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 JOURNAL OF APPLIED ECONOMETRICS

 J. Appl. Econ. 15: 625-644 (2000)

 ECONOMETRIC APPLICATIONS OF MAXMIN
 EXPECTED UTILITY

 GARY CHAMBERLAIN*

 Department of Economics, Harivard University, Cambridge, MA 02138, USA

 SUMMARY

 Gilboa and Schmeidler (1989) develop a set of axioms for decision making under uncertainty. The axioms
 imply a utility function and a set of distributions such that the preference ordering is obtained by
 calculating expected utility with respect to each distribution in the set, and then taking the minimum of
 expected utility over the set. In a portfolio choice problem, the distributions are joint distributions for the
 data that will be available when the choice is made and for the future returns that will determine the value

 of the portfolio. The set of distributions could be generated by combining a parametric model with a set of
 prior distributions. We apply this framework to obtain a preference ordering over decision rules, which
 map the data into a choice. We seek a decision rule that maximizes the minimum expected utility (or,
 equivalently, minimizes maximum risk) over the set of distributions. An algorithm is provided for the case
 of a finite set of distributions. It is based on solving a concave programme to find the least-favourable
 mixture of these distributions. The minimax rule is a Bayes rule with respect to this least-favourable
 distribution. The minimax value is a lower bound for minimax risk relative to a larger set of distributions.
 An upper bound can be found by fixing a decision rule and calculating its maximum risk. We apply the
 algorithm to an estimation problem in an autoregressive, random-effects model for panel data. Copyright
 © 2000 John Wiley & Sons, Ltd.

 1. INTRODUCTION

 Consider an individual making a portfolio choice at date T involving two assets. The (gross)
 returns at t per unit invested at t- 1 are ylt and Y2t The individual has observed these returns
 from t = 0 to t = T. He has also observed the values of the variables Y/3t, ... ,YKI, which are
 thought to be relevant in forecasting future returns. So the information available to him when he
 makes his portfolio choice is z {(yit,.. ,YKt)}T= He invests one unit, divided between an
 amount a in asset one and 1 - a in asset two, and then holds on to the portfolio until date H. Let
 w = {(y1t,Y2t)}I= T+ 1 and let h(w,a) denote the value of the portfolio at t = H:

 H H

 h(w,a)=a I1 ylt+(- a) 7 y2t (1)
 t=T+l t=T+I

 How should a be chosen?

 Consider an econometrician who observes a sample vector z drawn from a distribution P0 for
 some value of the parameter 0 in the parameter space E c RIP. He is interested in a real-valued
 function g(0) and would like an estimator that is optimal under a mean-square error criterion.
 How should he choose an estimator?

 *Correspondence to: Gary Chamberlain, Department of Economics, Harvard University, Cambridge, MA 02138, USA.
 e-mail: gary_chamberlain@harvard.edu
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 G. CHAMBERLAIN

 Gilboa and Schmeidler (1989) develop a set of axioms for decision making under uncertainty.
 The axioms imply a utility function and a set of distributions such that the preference ordering is
 obtained by calculating expected utility with respect to each distribution in the set, and then
 taking the minimum of expected utility over the set. In Section 2 we apply this framework to
 obtain a preference ordering over decision rules, which map the observation z into a choice a.
 The decision maker's problem is to choose a decision rule that maximizes the minimum expected
 utility. In the portfolio choice problem, this gives

 maxmin u(h (w,d(z)))dQ(z, )
 dcD QeSJ

 where d is a decision rule, D is the set of feasible decision rules, and u is the utility function. The
 value (z,wv) is regarded as the realization of a random variable (Z, W) with distribution Q, and S
 is the set of distributions.

 With risk defined as the negative of expected utility, this framework corresponds to Wald's
 (1950) minimax risk criterion. In the estimation problem, we could take the set S to be
 {Pe: 0 E }. This gives

 minmax f(g() -d(z))2dPo(z) (2)

 The set S of distributions is a key element of this framework. A possible criticism of the
 criterion in equation (2) is that it puts too much weight on parts of the parameter space that are
 a priori unlikely. A response is to consider a set r of prior distributions on E. Let wv= 0,
 dQ1(z,0) = dPor(z)d7(0), and S {Q- , : 7 E r}. The estimation problem becomes:

 ninmax / J(g(0) - d(z))2dP(z)dw(0) (3)

 This corresponds to Good's (1952) argument that a minimax solution is reasonable provided
 that only reasonable subjective distributions are entertained. If F (and hence S) consists of a
 single distribution, then the solution to equation (3) is the Bayes rule for that prior distribution,
 and the framework reduces to Bayesian decision theory.

 Note that for any prior distribution 7r,

 J J(g(0)- d(z))ddPo(z)d(0) < max ((g(0) -d(z)) 2lPo(z)

 So the minimax risk value in equation (2) provides an upper bound on equation (3), for any set
 r of prior distributions. If r consists of all prior distributions on ), including point masses that
 assign probability one to a single point, then equation (3) reduces to equation (2). Even if the set
 of all priors is thought to be too big, in that it contains distributions that are not subjectively
 reasonable, it may still be of interest to calculate the minimax risk value in equation (2). It may
 be that a Bayes rule d, for a subjectively reasonable prior -r has a maximum risk (over 0 E 0)
 that is close to the minimax value in equation (2). Then that decision rule is attractive in terms of
 average risk with respect to the prior 7r and in terms of maximum risk over ). In addition, if the
 set D is unrestricted, then the posterior risk (with respect to 7r) is minimized by the choice d,(z)
 for any value of the observation z.

