for all ω ∈ Θ2. (The action of G on Θ2, defined by m(g, ω) = gω, is transitive.)

So the distribution of an invariant statistic does not depend upon ω.

Let T (z) = (T1(z), T2(z)) = (z1, z
′
2z2). Then

T (g · (z1, z2)) = T (z1, gz2) = (z1, z
′
2g

′gz2) = (z1, z
′
2z2),

and so T is an invariant statistic. We shall show that T is a maximal invariant statistic: if S is an

invariant statistic, then for any z, z̃ ∈ Z, T (z) = T (z̃) implies that S(z) = S(z̃). This result is a

consequence of the following proposition:

Proposition 1 . If T (z) = t = (t1, t2), then there exists a gz ∈ G such that z = gz · r(t), where

r(t) =







t1
(

t
1/2
2

0

)






∈ Z.

Proof . The matrix z2 can be decomposed as

z2 = h

(

(z′2z2)
1/2

0

)

where h ∈ O(N − J).

Set gz = h. Then

g−1
z · z =

(

IJ 0
0 g−1

z

)(

z1
z2

)

=







t1
(

t
1/2
2

0

)






= r(t). ⋄
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Corollary . T is a maximal invariant statistic.

Proof. Suppose that S is an invariant statistic. If T (z) = T (z̃) = t, then Proposition 1 implies that

g−1
z · z = g−1

z̃ · z̃ = r(t) with gz, gz̃ ∈ G.

Hence z and z̃ are in the same orbit:

g · z = z̃ for g = gz̃g
−1
z ∈ G.

So

S(z) = S(g · z) = S(z̃). ⋄

The orbit of a point z ∈ Z under the action of G is the set {g · z : g ∈ G}. The maximal

invariant T indexes the orbits in the sample space: if T (z1) = T (z2) = t, then z1 and z2 are in the

orbit of r(t). The set {r(T (z)) : z ∈ Z} contains one point from each orbit. It is a measurable

cross section; see Eaton (1989, p. 58). In the parameter space, for any point β ∈ Θ1, the points

(β, ω) are in the same orbit for all ω ∈ Θ2. So we can fix some point ω0 ∈ Θ2, and then the set

{(β, ω0) : β ∈ Θ1} contains one point from each orbit in the parameter space. It is a measurable

cross section in the parameter space.

4. INVARIANT PRIOR DISTRIBUTION

Since G is a compact group, there is a unique invariant distribution µ on G: Haar measure

normalized so that µ(G) = 1. Let U denote a random variable taking on values in G. The invariance

property is that

L(U) = µ implies L(gU) = L(Ug) = µ for all g ∈ G.

We shall refer to the invariant distribution µ as the uniform distribution on G. This invariant

distribution on G implies a unique invariant distribution λ on the compact set Θ2 = FK,N−J ; see

Eaton (1989, example 2.10, p. 27). This distribution can be obtained from µ by fixing some point
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ω0 ∈ Θ2 and setting λ = L(Uω0), where L(U) = µ. The distribution λ does not depend upon the

point ω0, since if ω1 is some other point in Θ2, with ω1 = gω0 for some g ∈ G, then

L(Uω1) = L(U(gω0)) = L((Ug)ω0) = L(Uω0) = λ.

Let V be a random variable taking on values in Θ2. Then the invariance property of λ is that

L(V ) = λ implies L(gV ) = L(g(Uω0)) = L((gU)ω0) = L(Uω0) = λ

for all g ∈ G. We shall refer to the invariant distribution λ as the uniform distribution on Θ2.

Define

Ω(γ) = c(γ)′c(γ),

and assume that c(γ) has full column rank for all β = (γ, δ, ρ) ∈ Θ1. Let f(z |β, ω) denote the

likelihood function:

f(z |β, ω) = (2π)−NM/2 det(Ω(γ))−N/2 exp
(

−1

2
trace[Ω(γ)−1k(z, β, ω)′k(z, β, ω)]

)

,

where

k(z, β, ω) = z −
(

s
0

)

π(γ, δ) −
(

0
ω

)

ρb(γ).

We can use the uniform distribution on Θ2 as a prior distribution to obtain an integrated likelihood

function:

fλ(z |β) =

∫

Θ2

f(z |β, ω)λ(dω).

