
PREDICTABLE SYNCHRONIZATION

MECHANISMS FOR MULTIPROCESSOR

REAL-TIME SYSTEMS.

Lory D. Molesky, Chia Shen and Goran Zlokapa

Department of Computer and Information Science

University of Massachusetts

Amherst, MA 01003

COINS Technical Report 90{30

This revised version replaces 89{106



Predictable Synchronization Mechanisms for

Multiprocessor Real-Time Systems.

Lory D. Molesky

Chia Shen

Goran Zlokapa

September 29, 1992

ABSTRACT

Predictability is of paramount concern for hard real-time systems. In one approach to pre-

dictability, every aspect of a real-time system and every primitive provided by the underlying

operating system must be bounded and predictable in order to achieve overall predictability. In

this paper, we describe several concurrency control synchronization mechanisms developed for a

next generation multiprocessor real-time kernel, the Spring Kernel. The important features of

these mechanisms include semaphore support for mutual exclusion with linear waiting and bounded

resource usage, termed strong semaphores. Three, more e�cient, strong semaphore solutions are

proposed in this paper. Two of them are based on the main theorem of the paper, the Deferred

Bus theorem. These two solutions can either be implemented in hardware or software. The third

solution, a pure software solution, is an extension to the existing Burns' algorithm. A performance

comparison and a complexity analysis in terms of time, space and bus tra�c are presented.

This work is part of the Spring Project directed by Prof. Krithi Ramamritham and Prof. John A. Stankovic at the

University of Massachusetts and is funded in part by the O�ce of Naval Research under contract N00014-85-K-0398

and by the National Science Foundation under grant DCR-8500332.



List of Figures

1 The Basic Busy-wait Loop : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5

2 Burns' Strong Semaphore Solution. : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3 Generalized P() and V() Routines : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

4 Generalized P() and V() Routines using TASOB : : : : : : : : : : : : : : : : : : : : 10

5 Emulation of TASOB : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

6 Deferred Clear Solution Supporting Bounded Waiting : : : : : : : : : : : : : : : : : 12

7 Extended Burns solution for Bounded Waiting : : : : : : : : : : : : : : : : : : : : : 13

8 Semaphore Implementations Providing Linear Waiting. Costs are Per Semaphore

Acquisition. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15

9 Semaphore Tra�c (a) and Semaphore Acquisitions (b) as Functions of VME Re-

quests in the CS (Four Contending Processors). : : : : : : : : : : : : : : : : : : : : 16

10 E�ects of the Number of Competing Processors on the Semaphore Acquisition Rate. 17

List of Tables



1. Introduction

Predictability is of paramount concern for hard real-time systems. In one approach to pre-

dictability, every aspect of a real-time system and every primitive provided by the underlying

operating system must be bounded and predictable in order to achieve overall predictability. On

a multiprocessor, both shared memory and a shared bus fall into this category. In this paper, we

describe the foundations for multiprocessor operating systems support of predictability. We inves-

tigate the problems inherent in constructing predictable operating system primitives. In particular,

the focus is on solutions to the mutual exclusion problem in the domain of real-time systems.

Although the mutual exclusion problem has been extensively studied in a non-real-time context,

and many hardware and software solutions exist, real-time systems o�er new challenges in dealing

with the mutual exclusion issue. In a real-time system, it is not su�cient to ensure only the logical

correctness of a task, the timing correctness is equally important. In order to meet the timing

constraints of tasks in a real-time system, we must be able to bound the timing of the primitive

operations of the operating system. Among the most di�cult operating systems primitives to con-

struct with the aim of achieving predictability are those which involve concurrent access to shared

data. For example, concurrent interaction between a single scheduler and multiple dispatchers on

a multiprocessor may require mutual exclusive access to shared data. Operations for enforcing

mutual exclusion operations such as P() and V(), if constructed in a bounded fashion, can provide

the framework for other, higher level, bounded operating systems primitives. This boundedness

forms a basis for the predictability of the entire system.

The main paradigm of the new generation of real-time operating systems is time driven schedul-

ing. Aside from the traditional task parameters such as priority and size, the new generation

requires task timing parameters. The most common are task's worst case computation time, dead-

line, and value function during execution time. In this paper the focus will be on the mechanisms

that enable the accurate calculation of the worst case computation time of the application tasks.

To have predictable applications, i.e. to be able to compute the worst case computation time of

the application tasks, we need predictable (capped) executions of the requested operating system

services. Of the most di�cult OS services to cap is the time of the concurrent access to shared

data.

The development of solutions for mutual exclusion in real-timemultiprocessor operating systems

is presented in this paper. We present three algorithms which improve upon the bounded waiting

solution presented by Burns in [2]. The main contribution of this paper is the Deferred Bus

theorem, which is the basis for two of the proposed algorithms. In this theorem, the relative timing

of bus mastership between instructions contained in the P() and V() operations is the basis for

the construction of support for bounded waiting. The third algorithm extends Burns' algorithm to

reduce unnecessary shared bus accesses.

The work presented in this paper is part of the on-going research of the Spring Project. The

1



Spring Kernel [14] is currently being built on a VME based 68020 [7] [9] shared memory multipro-

cessor. Each multiprocessor can accommodate up to eight MVME136A boards. These MVME136A

boards support features which are typical of shared bus multiprocessors { an asynchronous bus in-

terface, architectural support for test-and-set like operations, and a local memory. This memory

can either be accessed remotely over the VME bus by (typically) another processor, or locally by

the processor which has mapped this local memory. Additional support for multiprocessing is pro-

vided through the use of the MPCSR (MultiProcessor Control/Status Registers). One important

feature of the MPCSR provides the ability to generate interrupts to a selected board, and/or a

simultaneous interrupt to a selective group of boards.

