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BINARY RESPONSE MODELS FOR PANEL DATA:
IDENTIFICATION AND INFORMATION

BY GARY CHAMBERLAIN1

This paper considers a panel data model for predicting a binary outcome. The con-
ditional probability of a positive response is obtained by evaluating a given distribution
function (F) at a linear combination of the predictor variables. One of the predictor
variables is unobserved. It is a random effect that varies across individuals but is con-
stant over time. The semiparametric aspect is that the conditional distribution of the
random effect, given the predictor variables, is unrestricted.

This paper has two results. If the support of the observed predictor variables is
bounded, then identification is possible only in the logistic case. Even if the support
is unbounded, so that (from Manski (1987)) identification holds quite generally, the in-
formation bound is zero unless F is logistic. Hence consistent estimation at the standard
pn rate is possible only in the logistic case.

KEYWORDS: Panel data, binary response, correlated random effects, identification,
information bound.

1. INTRODUCTION

THIS PAPER CONSIDERS a panel data model for predicting a binary outcome.
The conditional probability of a positive response is obtained by evaluating a
given distribution function (F) at a linear combination of the predictor vari-
ables. One of the predictor variables is unobserved. It is a random effect that
varies across individuals but is constant over time. The semiparametric aspect
is that the conditional distribution of the random effect, given the predictor
variables, is unrestricted.

When the distribution function F is logistic, Rasch’s (1960, 1961) conditional
likelihood approach can be used to obtain a consistent estimator. Andersen
(1970) examined the properties of this estimator. See Chamberlain (1984) for
a review and additional results.

Manski (1987) showed that consistent estimation is possible without speci-
fying a functional form for F . Furthermore, the form of F can be allowed to
depend on the predictor variables in a time-invariant way. Identification does,
however, require an unbounded support for at least one of the predictor vari-
ables.

This paper has two results. If the support of the observed predictor variables
is bounded, then identification is possible only in the logistic case. Even if the
support is unbounded, so that (from Manski (1987)) identification holds quite
generally, the information bound is zero unless F is logistic. Hence consistent
estimation at the standard

√
n rate is possible only in the logistic case.
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2. IDENTIFICATION

The random vector (yi1� yi2�x′
i1�x

′
i2� ci) is independently and identically dis-

tributed (i.i.d.) for i = 1� � � � � n. We observe z′
i = (yi1� yi2�x

′
i1�x

′
i2); the latent

variable ci is not observed. The binary variable yit = 0 or 1 and x′
i ≡ (x′

i1�x
′
i2)

has support X ⊂ RJ × RJ . We assume that

Prob(yit = 1|xi� ci)= F(α0dit +β′
0xit + ci) (t = 1�2)�

where dit = 1 if t = 2 and = 0 otherwise. The distribution function F is
given as part of the prior specification; it is strictly increasing on the whole
line with a bounded, continuous derivative, and with lims→−∞ F(s) = 0 and
lims→∞ F(s)= 1. Furthermore, yi1 and yi2 are independent conditional on xi� ci.
The parameter space Θ=Θ1 ×Θ2, where Θ1 is an open subset of R, Θ2 is an
open subset of RJ , and θ′

0 ≡ (α0�β
′
0) ∈Θ. We assume thatΘ2 contains all β 	= 0

with |β| sufficiently small.
Define

p(x� c�θ)=
⎛
⎝ [1 − F(β′x1 + c)][1 − F(α+β′x2 + c)]

[1 − F(β′x1 + c)]F(α+β′x2 + c)
F(β′x1 + c)[1 − F(α+β′x2 + c)]

⎞
⎠ �

Let G consist of the mappings from X into the space of probability measures
on R. We let Gx denote G evaluated at x for G ∈ G . We shall say that identifi-
cation fails at θ0 if∫

p(x� c�θ0)G0x(dc)=
∫
p(x� c�θ∗)G∗

x(dc)

for all x ∈ X , where G0 and G∗ ∈ G , θ∗ ∈ Θ, and θ∗ 	= θ0. Then (θ0�G0) and
(θ∗�G∗) give the same conditional distribution for (y1� y2) given x.