The next proposition shows that this integrated likelihood function depends upon z only

through the maximal invariant T (z).

Proposition 2 . For all z ∈ Z and β ∈ Θ1, fλ(z |β) = fλ(r(T (z)) |β).

Proof . Note that for any g ∈ G,

k(g−1 · z, β, ω) =

(

IJ 0
0 g−1

)

[z −
(

s
0

)

π(γ, δ) −
(

0
gω

)

ρb(γ)] =

(

IJ 0
0 g−1

)

k(z, β, gω),
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and so, for all z ∈ Z and (β, ω) ∈ Θ,

f(g−1 · z |β, ω) = f(z |β, gω).

(See Eaton (1989, p. 44) for a general discussion of this point.) As in Proposition 1, z = gz ·r(T (z)).

So
∫

Θ2

f(z |β, ω)λ(dω) =

∫

Θ2

f(gz · r(T (z)) |β, ω)λ(dω)

=

∫

Θ2

f(r(T (z)) |β, g−1
z ω)λ(dω)

=

∫

Θ2

f(r(T (z)) |β, ω)λ(dω). ⋄

We can use the maximal invariant statistic T to construct a marginal likelihood function,

based on a density for the distribution of T . The next proposition uses Proposition 2 to show that

this marginal likelihood function can be obtained from the integrated likelihood function. Let PT
β

denote the distribution of T (Z) when L(Z) = P(β,ω); the value of ω does not matter since T is an

invariant statistic. Let ζ denote Lebesgue measure on RN × RM , and let ν = ζT−1 denote the

following measure:

ν(A) = ζ(T−1(A))

for (measurable) sets A in a Euclidean space containing T (Z). Define

fT (t |β) = fλ(r(t) |β) for t ∈ T (Z), β ∈ Θ1.

Proposition 3 shows that fT (t |β) provides a density function for PT
β :

PT
β (A) =

∫

A

fT (t |β) ν(dt).

Proposition 3 . fλ(r(t) |β) is a density for PT
β with respect to the measure ν.

Proof . For all ω ∈ Θ2,

PT
β (A) = P(β,ω)(T

−1(A)),

13



and so

PT
β (A) =

∫

Θ2

P(β,ω)(T
−1(A))λ(dω)

=

∫

Θ2

[
∫

T−1(A)

f(z |β, ω) ζ(dz)

]

λ(dω)

=

∫

T−1(A)

[∫

Θ2

f(z |β, ω)λ(dω)

]

ζ(dz)

=

∫

T−1(A)

fλ(r(T (z)) |β) ζ(dz)

=

∫

A

fλ(r(t) |β) ζT−1(dt). ⋄

We can eliminate the parameter ω by integration with respect to the invariant prior distribu-

tion, to obtain the integrated likelihood function fλ(z |β). Or we can eliminate ω by working with

the marginal likelihood function fT (t |β), based on the maximal invariant statistic T . Propositions

2 and 3 show that these likelihood functions coincide:

fλ(z |β) = fλ(r(T (z)) |β) = fT (T (z) |β).

Having eliminated ω, we can ask whether γ is identified in these likelihood functions. This

will depend on the particular specifications for a(γ), b(γ), c(γ), and one can examine the following

moment conditions based on T (Z):

E[(x′x)−1x′Y ] = s−1E(Z1) = π(γ, δ),

E(Y ′Y ) = E(Z ′
1Z1 + Z ′

2Z2) = π(γ, δ)′x′xπ(γ, δ) + b(γ)′ρ2b(γ) +Nc(γ)′c(γ).

5. OPTIMALITY

Using the likelihood function of an invariant statistic has the advantage of eliminating depen-

dence on the parameter ω. The concern is that, even using the maximal invariant statistic, we are

not using all of the data. This concern can be addressed in our case, since the marginal likelihood

14



function based on T coincides with the integrated likelihood function when we use the invariant

prior distribution for ω.

