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I studied predictive effects of teachers and schools on test scores in
fourth through eighth grade and outcomes later in life such as
college attendance and earnings. For example, predict the fraction
of a classroom attending college at age 20 given the test score for
a different classroom in the same school with the same teacher and
given the test score for a classroom in the same school with a differ-
ent teacher. I would like to have predictive effects that condition on
averages over many classrooms, with and without the same teacher.
I set up a factor model that, under certain assumptions, makes this
feasible. Administrative school district data in combination with tax
data were used to calculate estimates and do inference.

education production function | unmeasured inputs | teacher effects

The outcome data are based on elementary and middle school
classrooms, grades four through eight. For a classroom, there is

an average score based on a math or reading test given near the
end of the school year. There are also later outcome measures for
that classroom. These measures include the fraction of the class-
room that is attending college at age 20 and the average earnings
of the classroom at age 28. The classrooms can be grouped by
schools, and, within a school, can be grouped by teacher.
The goal of the paper is to provide predictive effects of teachers

and schools on these outcomes. For example, predict the fraction
of a classroom attending college at age 20 given the test score for
a different classroom in the same school with the same teacher and
given the test score for a classroom in the same school with a dif-
ferent teacher. Or predict the fraction of a classroom attending
college at age 20 given the fraction attending college for a different
classroom with the same teacher and given the fraction attending
college for a classroom in the same school with a different teacher.
I would like to have predictive effects that condition on averages
over many classrooms, with and without the same teacher. I set up
a factor model that, under certain assumptions, makes this feasi-
ble. Then I can define teacher and school factors based on test
score data and measure the predictive effect of the teacher factor
on college attendance. More directly, I can define teacher and
school factors based on the college attendance data and measure
the predictive effect of the teacher factor on college attendance.
These predictive effects can be based on residuals, where first

we form predictions based on observed variables (X) such as class
size, years of teacher experience, lagged test scores, and parent
characteristics. The residuals are the prediction errors. Then the
teacher and school effects that I measure in these residuals cor-
respond to unmeasured (latent) variables or, more precisely, to
the parts of those latent variables that are not predictable using
the observed variables in X. I am interested in these latent vari-
ables because they may be related to unmeasured characteristics
of teachers that have a causal effect on outcomes, in the sense of
unmeasured inputs in a production function. After setting up the
factor model, I discuss how it could be related, under random
assignment assumptions, to a production function.
Rivkin et al. (1) noted that students and parents refer often to

differences in teacher quality and act to ensure placement in classes
with specific teachers. Existing empirical evidence, however, does

not find a strong role for measured characteristics of teachers—such
as teacher experience, education, and test scores of teachers—in the
determination of academic achievement of students. This lack of
a strong role for measured characteristics motivates interest in un-
measured characteristics of teachers that have a causal effect on
academic achievement. Related literature on estimating teacher
effects on test scores includes refs. 2–10. A typical finding is that
a 1-SD increase in the teacher factor corresponds to an increase in
individual scores on the order of 0.1, where the units are SDs in the
distribution of scores for individual students.
In the Tennessee Student/Teacher Achievement Ratio exper-

iment, known as Project STAR, children entering kindergarten
were randomly assigned to class types, which were randomly
assigned to teachers. The random assignment was within schools
(e.g., ref. 11). It may be plausible to assume that the double
random assignment of students and teachers applied also to
specific classrooms (12, 13). Chetty et al. (13) were able to obtain
data on later outcomes for these children, such as college atten-
dance and earnings, which could be combined with the test score
data in Project STAR. These data make it possible to study
classroom effects (including teacher effects and peer effects) on
later outcomes. The advantage of the random assignment is that
prekindergarten characteristics of children are not correlated
within a kindergarten class. In the STAR data, however, each
kindergarten teacher is only observed teaching a single kinder-
garten class, making it difficult to separate out the part of the
classroom effect due to the teacher. A strength of the data used in
my paper is that teachers are observed in multiple classrooms.
However, we do not have the random assignment, so there is
a concern that within a classroom, there is correlation across the
students in characteristics that existed before the class. A teacher
effect may in part reflect sorting of students to teachers, with per-
sistent differences across teachers in characteristics of the students
entering their classes. A motivation for using residuals is that it is
more plausible to make random assignment assumptions within
a school when working with residuals. I recognize that the available
control variables may not be adequate to justify “as if” random
assignment within schools; for example, the parent characteristics
do not include parents’ education. Nevertheless, it is useful to ask
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what would be identified under within-school random assign-
ment, and that analysis provides some guidance in presenting
and interpreting the predictive effects.
To anticipate my results, using the full set of controls in X, when

the factors are constructed using test score data, the predictive ef-
fect on college attendance of a 1-SD increase in the teacher factor is
0.13 percentage points. When the factors are constructed using
data on college attendance, the predictive effect of a 1-SD increase
in the teacher factor is 0.79 percentage points. Under the assump-
tion (for residuals) of random assignment of students and teachers
within schools, the 0.79 estimate has a structural interpretation
based on a production function, and the 0.13 estimate provides
a lower bound.