The distribution F is logistic if

F(s)= exp(φ1 +φ2s)/[1 + exp(φ1 +φ2s)]
for some φ1�φ2 ∈ R.

THEOREM 1: If X is bounded, then identification fails for all θ0 in some open
subset of Θ if F is not logistic.

PROOF: Let cop(x�R� θ) denote the convex hull of the set {p(x� c�θ) : c ∈
R}. Suppose that for some α ∈Θ1, this convex hull contains an open ball B (in
R3) when β= 0. Then for any θ0 and θ∗ ∈Θ sufficiently close to (α�0),

cop(x�R� θ0)∩ cop(x�R� θ∗)
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is nonempty for all x ∈X . Then for each x ∈X , there are probability measures
G0x and G∗

x such that∫
p(x� c�θ0)G0x(dc)=

∫
p(x� c�θ∗)G∗

x(dc)�

Hence θ0 is not identified unless the dimension of cop(x�R� (α�0)) is 2 for
all α ∈Θ1. In that case, for each α ∈Θ1, there exist scalars ψ1� � � � �ψ4 (not all
zero) such that

ψ1[1 − F(c)][1 − F(α+ c)] +ψ2[1 − F(c)]F(α+ c)
+ψ3F(c)[1 − F(α+ c)] =ψ4

for all c ∈ R. Letting c→ ∞ givesψ4 = 0; letting c→ −∞ givesψ1 = 0. Hence,
with Q≡ F/(1 − F), we have

ψ2Q(α+ c)+ψ3Q(c)= 0

and so

Q(α+ c)=Q(α)Q(c)/Q(0)
for all α ∈Θ1 and all c ∈ R. The only positive, continuously differentiable so-
lution to this form of Cauchy’s equation is

Q(s)= exp(φ1 +φ2s);
then the result follows from F =Q/(1 +Q). Q.E.D.

Manski’s (1987) model is specified as (dropping the i subscripts)

yt =
{

1� if θ′
0wt + c + ut ≥ 0,

0� otherwise
(t = 1�2)�

u1|w1�w2� c
d= u2|w1�w2� c�

The key restriction here is that the latent error, ut , should have an identical
distribution in both periods, conditional on the predictor variables w1�w2� c.
(Also the support of the distribution of ut conditional on w1�w2� c is assumed
to be R.) This allows for a certain kind of heteroskedasticity, but does not
permit, for example, the conditional distribution of ut to be more sensitive to
wt than to ws (s� t = 1�2; s 	= t).

Our model, with w′
t = (dt� x

′
t), imposes additional restrictions. We require

u1�u2 to be independent of w1�w2� c and to be i.i.d. over time with a known
distribution (−ut d= F).
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Manski’s result is that θ0 is identified up to scale if a component of w2 −w1

(with a nonzero coefficient) has positive Lebesgue density on the whole line,
conditional on the other components of w2 − w1 and on c. (In addition, the
support of the K× 1 vector w2 −w1 should not be contained in a proper linear
subspace of RK .) Our scale normalization is built in to the given specification
for the ut distribution, but we can make comparisons by considering ratios of
coefficients. The proof of Theorem 1 shows that a logistic F is necessary for
such ratios to be identified. It is the bounded support for the predictor variables
(w1�w2) that accounts for the difference in results.

In the next section, we shall assume that xi has positive Lebesgue density on
all of R2J . Then identification is possible in general, but we shall see that the
information bound is zero except for the logistic case.

3. INFORMATION

Our semiparametric information bound is based on considering the least fa-
vorable parametric subfamily. This idea is owing to Stein (1956) and has been
developed by Levit (1975), Begun, Hall, Huang, and Wellner (1983), and Pfan-
zagl (1982).

