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Abstract
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1. Portfolio choice

Consider an individual making a portfolio choice at date ¹ involving two
assets. The (gross) returns at t per unit invested at t!1 are y

!!
and y

"!
. The

individual has observed these returns from t"0 to t"¹. He has also observed
the values of the variables y

#!
,2, y

"!
, which are thought to be relevant in

forecasting future returns. So the information available to him when he makes
his portfolio choice is z,!(y

!!
,2, y

"!
)"#

!$%
. He invests one unit, divided be-

tween an amount a in asset one and 1!a in asset two, and then holds on to
the portfolio until date H. Let w"!(y

!!
, y

"!
)"$

!$#%!
and let h(w, a) denote the

value of the portfolio at t"H:

h(w, a)"a
$
#

!$#%!

y
!!

#(1!a)
$
#

!$#%!

y
"!
.

How should a be chosen?
The standard approach to this problem in the microeconomics of optimal

behavior under uncertainty is based on maximizing expected utility. Suppose
that the investor regards (z, w) as the outcome of the random variable (Z, =)
with distribution Q, and that his utility function is u. Then the problem is to
choose a decision rule d that maps observations z into actions a:

max
&

E
'
[u(h(=, d(Z)))]. (1)

Suppose that an econometrician is advising this individual. What role might
the econometrician play? Given the utility function u and the distribution Q, all
that remains is to "nd the optimal solution to (1). The econometrician can
certainly be helpful in that task, but I am more interested in the speci"cation of
the distribution Q. In particular, given a speci"cation for part of Q, is there useful
advice on how the rest of Q might be chosen?

Section 2 sets up a framework for examining this question and makes
connections with the literature. The estimation of parameters is not the primary
goal, and parametric models are not introduced until Section 3. Section 4 pro-
vides an application motivated by an individual's consumption decision. The
problem is to construct a distribution for that individual's future earnings, based
on his earnings history and on a longitudinal data set that provides the earnings
histories for a sample of other individuals.

2. Framework

Consider an individual making a decision under uncertainty. Various systems
of axioms for rational behavior imply that he should act as if he were maximiz-
ing expected utility. See Savage (1954), Anscombe and Aumann (1963), and
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Ferguson (1967). Suppose that he will observe the outcome z of a random
variable Z before making his choice, and that the payo! he receives given action
a depends upon a random variable =, whose outcome w is not known when
he makes his choice. Let h(w, a) denote this (known) payo! function. Let Q
denote the distribution of (Z, =), and let u denote the utility function. Both
u and Q are taken as given at this point; they are implied by the individual's
preferences, provided the preferences satisfy the rationality axioms. We
shall refer to Q as the individual's subjective (or personal) distribution. Let
m(w, a)"u(h(w, a)) denote the utility of the payo! if="w and a is chosen. So
the individual faces the following problem:

max
&&D

E
'
[m(=, d(Z))],

with

E
'
[m(=, d(Z))]"!m(w, d(z)) dQ(z, w).

The decision rule d is a mapping fromZ, the range of Z, to A, the set of possible
actions; D is the set of all such mappings. (We can avoid measurability and
integrability issues by taking the range of (Z, =) to be a "nite set.)

Decompose the joint distribution Q into the marginal distribution Q
!

for
Z and the conditional distribution Q

"
for= given Z:

E
'
[m(=, d(Z))]"!"!m(w, d(z)) dQ

"
(w $ z)#dQ

!
(z).

We shall refer to the conditional distribution Q
"
( ) $ z) as the conditional predic-

tive distribution. Note that

!m(w, d(z)) dQ
"
(w $ z))sup

(&A
!m(w, a) dQ

"
(w $ z),

which implies that

E
'
[m(=, d(Z))])!"sup

(&A
!m(w, a) dQ

"
(w $ z)#dQ

!
(z).

We shall assume that the supremum of the inner integral is in fact obtained for
some action a3A. Then the optimal decision rule d

'
satis"es

d
'
(z)"argmax

(&A
!m(w, a) dQ

"
(w $ z).

The optimal action maximizes the conditional expectation of utility given
the observation z. See Wald (1950, Chapter 5.1), Blackwell and Girshick
(1954, Chapter 7.3), and Ferguson (1967, Chapter 1.8). Note that this argument
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relies upon there being no restrictions on the form of the decision rule, i.e., no
restrictions on the set D of mappings from Z to A.

2.1. Frequentist evaluation

This framework has the virtue of being consistent with axioms of rational
behavior. A di!erent criterion is that the decision rule d should have good
properties in repeated samples. Suppose that these repeated samples are inde-
pendent draws !(Z')(, =')()"*

)$!
, each distributed according to Q%. We shall refer

to Q% as the data-generating process (DGP). De"ne the risk function r:

r(Q, d)"!!m(w, d(z)) dQ(z, w).

When evaluated at the DGP, the risk function provides a frequentist perfor-
mance criterion that corresponds to (the negative of) long-run average utility: by
the law of large numbers,

r(Q%, d)"! lim
*+)

1
J

*
!
)$!

m(=')(, d(Z')())

with probability one (under Q%).
Since d

'
is chosen to minimize r(Q, d), it follows immediately that d

'
is

optimal in a frequentist sense if Q is the DGP. This optimality property is
noteworthy because it is not a large-sample approximation; it is exact. The law
of large numbers provides an interpretation of risk in terms of long-run average
utility, as the number of repeated samples J tends to in"nity. But the risk
measure itself is based on an observation vector z of "xed dimension, corre-
sponding to a "xed sample size.

The "nite-sample optimality of d
'

suggests asking whether d
'

might be nearly
optimal for some set of DGP's. We shall formalize this idea as follows: a decision
rule d is S-% risk robust if

sup
'&S
"r(Q, d)! inf

&*&D
r(Q, d&)#(%

for some %'0. The decision rule d
'% minimizes risk, and hence maximizes

long-run average utility; it is not feasible, however, unless the DGP Q% is known.
A decision rule that is S-% risk robust has risk within % of this ideal, as long as
the DGP is in the set S. For small %, such a rule is very attractive under the
frequentist criterion. We shall refer to r(Q, d)!inf

&*
r(Q, d&) as the regret risk.

The minimax bound for the set S is

b(S),inf
&&D

sup
'&S
"r(Q, d)! inf

&*&D
r(Q, d&)#.
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An S-% robust rule exists for %'b(S). This suggests searching for a minimax
decision rule that attains the minimax bound.

Minimax arguments played a major role in Wald's (1950) development of
statistical decision theory. Savage (1954, Chapters 9.7, 9.8) stressed the use of
what we have called regret risk and argued that any motivation for the minimax
principle depends upon the minimax bound being quite small. Robbins (1964)
considered minimizing the maximum Bayes risk relative to a class of prior
distributions in his development of the empirical Bayes approach to statistical
decision problems.

2.2. Partial specixcation for Q

Our rational decision maker is characterized by a utility function u and
a distribution Q. Suppose now that Q is only partly speci"ed, and we are trying
to provide guidance on specifying the rest of Q. The partial speci"cation is that
Q3S. The decision maker could be more speci"c, but that would be costly.

