
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Glimpse: A Novel Input Model for
Multi-Level Devices

Clifton Forlines, Chia Shen and Bill Buxton

TR2005-024 May 2005

Abstract

We describe a technique that supports the previewing of navigation, exploration, and editing
operations by providing convenient Undo for unsuccessful and/or undesirable actions on multi-
level input devices such as touch screens and pen-based computers. By adding a Glimpse state
to traditional three-state pressure sensitive input devices, users are able to preview the effects of
their editing without committing to them. From this Glimpse state, users can undo their action
as easily as they can commit to it, making Glimpse most appropriate for systems in which the
user is likely to try out many variations of an edit before finding the right one. Exploration is
encouraged as the cumbersome returning to a menu or keyboard to issue an Undo command is
eliminated. Glimpse has the added benefits that the negative effects of inconsistencies in the
Undo feature within an application are reduced.

CHI 2005

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 2005
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Glimpse: a Novel Input Model for Multi-level Devices
Clifton Forlines, Chia Shen

Mitsubishi Electric Research Labs (MERL)
201 Broadway, Cambridge MA 02139 USA

{forlines, shen}@merl.com

Bill Buxton
Buxton Design

888 Queen St. East, Toronto
Ontario Canada, M4M 1J3

bill@billbuxton.com

ABSTRACT
We describe a technique that supports the previewing of
navigation, exploration, and editing operations by providing
convenient Undo for unsuccessful and/or undesirable
actions on multi-level input devices such as touch screens
and pen-based computers. By adding a Glimpse state to
traditional three-state pressure sensitive input devices, users
are able to preview the effects of their editing without
committing to them. From this Glimpse state, users can
undo their action as easily as they can commit to it, making
Glimpse most appropriate for systems in which the user is
likely to try out many variations of an edit before finding
the right one. Exploration is encouraged as the cumbersome
returning to a menu or keyboard to issue an Undo command
is eliminated. Glimpse has the added benefits that the
negative effects of inconsistencies in the Undo feature
within an application are reduced.
Author Keywords
Pressure Sensitive Input, Undo, Direct Manipulation,
Three-State Input, Touch Screens, Stylus, Navigation
ACM Classification Keywords
H.5.2.h Information interfaces and presentation (e.g., HCI):
User Interfaces - Input devices and strategies
H.5.2.i Information interfaces and presentation (e.g., HCI):
User Interfaces – Interaction Styles

INTRODUCTION
Undo is a critical feature in many computer applications as
it frees the user from the fear of experimenting with
changes to the application’s state. Creativity is enhanced
when users are able to easily retract their changes if the
result is unsatisfactory. People in creative industries will
often state that the quality of their end product is a direct
function of how many variations they tried out and threw
away during the development of their product. Because of
the frequency with which Undo is used, even small
improvements to this feature can have a large positive
effect. Additionally, many editing operations that take place
with a GUI are irreversible because of the inconsistent
implementation of the Undo feature by software developers.

We propose a system-wide method of providing a Glimpse
of the results of any operation completed with multi-level
input devices. By multi-level, we mean that the input device
is capable of sensing at least two levels of input (e.g. a
stylus that senses light and heavy pressure or a mouse with
a two-state button [5]) in addition to providing positional
feedback. This positional feedback can be on-screen, in the
case of an on-screen mouse pointer that tracks the
movement of the mouse, or implicit, in the case of a finger
or stylus with which the user operates directly on the
display surface with graphical elements that are positioned
directly underneath the input device. Our method has the
added benefit that opting out of an action is as easy to
perform as committing to it, making Glimpse most
appropriate for systems in which the user is likely to try out
many variations of an edit before deciding on any particular
one.

BACKGROUND PART 1: PRESSURE SENSITIVE INPUT
Figure 1 shows Buxton’s three-state model for stylus input
[2]. In this model, light pressure input results in the

“tracking” of the input device (similar to moving the mouse
while its button is up). While “tracking”, a graphical pointer
follows the movement of the input device on screen. Heavy
pressure input results in “dragging” operations (similar to
moving the mouse while its button is down). While indirect
input devices like mice and trackballs would be impossible
to use without State 1’s “tracking” feedback (imagine using
a mouse without the onscreen mouse pointer to tell you
where you are), direct input devices like stylus and touch
screens are less reliant on this positional feedback.
“Tracking” the tip of a stylus or the user’s finger with the
virtual pointer is redundant (although it may improve

COPYRIGHT IS HELD BY THE AUTHOR/OWNER(S).
CHI 2005, APRIL 2–7, 2005, PORTLAND, OREGON, USA.