 Section 3 develops an algorithm for computing a minimax decision rule. We consider the case

 Copyright ( 2000 John Wiley & Sons, Ltd.
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 ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY

 in which S is the convex hull of a finite set of distributions. For example, in equation (3), we
 could have F equal to the convex hull of {{r,... ,7rjr, so that the set of prior distributions
 consists of mixtures of a finite set of priors. The algorithm is based on Blackwell and Girshick's
 (1954) minimax theorem for S-games, in which nature has a finite set of pure strategies. The
 optimal mixed strategy for nature corresponds to a least-favourable distribution, and the
 minimax rule is a Bayes rule with respect to this least-favourable distribution. This Bayes rule is

 based on a subjectively reasonable prior to the extent that 1, ... .1 j are subjectively reasonable
 priors. The least-favourable distribution is obtained numerically by solving a concave
 programming problem. We use a sequential quadratic programming algorithm.

 The minimax risk value that we obtain provides a lower bound on the minimax value relative
 to a larger set of distributions. For example, suppose that o in equation (2) contains an open set
 of RP. We can obtain a lower bound for the minimax value in equation (2) by selecting a finite
 subset {01,...,OJ} c 9, and applying our algorithm with S equal to the convex hull of
 {Po,... ,PJ). We can obtain an upper bound on the minimax value in equation (2) by fixing a
 decision rule and calculating its maximum risk over E). For example, we can calculate the
 maximum risk over E of the maximum likelihood estimator.

 If the set D of feasible decision rules is unrestricted, then a Bayes rule can be obtained by
 minimizing posterior risk. Section 4 develops this case, and also considers a problem in non-
 parametric estimation in which there are restrictions on the set of feasible rules.

 Section 5 considers an autoregressive, random-effects model for panel data. We focus on
 estimation of the autoregressive parameter, with mean-square error as the risk function. We
 obtain a lower bound on the minimax risk in equation (2) by using a finite subset
 0{1,... Oj} c E. The maximum risk over 9 of the maximum likelihood estimator provides an
 upper bound, which turns out to be fairly close to the lower bound.

 2. PREFERENCES

 Consider an individual making a decision under uncertainty. Suppose that he will observe the
 value z of a random variable Z before making his choice. The outcome given choice a depends
 upon a random variable W, whose value w may not be known when the choice is made. Z x W
 is the range of (Z, W), A is the set of possible choices, and X is the set of outcomes.

 Let y denote the set of probability distributions over X with finite support, corresponding to
 lotteries with prizes in X. The probabilities in these lotteries are exogenously given, as in a
 roulette lottery. Consider y, and Y2 in y, with the union of their supports equal to {x}j}= l; Yi
 assigns probabilities {pj}= 1 to these outcomes, and Y2 assigns probabilities {qj}= i. Then for
 a E (0,1), the mixture ayl + (1 - )y2 e Y assigns probabilities {op + (1 -a)q1} l to these
 outcomes.

 Let C denote the set of mappings from Z x W to y. An element / EE C can be regarded as a
 lottery in which the prize corresponding to state (of nature), (z,w) is a roulette lottery. I
 resembles a horse lottery in that the probabilities of the states are not exogenously given. Let LC
 denote the set of constant functions in C. We shall identify the roulette lotteries y with Cc. If

 a E (0,1) and f,g E , then af+ (1 - a)g denotes the horse lottery in C whose prize in state (z,w)
 is the roulette lottery in y corresponding to the mixture af(z,w) + (1 - a)g(z,w).

 Gilboa and Schmeidler (1989) consider a preference relation > over L that satisfies certain
 axioms. A key axiom is certainty-independence: for allf, g in L and r in Lc and for all a E (0,1),

 Copyright © 2000 John Wiley & Sons, Ltd.
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 G. CHAMBERLAIN

 f > g if and only if af+ (1 - a)r > acg + (1 - a)r. So the horse lotteryfis strictly preferred to the
 horse lottery g if and only if the (element by element) a-mixture off with any roulette lottery r is
 strictly preferred to the corresponding mixture of g with r. Gilboa and Schmeidler show that
 their axioms are equivalent to the existence of an affine function u: Y - 1 R and a non-empty,
 closed, convex set S of probability measures on Z x W such that: for all f,g E £,

 f>-g iff min u ofdQ > min uo gdQ.
 Qe$ Qe$

 If the certainty-independence axiom is strengthened so that it holds not just for the constant
 functions but for all r in £, then we have the Anscombe and Aumann (1963) version of the
 Savage (1954) axioms, and the set S consists of a single distribution.
 A (randomized) decision rule d is a mapping from Z to A*, the set of probability distributions
 on A with finite support. (We shall identify A with the subset of A* consisting of degenerate
 distributions). Let D denote the set of feasible decision rules. The mapping: /?: W x A* -+ y
 determines the outcome distribution as a function of (w,a*). For example, if a* assigns
 probabilities {pj}= I to the choices {a/}j= I, then h(w,a*) is the roulette lottery that assigns
 probabilities {pj}= 1 to the outcomes {h(w,aj)}= i. A decision rule d E D corresponds to a horse
 lottery Id E £: lc(z,w) = h(w,d(z)).
 The preference relation on C induces a preference relation on the set D of decision rules.
 Define the risk function as the negative of expected utility:

 r(Q, d) - u(ld(z, w))dQ(z, w)
 xW

 Then the decision maker's problem is:

 min max r(Q, d)
 deD QeS

 The use of risk, and hence a minimax criterion, is traditional, dating back to Wald (1950). We
 shall not be explicit about measurability and integrability restrictions. Such issues can be
 avoided by taking the state space Z x W to be a finite set.