Consider using a decision rule d that is S-% risk robust. Note that here S is
a set of distributions for (Z, =) that contains the decision maker's subjective
distribution. In Section 2.1 on frequentist evaluation, S was a set of distribu-
tions for (Z, =) that contained the DGP.

Let v(Q, a, z) denote the conditional expected utility under distribution Q of
action a given observation z:

v(Q, a, z)"!m(w, a) dQ
"
(w $ z).

Note that this is maximized by the action d
'
(z). If the decision maker bore the

cost of specifying a single subjective distribution Q, then his action upon
observing z would be d

'
(z), which would provide conditional expected utility of

v(Q, d
'
(z), z). We cannot claim that the proposed decision rule d provides

conditional expected utility that is close to this optimum value, for this particu-
lar observation z. It is true that d comes within % of the optimum when averaged
over the distribution of the observation:

![v(Q, d
'
(z), z)!v(Q, d(z), z)] dQ

!
(z)"r(Q, d)!r(Q, d

'
)(%, (2)

provided that Q3S. The decision maker may "nd this a persuasive argument
for using d, if % is su$ciently small and if the cost of fully specifying Q is
su$ciently large. The weakness in the argument is that the observation z will
be known when the decision is made, and so averaging over the distribution of
the observation is problematic. Here the averaging is with respect to a subjec-
tive distribution, but the failure to condition on the observation is the basic
limitation of a frequentist criterion.
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To pursue this issue of conditioning on the observation, we shall say that the
decision rule d is S-% posterior robust at z if

sup
'&S

[v(Q, d
'
(z), z)!v(Q, d(z), z)](%.

Note that posterior robustness depends upon the observation z. If posterior
robustness holds for every observation z, then integrating over the distribution
of Z as in (2) implies that d is S-% risk robust. I am particularly interested in
cases where the set S of subjective distributions is so rich that posterior
robustness is not attainable, and the decision maker is not necessarily willing to
bear the cost of narrowing S to obtain posterior robustness. Then risk robust-
ness may have a useful role to play in decision making.

From a somewhat di!erent perspective, an analysis based on a single decision
rule that is S-% risk robust may be of interest to a number of decision makers,
provided that their subjective distributions Q are all in S.

Good (1952) considers a set of subjective distributions (Q3S in our notation)
and argues that a minimax solution is reasonable provided that only reasonable
subjective distributions are entertained. Berger (1984) refers to risk robustness
as procedure robustness, and he reviews the related literature on !-minimax
and !-minimax regret criteria. I have found Morris (1983a, b) on parametric
empirical Bayes methods to be particularly relevant. There are surveys of work
on posterior robustness in Berger (1984, 1990, 1994) and in Wasserman (1992).

I have used the cost of specifying a subjective distribution as the motivation
for considering a set S of such distributions. But I have not included this cost in
a formal theory of decision making. One possibility is that the individual has
a fully speci"ed distribution Q, and he can either purchase additional informa-
tion before making his terminal decision, or make the decision without the
additional information. Suppose that the additional information is the value
w
!

of=
!

(the "rst component of=), which, for some cost, can be known when
the individual makes his terminal decision. He can calculate the action that
maximizes expected utility conditional on Z"z and =

!
"w

!
, and the opti-

mized expected utility, net of the cost, corresponding to this action. Then the
preposterior integral over w

!
, based on the conditional distribution of=

!
given

Z"z, gives the expected utility from behaving optimally if he purchases =
!
.

This can be compared with the expected utility of behaving optimally without
the purchase of=

!
, in order to decide whether or not to acquire the additional

information. This analysis "ts into the standard framework of expected utility
maximization, and it does not lead to a consideration of risk robustness (or
posterior robustness).

Now suppose that the additional information comes from introspection, or
from consulting with others (and drawing upon their introspection). We could
still model this as acquiring, at some cost, the value of a component of=. If the
individual has a joint distribution for (Z, =), then this sequential decision
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problem, in which the individual can &improve' his subjective distribution, again
"ts into the standard framework. The idea here is that the individual always has
a fully speci"ed subjective distribution Q, although it may be hastily construc-
ted. Instead of trying to work with a set S of distributions, he faces the choice
between making a terminal decision based on this Q or of acquiring additional
information. This choice "ts into the standard framework of expected utility
maximization. It does, however, require that the individual do the preposterior
analysis, which requires specifying the possible outcomes of the additional
introspection, maximizing conditional on these outcomes (and on z), and then
integrating over the resulting maximized expected utilities. This calculation may
itself be costly, in which case the individual may be attracted to a risk robust
decision rule.

Manski (1981) adopted a di!erent formulation for including the cost of
specifying a subjective distribution. The decision maker does not have a com-
pletely speci"ed distribution Q for (Z, =), but only assigns probabilities to the
sets in some partition of the range of (Z, =). At some cost, he can re"ne the
partition and assign probabilities to additional sets. Manski argues (p. 63): `It
seems useless in this context to seek an optimal solution to the decision maker's
problem. As Simon (1957) properly points out, when the process of solving an
idealized optimization problem is costly, the process of solving the respeci"ed
optimization problem which makes these costs explicit will generally be even
more costlya.

3. Parametric models

Suppose that the subjective distribution Q has a mixture form

Q(A!B)"!"
P"(A!B) d'((),

where ' is a (prior) probability distribution on the parameter space ". The
probability distribution P" can be decomposed into a marginal distribution
F" for Z and a conditional distribution G" for = given Z:

P"(A!B)"!
,

G"(B $ z) dF"(z).

We shall assume that F" has density f (z $ () with respect to the measure ):

F"(A)"!
,

f (z $ () d)(z)
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for all (3". Then we have

Q(A, B)"!""!,G"(B $ z) f (z $ () d)(z)#d'(()

"!
,
"!"

G"(B $ z) d'* (( $ z)#q!(z) d)(z),

where '* denotes the (posterior) distribution of ( conditional on Z:

'* (C $ z)"[q
!
(z)]+!!

-

f (z $ () d'((),

and q
!
(z)"+" f (z $ () d'(() is the density of Q

!
with respect to ). Hence, the

conditional predictive distribution for= is

Q
"
(B $ z)"!"

G"(B $ z) d'* (( $ z).

3.1. Nested prior

Suppose that the prior distribution ' is itself a mixture:

'(C)"!#
,#(C) d$(-).

A prior distribution with this nested form is sometimes referred to as a &hier-
archical prior'. We can regard $ as a prior distribution on #, and the parameter
- is sometimes referred to as a &hyperparameter'. This nested form for ' implies
an alternative mixture representation for Q:

Q(A!B)"!#
PH#(A!B) d$(-),

where

PH#(A!B)"!"
P"(A!B) d,#(().

The probability distribution PH# can be decomposed into a marginal distribution
FH# for Z and a conditional distribution GH# for = given Z:

PH#(A!B)"!
,

GH#(B $ z) dFH#(z),
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where

GH#(B $ z)"!"
G"(B $ z) d,* #(( $ z),

FH#(A)"!"
F"(A) d,#((),

,* is the posterior distribution of ( conditional on -:

,* #(C $ z)"[ f H(z $ -)]+!!
-

f (z $ () d,#((),

and f H(z $ -) is the density of FH# with respect to the measure ):

f H(z $ -)"!"
f (z $ () d,#(().