Suppose the loss function does not depend upon ω:

L : Θ1 ×A → R,

where A is the action space. The corresponding risk function is

R((β, ω), d) =

∫

Z

L(β, d(z))f(z |β, ω) ζ(dz),

where d : Z → A is in the set D of feasible decision rules; D is unrestricted except for regularity

conditions. Let η be some prior distribution on Θ1, and consider the average risk with respect to

the prior distribution η × λ on Θ:

R∗(η × λ, d) =

∫

Θ1

∫

Θ2

R((β, ω), d)λ(dω) η(dβ)

=

∫

Θ1

∫

Z

L(β, d(z))fλ(z |β) ζ(dz) η(dβ).

So choosing d to minimize this average risk function can be based on the integrated likelihood

function. Under regularity conditions, we have the standard result that the optimal d is obtained

by minimizing posterior expected loss:

d(z) = arg min
a∈A

∫

Θ1

L(β, a)fλ(z |β) η(dβ)

= arg min
a∈A

∫

Θ1

L(β, a)fT (T (z) |β) η(dβ).

So we can obtain an optimal decision rule using the marginal likelihood function. This optimal

decision rule is a function of the maximal invariant statistic—it depends upon z only through T (z)—

but this was not imposed as a constraint on D in the optimization. See Eaton (1989, Chapter 6)

for a general discussion of invariant decision rules.

Suppose that dη×λ minimizes average risk:

dη×λ = arg min
d∈D

R∗(η × λ, d)

15



and depends upon z only through T (z):

dη×λ(z) = d̃η×λ(T (z)).

The next proposition establishes a minimax property for this decision rule. The argument is based

on Chamberlain (2007, Theorem 6.1).

Proposition 4 . dη×λ solves the following problem, which combines the average risk and maximum

risk criteria:

dη×λ = arg min
d∈D

∫

Θ1

[ sup
ω∈Θ2

R((β, ω), d)] η(dβ).

Proof . Let L(Z) = P(β,ω). Then

R((β, ω), dη×λ) = E[L(β, d̃η×λ(T (Z)))],

which does not depend upon ω since T is an invariant statistic. So we can fix a point ω0 ∈ Θ2,

define R̃(β, dη×λ) = R((β, ω0), dη×λ), and then, for all β ∈ Θ1 and ω ∈ Θ2, we have R((β, ω), dη×λ)

= R̃(β, dη×λ). For any d ∈ D,

∫

Θ1

[ sup
ω∈Θ2

R((β, ω), d)] η(dβ)

≥
∫

Θ1

[
∫

Θ2

R((β, ω), d)λ(dω)

]

η(dβ)

≥
∫

Θ1

[∫

Θ2

R((β, ω), dη×λ)λ(dω)

]

η(dβ)

=

∫

Θ1

R̃(β, dη×λ) η(dβ)

=

∫

Θ1

[ sup
ω∈Θ2

R((β, ω), dη×λ)] η(dβ). ⋄

The use of minimax here does not eliminate the choice of a prior distribution; the average risk

criteria on the parameter space Θ1 for β requires that we specify a prior distribution η. But we can

replace the choice of a prior distribution on the parameter space FK,N−J for ω by the maximum risk
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criterion. The solution to the minimax problem calls for a particular, least favorable, distribution

on FK,N−J : the uniform distribution λ. This minimax treatment of the incidental parameters

can be obtained using the marginal likelihood function fT ( · |β) based on the maximal invariant

statistic.

Recall from Section 2 that

δ = (x′x)−1x′τ, ρ2 = τ ′(IN − x(x′x)−1x′)τ.

Define the set-valued function B( · , · ) by

B(δ, ρ) = {τ ∈ RN×K : (x′x)−1x′τ = δ, τ ′(IN − x(x′x)−1x′)τ = ρ2}.

The minimax result in Proposition 4 can be related to the original parametrization by replacing

the sup over ω in Θ2 by the sup over τ in B(δ, ρ).

6. A CLOSED FORM INTEGRATED LIKELIHOOD
AND CORRELATED RANDOM EFFECTS

Our finite sample optimality result uses a prior distribution η for β, where β = (γ, δ, ρ). This

section develops a family of prior distributions for (δ, ρ) that leads to a simple, explicit form for

the integrated likelihood. The basic idea is that the uniform distribution λ on FK,N−J can be

combined with a central Wishart distribution to obtain a multivariate normal distribution.