 The connection of this framework to the portfolio choice problem is quite direct. Z
 corresponds to the data available when the portfolio is chosen. W is a vector of future returns on
 the assets, and Q is the joint distribution for (Z, W). The function h is given in equation (1) (for
 a c A), and ui is a von Neumann-Morgenstern utility function defined over roulette lotteries
 with monetary prizes. The decision rule d determines the amount a invested in asset one as a
 function of the data z. The set of feasible rules D could include all such functions mapping Z
 into A. (It could also include all randomized rules, mapping Z into A*).

 In the estimation problem in equation (3), we set w equal to 0, u(h(0,a))=-(g(0)-a)2,
 Q,(A x B)= fBPeO(A)dr(0), and S = IQ, : T } E r}. A decision rule d maps the data z into an
 estimate a. An example of a restriction on the set D of feasible rules is an unbiasedness
 restriction: D = {d: Z - R : fd(z)dPo (z) = g(0), 0 E 6}.

 An alternative approach for working with a set of priors is to calculate the corresponding set
 of posterior distributions. Some principle would be needed to make a choice based on this set of
 posterior distributions. Then we would have a decision rule, and we could ask whether it is
 optimal under a preference relation that satisfies certain axioms.

 Copyright ( 2000 John Wiley & Sons, Ltd.
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 ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY

 3. ALGORITHM

 We shall consider a finite set of distributions: {Ql,... ,Q}, and S is the convex hull:

 S= 6eQj : < < 1,Z5= 1J (4)
 '=1 j=l

 Consider a zero-sum game in which the decision maker chooses d E D, nature chooses Q E S,
 and the payoff to the decision maker is -r(Q,d). The minimax (or upper) value of the game is

 V = inf sup r(Q, d)
 dEcD QES

 A minimax decision rule do satisfies supQ sr(Q,do) = V. The maxmin (or lower) value of the
 game is

 V = sup inf r(Q, d)
 Qe,S dED

 A least-favourable distribution Qo satisfies inf E D, r(Qo, d) = V. A decision rule dQ is Bayes with
 respect to the distribution Q if

 r(Q, dQ) = inf r(Q d)
 de D

 A decision rule d generates a vector of risk values (r(Ql,d),... ,r(Qj,d)). The risk set consists of
 all such vectors as d varies over D:

 Sr = {(r(Ql,d)..., r(Q, d)) E R7 : d E D}

 We can regard the game as being played as follows. The decision maker chooses a point
 s = (s,... ,sJ) E S,-. Independently of his choice, nature chooses a coordinate j with probability
 6j. Blackwell and Girshick (1954, Chapter 2.4) refer to such games, in which nature has a finite
 number of pure strategies, as S-games. The minimax theorem for S-games states that if the risk
 set is bounded, then

 inf sup r(Q, d) = sup inf r(Q, d)
 deD QeS QeS dD

 and there exists a least favourable distribution Qo. If in addition the risk set is convex and
 closed, then there exists a minimax decision rule do, and it is Bayes with respect to Qo. We shall
 assume that the risk set is convex, closed, and bounded. (See Blackwell and Girshick, 1954,
 Theorem 2.4.2, and Ferguson, 1967, Theorem 1, p. 82. The mixed extension of the game allows
 the decision maker to use mixed strategies, in which case the risk set is automatically convex
 since it is the convex hull of S,.; see Blackwell and Girshick, 1954, Theorem 2.4.1.)
 Let Ej denote the J- 1 dimensional simplex:

 sJ= {6 Ec J:6>0, 6j= }

 and let Q6 denote the mixture distribution: Q6 = J= SQj. As 6 varies over sE, Q6 varies over
 S. Note that the risk function is affine in its first argument:

 Copyright © 2000 John Wiley & Sons, Ltd.
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 J

 r(Q6, d) 6jr(Q, d)
 j=l

 Let dE denote the Bayes rule with respect to Q6. Consider the minimized risk:

 p(6) min r(Q, d) = r(Q6, ) (5)
 de'D

 Since r(Q6,d) is an affine function of 6 for each d, it follows that p is a concave function. So
 maximizing p over the convex set Ej is a concave program:

 6o = arg maxp(6) (6)

 The least favourable distribution is Qo = ZJ= 1oj Qj. The concave program in equation (6) can
 be solved using a sequential quadratic programming algorithm, as in Wilson (1963). (The
 routine used in the application in Section 5 is nag_nlp_sol, from the NAG Fortran 90 library; it
 is based on the subroutine NPSOL described in Gill et al., 1986.)
 Let do be a Bayes rule with respect to Qo. In order for do to be minimax and Qo to be least

 favourable (so 60 solves equation (6)), it is necessary and sufficient that

 r(Qk, do) = max r(Qj, do) if Sok > 0, k = 1,...,J (7)
 1 <j<J

 So assume that equation (7) holds. Then for any decision rule d,

 max r(Qj, d) > r(Qo, d) > r(Qo, do) = max r(Qj, do)
 1l<j<J 1l<j<J

 So do is minimax. For any Q e S,

 r(Q, dQ) < r(Q, do) < max r(Q, do) = r(Qo, do)
 1  j<J

 So Q0 is least favourable. This sufficiency argument does not use the minimax theorem.
 To see that equation (7) is necessary, assume that do is minimax and Qo is least favourable:

 max r(Qy, do) = inf max r(Qy, d) = V
 1<_<J deD 1<_j_<J

 inf r(Qo,d) = sup inf r(Q,d) = V
 dcD QES dGD

 Since do is a Bayes rule with respect to Qo, the conclusion of the minimax theorem implies that