Let $M denote the posterior distribution of - conditional on Z:

$M (C $ z)"!
-

f H(z $ -) d$(-)$!#
f H(z $ -) d$(-).

Then the conditional predictive distribution for= can be expressed as

Q
"
(B $ z)"!#

GH#(B $ z) d$M (- $ z).

We can refer to f (z $ () as the likelihood function with ' as the prior distribu-
tion. Or we can refer to f H(z $ -) as the likelihood function with $ as the prior
distribution. The likelihood-prior distinction is #exible.

3.2. Partial specixcation for Q

Now suppose that Q is only partly speci"ed: Q3S. One possibility is that
!PH#: -3#" is given, but there is a set ! of possible prior distributions on #.
Then the set of subjective distributions for the observables (Z, =) is
S"!Q(: $3!", where Q("+PH# d$(-). The risk robustness criterion can be
written as

sup
(&!
"r(Q(, d)! inf

&*&D
r(Q(, d&)#(%.

Our goal is a decision rule d that is S-% risk robust. We shall focus on
specifying an approximate prior $

!
such that the corresponding Bayes rule

d!"d
'(! is risk robust. The approximate prior need not be an element of !. One

strategy is to try a uniform prior as the approximate prior and then check
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robustness. If the sample observation z is su$ciently informative relative to the
actual prior $, then the posterior distribution for - based on the approximate,
uniform prior will be similar to the posterior distribution based on the actual
prior. This corresponds to the case of stable estimation in Edwards et al. (1963):
`To ignore the departures from uniformity, it su$ces that your actual prior
density change gently in the region favored by the data and not itself too
strongly favor some other regiona. If Q assigns high probability to such informa-
tive samples, then the risk r(Q, d!) of our procedure will be close to the optimum
r(Q, d

'
). If this holds for all of the distributions Q in S, then the rule

d! corresponding to the uniform prior $
!
is risk robust.

Special points in the parameter space, such as boundary points, can be
accommodated with an approximate prior that has one or more mass points but
is otherwise quite di!use. There is an example of this in Section 4.

3.3. Loss function

We have focused on problems where the optimal action requires a predictive
distribution. The estimation of parameters is not the primary goal; the role of
the parametric model is to aid in the construction of the conditional predictive
distribution for=.

We can, however, de"ne a loss function with the parameter as one of its
arguments, and then express the risk function as expected loss. This loss function
¸ : #!Z!APR is de"ned as follows:

¸(-, z, a)"!!m(w, a) dGH#(w $ z). (3)

Note that ¸ depends upon the observation z as well as on the parameter - and
the action a; this is necessary in order to include prediction problems. Then with
Q("+PH# d$(-), we have

r(PH#, d)"!¸(-, z, d(z)) f H(z $ -) d)(z)

r(Q(, d)"!r(PH#, d) d$(-).

The optimal decision rule can be expressed as

d
'((z)"argmin

(&A
!¸(-, z, a) d$M (- $ z).

So the optimal action is chosen to minimize posterior expected loss; d
'( is the

Bayes rule with respect to the prior distribution $. See Wald (1950, Chapter 5.1),
Blackwell and Girshick (1954, Chapter 7.3), and Ferguson (1967, Chapter 1.8).
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The risk function r(PH#, d) is sometimes referred to as a classical risk function,
with the stress on its being a function of the parameter -, and r(Q(, d) is referred
to as the Bayes risk, with the stress on using the prior $ to integrate over the
parameter space. I prefer to regard them both as functions of the distribution of
the observables (Z, =) (and of the decision rule d ). That Q( has a mixture form
is not a fundamental di!erence; the mixing distribution $ could assign unit mass
to some particular point -.

The "nite-sample optimality of Bayes decision rules played an important
role in Wald's (1950) development of statistical decision theory. With S"
!PH#: -3#", a decision rule d3D is admissible if there is no other rule d&3D with
r(PH#, d&))r(PH#, d) for all -3# with strict inequality for some -3#. Wald's
complete class theorem establishes that any admissible decision rule can be
obtained as a Bayes rule for some prior distribution (or sequence of prior
distributions).

If the estimation of parameters is a primary goal, then we can begin with the
speci"cation of a loss function and use it to examine the risk properties of an
estimator. For example, we could consider estimating some scalar component
-
.
with a (piecewise) linear loss function:

¸(-, z, a)"%
c
!
$-

.
!a$ if a)-

.
,

c
"
$-

.
!a$ otherwise,

(4)

with c
!
, c

"
'0. Then the posterior expected loss is minimized by setting the

estimate d
'((z) equal to the c

!
/(c

!
#c

"
) quantile of the posterior distribution of

-
.
(as in Koenker and Bassett (1978, 1982), in a di!erent context).
The linear loss function is also useful in prediction problems, if we do not

want to commit to a speci"c utility function that is based on the economics of
the problem. Let w

.
be some scalar component of w,

!m(w, a)"%
c
!
$w

.
!a$ if a)w

.
,

c
"
$w

.
!a$ otherwise,

(5)

and de"ne ¸(-, z, a) as in (3), where now the dependence on z is needed. Then
the posterior expected loss is minimized by setting the forecast d

'((z) equal to the
c
!
/(c

!
#c

"
) quantile of the conditional predictive distribution of =

.
(as in

Koenker and Bassett (1978, 1982), in a similar context).

3.4. Coverage probability

As in Section 3.2, suppose that the parametric family !PH#: -3#" is given, and
there is a set ! of prior distributions. Consider an approximate prior distribu-
tion $

!
, with corresponding subjective distribution Q(! for (Z, =). The linear

loss function in (4) implies that the optimal estimate of -
.

is the c
!
/(c

!
#c

"
)
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quantile of the posterior distribution. If the posterior distribution of -
.

is
continuous, then

$M
!
(!-: -

.
)d!(z)" $ z)"c

!
/(c

!
#c

"
),

where d!"d
'(!. If Q"+PH# d$(-) is the DGP, then the corresponding frequen-

tist coverage probability for d! is

cover(Q, d!)"!FH#(!z: -
.
)d!(z)") d$(-)

"!$M (!-: -
.
)d!(z)" $ z) dQ

!
(z),

where Q
!
"+FH# d$(-).

Likewise, the linear loss function in (5) implies that the optimal forecast of
=

.
is the c

!
/(c

!
#c

"
) quantile of the conditional predictive distribution. If this

distribution is continuous, then

Q(!
"
(!w: w

.
)d!(z)" $ z)"c

!
/(c

!
#c

"
).

The corresponding frequentist coverage probability for d! is

cover(Q, d!)"Q(!(z, w): w
.
)d!(z)")

"!Q"
(!w: w

.
)d!(z)" $ z) dQ

!
(z).

It follows, as in Pratt (1965), that the posterior probability and the coverage
probability are equal for d! if Q(! is the DGP:

cover(Q(!, d!)"c
!
/(c

!
#c

"
).

