MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

RT-CRM: Real-Time Channel-Based
Reflective Memory

Chia Shen, Ichiro Mizunuma

TR2000-41 September 2001

Abstract

In this paper, we propose and present Real-Time Channel-based Reflective Memory (RT-CRM)
—a new programming model and middleware communication service for constructing distributed
real-time applications on commercially available open systems. RT-CRM provides remote real-
time data reflection abstraction

IEEE Transactions on Computers, Vol. 49, No. 11, November 2000.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All

rights reserved.

Copyright(© Mitsubishi Electric Research Laboratories, Inc., 2001
201 Broadway, Cambridge, Massachusetts 02139

MERL — A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

RT-CRM: Real-Time Channel-Based
Reflective Memory

Chia Shen and Ichiro Mizumuma

TR-2000-41 November 2000

Abstract

In this paper, we propose and present Real-Time Channel-based Reflective Memory (RT-CRM)
—a new programming model and middleware communication service for constructing distributed
real-time applications on commercially available open systems. RT-CRM provides remote real-
time data reflection abstraction using a simple writer-push model. This writer-push approach
enables us to easily decouple the QoS characteristics of the writers from that of the readers. This
decoupling is crucial in supporting different kinds of remote data transfer and access needs that
one often finds in distributed real-time systems. We will describe the design of RT-CRM, along
with a set of easy-to-use API to access the RT-CRM service. We have implemented RT-CRM as
part of a larger real-time middleware project, MidART. We address many of the important imple-
mentation issues including buffer management and QoS support. We demonstrate the feasiblity
of RT-CRM through a discussion of our application programming support and performance data.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in
part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies
include the following: a notice that such copying is by permission of Mitsubishi Electric Information Technology Center America; an
acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying,
reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Information
Technology Center America. All rights reserved.

Copyright(© Mitsubishi Electric Information Technology Center America, 2000
201 Broadway, Cambridge, Massachusetts 02139

IEEE Transactions on Computers, Vol. 49, No. 11

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000 1

RT-CRM: Real-Time Channel-Based
Reflective Memory

Chia Shen, Member, IEEE, and Ichiro Mizunuma, Member, IEEE Computer Society

Abstract—In this paper, we propose and present Real-Time Channel-based Reflective Memory (RT-CRM)—a useful programming
model and middleware communication service for constructing distributed real-time applications on commercially available open
systems. RT-CRM provides remote real-time data reflection abstraction using a simple writer-push model. This writer-push approach
enables us to easily decouple the QoS characteristics of the writers from that of the readers. This decoupling is crucial in supporting
different kinds of remote data transfer and access needs that one often finds in distributed real-time systems. We will describe the
design of RT-CRM, along with a set of easy-to-use API to access the RT-CRM service. We have implemented RT-CRM as part of a
larger real-time middleware project, MidART. We address many of the important implementation issues, including buffer management
and QoS support. We demonstrate the feasiblity of RT-CRM through a discussion of our application programming support and

performance data.

Index Terms—Real-time communication service, data distribution, monitor and control, distributed real-time systems.

1 INTRODUCTION

IT is becoming ever more important for both industry and
academia to design distributed real-time systems using
open, standard, commercially available computers and
networks. This is largely due to 1) network and processor
technology advances, 2) cost considerations, and 3) the
desire for easy system integration and evolution. Currently,
there is no network middleware for open standard net-
works and operating systems for real-time applications.
Existing systems are largely proprietary. On the other hand,
socket interface is cumbersome and difficult to use for
application builders. Moreover, real-time applications need
end-to-end quality of service provision. To facilitate the
construction of distributed real-time applications on open
off-the-shelf systems, we must first provide easy-to-use
real-time programming models and services to the real-time
application designers.