 J

 ojr(Qj, do) = r(Qo, do) = inf r(Qo, d) = V = V = max r(Q, do)
 deD I:!Di7

 j=1

 So the maximum risk of do equals the average risk under Q0, which implies equation (7).
 In the numerical algorithm for the concave program, we use a subgradient of p. It is
 convenient to solve for 6j= 1- _J- 1 Sj and regard p as defined on a subset of TZJ-1:
 MJ-_ { 6E RJ- : l > 0,Y-~ 6j < 1}. Let (e s- 1 have jth component equal to
 r(Qj,d)- r(Qj,Id). We will show that (C is a subgradient of p at 8. Note that

 p(5) = ((6, }) + r(Qj, d6)

 Copyright ( 2000 John Wiley & Sons, Ltd.
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 ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY

 where (a,b) denotes 1= 1 aibi for a,b E 7k. For any 6' E MJ_ 1,

 p(') = min ( j(r(Qj, d) -r(Qj, d)) + r(Q, d)) d/cD j1

 j-1

 < 6j(r(Qj ) r(Qj, , d6)) + r(Qj, d6)
 j=l

 = (C, 6') + r(Qj, d6) = (, 6) + (C, S - ) + r(Qj, d6)

 = p(6) + (C' - )

 and so (^ is a subgradient.

 3.1 Minimax Bounds

 The minimax value r(Qo,do) is with respect to the set S of distributions. If we consider a larger
 set of distributions S' D S, then

 V = inf sup r(Q, d) < inf sup r(Q, d) = V
 dcD QES deD QGS

 So the minimax value relative to S provides a lower bound for the minimax value relative to the
 larger set S'.

 Now fix a decision rule d, and construct an upper bound:

 V' < sup r(Q, d)
 QeS'

 This upper bound is useful in that it may be feasible to maximize r(Q,d) over Q c S' for a fixed d,
 even though it is not feasible to compute the minimax value for S'.

 Kempthorne (1987) develops an algorithm for the case in which the least-favourable prior
 distribution is known to have finite support, but the location of the support points is not known.
 Suppose, for example, in equation (2) that E is a closed interval on the real line; the risk function
 is an analytic function of 0 for any decision rule; and the risk of the is eBayes procedure for the
 least-favourable prior distribution is not constant on E. Then the least-favourable prior
 distribution has finite support, and the algorithm converges to this distribution. The algorithm
 constructs a sequence of discrete prior distributions whose successive support sets change by
 adjusting the locations of the existing support points as well as adding new points to the support.
 For a given number of support points, the algorithm finds a local maximum of the Bayes risk of
 the Bayes rule, maximizing over the locations of the support points as well as the probabilities
 attached to the support points. This is not a concave program. The optimisation is done using
 an unconstrained maximization procedure with differences to approximate derivatives.

 4. THE SET D OF DECISION RULES

 A step in our algorithm requires finding the Bayes rule d6, which maximizes the risk r(Q6,d) over
 the set D of feasible decision rules. Consider first the case in which D is unrestricted.

 Copyright © 2000 John Wiley & Sons, Ltd.
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 4.1 D Is Unrestricted

 In this case, we can obtain the Bayes rule by minimizing posterior risk- see Wald (1950), Chap.
 5.1), Blackwell and Girshick (1954, Chap. 7.3), and Ferguson (1967, Chap. 1.8). The distribution
 Q for (Z, W) can be decomposed into Q,n, which is the marginal distribution for Z, and Qc,
 which is the conditional distribution for W given Z: Q(A x B)= fAQc(B z)dQ,,(z). Let f be the
 density of Qy,,, with respect to the measure ut: Qjil(A) = fAfj(z)dU(z) (j= 1,... ,J). Define the loss
 function as the negative of conditional expected utility given Z = z for the choice a:

 L(Q, z,a) - u(h(w, a))dQc(w z) (8)

 Then we have

 7=1 -j=1 IJ J dJ
 = _j=1

 >z inf ZL(Qj,z,a)fj(z)6j dl(z)

 We shall assume that the infimum is in fact obtained for some choice a c A. We can regard 6 as
 providing prior probabilities on the discrete parameter space {l,...,J}, and calculate the
 posterior probabilities as

 / J

 6 (z) =fjf(z) 6 fk (9)
 k/ /c=l

 Then a Bayes rule d5 for the prior 6 can be obtained by minimizing posterior risk, which equals
 posterior expected loss:

 d(z) = argmnin L(Qj,z,a)6(z) (10) aeA .
 j=1

 Mixture models

 Consider a mixture model in which the distribution Q for the vector (Z, W) has the following
 form:

 Q(A x B)= f Po(A x B)d7r(O)

 We start with a parameter space E, and {Pg : 0 E)} is a set of distributions for (Z, W). We
 introduce a family F of prior distributions wF on E. This gives a set {Q, : cE r1} of distributions
 for (Z, W), in which the prior -F plays the role of a parameter. Consider a finite set of prior
 distributions: {Trl,... ,rJ}, and F is the convex hull:

 lr- {=- : 0<J<16 Z }
 J= 1 j= 1

 Copyright © 2000 John Wiley & Sons, Ltd.
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 ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY

 Let Qj = Qj. Then the set S = {Q, : - c F} is the convex hull of {QI,... ,Qj}, as in equation (4),
 which is the basis for our algorithm in Section 3.