We start with a family of prior distributions for ρ that is indexed by a parameter Φ, which is

a K ×K symmetric, positive semidefinite matrix. Let

L(Q) = N (0, IN−J ⊗ Φ).

Let

κΦ = L((Q′Q)1/2)

be the prior distribution for ρ with parameter Φ. Then the corresponding integrated likelihood

function is

fλ,κ(z | γ, δ,Φ) =

∫

fλ(z | (γ, δ, ρ))κΦ(dρ)

=

∫ ∫

f(z | (γ, δ, ρ), ω)λ(dω)κΦ(dρ).
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Suppose that V is independent of Q′Q, with L(V ) = λ. Then

L(Q) = L(V (Q′Q)1/2);

see Eaton (1989, Example 4.4, p. 61). So the distribution for τ̃2 = ωρ implied by λ × κΦ is

N (0, IN−J ⊗ Φ). This implies that the log of the integrated likelihood function is

log[fλ,κ(z | γ, δ,Φ)] = −NM
2

log(2π) − J

2
log[det(Ω(γ))]

− N − J

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

− 1

2
trace[Ω(γ)−1(z1 − sπ(γ, δ))′(z1 − sπ(γ, δ))]

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1z′2z2
]

.

Fix a value for the parameter in (7):

β∗ = (γ∗, δ∗, ρ∗) ∈ Θ1, ω∗ ∈ Θ2.

Let L(Z) = P(β∗,ω∗) and define

l(γ, δ,Φ) = E
[

log[fλ,κ(Z | γ, δ,Φ)]
]

.

Note that this expectation does not depend upon the normality assumption for W in (7); only the

first and second moments of Z are used, and so l(γ, δ,Φ) depends upon L(W ) only through its first

and second moments. Evaluating E(Z1), E(Z ′
1Z1), and E(Z ′

2Z2) gives

l(γ, δ,Φ) = −NM
2

log(2π) − J

2
log[det(Ω(γ))]

− N − J

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

− 1

2
trace

[

Ω(γ)−1[(π(γ∗, δ∗) − π(γ, δ))′x′x(π(γ∗, δ∗) − π(γ, δ))] + JΩ(γ)−1Ω(γ∗)
]

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[b(γ∗)′ρ∗2b(γ∗) + (N − J)Ω(γ∗)]
]

.
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The maximum of l(γ, δ,Φ) is attained at

γ = γ∗, δ = δ∗, Φ = ρ∗2/(N − J).

This result is useful for obtaining asymptotic properties of the estimator that maximizes the inte-

grated (quasi) log-likelihood function.

In order to make connections between a correlated random effects model and our fixed-effects

approach, it is convenient to introduce a prior distribution for δ, in addition to the prior distribution

for ρ that was chosen to obtain a closed form for the integrated likelihood. The family of prior

distributions for (δ, ρ) is indexed by the parameter (ι,Φ), where ι is a J × K matrix and Φ is a

K ×K symmetric, positive semidefinite matrix. Let

L(

(

Q1

Q2

)

) = N (0, IN ⊗ Φ),

where Q1 is J ×K and Q2 is (N − J) ×K. Let

κι,Φ = L(ι+ s−1Q1, (Q
′
2Q2)

1/2)

be the prior distribution for (δ, ρ). The distribution for ωρ implied by λ× κι,Φ is N (0, IN−J ⊗ Φ)

(as above), and the distribution for (sπ(γ, δ), ωρ) is

N (sπ(γ, ι), IJ ⊗ b(γ)′Φb(γ)) ×N (0, IN−J ⊗ Φ).

The corresponding integrated likelihood function is

f̄λ,κ(z | γ, ι,Φ) =

∫

fλ(z | (γ, δ, ρ))κι,Φ(dδ, dρ).

Evaluating the log of this integrated likelihood function gives

log[f̄λ,κ(z | γ, ι,Φ)] = −NM
2

log(2π) − N

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

(8)

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[(z1 − sπ(γ, ι))′(z1 − sπ(γ, ι)) + z′2z2]
]

.
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As above, fix a value (β∗, ω∗) for the parameter, let L(Z) = P(β∗,ω∗), and define

l̄(γ, ι,Φ) = E
[

log[f̄λ,κ(Z | γ, ι,Φ)]
]

.