ACM 1-59593-002-7/05/0004.

Figure 1. Buxton’s three-state model for pressure sensitive
input. Dragging an object results in its value being pushed
onto the system undo stack. Restoring this saved value occurs
after a separate command.

accuracy at the expense of speed) as the physical pen or
finger provides clear feedback as to where the interaction in
State 2 would begin were heavy input applied [2]. In other
words, the pointing device itself (be it finger or stylus)
becomes the tracking pointer.
The redundancy of State 1 is shown in Figure 2, which
depicts non-pressure sensitive touch screen input. In this
example, all contact with the screen results in State 2
interaction, and “Tracking” is done completely on the part
of the user without the system’s knowledge. The
widespread use of and effectiveness of non-pressure
sensitive touch screens illustrates the redundancy
mentioned above of providing State 1 “Tracking” feedback
for direct input devices. Thus, for direct input devices that
do sense pressure, designers are free to experiment with
mapping pressure to other characteristics of the interaction.
Ramos, et al. [4] described a continuous pressure-sensing
stylus to manipulate multi-state objects. They mapped
continuous pressure to visual properties of the pointer, e.g.,
moving the pointer down a list of menu selections as
pressure increases, or to change the appearance of objects,
e.g., making objects larger and smaller based on pressure.
While this work provides a good exploration of the design
space for pressure sensitive widgets, no recommendations
are made for implementing pressure sensitivity in a system-
wide manner.
Zeleznik, et al. [5] describe a set of interaction techniques
enabled by adding a two-state button to a mouse. They refer
to this type of device as a pop-through mouse that replaces
the simple mouse button with a tactile pushbutton similar to
the focus/shutter-release button used in many cameras. The
authors advocate for a consistent functionality for this two-
level input, and present several options such as tying
sequential operations to the two-states or mapping the two-
states to fine and coarse control of an object.

BACKGROUND PART 2: PROBLEMS WITH UNDO
In both Figures 1 and 2, when the system enters State 2, the
current value of the property being edited is pushed onto the
system’s undo stack. Executing an Undo command
(popping a value off of the stack and applying it to the
previously edited object) is an entirely separate process

from the multi-state input. The Undo feature is often
provided through a menu command, through a toolbar
button, or through a keyboard command. A user who is
manipulating an object in an application with a mouse,
stylus, or touch screen must move their pointer, pen, or
finger away from the object being edited and traverse to the
application’s menu to issue the command. Alternatively,
they may switch input devices in order to issue a keyboard
command (assuming that a keyboard is present). After
issuing the command, the user returns to the previously
edited object to first make sure that the undo operation has
successfully completed, and second to continue working
with the object. A small amount of inconvenience in issuing
the undo command is multiplied by high frequency of use.
Therefore, even small improvements to the issuing of an
undo command are desirable.
Undo is also inconsistently enabled by software developers.
In general, the editing of the content of a document is an
undoable command while the editing of the meta-data of a
document is not. For example, most paint applications will
allow a user to undo the result of a brush stroke or the
changing of a color of an element in the application, but
few will allow users to undo the result of picking a new
color to paint with. Similarly, an operating system GUI may
allow a user to undo the action of deleting a file, but not the
action of moving a window across the screen. Text editing
applications allow users to undo the results of editing a
portion of text, but do not allow users to undo the results of
scrolling to a different part of the document, making it
difficult to return to a previous location in the text. The
current color of a pen, the location of a window, and the
positional value of a scroll bar are examples of values that
are lost when edited.
Therefore, there is a need for a method for editing all
objects that allows users to make, save and undo changes
while in continuous control of the object without having to
relocate the pointer to different locations on the display
during an undo operation. Users will benefit from receiving
a glimpse of the results of their actions.