The remainder of this paper is organized as follows. Section 2 discusses background informa-

tion on multiprocessor synchronization. Existing implementations using test-and-set (TAS) which

provide bounded waiting are discussed in section 3. Section 4 introduces the Deferred Bus theo-

rem. Section 5 presents a more e�cient semaphore solution, based on the Deferred Bus theorem,

that provides bounded waiting. Section 6 presents two additional semaphore solutions that provide

bounded waiting and reduce shared bus tra�c. Section 7 compares the complexity of the vari-

ous solutions, while section 8 provides a performance comparison. Section 9 discusses the use of

semaphores supporting bounded waiting in the Spring multiprocessor system. Section 10 concludes

the paper.

2. Background on Multiprocessor Synchronization

In this paper, we consider issues of mutual exclusion and synchronization on shared memory

multiprocessors. Since the notion of semaphores introduced by Dijkstra [3] su�ces to provide the

underlying support for both mutual exclusion and synchronization, we will focus on semaphores

with bounded waiting applicable to real-time systems.

Throughout this paper, binary semaphores are used to illustrate access to a critical section. The

P() operation acquires the semaphore by atomically setting a shared variable. The V() operation

releases the semaphore by atomically clearing the shared variable. C code is used to describe

the high level source code, while both pseudo-assembly code and 68020 assembly code is used to

describe the low level code.

For a real-time system, the main concern is not only e�cient mutual exclusion solutions for

multiprocessors, but also those solutions which provide bounded waiting. On a uniprocessor, test-

and-set like hardware support enables the construction of more concise and more e�cient solutions

of synchronization primitives, while on a multiprocessor, atomic, test-and-set like operations make

correct synchronization possible[11].

Although the mutual exclusion solutions presented in this paper refer to processors, not pro-

cesses, these solutions remain applicable to multiprogrammed multiprocessors. Dealing exclusively

with processors enables us to compare the relative performance of each algorithmwithout the issues

2



involved in preempting processes. Our solutions are however not restricted to a non-preemptive

environment. The processor based bounded waiting solution can be used by some higher level

process based solution, such as the one described in [12].

In this section, we discuss potential problems with current hardware support with respect to

bounded waiting. We discuss the issue of how bus arbitration e�ects the necessary and su�cient

conditions for bounded waiting.

2.1 Potential Problems with Current Hardware Support

Conventional shared memory multiprocessors often support mutual exclusion in the form of

atomic read-modify-write (RMW) instructions. Systems such as the MotorolaMVME136-a, Sequent

Symmetry, and the Ultracomputer [9] [10] [6] fall into this category. This support of an atomic

RMW instruction is also often referred to as support for test-and-set.

Straight forward use of these hardware implementations however does not meet the requirements

of real-time systems because they do not facilitate synchronization with bounded waiting. As will

be described in detail in the following section, the test-and-set operation is not su�cient to ensure

that one processor will not encounter starvation when contending for a semaphore. Since hard real-

time systems must ensure the predictability of every operation, systems which require concurrent

access to shared data must obtain this access in a bounded fashion. This requirement is notably

evident in the interaction between multiple dispatchers and the scheduler in the implementation of

the Spring Kernel[14].

Today's shared memory multiprocessors' semaphore implementations also su�er from resource

wastage [5]. The ubiquitous busy wait loop generates both bus tra�c and consumes CPU resources.

The bus tra�c generated by the busy-wait can be mitigated by a scheme which busy-waits on

a cache memory address [10]. Sequent's approach allows each processor only one attempt (per

semaphore change) to acquire the semaphore. If this fails, the processor will spin on the cache

memory location. In [1], it was noted that this scheme can cause a cascading of cache invalidations,

thus causing additional bus tra�c. As will be discussed in following sections, this technique of

busy-waiting on a local memory address is used to construct more e�cient semaphore solutions

which provide bounded waiting.

2.2 Bounded Bus Access { a Necessary Condition for Bounded Waiting

Hard real-time systems need solutions to the mutual exclusion problem which provide bounded

waiting. In a multiprocessor system, unless bus access is bounded, no solution can provide a

bounded mutual exclusion primitive. Bounded access to a shared bus can, of course, be achieved

with the use of a synchronous bus protocol. Synchronous busses are not considered in this paper

for a number of reasons, but primarily because their throughput is signi�cantly lower than that of

3



asynchronous busses.

One speci�c asynchronous bus, the VME bus [9], o�ers two standard modes of bus arbitration,

positional (i.e. a daisy-chain) and round robin. The positional scheme favors processors which are

electrically closest to the bus arbitration logic. In a positional scheme, the nearest processors can

conceivably \hog" the bus while others starve (receive no bus access). When attempting to provide

a solution to the mutual exclusion problem which ensures bounded waiting, we cannot con�gure

the bus in a positional mode. The protocol assumed in this paper is thus the round robin protocol.

2.3 Round Robin Mode is not a Su�cient Condition for Bounded Waiting

Aside from the bene�ts of the round-robin protocol, it can be shown that a straight forward

implementation of test-and-set like operations with an underlying round-robin protocol does not

support bounded waiting. It can be shown that one or more processors can starve when two or

more processors contend for a semaphore. It is possible for a subset of the processors to perpet-

ually exchange the lock (a binary semaphore guarding the critical section), starving one or more

processors waiting for the lock.