 The probability distribution P0 can be decomposed into a marginal distribution Po,7, and a
 conditional distribution Po : Po(A x B) = fAPo(B z)dPo,,,(z). We shall assume that Po,1, has
 density f(z 0) with respect to the measure t: Po,,,(A)= fAf(zl)db(z) for all 0c E. Since
 Qij = fPo,1dri(0), the density fj for Qe,,, is given by

 fj(z) - f (z 0)d7(0) (11)

 Let irj denote the posterior distribution of 0 conditional on Z:

 (B I z) [f(z)] - (fz I 0)d7r6(0)

 Then the loss function in equation (8) can be obtained by integrating the loss for P0 with respect
 to the posterior distribution of 0:

 L(Qj, z, a) L(Po, , a)dj(0 z) (12)

 These formulas for the marginal density/f and the loss L(Qj,z,a) in equations (11) and (12) are
 useful for calculating the posterior risk, as in equations (9) and (10).
 In the portfolio choice problem, Z corresponds to the data available Z nd when the portfolio is

 chosen, and W is a vector of future returns on the assets. The specification of the family
 {P : 0 c v} might be based on a vector autoregression with multivariate normal innovations,
 and r would be a family of prior distributions for the parameters of the vector autoregression.
 Barberis (2000) uses such a specification with a ifsingle prior distribution. In the portfolio choice
 problem, the focus is not on the parameter vector ; the role of the parametric model is to
 generate a joint distribution for the observables Z and W.
 Now consider an estimation problem. Here the focus is on a function of the parameter, which

 we shall denote by g(0). In this case we set w equal to 0, and the choice a is the estimate of g(0). If
 g is real valued, the loss function could be L(Po,z,a) = (g(0) - a)2, with mean-square error for the
 risk function. Or the loss function could have a piecewise linear form:

 4.2 p is Restricted

 We may be interested in a restricted class of decision rules. Consider, for example, the mixture
 model, {fEPo dir(O) : -rFc}, where the prior distributions in F are indexed by a parameter
 T eC R7: r = {T : T c R/1}. For a given value of T, there is a decision rule dT that minimizes
 posterior risk:

 dT(z) = argmin f L(Po,z,a)dTr(O I z) aeA

 Copyright © 2000 John Wiley & Sons, Ltd.
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 where i7- is the posterior distribution corresponding to the prior rF-. Suppose that we set Qj
 = fPo dir,T ( = 1,..., J), and as a step in our minimax algorithm, minimize the risk
 r(Q,,d) = "ji= I 6jr(Qj,d). The unrestricted Bayes rule d6 in equation (10) minimizes posterior
 risk for the prior distribution jJ= ltSj-r,. This distribution is not, in general, in F unless F is
 convex. So if F is not convex, the unrestricted Bayes rule will generally not belong to
 {d : Tr Rt"}. Or consider setting Qj = Po with {01,... ,sj} c {E. Then the Qj will not generally
 be in the mixture model unless F includes all point masses on E. Nevertheless, we may want to
 restrict the set of decision rules to D = {d, : T E R'} because the mixture model with the family
 r of prior distributions is tractable or familiar. Then we need to solve

 min r(Q6, d)
 TE"RI7

 in order to obtain the minimized risk p(S) in equation (5).
 Another application could arise in non-parametric estimation. Based on asymptotic theory or

 other arguments, we may be interested in a class of estimators, such as orthogonal series
 estimators. Obtaining a particular estimator within the class requires a value for a vector of
 parameters T, which may govern how much smoothness is imposed on the estimator.
 Efromovich (1999, Chap. 3) develops a data-driven orthogonal series estimator for a univariate
 density based on a random sample of size n. The procedure for determining which terms appear
 in the series requires setting a value for T. For example, terms in the series beyond a certain
 cutoff point are dropped if a test statistic does not exceed a threshold that depends upon T.
 Default settings are suggested for T. To evaluate the performance of the estimator, Efromovich
 constructs eight 'corner' densities that represent features of interest that are expected to occur in
 practice. Monte Carlo simulation is used with data sets generated according to each of the
 corner densities. The risk measure is expected integrated squared error. Efromovich notes that
 the optimal choice of the parameter T involves a tradeoff between better estimation for some of
 the corner densities and worse estimation for others. Within our framework, a way to make an
 optimal tradeoff is to let {Qi,... ,Qj be the distributions for the sample corresponding to the
 corner densities, and choose the parameter T by solving

 min max r(Qj,dT) (13)

 Let gj () = r(Qj,dT) and suppose that gj : R" -7 R is continuously differentiable with gradient
 Vgj. Applying our algorithm in Section 3 to equation (13) gives To0 Rj" and 60 c EJ such that

 E oVgj(To) = 0 j=l

 and

 gk(ro) = max g}(ro) if 6Ok > O, k = ,...,
 jc{1 ...J}'

 An alternative algorithm for equation (13) is developed in Polak (1997, Chap. 2.4). For a
 given value of T, solve the following quadratic program:

 =argminm 6([n(r) gj()] +21 I2 V( ) (14)
 6EE = j =1 j j= 1 2 ~~~~j=lI
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 where I(rT) maxj {i,... ,J.gj(r) and Ilall2= (a,a). Obtain the search direction
 J

 h =- 6Vgj(T)
 j=1

 A new value for r is chosen according to T* = r + Ah, where the scalar A is determined by a step-
 size algorithm. Then replace T by T* and repeat until the minimum value of the quadratic
 program in equation (14) is zero. Polak (1997, Chap. 2) develops additional algorithms for
 equation (13) and provides references to related work.