The observations consist of independent and identically distributed (i.i.d.)
random vectors z1� � � � � zn with values in Z, a subset of a Euclidean space. The
distribution of z1 has positive density f (z;θ0� g0) with respect to a σ-finite
measure μ. The parametric component θ0 is an element of Θ, an open sub-
set of RK . The nonparametric component g0 is an element of Γ , an infinite-
dimensional set. A path λ through g0 is a mapping from an open interval
(c�d) ⊂ R into Γ , where λ(δ0) = g0 for a unique δ0 ∈ (c�d). The path λ is
used to construct a parametric likelihood function

fλ(z;θ�δ)= f (z;θ�λ(δ))�
Let γ′ = (θ′� δ) and γ′

0 = (θ′
0� δ0). Then we have mean-square differentiability

at γ0 if

f 1/2
λ (z;γ)− f 1/2

λ (z;γ0)=
K+1∑
j=1

ψλj(z)(γj − γ0j)+ r(z;γ)�

where ∫
r2(z;γ)μ(dz)/|γ− γ0|2 → 0

as γ → γ0. If the mean-square differential exists and if the partial derivatives
exist almost everywhere with respect to μ (a.e. μ), then

ψλj(z)= 1
2
f−1/2
λ (z;γ0) ∂fλ(z;γ0)/∂γj (a.e. μ)�
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The partial information for θ0k (k= 1� � � � �K) in the path λ is

Iλ�k = 4 inf
α∈RK+1 : αk=1

∫ (
K+1∑
j=1

αjψλj(z)

)2

μ(dz)�

Given a set Λ of paths, we define

IΛ�k = inf
λ∈Λ
Iλ�k�

We let IΛ = 0 denote that IΛ�k = 0 for k= 1� � � � �K. In that case, no component
of θ0 can be estimated at a

√
n rate; see Chamberlain (1986, Theorem 2).

In the panel data model from Section 2, we shall assume that the conditional
distribution of c given x has a density g with respect to Lebesgue measure.
Then the likelihood is based on the density (with respect to μ)

f (z;θ�g)=
∫
A(z� c�θ)g(c�x)dc�

where

A(z� c�θ)=
2∏
t=1

F(αdt +β′xt + c)yt · [1 − F(αdt +β′xt + c)](1−yt )�

The measure μ is defined on Z = Y × X , where Y = {(0�0)� (0�1)� (1�0)�
(1�1)} and X is now RJ × RJ . If B1 ⊂ Y and B2 is a Borel subset of X , then

μ(B1 ×B2)= τ(B1)v(B2)�

where τ is the counting measure on Y and the measure v gives the probability
distribution of xi ≡ (xi1�xi2).

We shall assume that v has positive Lebesgue density on all of R2J . In addi-
tion, we shall assume that β0J 	= 0 for β0 ∈Θ2.

We shall use the following specification for Γ :

DEFINITION 1: Γ consists of all measurable functions g : R ×X → R such
that (i) inf(c�x)∈B g(c�x) > 0 for any compact subset B of R × X; (ii) for
all x ∈ X ,

∫ ∞
−∞ g(c�x)dc = 1; (iii) for each z ∈ Z and θ ∈ Θ, there exists a

neighborhood C ⊂ Θ of θ and a measurable function q1 : R → R such that∫
q1(c)g(c�x)dc <∞ and

|∂A(z� c�η)/∂θ| ≤ q1(c) for all η ∈ C;
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(iv) for each θ ∈Θ, there is a neighborhood C ⊂Θ of θ and a function q2 :Z→
R such that

∫
q2(z)μ(dz) <∞ and[∫

|∂A(z� c�η)/∂θ|g(c�x)dc
]2

/∫
A(z� c�η)g(c�x)dc ≤ q2(z) for all η ∈C�

Part (iii) of Definition 1 ensures that f is continuously differentiable with
respect to θ for each z ∈ Z; part (iv) ensures that the mean-square derivative
of f 1/2 with respect to θ exists.