The following example demonstrates the insu�ciency of round robin mode alone. Suppose three

processors, p

1

, p

2

, and p

3

, are involved in the lock acquisition/release sequence. The shared bus

is con�gured in round robin mode such that processors follow each other in a cyclically numerical

order (p

1

precedes p

2

, p

2

precedes p

3

, and p

3

precedes p

1

). Further suppose that initially p

1

has the

lock (is in its critical section), and p

2

and p

3

are trying to acquire the lock (in P()). Also assume

that contention for the resource is su�ciently high such that as soon as a processor performs a

V(), it performs another P(). Processor p

2

can starve (never get access to the resource) under the

following scenario:

P

1

releases the lock by executing a V(). Since, in order to release the lock, p

1

performs a bus

operation, it will be p

2

's turn to access the bus next. However, if p

2

happens to be executing the

branch instruction (refer to the code for P() and V() in �gure 3 in section 4.) when its turn for the

bus comes along, p

2

will miss its chance to acquire the lock. Further assume that p

3

does acquire

the lock, and after p

3

releases, p

1

acquires the lock. Repeating this sequence, p

2

never acquires the

resource, even though it is in P(). This clearly shows that round robin bus arbitration alone does

not provide bounded waiting. (A similar construction could be presented using only two processors,

but the construction with three processors is easier to understand.)

A key issue in the analysis described in this section as well as in other parts of this paper is

distinguishing instructions which access the shared bus from instructions which do not access the

bus. If all processors involved in contending for a semaphore simultaneously issue an instruction

which requires access to the shared bus, these processors can only execute in a round robin fashion.

However, a processor in its P() operation can \miss its turn" in the round if it happens to be

executing a non-bus master instruction at an inopportune moment in time.

4



boolean LOCK;

P() V()

{ {

while !(TAS(LOCK)) {} LOCK = false;

} }

Figure 1: The Basic Busy-wait Loop

We have shown that the round robin bus access mode is a necessary but not a su�cient condition

to achieve bounded waiting. Sections 3. and 5. describe an existing and a new solution, respectively,

for semaphore implementations which achieve bounded waiting.

The simplest form of acquisition and release procedures for a semaphore, P() and V(), is shown

in �gure 1. This implementation of P() and V() does not however satisfy the bounded waiting

condition. The problem, as mentioned above, arises when one processor can starve when two or

more processors are involved in the contention. To avoid this potential starvation, Burns proposed

an algorithm for mutual exclusion on a shared memory multiprocessor.

3. Burns' Strong Semaphore Implementation

Burns, in [2], presents a mutual exclusion solution which provides bounded waiting for shared

memory multiprocessors. His solution meets the well known correctness criteria relating to sym-

metry, process and processor speeds, mutual exclusion, and progress, as noted in [4] and [5]. The

symmetry condition disallows the use of a static priority. Assumptions about the process and

processors speeds are not allowed. The mutual exclusion condition allows only one process to be

executing in its critical section at any point in time. The progress condition ensures that, if a pro-

cess requests to enter a critical section which is not in use, it will be allowed to eventually enter the

critical section. In the context of operating systems for real-time systems, this eventuality does not

su�ce. What is needed is the guarantee of bounded waiting. Bounded waiting and linear waiting

are de�ned as follows [2]:

De�nition: Bounded waiting is achieved if there is a constant k such that if a process is in its

busy-wait loop, then that process will enter its critical region before any other process has entered

its critical region more than k times. When k=1, this property is called linear waiting.

Throughout the remainder of this paper, we call a semaphore implementation which supports

bounded waiting to be a strong semaphore implementation.

Burns' strong semaphore solution augments the test-and-set instruction and the single shared

memory lock address with M additional binary shared variables. M corresponds to the maximum

5



1: P()

2: f

3: Try[i] = TRUE;

4:

5: while (Try[i] and !TAS(Gsem)) ;

6: g

1: V()

2: f

3: int j;

4:

5: Try[i] = FALSE;

6: j = (i+1) % M;

7: while (!Try[j] and j != i)

8: j = (j+1) % M;

9: if (j == i) clear(Gsem);

10: else Try[j] = False;

11: g

Figure 2: Burns' Strong Semaphore Solution.

number of processors involved in contention for the critical section. Once a processor fails on the

TAS in its P() region, it asserts the appropriate 
ag in the waiting array. When a release of the

semaphore occurs in the V() section, the next processor (in cyclic order) with its 
ag set in the

waiting array is allowed to acquire the semaphore. This implementation is illustrated in �gure 2,

where the algorithm for process i is expressed in the C language. The integer i is a unique processor

number between 0 and M - 1. There are two shared boolean variables, a scalar Gsem and an array

Try. TAS(Gsem), an indivisible TAS operation, returns True when the set is accomplished on the

semaphore Gsem (the lock is acquired).

To prove that an implementation achieves linear waiting, all that is necessary is to demonstrate

a cyclic ordering of waiting processes. Since the waiting array is scanned in cyclic order, (e.g. from

0, 1 ... M -1 back to 0), if processor p is waiting (e.g., has entered P()), it will enter its critical

section within at most M - 1 turns.

4. The Deferred Bus Theorem { a Basis for E�cient Strong Semaphore

Implementations

This sections presents the Deferred Bus theorem. In sections 5. and 6., strong semaphore solu-

tions based on this theorem are constructed. In real-time systems, more often than not, scheduling

decisions are made based on execution times of tasks. This demands knowledge about instruction

timing properties. Our solution exploits this knowledge to obtain an upper bound on the wait for

the P() operation. Unlike the solution provided by Burns, the new solution needs no additional

shared memory locations (i.e. the waiting array can be dispensed with). This solution is based on

test-and-set, and strongly resembles the non-bounded solution in terms of e�ciency of code and

space.

In section 2.3 it was shown that a round robin bus protocol alone was not su�cient for a bounded

6



mutual exclusion protocol. If it can be demonstrated that a particular semaphore implementation

enforces a cyclic ordering of the waiting processors, then the implementation is bounded. Moreover,

as illustrated by Burns, this implementation achieves linear waiting. In order to prove this cyclic

ordering of waiting processors, we reason about the possible events after the processor holding the

lock releases it. In the following discussion, it is assumed that the round robin protocol grants bus

access to processors in numerical order (that is p

i+1

follows p

i

).