 5. APPLICATION: AUTOREGRESSIVE MODELS FOR PANEL DATA

 We will work with the following parametric family:

 Zit = 7Zi,t-1 + oai + Uit

 ai {Zio zio}1 i-d A(TI + T2Zio, Ov)

 Uit I {ofi, Zio = Zio}N i.id.r(O, -a2) (i = 1,..., N; t = 1, .., T) (15)

 The parameter vector is ( = (0,b), with 0 = (y,A), 0 = (Ti,T2,a), and A-= a,/a. We obtain a family
 of distributions {Po : 0 c 9} by specifying a single prior distribution for 10 and integrating 10 out
 of the model. The prior distribution for I0 is motivated by work in Chamberlain and Hirano
 (1999) using residuals from regressions of log earnings on education and age in the Panel Study
 of Income Dynamics. It specifies that l/r2,-X2(10)/0.9, so that the 0.1 and 0.9 quantiles for ar are
 0.24 and 0.43. Conditional on a, the components of (T1,T2) are independent normals with
 variances proportional to a2. The mean of Tr is 0, the mean of 72 is 0.25, and the standard
 deviations of 1r and r2 in the (unconditional) t-distribution are 0.20.

 We obtain the same P0 family if we start out with a = (al,... ,aN) as part of the parameter
 vector: ( = (O,,ao). The random effects model in equation (15) provides a prior distribution for
 a given (0,O). Combining this with our prior distribution for 0 gives the Po distribution.

 The observation is Z (Z1, ... ,ZT, ... ZN,...,Z NT)'. The Po distribution for Z is
 conditional on {zio}N= i, which is observed. The values for {zio}Y= 1 in our risk calculations
 are obtained by drawing from a normal distribution with mean 0 and standard deviation 0.45;
 these values for zio are then kept fixed in evaluating risk. The density (for A > 0) is

 f(z I 0) = c(z) det(H)1/2 det(H)-/2(m'Hm -m'Hm + z*'z* + b2)-(N )/2

 where 1/a2- Gamma (bl/2,2,/b2), (Trl,2) 1 r^Af(ml,ur2B- 1),

 H= -2 ) (mM ) H= XX+ H m = H- (Xz* + Hm) 0 A IN o -0

 X= (R IN IT), IT is a Tx 1 vector of ones, z* = (zl,... ,zt,... ,zN1,.. ,ZNT) with
 zit zit-7yzi,t-l, R is a NT x 2 matrix with the row corresponding to z*t equal to (1 zio), and
 c(z) is some function of z that does not depend upon 0. It is useful to simplify f(z 0), since it is
 evaluated repeatedly for different values of 0. The computational simplification is similar to the
 one described in Chamberlain (2000).
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 We will focus on the estimation of y, using a squared-error loss function: L(Po,z,a) = (y - )2.
 We set W= 0, since 0 combined with a choice (an estimate) determines the utility-relevant
 outcome. We shall work with a finite subset {01,... ,OJ} of E, with Qj= Po and S equal to the
 convex hull of {Q1,...,Q(}. (This corresponds to a mixture model in which the prior
 distribution wrj assigns unit mass to the point Oj.) We let the set of decision rules D be
 unrestricted, so that the Bayes rule da is the posterior mean of y:

 d6(z) = 7(j)f(z | 0j)j/ f/(z | Oj)Sj (16)
 j=1 ./=1

 where y(0) denotes the first component of 0. This follows from equations (9) and (10), with
 fj.(z) =f(z I Oj) (as in equation (11) with Tri assigning unit mass to the point Oj). The risk under Q6
 for an estimator d is

 J

 r(Q, d)= Z jr(Poe, d) (17)
 j=l

 where r(Po,d)= fz[y(O) - d(z)]2f(z I 0)dz.
 We can approximate r (Po,d) by Monte Carlo simulation. Obtain independent and identically

 distributed draws {Z(O,k)}k= 1 from f( 10). Then we have

 r(Po, d) --f [y(0) -d(Z(, k))]2 (18)
 k=l

 We use the same set of pseudo-random numbers to construct {Z(O,k)}= 1 for each 0. This
 ensures that the simulated r(O,d) varies smoothly in 0. Then we calculate p() = r(Q6,d) from
 equations (16) and (17). A numerical optimisation routine is used for the constrained
 maximization of p over the J- 1 dimensional simplex. (The routine is nag_nlp_sol, from the
 NAG Fortran 90 library). The maximizing value 60 gives the least-favourable prior, and p(60) is
 the minimax value for risk, relative to the set {01,... ,OJ}.

 Consider the case N = 100 and T = 2. Preliminary work indicated that most of the mass in the
 least-favourable prior is concentrated in the rectangle with 0 < 7 < 1.4 and 0 < A < 1.4. Then I
 set up a grid with 15 values for 7: 0,0.1,... ,1.4, and 8 values for A: 10-4,0.2,0.4,... ,1.4, giving
 J= 120 values for 0. The solution to the concave program gives a minimax value for root mean-
 square error (MSE) of p(6o)/2 = 0.115. (The Monte Carlo simulation uses K= 8000 samples.)
 The least-favourable prior assigns 0 probability to almost 60% of the points: j= 0 for 69
 points, 0 < 6Sj < 10-6 for 5 points, and S0j > 10 -6 for 46 points. The maximum root MSE of the
 minimax estimator over the 120 points is equal to the minimax value: maxjr(Ps,do)12 = 0.115.
 The root MSE is equalized at 0.115 across the 46 points that are assigned probability greater
 than 10-6. (The variation is in the fourth decimal place, between 0.1149 and 0.1151.) So the
 solution satisfies the necessary and sufficient condition in equation (7) very well.