Methods
Let Yij,h denote outcome h for classroom j in school i. Let Xij denote a K ×1
vector of predictor variables such as class size, years of teacher experience, and
an average of test scores from a previous year for members of the classroom.
We shall work with residuals of the formUij,h =Yij,h −X ′

ijαh, where αh is defined
to solve a prediction problem, which will be discussed below. LetUij denote the
H×1 vector formed from the outcome residuals for classroom j in school i.
Components of Uij are the residuals based on outcomes such as classroom
average test score (ts), the fraction of the classroom attending college at age
20 (co), and the average earnings of the classroom at age 28 (ea).

I treat the schools as if they were a random sample from some unknown
distribution, so that the schools are exchangeable. I only use a school i if there is
at least one pair of classrooms with the same teacher and at least one pair of
classrooms with different teachers. Within school i, form the set of classrooms
such that for each one there is at least one other with the same teacher. Assign
equal probability to each of these classrooms, choose one at random, and
denote it by A. Assign equal probability to each of the other classrooms that
have the same teacher as A. Choose one at random and denote it by B. Assign
equal probabilities to all of the classrooms that have teachers different from
that of classroom A. Choose one at random and denote it by C. The prediction
problems I consider fit into the following framework:

θ= argmin
d∈RJ

E½WigðUiA,UiB,UiC ,dÞ�, [1]

where g is a given function. For example

gðUiA,UiB,UiC ,dÞ=
�
UiA,co −d0 −d1UiB,ts −d2U2

iB,ts −d3UiC,ts −d4U2
iC,ts

�2
, [2]

with Uij,co equal to the residual corresponding to attending college at age 20
andUij,ts equal to the residual corresponding to the test score. Then, θ gives the
coefficients in the (weighted) minimum mean-square-error linear predictor

E p
�
UiA,co

��1,UiB,ts,U
2
iB,ts,UiC,ts,U

2
iC,ts

�
= θ0 + θ1UiB,ts + θ2U2

iB,ts + θ3UiC,ts + θ4U2
iC,ts:

[3]

An alternative could use the absolute value of the error instead of the
squared error in Eq. 2, in which case θ would give the coefficients in the
(weighted) minimum mean absolute error linear predictor. The nonnegative
scalar Wi allows for a weight in forming the moments. Wi = 0 unless school i
has at least two classrooms with the same teacher and at least two class-
rooms with different teachers, so that the random vector ðA,B,CÞ is well
defined. The nonzero values of Wi could, for example, be the number of
classrooms in school i with teachers who have at least two classrooms.

My estimator for θ is a sample counterpart of the minimization problem in
Eq. 1. To make this explicit, let N = f1,2, . . .g denote the positive integers,
and let Si ⊂N denote the set of classrooms in school i. For each classroom
a∈ Si , there is a teacher, denoted by qðaÞ∈N . We can partition Si into
subsets Sit with the same teacher: Si =∪t∈N Sit , where Sit = fa∈ Si : qðaÞ= tg.
Use iterated expectations to evaluate the expectation in Eq. 1 and simplify
notation by dropping the i subscript:

E½WgðUA,UB,UC ,dÞ�= E
�
E½WgðUA,UB,UC ,dÞjW ,U,S��:

The outer expectation corresponds to our treatment of the schools as a random
sample from some unknown distribution [so that ðWi ,Ui ,SiÞ is independent and
identically distributed from some unknown distribution]. We shall evaluate
explicitly the inner expectation, which is over classes within the same school,
given outcomes for each of the classes. Conditional on ðW ,U,SÞ= ðw,u,sÞ:

E
�
WgðUA,UB,UC ,dÞjðW ,U,SÞ= ðw,u,sÞ�= E

�
mðA,B,CÞjðW ,U,SÞ= ðw,u,sÞ�,

with mðA,B,CÞ=wgðuA,uB,uC ,dÞ.

E
�
mðA,B,CÞjqðAÞ= t,ðW ,U,SÞ= ðw,u,sÞ�

=
1
jst j

X
a∈st

" X
b∈st−fag

X
c∈s−st

mða,b,cÞ��ðjst j− 1Þðjsj− jst jÞ
�#
,

where jsj denotes the number of elements in the set s, so that jstj is the
number of classes taught by teacher t. Only condition on values for t such
that jst j>1. Only condition on values for s such that there is at least one pair
of classrooms with different teachers, so that jsj− jst j> 0.

Apply iterated expectations:

E½mðA,B,CÞjðW ,U,SÞ= ðw,u,sÞ�

=

0
@ X

t:jst j> 1

jst j
1
A

−1 X
t:jst j>1

jst jE
�
mðA,B,CÞjqðAÞ= t,ðW ,U,SÞ= ðw,u,sÞ�

=

0
@ X

t:jst j> 1

jst j
1
A−1 X

t:jst j>1

X
a∈st

X
b∈st−fag

X
c∈s−st

mða,b,cÞ��ðjst j− 1Þðjsj− jst jÞ
�
:

Now we can use these results to form our estimator. Let αh be defined to
solve a prediction problem such as

αh = arg min
d∈RK

E

 X
j∈Si

�
Yij,h −X ′

ijd
�2!

 ðh= 1, . . . ,HÞ: [4]

The sample analog for Eq. 4 is

α̂h = arg min
d∈RK

1
I

XI
i=1

 X
j∈Si

�
Yij,h −X ′

ijd
�2!