It is necessary to de�ne a few details pertaining to shared bus arbitration before the new pro-

tocol can be presented.

De�nition: Only one processor is allowed to control the shared bus at any point in time, this

processor is called the bus master; other processors are called non-bus masters.

De�nition: If a processor p

i

initiates a bus request which cannot be satis�ed because another

processor is the bus master, then the bus instruction issued by p

i

becomes pending. In the context

of bus operation in a round robin mode, a pending bus instruction is essentially queued by the

hardware.

The basic approach in the construction of an implementation which achieves linear waiting is to

design the V() operation such that the release of the semaphore holds the bus long enough to ensure

that the closest processor in its P() section will be guaranteed to initiate its TAS operation when

its \round" is active. Thus, by ensuring that the non-bus master component of the acquisition loop

of P() is as small as the bus master time of the atomic release instruction in V(), the cyclic waiting

order can be ensured.

It should be noted that even though we reason about the instruction timing properties in our

solution presented below, this does not violate the process and processor speeds condition in the

correctness criteria for mutual exclusion. The instruction timing properties concern the absolute

time some instruction takes, not the speed of the processor or the pace of some process.

For the purposes of this discussion, we assume that processes waiting in the P() operation are

non-preemptable. In a preemptable environment, one could argue that starvation could occur under

degenerate conditions by an inopportune preemption of a particular process immediately prior to

the acquisition of the semaphore. In other words, using an adversary argument, a process p

i

will

starve if, each time the bus mastership is about to be granted to the processor executing p

i

, p

i

is preempted. Additionally, we assume that a process cannot be preempted while in its critical

section. If this were to occur, all other processes could wait inde�nitely.

A generalized form of a the P() and V() operations is presented in �gure 3. When the semaphore

is in use, the semaphore's state will be set. Otherwise the semaphore is available for acquisition,

and is referred to as clear. The P() operation consists of both instructions which access the shared

7



P() V()

{ {

SPIN: bm-clear(Gsem);

TAS(Gsem); }

conditional-branch SPIN;

}

Figure 3: Generalized P() and V() Routines

bus, and which do not access the shared bus. We assume that at least one instruction in the busy-

wait loop of P() is an indivisible bus master instruction. The V() operation also consists of at least

one instruction which is an indivisible bus master instruction. This instruction, clear, performs

the actual \clearing" of the semaphore. In the following theorem, the event termed releasing the

semaphore refers to the point in time when the processor executing the clear instruction (in V())

transfers its state from being the bus master to non-bus master. At release time, it is known that

the semaphore is cleared.

Deferred Bus Theorem (DBT):

If the total worst case non-bus master time of the busy-wait loop (in P()) is less than

the best case bus master time of the release instruction, and if processor p

j

is the closest

processor (in the round robin ordering) busy-waiting for semaphore s when processor

p

i

releases s (in V()), then p

j

will be the next processor to acquire s.

Proof: To prove the theorem, the two possible circumstances which occur when p

i

releases

the semaphore are enumerated. These correspond to the two instructions of the busy-wait loop of

the P() operation of p

j

. Either p

j

is executing the bus master instruction TAS (case 1), or it is

executing the non-bus master instruction conditional-branch (case 2).

Case 1: A TAS was pending on p

j

when a clear by p

i

was executed.

Since the TAS is pending and p

j

is the next processor waiting, p

j

acquires the semaphore

next, according to round robin arbitration.

Case 2: A TAS was not pending on p

j

when a clear by p

i

was executed.

Since the worst case duration of the non-bus master time of the busy-wait acquisi-

tion loop is less than the bus master time of the release instruction, the TAS issued by

p

j

will be invoked before the clear by p

i

is completed. Thus the TAS of p

j

will become

pending before the clear by p

i

completes. By case 1, this implies that p

i

acquires the

semaphore next.

8



Since in either case, p

j

acquires the semaphore next, the proof is complete. 2

5. A Global Spin Solution

This section presents a solution for a strong semaphore based on the Deferred Bus theorem by

extending the instruction set with a test-and-set-or-branch (TASOB) instruction. This solution is

more e�cient than the one presented by Burns [2]. In addition to being applicable to real-time

computing systems, this solution is also applicable to general computing systems. This general

applicability is achieved by eliminating the need to know instruction execution times of the P()

and V() operations.

Recall that the basic problem in achieving predictability in the P() and V() routines is that the

next processor waiting in the round robin ordering could be executing its conditional-branch

instruction when its \turn" for the bus arrives. The Deferred Bus theorem ascertained that the

turn would not actually be missed under certain instruction execution assumptions. The underlying

problem here is that the conditional-branch is a non-bus master instruction.

De�nition: The TASOB instruction �rst locks the bus, then tests the operand speci�ed by the

e�ective address. The remaining steps are conditional on the value of the operand. If the operand

is:

� zero:

The operand is set to one, the bus is released, and control is returned.

� non-zero:

In one indivisible operation, the bus is released, but the pend for the bus is retained.

By combining the conditional-branch instruction with the TAS instruction into one bus mas-

ter instruction (TASOB), we can eliminate all assumptions about instruction execution time and

still support a semaphore which provides bounded waiting. TASOB, like TAS, is a bus master

instruction, locking the bus until the entire instruction has completed. Note that, after an unsuc-

cessful TASOB (the operand was non-zero), control of the bus is released prior to the next TASOB

execution. This bus release is necessary to prevent a spinning processor from hogging the bus.

The non-bus master time of the busy-wait loop will be zero (i.e. at any time, a processor in

its busy-wait loop is either a bus master or it is pending) if a careful implementation of the re-

lease/request sequence of the TASOB is constructed. Whenever the test portion of the TASOB of

processor p

i

fails, bus arbitration is initiated while still keeping a request for p

i

pending. The imple-

mentation of TASOB can be e�cient. Depending on the hardware/�rmware implementation, this

combined instruction may not necessarily hold the bus longer than the standard TAS instruction.