As before, this expectation does not depend upon the normality assumption for W in (7); only the

first and second moments of Z are used. Evaluating E(Z1), E(Z ′
1Z1), and E(Z ′

2Z2) gives

l̄(γ, ι,Φ) = −NM
2

log(2π) − N

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

(9)

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[(π(γ∗, δ∗) − π(γ, ι))′x′x(π(γ∗, δ∗) − π(γ, ι))

+ b(γ∗)′ρ∗2b(γ∗) +NΩ(γ∗)]
]

.

The maximum of l̄(γ, ι,Φ) is attained at

γ = γ∗, ι = δ∗, Φ = ρ∗2/N.

Consider the following correlated random effects specification for the incidental parameters:

τ |x d
= N (xι, IN ⊗ Φ). (10)

Combining this with the model in (1), the implied distribution for the observation is

Y |x d
= N (xπ(γ, ι), IN ⊗ [b(γ)′Φb(γ) + Ω(γ)]), (11)

and the log-likelihood function is

log[f re(y | γ, ι,Φ)] = −NM
2

log(2π) − N

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

(12)

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[(y − xπ(γ, ι))′(y − xπ(γ, ι))]
]

.

We shall refer to this as the normal, correlated random effects model. As in Section 2, let

x = q

(

s
0

)

, z = q′y,
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where q is a N ×N orthogonal matrix; then we can write the log-likelihood function as

log[f re(qz | γ, ι,Φ)] = −NM
2

log(2π) − N

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

(13)

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[(z1 − sπ(γ, ι))′(z1 − sπ(γ, ι)) + z′2z2]
]

= log[f̄λ,κ(z | γ, ι,Φ)].

So the log of the normal, correlated random effects likelihood function coincides with the log of the

integrated likelihood function in equation (8). This connection with a correlated random effects

model helps to relate our results to the literature on panel data.

7. CONNECTIONS WITH THE LITERATURE

A simple version of our model arises from the reduced form of the following autoregression:

Yit = ψYi,t−1 + αi + Uit (i = 1, . . . , N ; t = 1, . . . , T̄ ), (14)

where the Uit are independent and identically distributed N (0, σ2). We observe the realized value

of the random variable Yit for i = 1, . . . , N and t = 1, . . . , T̄ . We do not observe Yi0. This

specification implies a likelihood function for {Yi1, . . . , YiT̄ }N
i=1, conditional on {yi0, αi}N

i=1. Our

framework allows for conditioning on time-varying covariates xit, but in this simple version we shall

just use x = 1N , where 1N denotes a N × 1 matrix of ones. To obtain our canonical form, use an

N ×N orthogonal matrix q whose first column is proportional to 1N : q = ( 1N/
√
N q2 ) , so that

x = q

(√
N
0

)

.

Note that qq′ = IN implies that q2q
′
2 = IN − 1N1′N/N . Then our transformation of the N × T̄

matrix Y is

Z = q′Y =

(√
NȲ
q′2Y

)

, where Ȳ =
(
∑N

i=1 Yi1/N . . .
∑N

i=1 YiT̄/N
)

.

Our transformation of the parameters uses

τ̃ = q′τ =

(√
Nτ̄
τ̃2

)
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with τ̃2 = q′2τ and

τ̃ ′2τ̃2 = τ ′q2q
′
2τ = (τ − 1N τ̄)

′(τ − 1N τ̄) (15)

=

( ∑N
i=1(yi0 − ȳ0)

2
∑N

i=1(yi0 − ȳ0)(αi − ᾱ)
∑N

i=1(yi0 − ȳ0)(αi − ᾱ)
∑N

i=1(αi − ᾱ)2

)

.

Then

δ = τ̄ =
(

∑N
i=1 yi0/N

∑N
i=1 αi/N

)

, ρ = (τ̃ ′2τ̃2)
1/2.

The maximal invariant statistic T (Z) = (T1(Z), T2(Z)) has

T1(Z) =
√
NȲ , T2(Z) = (Y − 1N Ȳ )′(Y − 1N Ȳ ).