This suggests asking whether the posterior probability and the coverage prob-
ability are nearly equal for some set of DGPs. See Morris (1983b). A correspond-
ing robustness measure is

sup
'&S

$cover(Q, d!)!cover(Q, d
'
)$.

I prefer to not focus on this robustness measure because it is not derived from
an explicit loss function. Nevertheless, a substantial di!erence between pos-
terior probability and coverage probability suggests a lack of robustness.
Furthermore, a useful check on our numerical work can be based on this result
that posterior probability equals coverage probability for d

'
when Q is the

DGP.
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4. Application: Dynamic models for longitudinal data

Consider an individual trying to forecast his future earnings, in order to guide
savings and other decisions. We shall focus on how he might combine his
personal earnings history with the data on the earnings trajectories of other
individuals.

At the beginning of each period, the individual has some amount of "nancial
wealth. He receives labor earnings, and "nancial wealth plus labor earnings
gives cash on hand. He chooses to consume some of this and invest the rest. The
return on this investment gives "nancial wealth at the beginning of the next
period, and the process repeats. Labor income in future periods is uncertain.
A decision rule speci"es consumption at each date as a function of cash on hand
at that date and of variables (whose values are known at that date) that are used
in forming conditional distributions for future earnings. Such a rule leads to
a distribution for the consumption stream, and the individual uses expected
utility preferences to rank the distributions corresponding to di!erent rules. The
objective is to choose a decision rule that maximizes expected utility.

Recent work on this problem includes Skinner (1988), Caballero (1990),
Deaton (1991), Hubbard et al. (1994, 1995), and Carroll (1997). These papers
adopt speci"cations for preferences and for the conditional distribution of future
earnings. They use analytical and numerical methods to solve for optimal
decision rules, and then summarize properties of the optimal paths for consump-
tion and for the stock of "nancial wealth.

We shall work with a simple version of this problem in order to illustrate our
framework. The decision maker, denoted i"1, has access to the earnings
histories for himself and N!1 other individuals over ¹#1 periods:
z"!y#

/
"0
/$!

, where y#
/
"!y

/!
"#
!$%

and y
/!

is the log of earnings for individual i in
period t. Let w denote the decision maker's future earnings: w"!y

!!
"$
!$#%!

. He
regards (z, w) as the realization of the random variable (Z, =), which has
subjective distribution Q.

The decision maker has speci"ed the following parametric model, !P": (3"",
for log earnings:

>
/!
".>

/,!+!
#/

/
#;

/!
, (6)

;
/!
$!>

/%
"y

/%
"0
/$!

"-"-#-& N(0, 0") (i"1,2, N; t"1,2, H), (7)

with ("(., /
!
,2, /

0
, log0"). He has the following nested prior, !,#: -3#":

/
/
$!>

/%
"y

/%
"0
/$!

"$#& N(1
!
#1

"
y
/%
, 0"

1
), (8)

with -"(., 1
!
, 1

"
, log0", )) and ),0"

1
/0". Our question is whether some

approximate prior $
!

on # can be recommended as being suitably robust.
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Models of this sort, with extensions to allow for serial correlation in;
/!
, have

been used by Hause (1977), Lillard and Willis (1978), MaCurdy (1982), Abowd
and Card (1989), and others. An issue, however, is the role of the normality
assumptions. In particular, MaCurdy (1982) maximized a (quasi) likelihood
function that was based on normality assumptions, but he based his parameter
inferences on large-sample approximations that do not require specifying a par-
ticular parametric family of distributions. Abowd and Card (1989) used a min-
imum-distance method that, under large-sample approximations, can provide
more e$cient estimates of the parameters than quasi-maximum likelihood,
when the normality assumption is false.

The parameter estimates alone, however, do not provide a distribution for
future earnings, and such a distribution is necessary for the consumption
problem. Deaton (1991) combines estimates from MaCurdy (1982) with normal-
ity assumptions to generate distributions for future earnings. Hubbard et al.
(1994) use minimum-distance methods in their parameter estimation, but make
normality assumptions to provide distributions for future earnings. There has
been recent work using more general models to provide conditional predictive
distributions for earnings. Geweke and Keane (1996) use three-point mixtures of
normal distributions. Chamberlain and Hirano (1997) allow for individual-
speci"c persistence in earnings volatility. Hirano (1998) works with Dirichlet
process mixtures of normal distributions. In future work, I would like to apply this
paper's framework to these more general models. Also it would be good to pay
particular attention to the risk of very low earnings, as stressed in Carroll (1997).

4.1. Parameter estimation

We shall begin by examining the estimation of ., using the linear loss function
in (4). Then we shall see how our conclusions are a!ected when we focus instead
on the predictive distribution of=. Our choice of DGPs is based on the sample
from the Panel Study of Income Dynamics used in Chamberlain and Hirano
(1997). The DGP Q assigns a gamma distribution to h"1/0" with shape
parameter equal to 5.0. The 0.1 and 0.9 quantiles for 0 are 0.24 and 0.43.
Conditional on 0", the components of (., 1

!
, 1

"
) are independent normals with

variances proportional to 0". We consider three speci"cations for the mean of .:
0.2, 0.5, 0.8. The mean of 1

!
is 0, and the mean of 1

"
is 0.25. The standard

deviations for (., 1
!
, 1

"
) in the (unconditional) t-distribution are 0.22. We con-

sider "ve speci"cations for ): uniform on (0, 0.1), (0.1, 0.3), (0.3, 1), (1, 5), (5, 25).
The DGP is completed by setting the distribution of y

/%
to be normal with mean

0 and standard deviation 0.45. So there are 15 DGPs in S.

4.1.1. Uniform prior
Our "rst approximate prior is uniform: the parameter space #"R.![0,R),

and the density of $
(
(with respect to Lebesgue measure on #) is constant. The
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Table 1
max

'&S
[r(Q, d!)!r(Q, d

'
)]

Uniform prior ¹
N

2 4 10

100 0.11 0.03 0.005
1000 0.03 0.004 0.000

loss function is

¸(-, z, a)"$.!a$,

so the optimal decision rule (estimator) d( is the median of the posterior
distribution for . that is implied by $

(
. The risk of d( under the DGP Q is

r(Q, d(), and we shall compare this with the lower bound, r(Q, d
'
), which would

be attained if the decision maker knew the DGP and used the median of the
corresponding posterior distribution of .. The risks are approximated numer-
ically by taking 5000 independent samples from each of the DGPs, and calculat-
ing the average loss. We shall consider sample sizes of N"100, 1000, and
¹"2, 4, 10.

The risk comparison for the uniform prior is given in Table 1.
The uniform prior appears to be quite robust when N"100, ¹"10 or

N"1000 and ¹"4 or 10. There is little to be gained then from considering
a more informative prior. With N"100 and ¹"2, however, the risk di!erence
of 0.11 is substantial. For each of the three values for E(.), the maximal regret
risk occurs for the DGP with ) uniform on (0, 0.1). This suggests that there are
particular di$culties associated with the )"0 boundary of the parameter
space. There are also large discrepancies between posterior probability and
coverage probability in this case. For example, the DGP with E(.)"0.5 and
) uniform on (0, 0.1), which we shall denote by Q

/
, gives the coverage probabilit-

ies in Table 2. When N"100 and ¹"2, the coverage probability for the
posterior median is far from 0.5; it is only 0.12.