In this paper, we propose and present Real-Time
Channel-based Reflective Memory (RT-CRM)'—a useful
programming model and middleware communication
service [14] for constructing distributed real-time applica-
tions on commercially available open systems. The class of
applications we are dealing with are those in which humans
need to interact (e.g., control and monitoring) with
instruments and devices in a networked environment

1. RT-CRM actually should be read as Real-Time and Channel-based
Reflective Memory and is not based on real-time channels [6], although real-
time channels can be one of the underlying communication support to
implement RT-CRM.

o C. Shen is with Mitsubishi Electric Research Labs (MERL), Cambridge
Research Lab, 201 Broadway, Cambridge, MA 02139.
E-mail: shen@merl.com.

e [Mizunuma is with the Industrial Electronics and Systems Lab.,
Mitsubishi Electric Corp., 8-1-1, Tsukaguchi-honmachi, Amagasaki,
Hyogo, 661-8661, Japan. E-mail: mizunuma@con.sdl.melco.co.jp.

Manuscript received 15 Sept. 1997; accepted 6 Mar. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 112758.

through computer-based interfaces. Examples of such
applications include distributed industrial plant control
systems, multimachine surgical simulation systems, virtual

labs, and large telescope control systems.
We have designed and implemented RT-CRM as part of

an ongoing project MidART—Middleware and network A
rchitecture for distributed R eal-Time industrial systems
[10], [8]. MidART provides a set of communication facilities

for building networked real-time applications.
Fig. 1 is an example of the application environment. The

characteristics of the class of distributed real-time applica-
tions for which RT-CRM is designed for and their
implications for the requirements of the underlying real-
time system and communication support are:

1. The most frequent communication and data sharing
patterns are many-to-one communication for mon-
itoring and point-to-point for control. For example, a
LAN-based industrial plant has hundreds of plant
control sensors, but only a handful, usually five to
10, operator stations. Therefore, the dominant type
of data distribution can be viewed as many-to-one in
nature, instead of the common one-to-many multi-
cast model.

2. The monitoring and control interaction between the
operators and the controlled system can be de-
coupled into unidirectional channels, e.g., the data
from one or more physical devices are sent from the
devices to the operator stations, and control data is
sent from an operator station to a device controller.

3. Not all the data need to be periodically broadcast to
all the nodes in the network all the time. Typically,
there are many producers/writers, each producing
their respective, separate data or video, while a
consumer/reader will need data from a subset of
these producers. The members of this subset are not

0018-9340/00/$10.00 © 2000 IEEE

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

High Speed Netwoi

Plant Controllers

MM

Servers

Sensors
and Actuators

Fig. 1. An example industrial plant system with high speed networks.

OPS = Operator Stations.

fixed and will change from time to time, whenever a
reader requests to do so.

4. Human operators choose what data to view and to
review. Historical data are often requested by the
operators. These data enable the operators to review
past activities in the system. This history data should
be retrieved in real-time and with response time
small enough to support interactive display of past
and present sensory information. This characteristic
has two important implications. The first is that this
kind of history data is needed only for the recent
past, but may be requested very frequently. The
second implication is that, since the sensory data are
not immediately “consumed,” we need to support
both the constant data generation and collection
from the devices and the frequent reviewing of
historical data simultaneously.

5. QoS (Quality of Service) in terms of bounded
message delay on sensory data updates and control
message delivery is required. The delay bound
requirements usually range from a few milliseconds
to a couple hundreds of milliseconds.

6. Physical devices, such as controllers, instruments,
and digital cameras, are simple computers with
limited computation and storage capacity, while
operator stations and multimedia servers have the
capability to perform sophisticated functions and
have more memory and disk capacity. This implies
that we need to provide very simple and efficient
data transport and communication services to be
used by the physical devices.

7. Distributed real-time applications are long-lived—
they need support for plug-and-play type of system
construction and evolution.

While most of the current research focuses on real-time
message communication, as examplified in [6], [9], [13],
after analyzing the characteristics of the applications, we

NOVEMBER 2000

have approached the problem from a memory-to-memory
data transfer perspective. This enabled us to devise a useful
real-time distributed programming model and to provide a
set of intuitive middleware services. The concept of
RT-CRM is based on four principles:

e To provide data reflection with guaranteed time-
liness to distributed real-time applications. We
define data reflection as the memory-to-memory data
transfer between remote hosts in a networked
environment.

e To provide flexibility in how, what, and when data
are reflected.

e To keep the information servers (be it an instrument
or device or an industrial plant controller) as simple
as possible—only to perform the necessary data
reflection.

e To enable the construction of a distributed real-time
system in a plug-and-play fashion and to give the
application designer an easy-to-use interface.

