
Implementing a Predictable Real-Time

Multiprocessor Kernel { The Spring Kernel.

L. D. Molesky, K. Ramamritham, C. Shen, J. A. Stankovic, and G. Zlokapa

Department of Computer and Information Science

University of Massachusetts

Amherst, MA 01003

May 1990

1 Introduction

The Spring paradigm [6] advocates predictable [5] real-time computing. The purpose of predictable

real-time computing is to allow the timing properties of both individual tasks and the overall

system to be assessed. The construction of predictable systems can be viewed from the bottom

up { predictable architectural features facilitate the construction of predictable OS software, which

leads to building predictable real-time application software.

Among the architectural requirements for predictable real-time systems are bounded instruction

execution and memory access times, and bounded inter-process and inter-node communication

costs. These architectural features facilitate the construction of predictable OS features such as

bounded dispatching, scheduling and synchronization costs, bounded OS primitives, and bounded

code execution times.

The design and implementation of the Spring real-time multiprocessor kernel supports these

features. In this short paper we describe the Spring kernel support for bounded dispatching,

scheduling and synchronization.

2 Overview of the Spring System

The Spring system [6] is physically distributed and is composed of a network of multiprocessors.

Each multiprocessor contains one or more application processors, one or more system processors,

and an I/O subsystem. System processors o�oad the scheduling algorithm and other OS overhead

from the application tasks both for speed, and so that this overhead does not cause uncertainty in

executing guaranteed tasks. All system tasks are resident in the memory of the system processors.

The I/O subsystem is a separate entity from the Spring kernel and it handles non-critical I/O, slow

I/O devices, and fast sensors.

Version 1 of the Spring kernel concentrates on the multiprocessor aspect of the Spring system.

This work is funded in part by the O�ce of Naval Research under contract N00014-85-K-0398 and by the National

Science Foundation under grant DCR-8500332.



A Spring node is a multiprocessor consisting of up to �ve

1

Motorola 68020 based MVME136A

boards. The MVME136A boards support features which are typical of shared bus multiprocessors

{ an asynchronous bus interface, architectural support for test-and-set like operations, and a local

memory. This memory can either be accessed remotely over the VME bus by (typically) another

processor, or locally by the processor which has mapped this local memory. Additional support

for multiprocessing is provided through the use of the MPCSR (MultiProcessor Control/Status

Registers). The MPCSR provides the ability to generate interrupts on a selected board, and/or a

simultaneous interrupt to multiple boards.

One node consists of a system board (which executes the scheduler) and multiple applica-

tion boards. The dispatchers, one per application board, are responsible for the dispatching of

application tasks. The scheduler and dispatcher processes are thus designed to run in parallel.

External events represent invocations of application tasks with arrival times, deadlines, resource

requirements, and other attributes. When a task arrives, the scheduler attempts to dynamically

guarantee that the new task will meet its deadline. As tasks are guaranteed, the scheduler adds

them to a system task table (STT); these tasks are also linked into dispatcher queues. Since the

STT resides on the system board, a dispatch queue reference performed by the dispatcher accesses

the shared bus.

Tasks are classi�ed into three categories { critical, essential, and non-essential [6]. The online

guarantee is used for essential tasks. These tasks have deadlines and are important to the operation

of the system, but will not cause a catastrophe if they are not �nished on time. It is necessary

to treat such tasks in a dynamic manner as it is impossible to reserve enough resources for all

contingencies with respect to these tasks.

The memorymodel underlying the Spring kernel design is a localmemorymodel. Each processor

is equipped with a local memory module; every processor can also access all other memory modules

via a common bus. This models multiprocessor systems in which each processor has local memory

for task code and private resources, while at the same time there are other resources, such as shared

data structures, �les, and communication ports, which can be used by tasks residing on di�erent

processors. This model does in fact match the 68020 based multiprocessor architecture that Spring

runs on. Since each processor has its own local memory, the assignment of tasks to processors, done

statically, determines which processor's memory the task code is resident. To avoid unpredictable

blocking of tasks due to resource contention at run time, our scheduling algorithm integrates tasks'

timing constraints and their resource requirements [4].