 The upper panels of Figure 1 show the root MSE at the 15 values of y for A = 10-4, 0.6, and
 1.2. The lower panels show the least-favourable prior probabilities, 60j. We see that the root
 MSE is equalized at the minimax value of 0.115 for the points that receive positive probability.
 The support of the conditional distribution of 7 given A is fairly concentrated, and it shifts to the
 left as A increases. This negative correlation between y and A under 60 is visible in Figure 2,

 Copyright © 2000 John Wiley & Sons, Ltd.
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 Figure 1. Root mean-square error for minimax estimator (upper panel): r(O,do)112; the dashed line indicates
 the minimax value of 0.115. Least-favourable prior probabilities (lower panel): 60. Evaluated at

 0 = (y,AX) C {0,....,} fory = {0,.1,...,1.4} and for A as shown. N= 100 and T= 2

 which shows the joint distribution. The negative correlation is also visible in Figure 3, which
 shows equal probability contours of the joint distribution. The support of the joint distribution
 is fairly concentrated along a negatively sloped diagonal. We may have a precise estimate of a
 positive covariance between Zi2 and Zil, but different values for the (7y,A) pair can imply the
 same covariance, with 7y decreasing as A increases. So knowing that (7y,A) is distributed along a
 negatively sloped diagonal in the first quadrant does not help in the difficult choice of a point on
 that diagonal. (Figs. 2 and 3 use bicubic spline interpolation to the probability values at the 120
 points, with negative values in the interpolating spline set to 0.)

 Consider the minimax value corresponding to the entire parameter space:

 Vo = inf sup r(, d)
 d o0E

 The minimax value relative to {01,... ,0j} provides a lower bound on Ve. We can obtain an
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 Figure 2. Least-favourable prior probabilities So; interpolation. N= 100 and T= 2

 upper bound by calculating the maximum risk over e of the maximum likelihood (ML)
 estimator, which solves maxs E f (z I 0). The risk at a given 0 is calculated using equation (18),
 where now 0 is not restricted to the finite set of J values. The risk function for the ML estimator

 is smooth and unimodal. With = 7Z x [10 4,oo), the maximum value for root MSE is 0.132,
 which is attained at (y,A) = (0.903, 0.007). So we can bound the minimax value for the whole
 parameter space between 0.115 and 0.132. The maximum likelihood estimator is attractive in
 terms of risk, with a maximum root MSE that is quite close to the lower bound.

 Now consider using the minimax estimator do based on {01,... ,OJ} to provide an upper bound
 on VQ. First we shall examine the maximum risk of do for (y,A) in the rectangle
 [0,1.4] x [10-4,1.4]. This will indicate how well the minimax value for an infinite, bounded set
 can be approximated by the minimax value for a finite set. The maximum risk is obtained using
 a grid search combined with a numerical optimisation routine. The grid has 0.01 increments for
 7y and 0.05 increments for A. The maximum value for root MSE is 0.117, which is attained at
 (y,A)= (0.913, 0.712). So the minimax value for the rectangle is very tightly bounded between
 0.115 and 0.117.

 Figure 4 compares the risk functions for the ML and minimax estimators, for 0 < y < 1.4 and

 Copyright © 2000 John Wiley & Sons, Ltd.
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 0 0.2 0.4 0.6 0.8 1 1.2

 Figure 3. Equal probability contours of the least-favourable prior 60; interpolation. The heights of the
 contours are at equal probability increments: A, 2A, 3A,... N= 100 and T= 2

 A = 10 -4, 0.4, 0.8, and 1.2. The risk of the minimax estimator is evaluated at 0.01 increments for
 7y. The minimax estimator do based on the 120 points is close to being a minimax estimator for
 the rectangle. However, for values of A greater than 1.4, there are points where the root MSE for
 do exceeds the maximum value for ML of 0.132. This is so even though adding such points to
 {01,... ,j} has very little effect on the minimax value, which remains close to 0.115.

 5.1 Local Parameter Space: A Connection with Asymptotic Theory

 A key idea in asymptotic statistics, due to Le Cam (1986), is that a sequence of statistical
 experiments (or models) can be approximated by a limit experiment. The observation Z has i.i.d.
 components (Z1,... ,Zn). The joint distribution of Z is P" for some value of the parameter 0 in
 the parameter space 9, which is an open subset of RP. The approximation involves a local
 parameter h = Jn (0 - 00), where 00 is a fixed point in the interior of 9 and is regarded as known.
 Under certain conditions, for large n the experiments

 Copyright © 2000 John Wiley & Sons, Ltd.
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 Figure 4. Root mean-square error for minimax estimator (solid line): r(O,do)l 2, evaluated for y C [0,1.4] in
 0.01 increments, and for A as shown; the dashed line indicates the minimax value of 0.115. Root mean-
 square error for maximum likelihood estimator (dash dot line), evaluated for y E [0,1.4] in 0.05 increments,

 and for A as shown. N= 100 and T= 2

 {Po h C RP} and {A(h, ): h C RP}

 have similar statistical properties. Here the limit experiment consists of observing a single
 observation from a normal distribution with mean h and variance matrix equal to the inverse of
 the Fisher information matrix. See van der Vaart (1998, Chap. 7) for an exposition. He observes
 that (p. 97): 'A motivation for studying a local approximation is that, usually, asymptotically,
 the "true" parameter can be known with unlimited precision. The true statistical difficulty is
 therefore determined by the nature of the measures Po in a small neighbourhood of the true
 value. In the present situation "small" turns out to be "of size O(l1/ n)".' One version of
 optimality in this framework is provided by the local asymptotic minimax theorem. It gives a
 lower bound for the maximum risk over a small neighbourhood of 00 (van der Vaart, Chap. 8.7).