We shall work with the following set of paths:

DEFINITION 2: Λ consists of the paths

λ(δ)= g0[1 + (δ− δ0)h]�
where g0 ∈ Γ and h : R ×X → R is a bounded, measurable function with∫

g0(c�x)h(c�x)dc = 0 for all x ∈X�

THEOREM 2: IΛ = 0 for all θ0 in Θ if F is not logistic.

PROOF: It is straightforward to check that λ(δ) ∈ Γ for δ sufficiently close
to δ0. Define the parametric likelihood function fλ(z;θ�δ) = f (z;θ�λ(δ)).
Now let γ′ = (θ′� δ) and γ′

0 = (θ′
0� δ0), and apply the mean-value theorem to

obtain

f 1/2
λ (z;γ)− f 1/2

λ (z;γ0)= ∂f 1/2
λ (z;γ0)

∂γ′ (γ− γ0)+ r(z;γ)�

where

r(z;γ)=
[
∂f 1/2
λ (z; γ̃)
∂γ

− ∂f 1/2
λ (z;γ0)

∂γ

]′
(γ− γ0)

and γ̃ is on the line segment joining γ and γ0:

r2(z;γ)
|γ− γ0|2

≤
∣∣∣∣∂f

1/2
λ (z; γ̃)
∂γ

− ∂f 1/2
λ (z;γ0)

∂γ

∣∣∣∣
2

→ 0

as γ → γ0 (a.e. μ) since the partial derivatives are continuous in γ. Then the
dominated convergence theorem implies that∫

r2(z;γ)μ(dz)/|γ− γ0|2 → 0
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and so the mean-square differentiability condition is satisfied.
Now we need to show that if F is not logistic, then given k ∈ {1� � � � �K} and

given ε > 0, there is a path λ ∈Λ such that

4
∫ (

∂f 1/2
λ (z;γ0)

∂θk
− ∂f 1/2

λ (z;γ0)

∂δ

)2

μ(dz)(1)

=
∑
y

∫
f−1(z;θ0� g0)

×
(
∂f (z;θ0� g0)

∂θk
−

∫
A(z� c�θ0)g0(c�x)h(c�x)dc

)2

v(dx)

< ε�

Since
∫
f−1(z;θ0� g0)[∂f (z;θ0� g0)/∂θk]2v(dx) <∞, we can choose an ε′ > 0

such that (1) is satisfied if there is a compact subset B of R2J with v(B) > 1−ε′,
h(c�x)= 0 for x /∈ B, and∑

y

∫
B

f−1(z;θ0� g0)(2)

×
(
∂f (z;θ0� g0)

∂θk
−

∫
A(z� c�θ0)g0(c�x)h(c�x)dc

)2

v(dx) < ε′�

Since f (z;θ0� g0) is bounded away from 0 for x ∈ B, there is an ε′′ > 0 such
that (2) is satisfied if there is a bounded, measurable function m : R × B→ R
such that for all x ∈ B :m(c�x) = 0 for |c| sufficiently large,

∫
m(c�x)dc = 0

and [∑
y

(
∂f (z;θ0� g0)

∂θk
−

∫
A(z� c�θ0)m(c�x)dc

)2]1/2

< ε′′�(3)

Then we set

h(c�x)= 1(x ∈ B)m(c�x)/g0(c�x)�

(1(·) is the indicator function that equals 1 if the condition is satisfied and
equals 0 otherwise.)

Let r(x) denote the 4 × 1 vector whose elements are ∂f (z;θ0� g0)/∂θk for
y = (0�0)� (0�1)� (1�0)� (1�1). Note that l′r(x)= 0, where l is a 4 × 1 vector of
1’s. Define

a(x� c�θ)=

⎛
⎜⎜⎜⎝

[1 − F(β′x1 + c)][1 − F(α+β′x2 + c)]
[1 − F(β′x1 + c)]F(α+β′x2 + c)
F(β′x1 + c)[1 − F(α+β′x2 + c)]
F(β′x1 + c)F(α+β′x2 + c)