9



P() V()

{ {

SPIN: bm-clear(Gsem);

TASOB(Gsem); }

}

Figure 4: Generalized P() and V() Routines using TASOB

The new specialized P() and V() operations are shown in �gure 4. This implementation meets

the requirements of DBT. Speci�cally, the worst case non-bus master time of the instructions in

P() is zero, thus in conjunction with round robin it provides bounded (linear) waiting. Since the

worst case non-bus master time is essentially zero, there is no need to compare instruction execution

times between the P() and V() operations { as long as the bm-clear (Bus Master CLEAR) bus

instruction in V() is a bus master operation, DBT is true.

5.1 Emulating TASOB

Current architectures, such as the Motorola 68020, do not provide direct support for the Deferred

Bus theorem. In the 68020 architecture, the maximum time the shared bus is locked during a

RMW operation is 8 machine cycles [8]. The worst case execution time of a conditional branch

instruction is 9 cycles. These �gures alone are enough to demonstrate that the DBT cannot hold

for this architecture { the release instruction can hold the bus for at most 8 cycles, which cannot be

guaranteed to be longer than the non-bus master time of the busy-wait loop (since the busy-wait

loop contains a conditional branch with a worst case time of 9 cycles).

In order to demonstrate the feasibility of the TASOB instruction, we have implemented an

emulation of TASOB on our Motorola multiprocessor. Since single instructions satisfying DBT do

not exist on the Motorola 68020 chip set, existing instructions have been transformed to support

DBT with instructions which lock and unlock the VME bus. These instructions are used to provide

an emulation of the TASOB instruction in the P() routine.

In emulating TASOB, DBT is achieved by essentially altering the non-bus master time of the

P() instruction to be nearly zero. This is accomplished with two changes to the basic busy-wait

implementation. In P(), a bus lock is wrapped around the TAS and the branch instructions. In V(),

the semaphore clear is forced to be a bus master instruction. This implementation is illustrated in

�gure 5.

We have conducted experiments to verify that our emulation of TASOB does achieve linear

waiting by demonstrating that cyclic semaphore acquisition is achieved. To verify cyclic semaphore

acquisition, a processor identi�er is written into a shared bu�er whenever a processor enters the

10



P() V()

{ {

GLOBAL_SPIN: bm-clear(Gsem);

}

unlock_bus();

lock_bus();

TAS(Gsem);

branch-on-not-set GLOBAL_SPIN;

unlock_bus();

RETURN:

}

Figure 5: Emulation of TASOB

critical section.

6. Local Spin Solutions

Software solutions which focus on the reduction of bus tra�c are discussed in this section. Al-

though the Burns' and the TASOB semaphore solutions presented earlier support bounded waiting,

the bus tra�c generated while spinning in P() is high. This high bus tra�c occurs because a process

attempting semaphore acquisition continually polls a semaphore using the shared bus. On multi-

processor architectures where each processor has a local memory which is also globally accessible

over the shared bus, more e�cient implementations of P() and V() which provide bounded waiting

can be constructed by reducing the bus tra�c generated by P(). In this section, we present two

such constructions, called Deferred Clear (DCLR) and Extended Burns.

In both implementations, an additional, secondary semaphore is used to reduce bus tra�c. This

secondary semaphore is stored in the local memory of each processor. Tra�c over the shared bus is

reduced by, whenever possible, spinning on the secondary local semaphore instead of the primary

global semaphore. This technique is similar to the one used by Sequent [10], but guarantees bounded

waiting. Both implementations also assume the availability of a broadcast feature which can clear

one bit of each local memory.

6.1 Deferred Clear

The deferred clear solution (DCLR) combines the approach of spinning on a local semaphore

with the Deferred Bus theorem. The name deferred clear is derived from the method of conforming

with DBT.

11



P() V()

{ {

set(Lsem); lock_bus();

GLOBAL_TEST: broadcast-clear(Lsem);

TAS(Gsem); clear(Gsem);

branch-on-set RETURN; nop;

unlock_bus();

LOCAL_SPIN:

TAS(Lsem);

branch-on-not-set LOCAL_SPIN;

branch GLOBAL_TEST;

RETURN:

}

Figure 6: Deferred Clear Solution Supporting Bounded Waiting

The algorithm illustrated in �gure 6 is described as follows. In the �gure, Lsem is a local

semaphore, and Gsem is a global semaphore. Upon entry into P(), the global semaphore is checked

once. If the acquisition fails at this point, the process spins on a local semaphore. To release the

semaphore, the V() operation clears both the global semaphore, and a local semaphore on each

processor. When the local semaphore is cleared, all processes spinning on their local semaphore in

their P() routine attempt a retry of global semaphore acquisition.

Conformity with DBT is constructed by locking the shared bus in V() as follows. The minimum

time that the V() operation holds the shared bus must be greater than the maximum time that

for the TAS(Gsem) instruction of the P() routine to become pending. This approach ensures a

semaphore implementation with linear waiting.

To demonstrate the feasibility of this solution we implemented it on our Motorola system. We

made use of a feature to lock and unlock the shared bus. The bus locking was used in the V()

operation to achieve conformity with DBT. The V() operation must be the bus master during the

interval of time between the broadcast in V() (which clears all Lsems) and the worst case time that a

processor in the P() operation needs to get to the global TAS. This extension of the interval of time

that the bus is locked during the V() can be achieved by inserting nop's after the broadcast-clear

instruction if needed.