The distribution of this statistic depends only upon (ψ, σ, δ, ρ), which has dimension seven; the

distribution does not depend upon ω, which has dimension 2N−5. Let γ = (ψ, σ). The distribution

of the maximal invariant statistic has density fT ( · | γ, δ, ρ), which is based on a normal distribution

for Ȳ and an independent noncentral Wishart distribution for (Y − 1N Ȳ )′(Y − 1N Ȳ ).

Our optimality result requires a prior distribution for (ψ, σ, δ, ρ). The dimension reduction

shows up in not requiring a prior distribution for ω—that is where the minimax result is used.

There is a particular family of prior distributions for (δ, ρ) that connects to the literature on

random effects models. The family is indexed by the parameter (ι,Φ), where ι is 1 × 2 and Φ is a

2 × 2 symmetric, positive semidefinite matrix. Let

L(

(

Q1

Q2

)

) = N (0, IN ⊗ Φ),

where Q1 is 1 × 2 and Q2 is (N − 1) × 2. The prior for (δ, ρ) is

κι,Φ = L(ι+N−1/2Q1, (Q
′
2Q2)

1/2).

Combining fT (T (z) | γ, δ, ρ) with this family of prior distributions for (δ, ρ) gives the integrated

likelihood f̄λ,κ(z | γ, ι,Φ), as in equation (8) in Section 6.
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Now consider the following normal random effects model: the specification in (14) plus

(yi0, αi)
i.i.d.∼ N ((ι1, ι2),Φ) (i = 1, . . . , N). (16)

The likelihood function is f re(y | γ, ι,Φ), as in equation (12) in Section 6. Using the transformation

z = q′y, our result in (13) shows that

f re(qz | γ, ι,Φ) = f̄λ,κ(z | γ, ι,Φ).

A prior distribution for (ψ, σ, ι,Φ), of dimension seven, is needed to obtain minimum average risk

in finite samples. We do not have a specific recommendation for this prior. Our point is that

the normal random effects likelihood function can be obtained from the likelihood function for the

maximal invariant, in which the dimension of the parameter space has already been reduced to a

number (seven) that does not depend upon N . In this sense, the incidental parameter problem has

been dealt with in the original fixed-effects model in (14), which conditions on {yi0, αi}N
i=1, without

relying on the specification of a random-effects distribution in (16).

Our paper has a finite sample perspective, but in connecting with the literature we shall

consider limits as N → ∞ in the context of our general model. In equation (9) of Section 6, we fix

a “true value” θ∗ = (γ∗, δ∗, ρ∗, ω∗) for the parameter in (7), and evaluate

l̄(γ, ι,Φ) = E
[

log[f̄λ,κ(Z | γ, ι,Φ)]
]

,

with Z distributed according to Pθ∗ . This expectation does not depend upon the normality as-

sumption for W in (7), and the maximum of l̄(γ, ι,Φ) is attained at γ = γ∗, ι = δ∗, Φ = ρ∗2/N .

If there is a unique maximizing value for γ, it should be feasible to go from here to a consistency

result for γ∗ (as N → ∞), without the normality assumption for W .

In fact, if we add an assumption of random sampling over the cross-section dimension i, then

the asymptotics are straightforward and well known. Let Y(i), x(i), and τ(i) denote the ith rows of

Y , x, and τ . Assume that

(Y(i), x(i), τ(i)) (i = 1, . . . , N)
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are independent and identically distributed from a joint distribution F , and let EF denote expec-

tation with respect to this distribution. We shall assume that the (unconditional) second moments

of (Y(i), x(i)) correspond to the normal, correlated random effects model, but we shall not make

normality or homoskedasticity (conditional on x) assumptions in obtaining the limit distribution of

the estimator. We shall refer to this semiparametric model simply as the correlated random effects

model. Assume that

EF [x′(i)(Y(i) − x(i)π(γ∗, ι∗))] = 0,

so that x(i)π(γ∗, ι∗) is the minimum mean-square-error linear predictor of Y(i) given x(i). Define

ǫ(i) = Y(i) − x(i)π(γ∗, ι∗)

and assume that

EF (ǫ′(i)ǫ(i)) = b(γ∗)′Φ∗b(γ∗) + Ω(γ∗).