1

Although eight slots exist on the backplane, only �ve boards can be used because of power supply limitations.

2



3 Foundations of the Spring OS: Scheduler and Dispatchers

Predictability of the underlying real-time OS is necessary to achieve predictability of software

(application tasks) running on top of this OS. This section describes the design and implementation

of signi�cant components of the multiprocessor real-time OS { the scheduler and the dispatchers.

To ensure predictability of application tasks, both the scheduler cost and the dispatching costs must

be bounded. Version 1 of Spring supports a scheduler which executes in time O(N) [4] where N is

the number of tasks at the node. However, the execution time of the scheduler is capped to a �xed

worst case time. This will be discussed further in section 3.1. The dispatching cost is bounded

by a constant. Multiple dispatchers operate concurrently with no inter-dispatcher interference.

Dispatchers and the scheduler require concurrent access to the STT. Correctness of this access is

maintained via the use of critical sections, while predictability is ensured by constructing all critical

sections to execute in constant time.

The STT is a key data structure in the Spring kernel. Tasks which have been guaranteed are

placed in the STT by the scheduler. The STT, residing in the system board memory, contains

dynamic task (invocation) information and information for OS management and scheduling. The

OS management and scheduling �elds include �elds for maintaining scheduler data structures, as

well as �elds for constructing linked lists which order the STT.

Concurrent execution of dispatchers is achieved by partitioning the STT based on the processor

to which tasks are assigned. Each per-processor partition of the STT is known as the dispatch queue.

Since a task is assigned to exactly one processor, the multiple dispatcher processes can concurrently

access their dispatch queues without interference (the intersection of all dispatch queues is null).

To facilitate correct and e�cient dispatching, the STT is sorted according to the scheduled start

time of each task. This design provides a dispatcher with a constant time access to its dispatch

queue to determine which task to execute next. Concurrent execution of the scheduler and the

multiple dispatchers is achieved by reserving a set of tasks for each dispatcher. The scheduler is not

free to reschedule the tasks reserved for the dispatchers. Thus each dispatcher has tasks to execute

while the scheduler is attempting to reschedule in order to guarantee a new task.

The method of partitioning tasks between the scheduler and the dispatchers involves the cal-

culation of a cuto� line. Once an upper bound of the scheduler's cost for guaranteeing a task is

determined, this cost is added to the current time to determine the cuto� line. All tasks having a

scheduled start time prior to the cuto� line are reserved for the dispatchers, and thus cannot be

rescheduled.

The online guarantee is designed to allow concurrent operation with the multiple dispatchers.

When a new, dynamic task arrives, the guarantee algorithm is invoked. The online guarantee does

not alter the current schedule, it instead operates on copies of the task invocation information.

This convention facilitates the return to the original STT if the guarantee fails.

3



3.1 Periodic Invocation of the Scheduler

Since the system processor is used for all system tasks, to ensure responsiveness for all system level

activities, the scheduler as well as other tasks are invoked periodically. (In addition, if possible, the

scheduler may also be invoked asynchronously upon the arrival of a new task.) Thus, the scheduler

executes for, at most, a �xed amount of time, namely for the computation time allocated to it,

every period. Periodic scheduler invocation a�ects the design of the real-time OS which bounds

the task guarantee time, and the runtime (online) decision of how many additional tasks (extracted

from the candidate queue, the queue of tasks waiting to be guaranteed) should be used for the next

guarantee invocation.

Given that the scheduler has execution time which is O(N), (the number of tasks being pro-

cessed), knowing the constant of proportionality and the �xed overheads, we can determine how

many tasks can be guaranteed by the scheduler during each periodic invocation. Suppose this is

Nmax. We call Nmax the \cap on the length of the STT". Suppose at a given time, the number

of tasks already in the STT is S. Then at most Nmax - S tasks from the candidate queue can be

considered for guarantee at this time. (Since the scheduler is invoked periodically, between two

invocations, multiple task requests may get enqueued in the candidate queue.) Of course if not all

Nmax - S tasks are guaranteeable, how to choose a subset of this set for subsequent attempts is an

interesting question.