4.1.2. Point-mass prior
In response to this poor performance for small values of ), we shall consider

a second approximate prior. It di!ers from the "rst one only in the distribution
for ). This distribution assigns point mass of 0.10 to )"0, and probability of
0.90 to a gamma distribution with mean 12.5 and standard deviation 11.9.
(The shape parameter is 1.1) We shall refer to prior-1 as uniform and to
prior-2 as point mass. The risk comparison for the point mass prior is given in
Table 3.
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Table 2
Cover (Q

/
, d!)

Uniform prior ¹
N

2 4 10

100 0.12 0.20 0.35
1000 0.23 0.38 0.46

Table 3
max

'&S
[r(Q, d!)!r(Q, d

'
)]

Point-mass prior ¹
N

2 4 10

100 0.09 0.04 0.01
1000 0.05 0.01 0.002

When N"100 and ¹"2, the Bayes rule for the point-mass prior does much
better for the DGPs with ) uniform on (0, 0.1), with maximal regret risk of 0.04
instead of 0.11. The coverage probability is also much improved: the posterior
median under the point mass prior has coverage probability (under Q

/
) of 0.43

instead of 0.12. But there are tradeo!s. The maximal regret risk for the point-
mass prior is 0.09, which occurs for the DGP with E(.)"0.8 and ) uniform on
(0.3, 1). The minimax criterion favors the point mass prior, but not by very much.
At the other sample sizes, the minimax criterion favors the uniform prior. These
results also hold separately for each of the three speci"cations for E(.), with
S consisting of the "ve DGPs corresponding to the speci"cations for ).

4.1.3. 0.05 and 0.95 quantiles
Now consider the loss function in (4) with c

!
"1 and c

"
"19. The loss for

underestimating . is $.!a$, but the loss for overestimating . is 19 ) $.!a$. So the
Bayes rule sets the estimate a equal to the 0.05 quantile of the posterior
distribution of .. The minimax regret criterion again favors the point-mass prior
when N"100 and ¹"2, and favors the uniform prior at the other sample
sizes. These results also hold when c

!
"19 and c

"
"1, with the Bayes rule equal

to the 0.95 quantile of the posterior distribution of ..

4.1.4. Conditional prior
So far we have considered three estimators: based on the uniform prior, the

point-mass prior, and (for the regret calculations) the DGP prior. Numerical
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quadrature has been used to calculate these estimators; Appendix A provides
some detail on the calculations. I have also considered the following computa-
tionally simpler estimator, which does not require quadrature; it is developed in
Appendix A. The (marginal) posterior density for ) is obtained in closed form,
using the uniform prior. The posterior mode, )K

%&#'
, is calculated numerically.

The posterior distribution of . conditional on ) is a t-distribution, and it is
evaluated at )K

%&#'
. Then the c

!
/(c

!
#c

"
) quantile of this posterior distribution

is used as the decision rule for the linear loss function in (4). This estimator does
poorly at the 0.05 and 0.95 quantiles, presumably because it does not allow for
any uncertainty regarding ). When N"100 and ¹"2, the maximal regret risks
are 0.27 and 0.71 for the loss functions with c

!
/(c

!
#c

"
)"0.05 and 0.95. The

corresponding results for the uniform prior (not conditioning on )) are 0.21 and
0.36, and the point-mass prior gives 0.14 and 0.22.

4.1.5. Fixed ewects
We can examine the role of the nested prior in (8) by considering a uniform

prior on the original parameter space ""R0%". In particular, the prior density
for (/

!
,2, /

0
) is constant on R0, which corresponds to setting )"R. Then the

posterior mean for . can be obtained from a least-squares regression that
includes N individual-speci"c dummy variables. (The posterior mean and me-
dian coincide; see the appendix.) This is known as the "xed-e!ects (d(') or
within-group estimator. It is inconsistent as NPRwith ¹ "xed in our autoreg-
ression model. The inconsistency is particularly interesting because this is
a Bayes estimator. We would obtain very similar results using a proper prior,
say uniform on (!10!%, 10!%)0%". If we use this prior to construct a DGP, the
(slightly modi"ed) "xed-e!ects estimator will be optimal in terms of mean square
error (or mean absolute error) for that DGP. It will, however, be extremely
nonrobust for the (plausible) family of DGPs that we have been considering.

The risk comparisons for the "xed-e!ects estimator, using mean absolute
error, are shown in Table 4.

S contains the same 15 DGPs that were used before. The maximal regret risk
when N"100 and ¹"2 is 0.60. Using the nested (uniform) prior on #, the

Table 4
max

'&S
[r(Q, d(')!r(Q, d

'
)]

Fixed e!ects ¹
N

2 4 10

100 0.60 0.31 0.12
1000 0.64 0.33 0.13
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maximal regret risk is 0.11. In fact, the "xed-e!ects estimator is dominated, with
higher risk at each of the DGPs in S.

Since the "xed-e!ects estimator is a Bayes estimator, a modi"ed version using
a proper prior will be admissible, and so we will not have risk dominance over
a su$ciently wide set of DGPs. Nevertheless, risk comparisons can provide
a critique of the "xed-e!ects estimator that does not rely upon large-sample
arguments. To illustrate, consider adding to S the DGP with E(.)"0.5 and
) uniform on (1000,1001). The mean absolute error for estimating . is about
0.004 under this DGP (when N"100 and ¹"2) for each of the following
estimators: the optimal (infeasible) estimator that uses the DGP prior; the
uniform, nested-prior estimator; and the "xed-e!ects estimator. Suppose that
the risk is in fact slightly less for the "xed-e!ects estimator than for the
nested-prior estimator, so we no longer have dominance. Then the critique of
the "xed-e!ects estimator could be as follows: (i) the DGP for which the
"xed-e!ects estimator does well is not plausible; (ii) even if it were, the di!erence
across estimators in risk for that DGP is tiny, whereas the nested-prior es-
timator does much better than the "xed-e!ects estimator for some (plausible)
DGPs; (iii) the maximal regret risk values are not a!ected by the additional
DGP, so the minimax criterion still strongly favors the nested-prior estimator.

4.2. Predictive distributions

Consider individual i"1. Let w"!y
!!
"$
!$#%!

denote his future earnings. The
data available to him when he makes his decision are z"!y#

/
"0
/$!

, where
y#
/
"!y

/!
"#
!$%

. He regards (z, w) as the realization of the random variable (Z, =),
which has subjective distribution Q, and he adopts the parametric model and
nested prior in (6)}(8). We shall work with a linear loss function, as in (5), which
gives the following prediction problem: min

&
r(Q, d) with

r(Q, d)"E
'
[[c

!
1(d(Z))>

!,#%.
)#c

"
1(d(Z)

'>
!,#%.

)] ) $>
!,#%.