In addition to the described software implementation of DCLR, a hardware solution could

also be implemented. Instead of spinning on a local semaphore, the hardware solution pends

on a broadcast channel. This broadcast channel has an identical function in both the software

and hardware solutions { it serves to notify the processor waiting for the semaphore to retry the

acquisition. The hardware solution to DCLR is similar in de�nition to the TASOB, but global

12



1: P()

2: f

3: check:

4: Lsem = TRUE;

5: if (TAS(Gsem)) return();

6: Try[i] = TRUE;

7: while (Try[i] and Lsem) ;

8: if (Try[i]) goto check;

9: g

1: V()

2: f

3: int j;

4:

5: Try[i] = FALSE;

6: j = (i+1) % M;

7: while (!Try[j] and j != i)

8: j = (j+1) % M;

9: if (j == i) f

10: clear(Gsem);

11: broadcast clear(Lsem);

12: g

13: else Try[j] = False;

14: g

Figure 7: Extended Burns solution for Bounded Waiting

spinning is avoided by pending on the broadcast channel. In one indivisible operation, a TAS is

performed; if the semaphore was not acquired, this processor pends on the broadcast channel. As

was the case in the TASOB implementation, DBT is satis�ed by achieving a worst case non-bus

master time of zero.

6.2 Extended Burns

In this subsection, we extend Burns' solution to reduce bus tra�c generated by the original

Burns' solution. The resulting algorithm, Extended Burns, is a more e�cient strong semaphore im-

plementation. We augment Burns' original algorithm, illustrated in �gure 2, with a local semaphore

(Lsem). Lsem is used in a fashion similar to the above discussion of DCLR, used as a secondary

semaphore to avoid shared bus tra�c. In addition, we stipulate that the partition of the global

waiting array is one bit per processor. This stipulation allows local access to the Try array by

spinning processors.

It was demonstrated in [2] that, since a trying process cannot be skipped by any process which

enters its CS at a later point, a cyclic order of selecting processes is achieved. The extended

algorithm maintains this feature. However, when dealing with both a primary and a secondary

semaphore, one must be careful not to introduce the possibility of livelock into the concurrent

algorithms. The extended algorithm is livelock free, as is demonstrated in the following proof.

Corollary: The Extended Burns Solution is Livelock Free

Proof: As in the original algorithm, it is clear that if p

j

is waiting when p

i

releases the semaphore,

p

j

will obtain it. A subtlety arises when analyzing a potential race condition, occurring in P()

13



when one bit in Try becomes true only after V() scans the waiting array. We must ascertain that

the semaphore is granted to some requesting process. This race condition can occur in two cases

(The syntax P:i or V:i means the i

th

line in the P() or V() code of �gure 7 respectively):

Case 1: Gsem is cleared (V:10) before the TAS (P:5) is executed.

Then p

i

acquires the semaphore since the TAS on (P:5) returns TRUE.

Case 2: Gsem is not cleared before the TAS (P:5) is executed.

E.g., P:5 is executed before V:10. Lsem is invariant until V:11 is executed, at which

point the test of Lsem fails in P:7, so a branch is executed to P:3. At this point we

know Gsem was cleared by V:10, thus the conditions for case 1 are true.

In either case, the semaphore is acquired by some processor. 2

7. Complexity Analysis

Figure 8 compares the four strong semaphore implementations { each implementation achieves

linear waiting. M represents the number of processors and the function K represents the total

number of bus requests occurring over an interval of time. Speci�cally, this interval of time is

the worst case computation time of the critical section (CS) and the V() operation, multiplied

by M. The DCLR, and TASOB instructions achieve linear waiting by adhering to the DBT. The

DCLR and Extended Burns solutions generate less bus tra�c by, whenever possible, spinning on

a secondary, local semaphore instead of the primary global semaphore. The DCLR and Extended

Burns solutions, of course, require access to local memory. In terms of bus tra�c, Burns and

TASOB are the least attractive, generating bus accesses which are a function of the size of the

critical sections.

The TASOB solution must potentially wait for all the other processors ahead of it to �nish

accessing their CS. During the wait for semaphore acquisition, the waiting process \spins" on the

bus, repetitively testing the value of the semaphore. Each process must also perform a V(), so the

duration of spinning can last for up to (M � (Duration of CS + V())). The cost of the V() operation

is higher in Burns' solution than the TASOB. In Burns' solution, the cyclic order is maintained in

the V() operation by scanning the shared memory array of waiting processor's in a speci�ed order,

allowing the �rst one it encounters to proceed (called selective clear). Thus the V() operation

requires M bus accesses in the worst case. The V() of the TASOB solution is much less expensive,

requiring only 1 bus access in the worst case. Note that the cost of a V() operation is re
ected in

the worst case bus access time of the P() operation. Because of the more e�cient V() operation,

the P() operation of the TASOB solution has less worst case bus cost than the P() operation of

Burns.

14



Semaphore Worst Case V() Worst Case Space

Implementation Bus Accesses Implementation Bus Accesses (in bits)

of P() of V()

Burns K selective clear M M + 1

Extended Burns M broadcast M + 1 2M + 1

TASOB K clear 1 1

DCLR M broadcast 2 M + 1

Figure 8: Semaphore Implementations Providing Linear Waiting. Costs

are Per Semaphore Acquisition.

The DCLR solution performs local spinning whenever possible, resulting in less worst case bus

cost. In this solution, a secondary semaphore is needed for each processor. If the primary semaphore

acquisition fails, the busy-wait occurs on the local secondary semaphore. Because of this, no shared-

bus tra�c is generated while waiting. The V() operation is responsible for clearing the secondary

semaphore. All local secondary semaphores are cleared with one shared-bus operation, a broadcast

clear. The advantage of the DCLR algorithm is that linear waiting is supported more e�ciently {

the worst case bus cost of the P() operation is reduced to M.

The Extended Burns solution provides similar performance to the DCLR solution, but needs

more space. In addition to space for the waiting array, space is also required for the local semaphore.