Let υ denote the column vector formed from γ, ι, and the lower triangle of Φ, and let

h(Y(i), x(i), υ) = −1

2
log

[

det[b(γ)′Φb(γ) + Ω(γ)]
]

− 1

2
trace

[

[b(γ)′Φb(γ) + Ω(γ)]−1[(Y(i) − x(i)π(γ, ι))′(Y(i) − x(i)π(γ, ι))]
]

.

Then it is straightforward to show that

max
υ

EF [h(Y(1), x(1), υ)]

is attained at υ∗, which is formed from the distinct elements of (γ∗, ι∗,Φ∗). The quasi-ML estimator

is

υ̂N = arg max
υ

1

N

N
∑

i=1

h(Y(i), x(i), υ).

Standard method-of-moments arguments, as in Hansen (1982), MaCurdy (1982), and White (1982),

provide regularity conditions under which υ̂N has a limiting normal distribution as N → ∞ (with

J , K, and M fixed):
√
N(υ̂N − υ∗)

d→ N (0,Λ∗),

24



where

Λ∗ = [EF

∂2h(Y(1), x(1), υ
∗)

∂υ∂υ′
]−1[EF

∂h(Y(1), x(1), υ
∗)

∂υ

∂h(Y(1), x(1), υ
∗)

∂υ′
][EF

∂2h(Y(1), x(1), υ
∗)

∂υ∂υ′
]−1.

Since f̄λ,κ(q′y | γ, ι,Φ) equals f re(y | γ, ι,Φ), this limit distribution result applies to a quasi maxi-

mum likelihood estimator based on the integrated likelihood f̄λ,κ from Section 6.

The quasi maximum likelihood estimator is asymptotically equivalent to a minimum distance

estimator that imposes the restrictions on the second moments. An optimal minimum distance

estimator uses a weight matrix based on the covariance matrix of the sample second moments.

The minimum distance estimator corresponding to quasi-ML uses a weight matrix that would be

optimal under normality but not in general. See Chamberlain (1984, section 4.4) and Arellano

(2003, sections 5.4.3 and 7.4.2).

Returning to the example in (14), we can use the reduced form from equations (2)–(4) in

Section 1 to calculate moment conditions based on T (Z), conditional on {yi0, αi}N
i=1. This gives

E(Ȳ ) = N−1/2E(Z1) = τ̄ b(γ),

E(Y ′Y ) = E(Z ′
1Z1 + Z ′

2Z2) = b(γ)′(Nτ̄ ′τ̄ + τ̃ ′2τ̃2)b(γ) +Nc(γ)′c(γ),

where γ = (ψ, σ), τ̃ ′τ̃ = ρ2 is displayed in (15), and b(γ) and c(γ) are displayed in (4). These

moments can be used to examine the identification of ψ and σ, treating τ̄ and τ̃ ′2τ̃2 as unrestricted.

Now add the normal random effects specification in (16), and calculate moment conditions

without conditioning on {yi0, αi}N
i=1:

E(Ȳ ) = ιb(γ),

E(Y ′Y ) = b(γ)′(Nι′ι+NΦ)b(γ) +Nc(γ)′c(γ).

Working with these moments leads to the same identification analysis for γ, because ι and Φ are

unrestricted.

Bhargava and Sargan (1983) consider maximum likelihood estimation in a model with lagged

dependent variables and strictly exogenous variables. They use a normal, correlated random effects
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model for the initial conditions. Their model is discussed in Arellano (2003, sections 7.4.1 and

7.4.2). Arellano (2003, section 7.4.3) considers a normal, correlated random effects specification for

the individual effects in the Bhargava-Sargan model. Chamberlain (1980, p. 234–235) and Blundell

and Smith (1991) consider maximum likelihood estimation, conditional on the first observation, in

normal, correlated random effects models. Alvarez and Arellano (2003, section 3.5) obtain limiting

results for inference in these models as N and T̄ tend to infinity.2 Alvarez and Arellano (2004)

consider quasi maximum likelihood estimators in correlated random effects models, with a stress

on allowing for time-series heteroskedasticity.