!d(Z)$]. (9)

The solution, for given Q, has d
'
(z) equal to the c

!
/(c

!
#c

"
) quantile of the

conditional distribution of >
!,#%.

given Z"z. Working with di!erent values
for c

!
/(c

!
#c

"
) will provide an indication of how well the approximate priors

perform in producing predictive distributions. I would also like to evaluate their
performance in explicit models of optimal consumption, but that is left for future
work.

4.2.1. Forecasting one period ahead
We shall use the same DGPs and approximate priors as in the parameter

estimation problem. First consider absolute error loss, with c
!
"c

"
"1. S con-

tains 15 DGPs, corresponding to the three values for E(.) and the "ve uniform
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Table 5
max

'&S
[r(Q, d!)!r(Q, d

'
)]; c

!
"1, c

"
"1; k"1

Uniform prior ¹ Point-mass prior ¹
N

2 4 10 2 4 10

100 0.004 0.001 0.000 0.005 0.001 0.000
1000 0.001 0.000 0.000 0.001 0.000 0.000

distributions for ). The maximal regret risks for forecasting >
!,#%!

are given in
Table 5.

Consider N"100 and ¹"2. The maximal regret risk for the uniform prior is
attained for the DGP with E(.)"0.2 and ) uniform on (0, 0.1). There the mean
absolute errors for the forecasts corresponding to the DGP prior, the uniform
prior, and the point-mass prior are all close to 0.26. These are substantial, in
forecasts of log earnings. The regret risk for the uniform prior, however, is only
0.004. The uniform prior appears to be very robust, with little to be gained from
a more informative prior. This robustness also shows up in the coverage
probability, which is 0.50.

These results for the forecasting problem are in sharp contrast to the results
for estimating ., where the estimate based on the uniform prior had poor
performance for small values of ). That poor performance motivated the
point-mass prior, which appears to not be needed in the forecast problem.
Nevertheless, the point-mass prior does "ne. With N"100 and ¹"2, its
maximal regret risk is attained for the DGP with E(.)"0.8 and ) uniform on
(0.1, 0.3). There the mean absolute errors for the forecasts corresponding to the
DGP prior, the uniform prior, and the point-mass prior are all close to 0.30. The
regret risk for the point-mass prior is only 0.005, and its coverage probability is 0.49.

We obtain similar results for the risk function in (9) with c
!
"1 and c

"
"19,

with the Bayes rule equal to the 0.05 quantile of the conditional predictive
distribution of >

!,#%!
. When N"100 and ¹"2, the maximal regret risk for

the uniform prior is attained for the DGP with E(.)"0.5 and ) uniform on
(0, 0.1). There the risks for the forecasts corresponding to the DGP prior, the
uniform prior, and the point-mass prior are 0.71, 0.72, and 0.71. The regret risk
for the uniform prior is only 0.01, and its coverage probability is 0.06. Now
consider c

!
"19 and c

"
"1, still with N"100 and ¹"2. The Bayes rule

equals the 0.95 quantile of the conditional predictive distribution of>
!,#%!

. The
maximal regret risk for the uniform prior is attained for the DGP with E(.)"0.2
and ) uniform on (0, 0.1). There the risks for the forecasts corresponding to the
DGP prior, the uniform prior, and the point-mass prior are 0.67, 0.68, and 0.67.
The regret risk for the uniform prior is only 0.01, and its coverage probability
is 0.94.
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Both the uniform prior and the point-mass prior exhibit a substantial degree
of risk robustness when we are forecasting one period ahead. Next we shall see
how this robustness holds up when we forecast ten periods ahead.

4.2.2. Forecasting ten periods ahead
We shall consider three sample con"gurations: (N, ¹)"(100, 2), (100, 4),

(1000, 2), and three versions of the loss function in (5): (c
!
, c

"
)"(1, 1), (1, 19),

(19, 1). S contains 15 DGPs, corresponding to E(.)"0.2, 0.5, 0.8 and to the "ve
uniform distributions for ). The maximal regret risks for forecasting>

!,#%!%
are

given in Table 6.
Consider (N, ¹)"(100, 2) and (c

!
, c

"
)"(1, 1). The maximal regret risk for the

uniform prior is attained for the DGP with E(.)"0.8 and ) uniform on (0, 0.1).
There the mean absolute errors for the forecasts corresponding to the DGP
prior, the uniform prior, and the point-mass prior are 0.71, 0.81, and 0.76. These
are very substantial, in forecasts of log earnings. The regret risk for the uniform
prior is much smaller at 0.09, but still substantial. The point-mass prior does
better than the uniform prior for this DGP, with a regret risk of 0.05. However,
the maximal regret risk is smaller for the uniform prior than for the point-mass
prior: 0.09 versus 0.13. This is also true at the other sample con"gurations: 0.02
versus 0.07, and 0.02 versus 0.09.

There are similar results for the risk function with (c
!
, c

"
)"(1, 19), with the

Bayes rule equal to the 0.05 quantile of the conditional predictive distribution of
>

!,#%!%
. When (N, ¹)"(100, 2), the maximal regret risk for the uniform prior is

attained for the DGP with E(.)"0.8 and ) uniform on (0, 0.1). There the risks
for the forecasts corresponding to the DGP prior, the uniform prior, and the
point mass prior are 2.0, 2.5, and 2.3. The regret risk for the uniform prior is 0.49,
and it is 0.28 for the point-mass prior. As before, however, the maximal regret
risk for the uniform prior is less than for the point-mass prior: 0.49 versus 1.4. In
fact, for all the DGPs, loss functions, and sample con"gurations, the risk for the
uniform prior is less than for the point-mass prior except when the DGP has
) uniform on (0, 0.1). So the point-mass prior cannot be generally recommended
for this forecast problem.

Table 6
max

'&S
[r(Q, d!)!r(Q, d

'
)]; k"10

Uniform (N, ¹) Point-mass (N, ¹)
prior prior
(c

!
, c

"
) (100, 2) (100, 4) (1000, 2) (100, 2) (100, 4) (1000, 2)

(1, 1) 0.09 0.02 0.02 0.13 0.07 0.09
(1, 19) 0.49 0.09 0.07 1.4 0.24 0.29
(19, 1) 0.47 0.08 0.12 1.1 0.27 0.34
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5. Conclusion

We have considered the role of econometrics in decision making under
uncertainty. This has led to a stress on predictive distributions. This has
important consequences because econometric procedures are often evaluated
without regard to predictive distributions. For example, in dynamic models for
longitudinal data, the focus is often on autoregressive and variance-component
parameters, corresponding to aspects of a serial covariance matrix. Various
methods (quasi-maximum likelihood, minimum distance, generalized method of
moments) may have desirable properties relative to these parameters but fail to
provide predictive distributions.

We have considered criteria for evaluating procedures, leading to risk robust-
ness and minimax regret risk relative to a set S of data-generating processes
(DGPs). These criteria were stated without using large-sample approximations.
This does not mean that approximations have no role to play. The numerical
evaluation of our criteria is already nontrivial in the model of Section 4.
Approximations may well be required to reduce the cost of computation in more
general models. But such approximations should not be bound up in the
de"nition of the evaluation criteria; better to state the rules of the game "rst, and
then bring in approximations as necessary.