Like the DCLR solution, the Extended Burns solution reduces worst case bus tra�c to M accesses

per semaphore acquisition via local spinning. Although in DCLR, the V() operation has an exact

bus access cost of 2, the V() operation of Extended Burns generates up to M + 1 bus accesses.

8. Experimental Evaluation of Four Strong Semaphore Solutions

In order to evaluate the alternative strong semaphore solutions, all of the solutions described

have been implemented and benchmarked on our Motorola system. On the Motorola system, up

to four boards can be con�gured to operate in round robin mode. A �fth additional memory

module was exclusively used to store the global semaphore. In each test, the time for a processor to

acquire one semaphore 100,000 times was measured. Each algorithm was hand coded in MC68020

assembler in order to optimize its performance. The code to monitor the number of bus accesses

was very unobtrusive { requiring only one statement to increment a local variable each time a TAS

instruction was executed inside P().

Although V() instructions of the Burns' and Extended Burns solutions also generated bus

tra�c, we did not explicitly perform monitoring of these operations. Monitoring of the V() was not

performed for two reasons. First, it would potentially unfairly degraded performance of these two

solutions with respect to the others. Secondly, independent tests indicated that a very accurate

15



 Burns
 TASOB
 Extended Burns
 DCLR

|
0

|
10

|
20

|
30

|0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 (a)

 VME Bus Requests in CS.

 A
vg

. B
us

 A
cc

es
se

s 
pe

r 
Se

m
ap

ho
re

 A
cq

ui
si

tio
n.

�

�

�

�

�

�

�

�

� � � �
� � � �

 Burns
 TASOB
 Extended Burns
 DCLR

|
0

|
10

|
20

|
30

|
40

|0

|1

|2

|3

|4

|5

|6

|7

|8

|9

|10

 (b)

 VME Bus Requests in CS.

 S
em

ap
ho

re
 A

cq
ui

si
tio

ns
 p

er
 m

s.

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 9: Semaphore Tra�c (a) and Semaphore Acquisitions (b) as Func-

tions of VME Requests in the CS (Four Contending Processors).

estimation of the bus tra�c in V() could be obtained analytically. Thus, the results of the graph

in �gure 9(a) have the e�ect of V() on the bus tra�c included by adding in a lower bound of the

analytical estimate. This lower bound is two bus accesses per semaphore acquisition.

Figure 9(a) illustrates the average number of bus requests, per semaphore acquisition, as a

function of VME requests inside the CS. Four processors each contended for the semaphore until

100,000 acquisitions were performed. The generation of VME bus tra�c was performed inside the

CS to measure the e�ects that bus tra�c has on the semaphore acquisition process. Remote read

instructions were used to generate the actual VME tra�c inside the CS. From the �gure, it is clear

that the bus tra�c generated by the Extended Burns and DCLR algorithms is independent of the

size of the CS. However, the bus tra�c generated by the Burns' and the TASOB algorithms is

linearly proportional to the duration of the CS.

Figure 9(b) is another illustration of the e�ects of bus tra�c on the four algorithms. As in

the previous �gure, four processors each contend for the semaphore until 100,000 acquisitions are

performed. Similarly, VME requests are generated inside the CS. This simulation models how a

CS which requires use of the shared bus will be e�ected by the bus tra�c of other contending

processors. The e�ects of high bus contention of the algorithms in
uence the rate of progress in the

CS, thus in
uencing the rate of semaphore acquisition. The bus tra�c generated most profoundly

in
uenced the algorithms which poll over the shared bus, Burns and TASOB. These algorithms

degenerate signi�cantly (in terms of semaphore acquisitions per ms.) as the shared bus tra�c

increases.

16



 Burns
 TASOB
 Extended Burns
 DCLR

|
1

|
2

|
3

|
4

|0

|5

|10

|15

|20

|25

|30

|35

|40

 Number of Competing Processors

 S
em

ap
ho

re
 A

cq
ui

si
tio

ns
 p

er
 m

s.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 10: E�ects of the Number of Competing Processors on the

Semaphore Acquisition Rate.

If the system designer is concerned with the average case computation time, analysis of the cases

where the bus is not totally saturated is also important. Graphs 9(a) and 9(b) graphs depicted

fully saturated conditions for four processors. Figure 10 illustrates the semaphore acquisition rate

as a function of competing processors. The semaphore acquisition rate is graphed against from

one to four competing processors. No VME tra�c is generated inside the CS (a subroutine call

to the routine is thus not generated, as it was for the case of zero bus accesses in the previous

two graphs). In �gure 10, the one board case essentially measures the raw e�ciency of the P()

and V() operations when no bus contention exists. Because the P() and V() of the TASOB and

DCLR algorithms contain less instructions, their semaphore acquisition rate is higher under lower

bus contention. Additionally, bus tra�c of the Extended Burns algorithms is worst when other

processors are not waiting for the semaphore. The V() operation of Extended Burns must scan the

waiting array, generating shared bus tra�c. However, the V() operation of DCLR has a constant

cost of 2 bus accesses. The implication of this is that the semaphore acquisition rate of DCLR

is magni�ed when compared to Extended Burns when only a single processor contends for the

semaphore. This is one cause of the marked di�erence in the semaphore acquisition rates of DCLR

and Extend Burns illustrated in �gure 10. For large M and a low number of competing processors,

this performance di�erence between DCLR and Extended Burns would be further magni�ed.

17



9. Use of Strong Semaphores

In this section, areas of hard real-time systems which can exploit bounded waiting semaphores

are discussed. The discussion focuses on the design of the Spring kernel [14] which supports the

notion of an on-line guarantee for dynamic task arrivals. The Spring architecture is composed of

a collection of multiprocessors on a distributed network. In the following discussion, we focus on

concurrency involved on a single multiprocessor.