It is likely that the task invoking a nonperiodic task will impose a deadline not only on the

invoked task, but also on the guarantee. In addition, some invokers may desire to know how long

to wait to �nd out if the invoked task has been guaranteed or not. In the former case, whenever

the scheduler is invoked, it has to examine the candidate queue to see if deadlines on the guarantee

can be met given the discussion above. In the latter case, knowing the current length of the STT,

etc., it is possible to determine the scheduler's response time.

3.2 Maximizing Concurrency between the Scheduler and Dispatchers

While the scheduler's execution time is a function of N, the number of tasks in the system (capped

by Nmax), the dispatcher execution time need not be dependent on N. Because the worst case

dispatching costs must be included in each task's worst case computation time, an e�cient worst

case design of the dispatcher is very important. In a multiprocessor implementation, worst case

blocking time (in our case due to mutual exclusion with critical sections) can be the overwhelming

cost of the dispatcher. Version 1 of the Spring multiprocessor OS uses dispatchers with constant

worst case computation times i.e., the worst case computation times of tasks are not e�ected by

the number of tasks in the system.

When an application task completes its execution, it must be deleted from the system. The

most natural implementation is to have the local (running on the same processor where the task

4



just completed) dispatcher delete the �nished task from the system. This is not however the best

implementation when the predictability of the multiprocessor OS is important, since, in order to

maintain correctness with the scheduler, this design forces excessive mutual exclusive access to

STT by the dispatchers. Speci�cally, if dispatchers were allowed to perform the deletions, the

computation of the cuto� line would be required to be in a critical section (since pointers could

become invalid during this computation). The computation of the cuto� line requires O(N) steps

if the tasks are in a linked list, or O(log N) steps if the tasks were arranged contiguously. Thus,

the scheduler could have locked the dispatch queue immediately prior to a dispatcher, causing the

dispatcher to wait for an amount of time that is a function of the number of tasks in the system.

This is unacceptable.

By having the scheduler, instead of the dispatcher, delete tasks from the STT, the worst case

computation time of the dispatcher can be signi�cantly reduced. The mechanics behind the conven-

tion of task deletions performed by the scheduler involve separate maintenance of dispatch queue

pointers by the scheduler and the dispatchers. When a dispatcher notices that a task has �nished,

it implicitly marks the �nished task by altering the head of the dispatch queue. The scheduler

maintains a separate (shadow) copy of the dispatch queue head which is never altered by the dis-

patcher. When the scheduler is invoked, it �rst deletes all tasks which lie between the dispatch

queue head and its shadow. Mutual exclusion is reduced to constant time { only modi�cations of

the dispatch queue head need be done inside a critical section.

4 Real-Time Semaphores { Low Level Support for Predictability

The system components that are potentially the most elusive to guarantee predictability are those

low level components which are shared by the multiple processors. On a multiprocessor, both

shared memory and the shared bus connecting the processors fall into this category.

In a multiprocessor system, unless bus access time is bounded, any reference to remote memory

cannot be predictable. For this and other reasons (discussed in [3]), any predictable real-time

system which uses the asynchronous VME shared bus must be con�gured in round-robin mode.

Round robin mode alone with processors busy-waiting on the semaphore (usually implemented with

test-and-set) is however not su�cient to provide bounded waiting. It can be shown [3] that one or

more processors can starve when two or more processors contend for a semaphore: It is possible

for a subset of the processors to perpetually exchange the lock, starving one or more processors

waiting for the lock.