In order to construct predictive distributions, we have used Bayes procedures
based on parametric models with approximate prior distributions. Nested priors
can be used on parameter spaces of high dimension. The "rst stage of the prior
incorporates qualitative restrictions such as exchangeability, and the second
stage is quite di!use. Special points in the parameter space, such as boundary
points, can be accommodated with point-mass priors. A motivation for Bayes
procedures is their "nite sample optimality when based on the DGP.

In our application in Section 4, the DGPs were constructed by combining
a parametric model with various distributions on the parameter space. The
procedures were constructed as Bayes procedures for the same parametric
model and two approximate prior distributions (uniform and point mass). Our
evaluation criteria could, however, be applied in other cases. We need to specify
some set S of DGPs, but it need not be tied to a particular parametric model.
Likewise, the procedures considered need not be limited to Bayes procedures for
a parametric model. Bayes procedures are available for various nonparametric
models, although the distinction is not a sharp one since we can work with
parameter spaces of high dimension. Non-Bayes procedures can be considered,
perhaps motivated as computationally cheaper approximations to Bayes pro-
cedures.

We have considered problems where the role of the econometrician is to
provide advice to an individual on a portfolio choice or consumption decision.
Related issues would arise in using data from job training experiments to advise
an individual on whether he should enroll in a job training program. Or in using
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data from clinical trials to advise an individual on choice of medical treat-
ment. It may be fruitful to approach some social policy questions from the
perspective of the econometrician providing the policy maker with predictive
distributions, in which case our criteria for evaluating procedures may be
relevant.

Acknowledgements

An earlier version of this paper was presented at the Principles of Econo-
metrics conference at the University of Wisconsin-Madison in May 1998. I am
grateful to Charles Manski and Kenneth West for comments. Financial support
was provided by the National Science Foundation.

Appendix A. Computation

A.1. Parameter estimation and one-period forecasts

The form of the likelihood function for 2 is

f (y $J, 2)"ch20" exp[!(h/2)(y!X3)&(y!X3)],

where y is n!1, X is n!K, 3 is K!1, 2&"(3&, h, )), and c is a constant in the
sense that it does not depend upon 2. J is a set of variables that we condition on
throughout the analysis; it could include initial conditions in dynamic models.
We use the natural conjugate prior for (3, h) conditional on ):

3 $J, h, )&N(m, [hG())]+!)

h $J, )&G(a
!
/2, 2a+!

"
).

(G(a, b) denotes a gamma distribution with shape parameter a and scale para-
meter b.) Let p(3, h $ )) denote the prior density for (3, h) conditional on ). The
posterior distribution of (3, h) conditional on ) is

3 $J, y, h, )&N(3M ()), h+![X&X#G())]+!) (A.1)

h $J, y, )&G((a
!
#n)/2, 2[q())]+!), (A.2)

where

3M ())"[X&X#G())]+![X&y#G())m],

q())"a
"
#y&y#m&G())m!3M ())&[X&X#G())]3M ()).
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Let s be a K!1 vector; it is a constant in that it does not depend upon 2, but it
may depend upon J or y. s&3 has a posterior t-distribution conditional on ):

s&3 $J, y, )&s&3M ())#[s&[X&X#G())]+!s]!0"[q())/(a
!
#n)]!0"t(a

!
#n).

(A.3)

Suppose that, conditional on 2, we have the following predictive distribution for
a future value D:

D $J, y, 2&N(s&3, h+!).

Then the posterior predictive distribution for D conditional on ) is

D $J, y, )&s&3M ())#[s&[X&X#G())]+!s#1]!0"[q())/(a
!
#n)]!0"t(a

!
#n).

(A.4)

This result will help us to obtain posterior predictive distributions one period
ahead.

The marginal likelihood for ) is

r())"!! f (y $J, 3, h, ))p(3, h $ )) d3 dh

"c[q())]+'(!%2(0"[det(X&X#G()))]+!0"[detG())]!0". (A.5)

The prior distribution for ) may contain a mass point, say at )"0:

dp())"4d5
%
())#(1!4)6()) d),

with 0)4)1, +
,
d5

%
())"1(03A), and +6()) d)"1. The posterior distribution

for ) is given by

dp() $J, y)" r()) dp())
+r()) dp())

"4r(0) d5
%
())#(1!4)r())6()) d)

4r(0)#(1!4)+r())6()) d)
.

Let g(t $ ))"Pr(s&3)t $J, y, )), which can be obtained from the cumulative
distribution function (cdf ) of a t-distribution using (A.3). Then the posterior
distribution of s&3 is obtained as follows:

Pr(s&3)t $J, y),g(t)"!g(t $ )) dp() $J, y)

"4g(t $ 0)r(0)#(1!4)+g(t $ ))r())6()) d)
4r(0)#(1!4)+r())6()) d)

. (A.6)
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Likewise, with g(t $ ))"Pr(D)t $J, y, )) obtained from the cdf of a t-distribu-
tion using (A.4), we can obtain g(t)"Pr(D)t $J, y) as in (A.6).

The integrals in (A.6) are calculated numerically using adaptive quadrature.
Then the 7-quantile is obtained by numerically "nding a solution to
g(t$)!7"0. The program is written in Fortran 90 and uses the NAG Fortran
Library.

A.1.1. Improper prior
Partition 3&"(3&

!
, 3&

"
), where 3

!
is K

!
!1 and 3

"
is K

"
!1. Suppose that the

prior density for 3 conditional on (h, )) is a N(m
!
, [hG

!
())]+!) density for

3
!

times a constant (on R"") density for 3
"
. Set

m"&
m

!
0 ', G"&

G
!

0

0 0'.
Then the previous results continue to hold with a

!
#n replaced by a

!
#n!K

"
and with det(G())) replaced by det(G

!
())). If the prior distribution for h condi-

tional on ) is improper, with a constant density for log h (on R), then set
a
!
"a

"
"0.

A.1.2. Computational simplixcations
It is helpful to simplify q()), r()), s&[X&X#G())]+!s, and s&3M ()), since they will

be evaluated repeatedly for di!erent values of ). In our application in Section 4,
(6)}(8), we have

X"(I
0
!l

#
R), G())"&

)+!I
0

0

0 M', m"&
0

d',
where l

#
is a ¹!1 vector of ones, R is n!K

"
, M is K

"
!K

"
, and d is K

"
!1. So

n"N ) ¹ and K"N#K
"
. In particular, our application has

y"&
y
!
8
y
0
' with y

/
"&

y
/!
8

y
/#
',

R"&
R

!
8

R
0
' with R

/
"&

y
/%

1 y
/%

8 8 8
y
/,#+!

1 y
/%
',

with K
"
"3. De"ne v

/
"/

/
!1

!
!1

"
y
/%
, so that v

/
$ !>

/%
"y

/%
"0
/$!

"-"-#-& N(0, 0"
1
).

Then 3&
!
"(v

!
,2, v

0
), 3&

"
"(., 1

!
, 1

"
), h"1/0", and )"0"

1
/0".
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Let y* "(I
0
!l&

#
)y/¹ and RM "(I

0
!l&

#
)R/¹. De"ne

¹
3
"y&y, ¹

4
"R&R, ¹

43
"R&y

B
3
"¹y* &y* , B

4
"¹RM &RM , B

43
"¹RM &y* .