In the Spring approach, application tasks are scheduled such that resource con
icts are avoided

[13]. However, a multiprocessor operating system supporting concurrent execution of tasks does

require support for mutual exclusion. During the scheduling process, to achieve predictability, the

overhead of the operating system must be accounted for in the worst case computation time of

application tasks, all operating systems operations must also be bounded. For example, since an

application task's worst case computation time must also include its dispatch time, the dispatch

time (an operating system primitive) must be bounded.

Generally, one Spring node has one system processor and multiple application processors. The

scheduler is located on the system processor, while a dispatcher runs on each application processor.

E�cient system support for the on-line guarantee routine centers around concurrent activity of

the scheduler and the multiple dispatchers. The primary data structure shared by the scheduler

and multiple dispatchers is the system task table (STT). In order to facilitate concurrent access

to the STT by the dispatchers, the STT is partitioned (with linked lists) based on the application

processor to which each task is assigned. Concurrent access to the STT by the scheduler and

dispatcher processes is required under many circumstances. Since concurrent access to shared data

is required by the scheduler and dispatcher, and these costs contribute to an application task's

worst case computation time, this concurrent access must also be bounded.

Another area where bounded semaphores are useful in a predictable hard real-time system

is for enforcing mutual exclusive access to resources for certain kinds of application tasks. If a

tasks' access patterns to a resource are of long duration and/or are not very frequent, techniques

avoiding resource con
icts (e.g., via resource segmentation and partitioning with an integrated CPU

scheduling with resource allocation algorithm) can be used. However, an alternative approach

can be taken in cases where access to resources is frequent and/or of very short duration. In

particular, consider a pair of application processes which require exclusive access to a shared data

area frequently, and access to this shared data is of limited duration. Segmenting these tasks into

one task per resource request is not practical, especially if the duration of the task is less than the

overhead of the scheduler. In these situations of small granularity resource access, the technique

of using a bounded semaphore is much more realistic. If the interleaved access to shared data

is included in the worst case computation time of each task, tasks requiring exclusive access to

identical resources may thus be scheduled to execute concurrently.

18



10. Conclusion

This paper has focused on strong semaphore implementations, those which provide bounded

waiting. Strong semaphores are a low level primitive which facilitates the construction of predictable

real-time systems. Three new strong semaphore solutions, each supporting linear waiting, have been

proposed. A complexity analysis of the worst case cost of these algorithms has shown them all to

be superior to Burns' original solution in terms of space and/or time. Performance evaluations

performed on the proposed solutions supports the results of the complexity analysis.

Two of the proposed solutions are based on the Deferred Bus theorem. Assuming a round robin

bus protocol, it was shown that if the best case bus-master time of the release instruction of V()

is at least as long as the worst case non bus-master components of the busy-wait loop of P(), then

the semaphore implementation provides linear waiting. Conversely, if one is not careful and uses

an implementation where this is not true, then unbounded waiting can occur.

We have shown that more e�cient strong semaphore implementations can be constructed

by, whenever possible, spinning on a secondary local semaphore (instead of the primary global

semaphore). The DCLR implementation, based on the Deferred Bus theorem, and the Extended

Burns algorithm, are examples of this technique. By using this technique, the bus tra�c per

semaphore acquisition has been reduced from a function of the size of the critical section to a

constant. Both the complexity analysis and the performance evaluation benchmarks demonstrate

the superiority of these strong semaphore solutions.

11. Acknowledgements

The authors of this paper wish to thank Professor Krithi Ramamritham, Professor John A.

Stankovic, and Victor Yodaiken for their insightful discussion of some of the ideas presented in this

paper.

19



References

[1] T. E. Anderson, E. D. Lazowska, and H. M. Levy. The Performance Implications of Thread

Management Alternatives for Shared-Memory Multiprocessors. Technical Report 88{09{04,

University of Washington, September 1988.

[2] J. E. Burns. Mutual Exclusion with Linear Waiting using Binary Shared Variables. SIGACT

News, 10(2), Summer 1978.

[3] E. W. Dijkstra. The Structure of the \THE"-Multiprogramming System. Communications of

the ACM, 11(5), May 1968.

[4] E. W. Dijkstra. Hierarchical Ordering of Sequential Processes. Acta Informatica, 1, 1971.

[5] A. Dinning. A Survey of Synchronization Methods for Parallel Computers. Computer, 22(7),

July 1989.

[6] A Gottlieb et. al. The NYU Ultracomputer - Designing an MIMD Shared Memory Parallel

Computer. IEEE Transactions on Computers, c-32(2), February 1983.

[7] Motorola Inc. MC68020 32-Bit Microprocessor User's Manual. Prentice-hall, Englewood

Cli�s, N.J., 1985.

[8] Motorola Inc. MC68851 Paged Memory Management Unit User's Manual. Prentice-hall,

Englewood Cli�s, N.J., 1986.

[9] Motorola Inc. MVME135, MVME135-1, MVME135A, MVME136, and MVME136A 32-Bit

Microcomputers User's Manual. Motorola Inc., 1989.

[10] Sequent Computer Systems Inc. Sequent Symmetry Technical Summary. Sequent Computer

Systems, Inc., 1988.

[11] J. L. Peterson and A. Silberschatz. Operating System Concepts. Addison-Wesley, Reading,

Massachusetts, 1985.

[12] Ragunathan Rajkumar, Lui Sha, and John P. Lehoczky. Real-Time Synchronization Protocols

for Multiprocessors. In Real-Time Systems Symposium, Dec 1988.

[13] K. Ramamritham, J. A. Stankovic, and P. Shiah. O(n) Scheduling Algorithms for Real-Time

Multiprocessor Systems. In the 9th International Conference on Parallel Processing, June

1989.

[14] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A New Paradigm for Real-time

Operating Systems. Operating Systems Review, 23(3), July 1989.

20