 ðh= 1, . . . ,HÞ, [4′]

providing the estimated residuals Ûij,h =Yij,h −X ′
ij α̂h. The sample analog for

Eq. 1 is

θ̂= argmin
d∈RJ

1
I

XI
i=1

Wi

0
@ X

t:jSit j> 1

jSit j
1
A−1

×
X

t:jSit j>1

X
a∈Sit

X
b∈Sit−fag

X
c∈Si−Sit

g
�
Ûia,Ûib,Ûic ,d

�.�ðjSit j− 1ÞðjSi j− jSit jÞ
�
:

Computation shows how the computation simplifies in a special case, which
includes Eqs. 2 and 3. For inference, I shall use bootstrap methods, based on
treating the schools as a random sample from some unknown distribution.
This approach does not impose any structure on the covariances within a school.

Within a school, we can form a partition of the classrooms, Si =∪L
l=1S

l
i , for

example by subject and grade. We can apply our analysis separately within
each cell of the partition. It may be useful to have a compact summary of the
results. One way to do this is to define ðAl ,Bl ,ClÞ for each cell l= 1, . . . ,L of the
partition. Assign a nonnegative weight Wl

i to cell l in school i, which is zero
unless Sli contains at least one pair of classrooms with the same teacher and one
pair of classrooms with different teachers. For the nonzero values, we could use

Wl
i =

X
t:jSlit j>1

���Slit ���: [5]

Only use a school i if
PL

l=1W
l
i > 0. IfWl

i > 0, form the set of classrooms in Sli such
that for each one there is at least one other with the same teacher. Assign
equal probability to each of these classrooms, choose one at random, and
denote it by Al . Assign equal probability to each of the other classrooms in Sli
that have the same teacher as Al . Choose one at random and denote it by Bl .
Assign equal probabilities to all of the classrooms in Sli that have teachers
different from that of classroom Al . Choose one at random and denote it by Cl .
[ðAl ,Bl ,ClÞ is undefined if Wl

i = 0 ]. The new prediction problem is

θ= argmin
d∈RJ

E

"XL
l=1

Wl
i gðUiAl ,UiBl ,UiCl ,dÞ

#
: [1′]

Factor Model. These predictive effects condition on a single score for a dif-
ferent classroom with the same teacher and a single score for a classroom
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with a different teacher. A factor model can provide predictive effects that
condition on averages over many classrooms, with and without the same
teacher, and can provide a limit as the number of such classrooms tends to
infinity. This factor model has the advantage of getting rid of the noise that
comes from using data on only a few classrooms. Let ZiA,T denote un-
measured characteristics of the teacher for classroom A in school i, and let
Zi,S denote unmeasured characteristics of the school. Define

Fin +Gin = E
�
hnðUiAÞjZiA,T ,Zi,S

�
, Fin = E

�
hnðUiAÞjZi,S

�
 ðn= 1, . . . ,NÞ,

where hnð · Þ is a given function. For example, hnð · Þ could select a compo-
nent of UiA and raise it to the power n: hnðUiAÞ=Un

iA,ts. Assume that

E
�
hnðUiAÞjZiA,T ,Zi,S

�
= E
�
hnðUiBÞjZiA,T ,Zi,S

�
, E

�
hnðUiAÞjZi,S

�
= E
�
hnðUiC ÞjZi,S

�
:

This assumption follows from the assumption of exchangeability across schools
and the random selection of classrooms A, B, and C.

Assume that UiA and UiB are independent conditional on the latent var-
iables ZiA,T and Zi,S. A motivation for this assumption is that, without con-
ditioning on additional information, we can regard the random variables
corresponding to different classrooms for the same teacher (within a school)
as exchangeable. If they could be embedded in an infinite sequence of ex-
changeable random variables, then conditional independence would follow
from de Finetti’s theorem (14). A richer analysis could exploit additional
information, such as the temporal ordering of the classrooms for a given
teacher, where patterns of serial correlation could emerge. I shall not pursue
that here. The conditional independence implies that

Cov
�
hnðUiAÞ,hpðUiBÞ

	
= E
�
Cov

�
hnðUiAÞ,hpðUiBÞ

��ZiA,T ,Zi,S	�
+Cov

�
E
�
hnðUiAÞjZiA,T ,Zi,S

�
,E
�
hpðUiAÞ

��ZiA,T ,Zi,S�	
=Cov

�
Fin +Gin,Fip +Gip

	
 ðn,p= 1, . . . ,NÞ:

Likewise, assume that UiA and UiC are independent conditional on Zi,S, which
implies that

Cov
�
hnðUiAÞ,hpðUiCÞ

	
=Cov

�
Fin,Fip

	
 ðn,p=1, . . . ,NÞ:

Note that

E
�
Fin +GinjZi,S

	
= E
�
E
�
hnðUiAÞjZiA,T ,Zi,S

���Zi,S�= E
�
hnðUiAÞjZi,S

�
= Fin,

so that E½GinjZi,S�= 0, which implies that

Cov
�
Gin,Fip

	
= 0 ðn,p= 1, . . . ,NÞ:

Therefore, we can obtain the moments CovðFin,FipÞ and CovðGin,GipÞ from

Cov
�
hnðUiAÞ,hpðUiBÞ

	
 and Cov

�
hnðUiAÞ,hpðUiC Þ

	
:

Let M be a subset of f1, . . . ,Ng. Note that

E p
h
hnðUiAÞj1,



Fip,Gip

�
p∈M

i
= E p

h
E
�
hnðUiAÞjZiA,T ,Zi,S

���1,
Fip,Gip
�
p∈M

i
= E p

h
Fin +Ginj1,



Fip,Gip

�
p∈M

i
= E p

h
Finj1,



Fip
�
p∈M

i
+ E p

h
Ginj1,



Gip
�
p∈M

i
:

Therefore, the slope coefficients in the linear predictor Ep½hnðUiAÞj1,fGip,Fipgp∈M �
can be obtained from CovðhnðUiAÞ,hpðUiBÞÞ and CovðhnðUiAÞ,hpðUiCÞÞ for p∈M.

Production Function. There are connections between the factor model and
a production function, under random assignment assumptions. To be specific,
consider the college attendance outcome UiA,co, and let g denote the pro-
duction function

UiA,co =g
�
ZiA,CL,ZiA,T ,Zi,S

	
:

The inputs ZiA,T and Zi,S are, as above, unmeasured characteristics of the
teacher and the school for classroom A in school i. There is an additional
input, ZiA,CL, which corresponds to unmeasured characteristics of the stu-
dents in classroom A. Simplify notation by writing the function as

Uco =gðZCL,ZT ,ZSÞ:

Let Z =Z1 ×Z2 ×Z3 denote the domain of the input arguments. We shall
condition on ZS = z3 and consider counterfactual outcomes gðz1,z2,z3Þ as ðz1,z2Þ
varies over Z1 ×Z2. At any such point, gðz1,z2,z3Þ is a random variable with

E½gðz1,z2,z3ÞjZS = z3�=gðz1,z2jz3Þ:

Still conditioning on ZS = z3, consider counterfactual outcomes as z2 varies
over Z2, averaging over the conditional distribution of ZCL given ZS = z3:

g1ðz2jz3Þ=E½gðZCL,z2jz3ÞjZS = z3� for z2 ∈Z2:

There is a structural function interpretation for g1ð · jz3Þ: within a school with
ZS = z3, we can obtain potential expected output for various assigned values
of the teacher input z2, holding constant the distribution of classroom
characteristics (at the conditional distribution of ZCL given ZS = z3).

If, within schools, students and teachers are randomly assigned to classrooms
(as in Project STAR), then ðZCL,ZT Þ is independent of fgðz1,z2,z3Þgðz1,z2Þ∈Z1 ×Z2

conditional on ZS = z3. In that case

EðUcojZCL = z1,ZT = z2,ZS = z3Þ= E½gðz1,z2,z3ÞjZS = z3Þ�=gðz1,z2jz3Þ:

In addition, random assignment within schools implies that ZCL and ZT are
independent conditional on ZS, so that

EðUcojZT = z2,ZS = z3Þ= E½gðZCL,z2jz3ÞjZS = z3�=g1ðz2jz3Þ:

As above, define the factor Fco +Gco = EðUcojZT ,ZSÞ. We have shown that
if students and teachers are randomly assigned to classrooms within
schools, then

Fco +Gco = EðUcojZT ,ZSÞ=g1ðZT jZSÞ,

providing a connection between this factor and the production function. A
motivation for the choice of X in forming residuals U is to make this random
assignment assumption more plausible.

Because the random assignment assumption is within schools, I am
interested in the variation in expected output that corresponds to the
variation in the teacher input within a school. A convenient summary
measure is

γcoG = ½E½Var½g1ðZT jZSÞjZS���1=2:

As above, define the factor Fco = EðUcojZSÞ. Then

Gco =g1ðZT jZSÞ−E½g1ðZT jZSÞjZS�

and

γcoG = ½VarðGcoÞ�1=2:

Likewise, a convenient summary measure for cross-school variation is

γcoF = ½VarðFcoÞ�1=2:

With random assignment only within schools, γcoF does not have a structur-
al interpretation.

Now suppose that data on later outcomes are not (yet) available for a
teacher, but data on test scores for multiple classrooms with that teacher
are available. How can we connect Uco =gðZCL,ZT ,ZSÞ to the test score data?
Define the factors

Fn +Gn = E½hnðUtsÞjZT ,ZS�, Fn = E½hnðUtsÞjZS� ðn=1, . . . ,JÞ,

where hnð · Þ is a given function, such as hnðUtsÞ=Un
ts. Then the linear

predictor of Uco given these factors equals the linear predictor of
g1ðZT jZSÞ:

E p
�
Ucoj1,fFn,GngJn=1

	
= E p

�
EðUcojZT ,ZSÞj1,fFn,GngJn=1

�
= E p

�
Fco +Gcoj1,fFn,GngJn=1

	
= E p

�
g1ðZT jZSÞj1,fFn,GngJn=1

�
:
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This result provides a connection between the production function for Uco

and a linear predictor based on factors derived from test scores.
This linear predictor is flexible in that we can choose a variety of func-

tions hnð · Þ in defining the factors. This flexibility suggests finding a lower
bound on the mean square error for linear prediction of Uco from factors
based on test scores. For notation, use