To solve this problem, we have developed solutions for the construction of real-time

semaphores[3] { semaphores which e�ciently support bounded access. A software solution which

improves the bounded waiting solution given in [1] as well as a hardware solution have been de-

veloped. The real-time semaphore is based on the P() and V() operations [2], using an extended

test-and-set like operation, test-and-set-or-branch. The construction of real-time semaphores is

5



 max guarantee
 ave guarantee
 max overhead
 ave overhead

|
0

|
1

|
2

|
3

|
4

|
5

|
6

|
7

|
8

|
9

|
10

|
11

|
12

|
13

|0

|10

|20

|30

|40

|50

|60

 Ntasks

 T
im

e 
(m

ill
is

ec
on

ds
)

Figure 1: Spring Version 1 Performance.

based on the Deferred Bus Theorem (see [3] for the proof of the theorem):

If the total worst case non-bus master time of the busy-wait loop (in P()) is less than

the best case bus master time of the release instruction, and if processor p

j

is the closest

processor (in the round robin ordering) busy-waiting for semaphore s when processor

p

i

releases s (in V()), then p

j

will be the next processor to acquire s.

Operations for enforcing mutual exclusion operations such as P() and V(), if constructed in a

bounded fashion, can provide the framework for other, higher level, bounded operating systems

primitives. This boundedness forms a basis for the predictability of the Spring real-time multipro-

cessor OS.

5 Performance

The performance of the scheduler (running in a 16 MHz. 68020) in Spring version 1 is illustrated

in �gure 1. Both the average and worst case computation times of the guarantee algorithm and the

overheads are plotted. The costs of the guarantee algorithm are separated from the costs of the

overheads, the total scheduler cost being the sum of the two. The overheads consist of scheduler

activities before and after invocation of the guarantee algorithm (such as the computation of the

cuto� line and task deletions). The guarantee algorithm, as described in [4], is invoked with no

backtracking for a system with seven resources.

As discussed in section 3.1, the periodic invocation of the scheduler imposes a �xed computation

time for the scheduler to run. Depending on the selected period and length of this �xed computation

time, a cap on the maximum number of tasks which are guaranteed in this fashion (using the

heuristic guarantee algorithmdescribed in [4]) will be derived. Practical optimizations are currently

underway, and include alternative scheduling algorithms, and restricted data structure access. One

scheduling optimizationwould be, instead of performing a total reschedule of all tasks in the system,

attempting to insert a single task into the existing schedule. The examination of only portions of

6



sorted system tables is an area of optimization pertaining to restricted data structure access. By

speeding the guarantee, these optimizations may allow us to deal with more tasks than the more

general techniques which have been implemented.

6 Conclusion

Our approach to constructing a real-time OS is to achieve predictability from the bottom up.

We have discussed how bounded access to a shared bus facilitates the construction of real-time

semaphores. Real-time semaphores in turn form a foundation for the construction of a concurrent,

predictable real-time multiprocessor OS. At the next level, the predictability of user level tasks is

facilitated by the predictable OS. Subtleties arising in supporting the online guarantee complicate

the construction of a predictable multiprocessor OS which is concurrent. These subtleties are

resolved in part by o�oading activities from dispatcher to the schedulers, integrated with judicious

use of critical sections by the real-time OS. The feasibility of this approach has been demonstrated

with the shared bus multiprocessor implementation of Spring version 1.

References

[1] J. E. Burns. Mutual Exclusion with Linear Waiting using Binary Shared Variables. SIGACT

News, 10(2), Summer 1978.

[2] E. W. Dijkstra. The Structure of the \THE"-Multiprogramming System. Communications of

the ACM, 11(5), May 1968.

[3] L. D. Molesky, C. Shen, and G. Zlokapa. Predictable Synchronization Mechanisms for Multi-

processor Real-time Systems. Technical Report 89{106, University of Mass., November 1989.

[4] K. Ramamritham, J. A. Stankovic, and P. Shiah. O(n) Scheduling Algorithms for Real-Time

Multiprocessor Systems. In the 9th International Conference on Parallel Processing, June 1989.

[5] J. A. Stankovic. Misconceptions About Real-Time Computing. IEEE Computer, 21(10), Oct.

1988.

[6] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New Paradigm for Real-time

Operating Systems. Operating Systems Review, 23(3), July 1989.

7