 This suggests examining the maximum risk of an estimator, such as maximum likelihood, not
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 ECONOMETRIC APPLICATIONS OF MAXMIN EXPECTED UTILITY 641

 over all of E but over a neighbourhood around some point, such as the maximum likelihood
 estimate. Likewise, we can consider the minimax value and minimax estimator corresponding to
 this neighbourhood.

 For an example, I will use data on log earnings residuals for a sample of high school graduates
 from the PSID. The data are described in Chamberlain and Hirano (1999) and have N= 100,
 T= 9. (As above, we condition on the t = 0 observation.) The maximum likelihood estimates are
 7ML= 0.426 and AML= 0.508. Profile likelihood intervals at an approximate 0.99 confidence
 level are [0.327, 0.532] for -y and [0.329, 0.708] for A. I will set the local parameter space equal to
 the rectangle [0.32, 0.54] x [0.32, 0.71].

 For the minimax analysis over this rectangle, I set up a grid with 10 equally spaced values for
 y from 0.32 to 0.54, and 7 equally spaced values for A from 0.32 to 0.71. The solution to the
 concave program gives a minimax value for root MSE of 0.033. (The Monte Carlo simulation
 uses K= 8000 samples.) The least-favourable prior assigns 0 probability to 70% of the points:
 60= 0 for 49 points, <0 60J< 10-6 for 2 points, and SoJ> 10-6 for 19 points. The maximum
 root MSE of the discrete minimax estimator over the 70 points is equal to the minimax value
 0.033. The root MSE is equalized at 0.033 across the 19 points that are assigned probability
 greater than 10-6. (The variation is in the fourth decimal place, between 0.0327 and 0.0328.) So
 the solution satisfies condition (7) very well.

 Figure 5 shows the least-favourable prior probabilities 60 and Figure 6 equal probability

 °-4 ^ ^ ^ --^ ^ 0..
 x 10-4

 3· . . ..

 0. 0.3 0. 2.5- u -.

 0.8
 A9~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ Y

 Figure 5 Leastfavourable prio. probabilities , intepolation N 100 and
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 Figure 6. Equal probability contours of the least-favourable prior 60; interpolation. The heights of the
 contours are at equal probability increments: A, 2A, 3A,... N= 100 and T= 9

 contours for the least-favourable prior. The support of the distribution is quite concentrated
 along a negatively sloped diagonal. Figure 7 compares the risk functions for the ML and
 discrete minimax estimators, for 0.32 < 7 < 0.54 and A = 0.32, 0.45, 0.58, and 0.71. The risk of
 the minimax estimator is evaluated at 0.01 increments for y.

 The risk of the ML estimator is fairly constant over the rectangle. The maximum root MSE is
 0.039, which is attained at (,A) = (0.540, 0.320). The minimum root MSE over the rectangle is
 0.035. Now consider the minimax estimator do based on {01,...,0O}. The maximum risk of do
 over the rectangle is obtained using a grid search combined with a numerical optimisation
 routine. The grid has 0.01 increments for 7 and 0.01 increments for A. The maximum value for
 root MSE of do is 0.033, which is attained at (7,A) = (0.442, 0.669). So the minimax value for the
 rectangle is 0.033, and the minimax estimator do based on the J= 70 points is close to being a
 minimax estimator for the rectangle.

 If one were given the rectangle as the parameter space, then the minimal value for maximum
 root MSE over this rectangle is 0.033, and there is a minimax estimator based on 70 points that
 essentially attains this value. The maximum likelihood estimator has root MSE that varies over
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 Figure 7. Root mean-square error for minimax estimator (solid line): r(O,do)12, evaluated for y C [0.32,0.54]
 in 0.01 increments, and for A as shown; the dashed line indicates the minimax value of 0.033. Root mean-
 square error for maximum likelihood estimator (dash dot line), evaluated for ey [0.32,0.54] in 0.01

 increments, and for A as shown. N= 100 and T= 9

 the rectangle between 0.035 and 0.039. So the ML estimator is dominated over this local
 parameter space, but not by much. There is not much room here for improving on the risk of the
 ML estimator. In other applications, however, it might be of interest to evaluate the risk of the
 two-step estimator that applies maximum likelihood in the first step and then applies the
 minimax procedure over a neighbourhood around the maximum likelihood estimate.

 6. CONCLUSION

 We have developed an algorithm for calculating minimax decision rules with respect to the
 convex hull of a finite set of distributions. The minimax rule is a Bayes rule for the least-
 favourable distribution in the convex hull. The corresponding minimax value provides a lower
 bound on the minimax risk with respect to a larger set of distributions.
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 G. CHAMBERLAIN

 In our application, we compared the maximum risk of the maximum likelihood estimator
 with our lower bound. The comparison indicates that there is not a great deal to be gained from
 an alternative estimator in terms of reducing maximum risk. The application uses a set of point
 masses on the parameter space G. In ther applications, it may be useful to work with a set of
 non-degenerate prior distributions. Our algorithm can be used to find the least-favourable
 mixture of these prior distributions. This least-favourable mixture will be subjectively
 reasonable if each prior in the set is subjectively reasonable. The Bayes estimator for this
 least-favourable prior will minimize the maximum risk over the set of priors. We can calculate
 the maximum risk of this Bayes estimator over all of a, and check whether it has lower
 maximum risk than an alternative such as the maximum likelihood estimator. We can also

 compare the maximum risk over g of this Bayes estimator with the lower bound based on the
 set of priors. If the maximum risk is close to the lower bound, then this Bayes estimator is
 attractive in terms of average risk with respect to the least-favourable prior and with respect to
 maximum risk over e.
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