E p
�
Ucoj1,fFn,GngJn=1

	
= γ0 +

XJ
n=1

γnðFn +GnÞ+
XJ
n=1

γJ+nFn:

Define

hðJÞ
F+GðUtsÞ=

XJ
n=1

γnhnðUtsÞ, hðJÞ
F ðUtsÞ=

XJ
n=1

γJ+nhnðUtsÞ:

Then

E p
�
Ucoj1,fFn,GngJn=1

	
= γ0 + E

h
hðJÞ
F+GðUtsÞ

���ZT ,ZSi+ E
h
hðJÞ
F ðUtsÞ

���ZSi:
This result implies the following lower bound:

MSEðJÞ = min
d∈R2J+ 1

E

"
Uco −d0 −

XJ
n=1

dnðFn +GnÞ−
XJ
n=1

dJ+nFn

#2

≥ min
rF +Gð · Þ,rF ð · Þ

E½Uco − E½rF +GðUtsÞjZT ,ZS�− E½rFðUtsÞjZS��2 =MSE p :

The second minimization is over (square-integrable) functions rF+G and rF .
Under suitable assumptions, we can construct a sequence of functions
fhJ,ngJn=1 so that MSEðJÞ →MSEp as J→∞.

Note that

E p
�
Ucoj1,fGngJn=1

	
=E p

�
Fco +Gcoj1,fGngJn=1

	
= EðUcoÞ+

XJ
n=1

γnGn,

which implies that

E p
�
Gcoj1,fGngJn=1

	
=
XJ
n=1

γnGn

[because Fco and Fm are uncorrelated with Gn for n,m= 1, . . . ,J and EðGcoÞ=
EðGnÞ= 0 ]. Therefore,

�
γcoG
	2 =VarðGcoÞ≥Var

 XJ
n=1

γnGn

!
:

In the empirical work, I shall focus on γcoG and on

γcoG,ts =

"
Var

 XJ
n=1

γnGn

!#1=2

,

which has a structural role in providing a lower bound for γcoG . A convenient
summary measure based on cross-school variation is

γcoF,ts =

"
Var

 XJ
n=1

ðγn + γJ+nÞFn
!#1=2

:

With random assignment only within schools, γcoF,ts does not have a structur-
al interpretation.

Empirical Results
The work of Chetty et al. (15) is the first to measure teacher
effects on later outcomes such as college attendance and earn-
ings. They combine two databases: administrative school district
records and information on those students and their parents
from US tax records. The school records are for a large, urban
school district, covering the school years 1988–1989 through
2008–2009 and grades 3–8. Test scores are available for English
language arts and for math from spring 1989 to spring 2009. The

scores are normalized within the year and grade to have a mean
of 0 and SD of 1. The student records are linked to classrooms
and teachers. Individual earnings data are obtained from W-2
forms, which are available from 1999 to 2010. College attendance
is based on 1098-T forms, which colleges and other postsecondary
institutions are required to file for reporting tuition payments and
scholarships for every student.
Chetty et al. conducted most of their analysis of long-term

impacts using a dataset collapsed to class means. This dataset
with class means was used to obtain the results below. Yij;ts is the
average test score for the class. Yij;co is the percent of the class-
room attending college at age 20, and Yij;ea is the average earn-
ings of the classroom at age 28, expressed in 2010 dollars.
I shall use (weighted) minimum mean square error linear

predictors, as in Eqs. 2 and 3. The partition in Eq. 1′ is by subject
(math and reading) and grade (4–8), giving L= 2× 5= 10 cells,
with weights Wl

i as in Eq. 5. In the lower grades, students may
have the same teacher for math and reading, so putting math and
reading classes in separate cells helps to ensure that different
classes do not have students in common. Likewise, different
classes could have students in common because, for example,
there is overlap between a fourth grade class in one year and
a fifth grade class in the following year. We avoid this overlap by
only making comparisons for classrooms within the same subject
and grade.
There are 118,439 classrooms in 917 schools. Of these schools,

866 satisfy the condition that
P10

l=1W
l
i > 0. Consider the linear

predictor for college attendance in Eq. 3:

E p
�
UiA;co

��1;UiB;ts;U2
iB;ts;UiC;ts;U2

iC;ts

�
= θ0 + θ1UiB;ts + θ2U2

iB;ts

+ θ3UiC;ts + θ4U2
iC;ts:

If Xij includes only a constant ðXij = 1Þ, then the estimates (with
SEs in parentheses) are

θ̂1 = 13:34 ð0:37Þ; θ̂2 = 2:26 ð0:31Þ; θ̂3 = 7:84 ð0:31Þ;
 θ̂4 = 0:64 ð0:22Þ:

Dropping the quadratic terms, the coefficients (SEs) are 13.86
(0.38) on UiB;ts and 7.97 (0.31) on UiC;ts. I shall rely on the
factor model (below) for my discussion of the magnitudes of
predictive effects.
The coefficients θ are defined as solutions to the minimization

problem in Eq. 1′. The minimized value of the objective function
provides a population value for mean square error. Likewise,
there is a mean square error using just a constant to form the
linear predictor EpðUiA;co

��1Þ. Let 1−R2
co denote the ratio of

these mean square errors, so that R2
co gives the proportional

reduction in mean square error due to including a quadratic in
UiB;ts and a quadratic in UiC;ts in the linear predictor for UiA;co.