THREE-STATE INPUT WITH AUTOMATIC UNDO
The technique we propose provides a method for editing
objects with a multi-level input device such as a pressure
sensitive stylus, pressure sensitive touch screen, or pop-
through mouse. We have used both a TabletPC and a touch
sensitive DiamondTouch [3] surface as our pressure
sensitive input device. A TabletPC senses at least 8-bits of
pressure for any contact with the tablet surface. The
DiamondTouch device senses 8-bits of signal strength when
a user’s fingers or hands are in contact with the tabletop. No
touch, light touch, and heavy touch are each associated with
a range of these values. Any multi-state input device that
also provides tracking (explicitly, as in the case of the pop-
through mouse’s on-screen pointer, or implicitly, as in the
case of a stylus or finger) can exploit this technique.
As shown in Figure 3, our method replaces Figure 1’s State
1 with a new state, which we call Glimpse. When an object

Figure 2. Buxton’s touch sensitive direct input device state
transition diagram without State 1 “tracking” feedback.
Any touch that affects the value of an object will push that
value to the undo stack. Restoring the saved value occurs after
a separate command.

is selected for editing through light pressure input, the
system enters the Glimpse state and the current value of the
property being edited is saved to memory separate from the
system’s undo stack. This light pressure input indicates
intent to edit the selected object. While the user continues
to manipulate the object using light pressure input, the
system responds by previewing the results of their action.
When editing is finished, the user can either reject or accept
the edit by performing one of two actions. If the user lifts
their finger or stylus (or otherwise releases the input), the
system returns to State 0 and the edit is automatically
‘undone’ by retrieving the saved state. When possible we
animate this undo graphically so that the action is as clear
to the user as possible. If the user increases the pressure of
their input past a certain threshold, the system enters State 2
and the previewed changes to the edited object becomes the
object’s current state. In this transition, the previously saved
values of the object are pushed onto the system’s undo
stack. While the user remains in State 2, changes to the
object are saved as they occur. Reentering the Glimpse state
from State 2 again stores the current value of the object
being edited to memory. The Glimpse state previews the
further change of this value, which can again be confirmed
by reentering State 2.
It is important to note that our method does not replace the
traditional use of the system’s undo stack, but rather
augments it. After finishing an interaction and while in
State 0, a user is free to undo the most recent change in the
traditional manner by using a menu or keyboard command.
Our method stands in contrast to traditional systems that
require the user to save the changes, and place the pointer
on a menu command, an “undo” button, or to let go of the
mouse and issue a keyboard command in order to return the
object to the original state before the changes.
Figure 4 shows a Glimpse enabled indirect input device
with multi-level input, such as a pop-through mouse. An
on-screen pointer tracks the movement of the input device,
and two-levels of input allow for previewing and
confirmation of change.

EXAMPLES
Glimpse can be applied to well-known point-based editing
and layout operations, such as changing the position,
orientation, and scale of graphical objects, as well as meta-
transactions on objects, such as changing selections and

repositioning windows. Some less obvious examples of
how Glimpse could be used are described in this section.
Pan and Zoom Interface
When navigating through a dataset using a pan and zoom
interface, one often wants to temporarily zoom-in in order
to take a more detailed look at some portion of the data
before returning to the current zoom level. Using a
traditional interface, zoom-in and zoom-out are separate
commands (and may require the user to traverse to a tool
pallet in order to switch tools). Furthermore, if zooming
does not occur in fixed increments, inaccuracies in the
operation of the zoom tool can make the task of returning to
an exact zoom level difficult if not impossible. Similarly,
for drag-to-pan movement around a dataset, retracing one’s
path in order to return to a previous location can be very
difficult. It is a combination of these two difficulties that
cause many users to complain that they become “lost” in
the dataset when using a pan-and-zoom interface.
Our technique would enable users to preview different
magnification levels with light touch input before choosing
to remain at the new level with a heavy touch or to return to
a previous level by releasing. Similarly a user may click
and drag using light input to pan to other portions of the
document, easily able to return to their previous position.
Taking a temporary glimpse at details that are too small to
see clearly (in the case of zooming) or off-screen (in the
case of panning) becomes a single touch operation.
Navigation in a 3D World
The disorienting effects of panning and zooming around a
two-dimensional space are multiplied when navigating
through a 3D virtual environment. A common operation in
a 3D modeling or animation application is the temporary
repositioning of the virtual camera to “get a good look at”
an object in the scene. Many applications, recognizing the
special nature of this type of camera movement, create
separate undo stacks for camera operations and editing
operations on the 3D model. A typical sequence of
commands is: 1) move or turn part of the model, 2) move
the camera to another point of view to see if the part’s new
position is satisfactory for different viewpoints, 3) return
the camera to the previous view, and 4) continue adjusting
the model. While many techniques have been employed to
address this type of sequence, including displaying multiple
camera views and allowing for the quick return to common
viewpoints (like orthographic and ¾ view), our technique

Figure 3. Glimpse enabled transition diagram for pressure
sensitive direct input devices.