De"ne

¹I
3
"a

"
#¹

3
#d&Md, ¹I

4
"¹

4
#M, ¹I

43
"¹

43
#Md.

Let ¸ denote the eigenvectors of ¹I
4
relative to B

4
, with eigenvalues 7

!
,2, 7

""
:

¸&¹I
4
¸"diag!7

!
,2, 7

""
", ¸&B

4
¸"I

""
.

Let 9"¹)/(¹)#1). Let ¹I H
43

"¸&¹I
43
, BH

43
"¸&B

43
, and RM H"RM ¸. Let

sH
"
"¸&s

"
, where s&"(s&

!
, s&

"
) and s

!
is N!1, s

"
is K

"
!1. Let

%"diag!(7
!
!9)+!,2, (7

""
!9)+!".

Straightforward algebra shows that

q())"(¹I
3
!9B

3
)!(¹I H

43
!9BH

43
)&%(¹I H

43
!9BH

43
), (A.7)

r())"c(¹)#1)+00"" ""

#
)$!

(7
)
!9)#

+!0"
q())+'(!%2(0", (A.8)

s&[X&X#G())]+!s"9s&
!
s
!
/¹#(sH

"
!9RM H*s

!
)&%(sH

"
!9RM H*s

!
), (A.9)

s&3M ())"9s&
!
y* #(sH

"
!9RM H*s

!
)&%(¹I H

43
!9BH

43
). (A.10)

Now we can obtain Pr(s&3)t $J, y) as in (A.6), using (A.7)}(A.10) to simplify
the quadrature. Setting s

!
"0 and s&

"
"(1, 0, 0) gives s&3".. With D">

!, #%!
,

we can obtain g(t $ ))"Pr(>
!,#%!

)t $J, y, )) from (A.4) by setting
s&
!
"(1, 0,2, 0) and s&

"
"(y

!#
, 1, y

!%
). Then obtain g(t)"Pr(>

!,#%!
)t $J, y)

as in (A.6), using (A.7)}(A.10) to simplify the quadrature.

A.1.3. Fixed ewects
The "xed-e!ects estimator corresponds to a uniform prior for (/

!
,2, /

0
). Let

X"(I
0
!l

#
R), R"&

R
!
8

R
0
' with R

/
"&

y
/%
8

y
/,#+!

',
K

"
"1, 3&

!
"(/

!
,2, /

0
), 3

"
"., h"1/0". The prior for (3, log h) has constant

density on R0%""%!. De"ne the within-group moments:

=
3
"¹

3
!B

3
, =

4
"¹

4
!B

4
, =

43
"¹

43
!B

43
.
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s&3 has a posterior t-distribution:

s&3 $J, y&s&b#[s&(X&X)+!s]!0"[q/(N¹!N!K
"
)]!0"t(N¹!N!K

"
),

where

b"(X&X)+!X&y"&
b
!

b
"
'"&

y* !RM b
"

=+!
4
=

43
',

s&(X&X)+!s"s&
!
s
!
/¹#(s

"
!RM &s

!
)&=+!

4
(s
"
!RM &s

!
),

q"=
3
!=&

43
=+!

4
=

43
.

The posterior predictive distribution of >
!,#%!

is also a t-distribution:

>
!,#%!

$J, y & s&b#[s&(X&X)+!s#1]!0"[q/(N¹!N!K
"
)]!0"

!t(N¹!N!K
"
),

with s&
!
"(1, 0,2, 0) and s

"
"y

!#
.

A.2. m-period forecast
Return to the model with the nested prior, as in Section 4, (6)}(8). We shall

show that the posterior predictive distribution of >
!,#%5

is a t-distribution,
conditional on (., )). Then we can obtain the marginal distribution using
two-dimensional quadrature. Let

X"(I
0
!l

#
R), R"&

R
!
8

R
0
' with R

/
"&

y
/%

1 y
/%

8 8 8
y
/,#+!

1 y
/%
'.

De"ne v
/
"/

/
!1

!
!1

"
y
/%
, so that v

/
$ !>

/%
"y

/%
"0
/$!

"-"-#-& N(0, 0"
1
). Let

3&
!
"(v

!
,2, v

0
), 3&

"
"(., 1

!
, 1

"
), h"1/0", and )"0"

1
/0". The model implies

that

>
!,#%5

$J, y, 3, h, ) &N&1!.5
1!.

s&3#.5y
!#

, h+!
1!."5
1!." ', (A.11)

with s&
!
"(1, 0,2, 0) and s&

"
"(0, 1, y

!%
).

Let e&
!
"(0,2, 0), e&

"
"(1, 0, 0), so that e&3".. Let .* ())"e&3M ()). As in (A.1),

we have

3 $J, y, h, ) &N(3M ()), h+![X&X#G())]+!).

Hence

s&3 $J, y, h, ), e&3 &N(:
!
(., )), h+!d

!
())), (A.12)
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with

:
!
(., ))"s&3M ())#[c

"
())/c

#
())][.!.* ())],

d
!
())"c

!
())!c

"
())"/c

#
()),

and

c
!
())"s&[X&X#G())]+!s, c

"
())"s&[X&X#G())]+!e,

c
#
())"e&[X&X#G())]+!e.

There is a simpli"ed formula for c
!
()) in (A.9), and there are similar formulas for

c
"
()) and c

#
()):

c
"
())"9s&

!
e
!
/¹#(sH

"
!9RM H*s

!
)&%(eH

"
!9RM H*e

!
),

c
#
())"9e&

!
e
!
/¹#(eH

"
!9RM H*e

!
)&%(eH

"
!9RM H*e

!
),

where eH
"
"¸&e

"
.

Eqs. (A.11) and (A.12) imply that

>
!,#%5

$J, y, ., h, ) &N(:
"
(., )), h+!d

"
(., ))),

with

:
"
(., ))"1!.5

1!.
:
!
(., ))#.5y

!#
,

d
"
(., ))"&1!.5

1!. '
"
d
!
())#1!."5

1!."
.

Eqs. (A.1) and (A.2) imply that

h $J, y, ), .&G((a
!
#n#1)/2, 2[q; (., ))]+!),

with q; (., ))"q())#(.!.* ()))"/c
#
()). Hence

>
!,#%5

$J, y, ., )&:
"
(., ))#[d

"
(., ))]!0"[q; (., ))/(a

!
#n#1)]!0"

!t(a
!
#n#1).

The posterior distribution of . conditional on ) is a t-distribution:

. $J, y, )&.* ())#[c
#
())]!0"[q())/(a

!
#n)]!0"t(a

!
#n).

Let p(. $J, y, )) denote the density function. Then we have

g(t $ ))"Pr(>
!,#%5

)t $J, y, ))

"!Pr(>
!,#%5

)t $J, y, ., ))p(. $J, y, )) d..

G. Chamberlain / Journal of Econometrics 95 (2000) 255}283 281



The integral over ., for a given value of ), is evaluated by quadrature. Then we
obtain g(t)"Pr(>

!,#%5
)t $J, y) as in (A.6), again using quadrature.
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