Lancaster (2002) deals with incidental parameters by first reparametrizing so that the infor-

mation matrix is block diagonal, with the common parameters in one block and the incidental

parameters in the other. In his application to a nonstationary dynamic regression model (p. 653),

the parameter space for the reparametrized incidental parameters is RN . Then he forms an inte-

grated likelihood function, integrating with respect to Lebesgue measure on RN . He shows that

maximizing this integrated likelihood function provides a consistent estimator of the common pa-

rameters. Note that the information matrix block diagonality would be preserved by a smooth

bijective transformation of the incidental parameters, so the use of Lebesgue measure does not by

itself provide a unique prior measure. Our approach is similar in that it uses an integrated likeli-

hood function. The prior measure, however, is different. Our reparametrization is motivated by the

invariance of the model under the actions of the orthogonal group, and this determines a unique

invariant distribution for ω on the compact space FK,N−J . This distribution is least favorable in

our minimax optimality result. Another difference is that the use of Lebesgue measure on RN for a

prior measure does not correspond to the normal, correlated random effects model. It amounts to

specifying that the (reparametrized) individual effects have very large variances, instead of treating

the individual effects as draws from a distribution whose variance is a parameter to be estimated.

Sims (2000) uses a likelihood perspective in his analysis of dynamic panel data models. He deals

2 Hahn and Kuersteiner (2002) consider maximum likelihood estimation in fixed effects models

and obtain bias corrections as N and T̄ tend to infinity.
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with incidental parameters by treating the individual effects and initial conditions as draws from a

bivariate normal distribution (p. 454). Our approach has a different starting point, since our model

treats the individual effects and initial conditions as parameters (fixed effects). But our minimax

optimality argument calls for a particular least favorable distribution for ω. We have seen that

this unique distribution can be combined with a particular family of prior distributions for (δ, ρ)

to obtain a normal, correlated random effects model, which corresponds to Sims’s specification.

8. CONCLUSION

We started with a fixed-effects model. After reparametrizing, only the parameter ω has dimen-

sion depending on the cross-section sample size N . The model is invariant under the actions of the

orthogonal group, and we obtained a maximal invariant statistic, T , whose distribution does not

depend upon ω. So we can solve the incidental parameters problem by working with a marginal

likelihood, based on the sampling distribution of T . This approach has a finite sample, minimax

optimality. The argument is based on expressing the marginal likelihood as an integrated likelihood

for a particular prior distribution for ω. The prior distribution is the unique, invariant distribution

under the group action on that part of the parameter space.

In addition to ω, the nuisance parameter consists of (δ, ρ), whose dimension does not depend

upon N . A convenient way to implement our approach is to use a particular family of prior distri-

butions for (δ, ρ), indexed by the parameter (ι,Φ). This leads to an integrated likelihood function

with a closed form expression. It is a function of (γ, ι,Φ), where γ is the original parameter of

interest, which is not affected by the reparametrization. It turns out that this integrated likelihood

function coincides with the likelihood function for a normal, correlated random effects model.

So our finite sample optimality arguments take us from the initial fixed-effects model to a

normal, correlated random effects model. The normal distribution for the effects is not part of

our model in equations (1) and (7); the model only specifies a normal distribution for the errors.

The normal distribution for the effects arises from two sources: the unique uniform distribution

for ω on the compact manifold FK,N−J , whose dimension depends upon N , and the convenient
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choice of prior distribution for (δ, ρ), whose dimension does not depend upon N . The first source

is motivated by our invariance and minimax arguments. The second source lacks this motivation,

but since the dimension of (δ, ρ) does not depend upon N , the particular choice made here may

not be so important when N is large. In fact, using the integrated likelihood function as a quasi-

likelihood, the large N asymptotics of the quasi-ML estimator are covered by standard arguments,

under random sampling. These large N arguments do not require the assumption of normal errors

in (1) and (7).

So one way to view our finite sample results is that, starting with a fixed-effects model, they

provide motivation for a normal, correlated random effects model. At that point, robustness con-

cerns can lead to dropping the normality assumption. Our quasi-ML estimator can still provide the

basis for large N inference, but it would not be (semiparametric) efficient. So one may prefer to use

a different weighting scheme for the moment restrictions implied by the correlated random effects

model. This leads to standard optimal minimum distance and generalized method of moments

estimators for the correlated random effects model.
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