Figure 4. Glimpse enabled transition diagram for multi-level
indirect input devices, such as a pop-through mouse [5].

would allow for the quick inspection of an object from
several points of view without the fear of loosing one’s
position in space.
Color Selection
Most image editing and illustration applications allow the
user to undo the results of a brush stroke or the changing of
the color of an element in an illustration; however, few (if
any) allow the user to undo the changing of the currently
selected color in a color pallet. Figure 5 shows a typical
color selection tool in which several properties of the color
are exposed. When picking a color, users run into trouble if
they are relatively happy with the selection, but want to
continue searching for a better choice. Once they change
the selected position in the HSB color space, they cannot
return to the previously selected color without either
remembering the exact numerical values or without having
previously saved the color to the custom pallet.
Using our technique, the user could use light touch input to
preview the effects of the color change while retaining the
ability to return the tool to the previously selected color.
Heavy pressure input would confirm the change in color for
the tool.
Volume Control
Unlabeled slider bars such as a volume control make the
task of accurately returning to a previous value difficult if
not impossible. Using our technique, a user could preview
new volume levels with light pressure input while still
being able to quickly and accurately return to a previous
volume.
Window Control
Window management has occupied a great deal of users’
attention since overlapping windows were first introduced.
One common operation is the temporary moving of a
window to reveal what is behind it. Recent versions of
Microsoft’s Windows OS go so far as to include an easily
accessible “show desktop” button in the interface so that
users can quickly access items on their desktop. Similarly,
users may minimize a window, view the items behind the
windows, traverse to the task bar, and then restore the

window. Beaudouin-Lafon introduced the idea of peeling
back windows [1], with which a user could grab a corner
region of an overlapping window to temporarily peel it
back in order to view and select windows underneath it.
Using our technique, windows could be moved or resized
temporarily with first level input, so that the user can
glimpse at the contents below it, and returned to their
previous position by simply lifting the input device. With
both techniques, a user is able to check under the
foreground window without permanently reorganizing the
display device.
Scroll Bar
While working on this paper, the authors commonly
scrolled to the end of this document in order to glance at the
paper’s references. Similarly, when editing code, a
programmer often uses a scroll bar to take a quick look at
the details of another method or the definition of a variable.
Our technique would enable a user to scroll to and view
another portion of a long document before returning to the
exact location they were previously editing. While various
applications employ a wide array of methods for jumping
around within a document, we are not aware of any that
provide the accuracy and ease of use of our technique.
Users would be able to glimpse at other portions of a
document before returning to their previous location using
only the scroll bar, never needing to find or traverse to
another tool.

CONCLUSION
We have presented a model for multi-level input devices
that aims to support both creativity in design and
exploration of data. For many tasks, actions are as often, if
not more often, undone as accepted; therefore, we have
promoted undo to a first class operation. Future work must
include the inclusion of Glimpse into design and data
exploration applications so that experts in these fields can
judge its effectiveness.

REFERENCES
1. Beaudouin-Lafon, M. Novel interaction techniques for

overlapping windows, Proc. UIST 2001, ACM Press
(2001), pp. 153-154.

2. Buxton, W. A Three-State Model of Graphical Input, In
D. Diaper et al. (Eds), Human-Computer Interaction -
INTERACT '90. Amsterdam: Elsevier Science
Publishers B.V. (North-Holland), 449-456.

3. Dietz, P., and Leigh, D. DiamondTouch: a multi-user
touch technology, Proc. UIST 2001. ACM Press (2001),
pp. 219–226.

4. Ramos, et al. Pressure widgets, Proceedings of the 2004
Conference on Human Factors in Computing Systems,
pp. 487-494, 2004.

5. Zeleznik, et al. Pop through Mouse Button Interactions,
Proc. UIST 2001, ACM Press (2001), pp. 195-196.

Figure 5. When choosing a custom color, there is no way to
undo the repositioning of the color cursor within the color
space. The user must explicitly save the current selection or
remember the numerical values if they wish to experiment
with other colors and then return to this selection.

	Title Page
	Title Page
	page 2

	Glimpse: A Novel Input Model for Multi-Level Devices
	page 2
	page 3
	page 4