The estimate (with SE) is R̂
2
co = 0:30 ð0:015Þ.

Now let Xij be the baseline control vector used by Chetty
et al. It was chosen following previous work, in particular that of
Kane and Staiger (6). It includes the following classroom-level
variables: school year and grade indicators, class-type indicators
(honors, remedial), class size, indicators for teacher experience,
and cubics in class and school-grade means of lagged test scores
in math and English each interacted with grade. It also includes
class and school-year means of the following student character-
istics: ethnicity, sex, age, lagged suspensions, lagged absences,
and indicators for grade repetition, special education, and lim-
ited English. This baseline control vector gives
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θ̂1 = 1:28 ð0:20Þ; θ̂2 = − 2:42 ð0:51Þ; θ̂3 = 0:92 ð0:16Þ;
 θ̂4 = − 2:42 ð0:40Þ;

with R̂
2
co = 0:002 ð0:0004Þ. Dropping the quadratic terms, the coef-

ficients (SEs) are 1.26 (0.21) on UiB;ts and 0.86 (0.16) on UiC;ts.
The controls matter a lot. This sensitivity relates to the diffi-

culty in attaching causal interpretations to these results. This
point has been emphasized in Rothstein (16). The issue has been
addressed in Kane and Staiger (6), using a dataset with random
assignment of teachers to classrooms, and in Chetty et al. (15),
who look at effects based on changes in teaching staff.
These results condition on a single score for a different class-

room with the same teacher and a single score for a classroom with
a different teacher. I would like to have predictive effects that
condition on averages over many classrooms, with and without the
same teacher, and consider a limit as the number of such class-
rooms tends to infinity. This goal is feasible under the assumptions
of the factor model. For notation, let

E p
�
UiA;co

��1;Fi1;Gi1;Fi2;Gi2
	
= γ0 + γ1ðFi1 +Gi1Þ+ γ2ðFi2 +Gi2Þ
+ γ3Fi1 + γ4Fi2;

[6]

where

Fi1 +Gi1 =E
�
UiB;ts

��ZiA;T ;Zi;S
	
; Fi1 =E

�
UiC;ts

��Zi;S
	

Fi2 +Gi2 =E
�
U2

iB;ts

���ZiA;T ;Zi;S

�
; Fi2 =E

�
U2

iC;ts

���Zi;S

�
;

[7]

ZiA;T denotes characteristics of the teacher of classroom A, and
Zi;S denotes characteristics of the school of classroom A. As in
the production function discussion, I construct an index corre-
sponding to variation in teacher inputs within a school

IndexcoiG;ts = γ1Gi1 + γ2Gi2;

and use it to obtain a predictive effect in SD units:

γcoG;ts =
�
Var

�
IndexcoiG;ts

�
1=2
:

Likewise, I construct an index corresponding to variation
across schools

IndexcoiF;ts = ðγ1 + γ3ÞFi1 + ðγ2 + γ4ÞFi2;

and use it to obtain a predictive effect in SD units:

γcoF;ts =
�
Var

�
IndexcoiF;ts

�
1=2
:

With the baseline controls in X, the factor model estimates give

γ̂1 = 1:70 ð0:72Þ; γ̂2 = 1:56 ð3:17Þ; γ̂3 = 9:98 ð2:54Þ;  
γ̂4 = − 60:68 ð10:79Þ;

with predictive effects

γ̂coG;ts = 0:16 ð0:059Þ; γ̂coF;ts = 1:19 ð0:14Þ;

and R̂
2
co = 0:013 ð0:003Þ. An SD increase in the teacher factor

based on the test score index implies a predicted increase in
college attendance for each student in class A of 0.16 percentage
points. If X includes only a constant, then this estimate increases
from 0.16 percentage points to 5.81 percentage points.
Thus far, we used a (quadratic) function of the test score in

predicting college attendance. We can also use college atten-

dance for other classes, and the factor model provides a way to
condition on averages over many classrooms, with and without
the same teacher. For notation, let

Fi;co +Gi;co =E
�
UiB;co

��ZiA;T ;Zi;S
	
; Fi;co =E

�
UiC;co

��Zi;S
	
:

Then Fi;co +Gi;co corresponds to an average of UiB;co over many
classrooms other than A that share a teacher with A, and Fi;co
corresponds to an average of UiC;co over many classrooms that do
not share a teacher with A but are in the same school. The
optimal linear predictor for college attendance is

E p
�
UiA;co

��1;Fi1;Gi1;Fi2;Gi2;Fi;co;Gi;co
	
=Fi;co +Gi;co:

With the production function interpretation

Fco +Gco = g1ðZT jZSÞ; Gco = g1ðZT jZSÞ−E½g1ðZT jZSÞjZS�:

The predictive effects in SD units are

γcoG =
�
Var

�
Gi;co

	�1=2
; γcoF =

�
Var

�
Fi;co

	�1=2
:

With the baseline controls in X, the factor model estimates
imply the predictive effects

γ̂coG = 0:99 ð0:22Þ; γ̂coF = 3:71 ð0:11Þ;

and R̂
2
co = 0:134ð0:007Þ. An SD increase in Gi;co corresponds to an

increase of 0.99 percentage points for college attendance of class
A. It is clear that basing the predictions for college attendance
just on the test scores loses a great deal of information.
In parallel with the optimal linear predictor of college atten-

dance, the optimal linear predictor for the test score is

E p
�
UiA;ts

��1;Fi1;Gi1;Fi2;Gi2;Fi;co;Gi;co
	
=Fi1 +Gi1:

The predictive effects are

γtsG = ½VarðGi1Þ�1=2; γtsF = ½VarðFi1Þ�1=2:

With the baseline controls in X, the estimates are

γ̂tsG = 0:087 ð0:002Þ; γ̂tsF = 0:052 ð0:002Þ;

and R̂
2
ts = 0:260 ð0:006Þ. An SD increase in Gi1 corresponds to

a predicted increase in score for each student in class A of 0.087,
where the score units are SDs in the distribution of scores for
individual students.
Now consider using the quadratic specification in Eq. 3 to

obtain a linear predictor for UiA;ea, the residuals corresponding
to earnings at age 28:

E*

�
UiA;ea

��1;UiB;ts;U2
iB;ts;UiC;ts;U2

iC;ts

�
 = θ0 + θ1UiB;ts + θ2U2

iB;ts

+ θ3UiC;ts + θ4U2
iC;ts:

With the baseline controls in X, the estimates are

θ̂1 = 697 ð270Þ; θ̂2 = − 430 ð586Þ; θ̂3 = 383 ð179Þ;  
θ̂4 = − 955 ð284Þ;

with R̂
2
ea = 0:002 ð0:001Þ. Dropping the quadratic terms, the

coefficients (SEs) are 688 (269) on UiB;ts and 308 (176) on
UiC;ts. These results are based on fewer classrooms, 14,236 in-
stead of 118,439, because only some of the students reached the
age of 28 by 2010. There are 524 schools, of which 364 satisfy the
condition that

P10
l=1W

l
i > 0.
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For notation in the factor model, let

E p
�
UiA;ea

��1;Fi1;Gi1;Fi2;Gi2
	
= γ0 + γ1ðFi1 +Gi1Þ+ γ2ðFi2 +Gi2Þ
+ γ3Fi1 + γ4Fi2;

[8]

where the factors are based on the test score, as in Eq. 7. With
the baseline controls in X, the factor model estimates give

γ̂1 = 586 ð1; 277Þ; γ̂2 = 4; 424 ð5; 885Þ; γ̂3 = 2; 457 ð2; 242Þ;  
γ̂4 = − 16; 027 ð7; 961Þ;

with predictive effects

γ̂eaG;ts = 186 ð111Þ; γ̂eaF;ts = 400 ð85Þ:

An SD increase in the teacher factor based on the test score index
implies a predicted increase in earnings of $186. This estimate,
however, lacks precision. This lack of precision becomes more
serious when I try to define a teacher factor based directly on the
earnings data, and I shall not pursue that here.
Chetty et al. linked students to their parents by finding the ear-

liest 1040 form from 1996 to 2010 on which the student was claimed
as a dependent. They constructed an index of parent characteristics
by using fitted values from a regression of test scores on mother’s
age at child’s birth, indicators for parent’s 401(k) contributions and
home ownership, and an indicator for the parent’s marital status
interacted with a quartic in parent’s household income. A second
index is constructed in the same way, using fitted values from a re-
gression of college attendance on parent characteristics. Repeating
the analysis above with these two measures of parent characteristics
added to the baseline control vector gives the following predictive
effects for college attendance based on test scores

γ̂coG;ts = 0:13 ð0:055Þ; γ̂coF;ts = 0:87 ð0:10Þ;

which are somewhat lower than the results above using the
baseline controls. The predictive effects for earnings are

γ̂eaG;ts = 196 ð95Þ; γ̂eaF;ts = 282 ð75Þ:

Compared with the results using the baseline controls, the teacher
effect of $196 is about the same (before: $186), but the school
effect of $282 is substantially lower (before: $400).
With the parent characteristics added to the baseline control

vector, the predictive effects for college attendance based on the
college attendance of other classes are

γ̂coG = 0:79 ð0:23Þ; γ̂coF = 2:70 ð0:08Þ;

and R̂
2
co = 0:080 ð0:005Þ. The teacher effect is reduced from 0.99

to 0.79 percentage points. There are substantial reductions in the

school effect and in R̂
2
co. The predictive effects for test scores

based on the test scores of other classes are

γ̂tsG = 0:087 ð0:002Þ; γ̂tsF = 0:052 ð0:002Þ;

and R̂
2
ts = 0:261 ð0:006Þ. Here the results are not affected by add-

ing the parent characteristics.
I have repeated the analysis without using the quadratic terms,

so that the linear predictor for UiA;co conditions on Gi1 and Fi1,
dropping Gi2 and Fi2. With the baseline controls in X, this gives

γ̂coG;ts = 0:16 ð0:060Þ; γ̂coF;ts = 0:74 ð0:13Þ:

Therefore, the teacher effect is still 0.16 percentage points. (The
school effect is lower: 0.74 vs. 1.19 percentage points.)