⎞
⎟⎟⎟⎠ �
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Then (3) can be written as∣∣∣∣r(x)−
∫
a(x� c�θ0)m(c�x)dc

∣∣∣∣< ε′′�(3′)

Suppose that for all x ∈ R2J except for a set with v-probability zero, there
exist points cj(x) ∈ R (j = 1� � � � �4) with[

a(x� c1(x)�θ0)� � � � � a(x� c4(x)�θ0)
]

nonsingular. Then for each such x, there is a neighborhood Cx of x such that[
a(x′� c1(x)�θ0)� � � � � a(x

′� c4(x)�θ0)
]

is nonsingular for all x′ in the closure of Cx. The Cx provide an open cover of
a compact set B with v(B) > 1 − ε′. Hence there is a finite subcover, and we
can partition B into Borel subsets D1� � � � �Dm and choose the cj to be simple
(hence measurable) functions of the form cj(x)= ∑m

k=1 κjk1(x ∈Dk). Further-
more, we can choose the cj such that

H(x)= [
a(x� c1(x)�θ0)� � � � � a(x� c4(x)�θ0)

]
has its determinant bounded away from zero for x ∈ B.

Define b(x)=H−1(x)r(x). Since l′H(x)= l′, we have

l′b(x)= l′H(x)b(x)= l′r(x)= 0�

Then (3′) can be written as∣∣∣∣∣
4∑
j=1

a(x� cj(x)�θ0)bj(x)−
∫
a(x� c�θ0)m(c�x)dc

∣∣∣∣∣< ε′′�(3′′)

Set

m(c�x)=
4∑
j=1

1
(|c− cj(x)|< δ

)
bj(x)/(2δ)�

Then m is bounded and measurable, m(c�x)= 0 for |c| sufficiently large,

∫
m(c�x)dc =

4∑
j=1

bj(x)= 0�

and (3′′) is satisfied if δ > 0 is sufficiently small.
We conclude that IΛ = 0 unless, for all x in a set S with positive Lebesgue

(outer) measure, {a(x� c�θ0) : c ∈ R} lies in a proper linear subspace of R4.
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Then for each such x, there exists a nonzero ψ ∈ R4 such that ψ′a(x� c�θ0)= 0
for all c ∈ R; that is,

ψ1[1 − F(β′
0x1 + c)][1 − F(α0 +β′

0x2 + c)]
+ψ2[1 − F(β′

0x1 + c)]F(α0 +β′
0x2 + c)

+ψ3F(β
′
0x1 + c)[1 − F(α0 +β′

0x2 + c)]
+ψ4F(β

′
0x1 + c)F(α0 +β′

0x2 + c)= 0�

Taking the limit as c → ∞ gives ψ4 = 0, and letting c → −∞ gives ψ1 = 0.
Hence, with Q≡ F/(1 − F), we have

ψ2Q(α0 +β′
0x2 + c)+ψ3Q(β

′
0x1 + c)= 0

and so

Q(α0 +β′
0x2 + c)=Q(α0 +β′

0x2)Q(β
′
0x1 + c)/Q(β′

0x1)�(4)

Then (4) holds for all x in the closure of S. DefineM(s)= logQ(s) and Ṁ(s)=
dM(s)/ds, and take the partial derivative with respect to the Jth component
of x2:

Ṁ(α0 +β′
0x2 + c)β0J = Ṁ(α0 +β′

0x2)β0J

for all c ∈ R. Hence M(s) = φ1 + φ2s, and the result follows from F =
exp(M)/[1 + exp(M)]. Q.E.D.

If 0 /∈ Θ1, then we can reparameterize in terms of θ̃ = (α�β/α). Then we
can apply the proof of Theorem 2 to show that the information bound for
β̃0 ≡ β0/α0 is 0 unless F is logistic. Hence, even though a consistent estimator
of β̃0 is available from Manski (1987) (under the additional assumption that
the parameter space bounds |β0J|/(|α0| + |β0|) away from 0), estimation at the
standard

√
n rate is possible only in the logistic case.
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