Now consider a partition in Eq. 1′ just by subject (math and
reading) instead of by subject and grade. There are L= 2 cells
with weights Wl

i as in Eq. 5. With the baseline controls in X and
without using the quadratic terms, this gives

γ̂coG;ts = 0:30 ð0:056Þ; γ̂coF;ts = 0:44 ð0:19Þ:

This partition gives a substantially higher teacher effect: 0.30 vs.
0.16 percentage points (and a lower school effect). I prefer the
estimates that partition on subject and grade.
Finally, consider predictive effects in the factor model that do not

partial on the school. Therefore, in predicting college attendance

E p
�
UiA;co

��1;Fi1 +Gi1
	
= γ0 + γ1ðFi1 +Gi1Þ;  γcoF+G;ts

= ½Varðγ1ðFi1 +Gi1ÞÞ�1=2:

With the baseline controls in X, without the quadratic terms,
with the partition on subject and grade, this gives

γ̂coF+G;ts = 0:51 ð0:083Þ:

The predictive effect on college attendance of 0.51 percentage
points is considerably larger than the effect based on within
school variation: γ̂coG;ts = 0:16 percentage points. I prefer the esti-
mate of 0.16 percentage points.

Conclusion
With the baseline controls, using the factor model, an SD increase
in the teacher factor based on test scores has a predictive effect on
college attendance of 0.16 percentage points. With parent charac-
teristics added to the baseline controls, the predictive effect is 0.13
percentage points. These estimates are lower bounds on the pre-
dictive effect of an SD increase in the teacher factor (Gco) based
directly on college attendance. With the baseline controls, the pre-
dictive effect forGco on college attendance is 0.99 percentage points.
The R2 estimate is 0.13, whereas basing the predictions just on test
scores gives an R2 estimate of 0.01. The teacher effect of 0.99 per-
centage points could reflect skills that are relevant for college at-
tendance but are not measured by the test scores. These skills could
be some combination of skills students bring to the class (not cap-
tured in X) and skills developed during the class, in part due to the
contribution of the teacher. With the parent characteristics added to
the baseline controls, the predictive effect is 0.79 percentage points.
The factor model provides a predictive effect for individual

test scores of a 1-SD increase in the teacher factor (G1) based
directly on test scores. This effect is 0.087, where the units are
SDs in the distribution of scores for individual students. This
result is not affected by adding the parent characteristics to the
baseline controls. The result is consistent with the related lit-
erature (1–10), where a typical finding is that a 1-SD increase
in the teacher factor corresponds to an increase in individual
scores on the order of 0.1 SDs (in the distribution of scores for
individual students).

Computation
Suppose that Eq.1 has the following form:

θ= arg min
d∈RJ

E
h
Wi
�
r1ðUiAÞ− r2ðUiB;UiCÞ′d

�2i
;

where r1 and r2 are given functions. For example, r1ðUiAÞ=UiA;co
and r2ðUiB;UiCÞ′d is a quadratic polynomial. Then θ satisfies the
linear equation

E
h
Wir2ðUiB;UiCÞr2ðUiB;UiCÞ′

i
θ=E½Wir2ðUiB;UiCÞr1ðUiAÞ�: [9]

Now suppose that the components of r2 have the form
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r2pðUiB;UiCÞ= r2p1ðUiBÞ · r2p2ðUiCÞ ðp= 1; . . . ;PÞ: [10]

This form holds if r2ðUiB;UiCÞ′d is a polynomial. In this case,
the expectations in Eq. 9 require evaluating terms of the form

EðWiV1iAV2iBV3iCÞ; [11]

where V1iA = q1ðUiAÞ, V2iB = q2ðUiBÞ, V3iC = q3ðUiCÞ, and the qs
are given functions. The sample analog for a term of this
form is

1
I

XI
i=1

Wi

0
@ X

t:jSitj> 1

jSitj
1
A

−1

×
X

t:jSit j>1

X
a∈Sit

X
b∈Sit−fag

X
c∈Si−Sit

V̂ 1iaV̂ 2ibV̂ 3ic=½ðjSitj− 1ÞðjSij− jSitjÞ�

[with, for example, V̂ 1ia = q1ðÛiaÞ]. The triple sum over ða; b; cÞ
can be simplified asX

a∈Sit

X
b∈Sit−fag

X
c∈Si−Sit

V̂ 1iaV̂ 2ibV̂ 3ic

=
X
a∈Sit

V̂ 1ia

" X
a∈Sit

V̂ 2ia

!
− V̂ 2ia

#
·

"X
a∈Si

V̂ 3ia −
X
a∈Sit

V̂ 3ia

#

=

"X
a∈Sit

V̂ 1ia

X
a∈Sit

V̂ 2ia −
X
a∈Sit

V̂ 1iaV̂ 2ia

#
·

"X
a∈Si

V̂ 3ia −
X
a∈Sit

V̂ 3ia

#
:
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