RT-CRM supports these principles based on two key
properties: 1) a “writer-push” data reflection model and
2) the decoupling of writers’ and readers’” QoS. The
simplicity of a writer-push data reflection model makes it
easier to provide predictability with flexibility in the fashion
(e.g., synchronous vs. asynchronous) in which the data are
reflected onto remote nodes. This should be attractive to
real-time applications. Moreover, it also supports video
transmission naturally. One should be able to use RT-CRM
for both traditional data/control communication, as well as
multimedia (video, audio, image) communication. The
writer-push model enables many higher level functions,
such as displaying the history of plant monitoring data or
setting control values, to have simple designs where most of
the computation only occurs on the reader’s node.

There has been a lot of real-time research addressing the
issue of providing end-to-end delay guarantee. End-to-end
in a networked environment can mean many things to an
application. We classify end-to-end into three different
levels—Application-to-application (AtA), memory-to-mem-
ory (MtM), and network interface-to-network interface
(NtN). AtA is where the guarantee is provided from the
moment the sending application generates the data to the
moment the receiving application retrieves the data. MtM is
where the guarantee is provided from the moment when
the data is taken from the sending host memory to the
moment when the data is deposited into the receiving host
memory, regardless of when the data is generated by the
sending application and when the receiving application
actually retrieves the data. NtN is simply the network
guarantee from when the data is transmitted from the
sending network interface to when the data is entirely
received by the receiving network interface. We have
discovered that different application scenarios require
different levels of end-to-end guarantee. We have designed

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 3

RT-CRM to allow the application to choose between AtA
and MtM according to its own requirement.”

We implemented the first prototype of RT-CRM over an
ATM LAN with one FORE Systems ATM switch connecting
PCs running QNX on which we emulated sample operator
workstations and plant controllers. Our preliminary per-
formance tests show that RT-CRM incurs very little over-
head and is a feasible solution for real-time plant
monitoring and control applications. Currently, we are also
implementing RT-CRM on a Switched Fast Ethernet-based
system with Pentium Pro PCs running Windows NT 4.0.

The rest of the paper is organized as follows: We discuss
related remote memory systems and their limitations in
Section 2. Section 3 gives the detailed architecture design of
RT-CRM. We have implemented a set of API which provide
programming access to the RT-CRM middleware service.
These APIs and application programming support are also
described in Section 3. In Section 4, we address important
implementation issues of RT-CRM. These include 1) con-
currency control and synchronization and 2) buffer man-
agement schemes and a proof for the minimum number of
buffers needed to avoid locking for readers of the reflective
memory. Section 5 discusses QoS and network interface
support issues that are both closely related to the design
and implementation of RT-CRM. Performance in terms of
end-to-end latency, comparisons with IP via socket inter-
face, and some API overhead are shown in Section 6. The
paper concludes in Section 7.

2 REeLATED WORK ON REMOTE MEMORY SYSTEMS

In this section, we discuss existing remote memory
systems.? In particular, we point out their limitations for
supporting the type of real-time applications under
consideration.

2.1 Why Not Distributed Shared Memory?

Distributed shared memory provides transparent reads and
writes of shared data in a networked environment.
However, we do not need the full semantics of a DSM
system such as those found in the TreadMarks DSM system
described in [2]. Most of the functionalities of a DSM system
are built to provide an illusion of a global virtual memory
and to support concurrent writes on different nodes, e.g., a
read must return the value that is last written. Thus, a DSM
system must implement functions to deal with 1) managing
local process page faults while the physical page last
written is on a remote site, 2) coherency protocols, such as
invalidation for replicated copies, 3) consistency model, e.g.,
sequential consistency, eager, or lazy release consistency.
The distributed real-time application domain does not
require this full set of DSM semantic support. For example,
we do not need the invalidation process at all. Our data in
general is updated either periodically or upon a change of

2. Note that, with a good network interface hardware technology such as
those found in [11], one can narrow the gap between MtM and NtN.
However, this is beyond the scope of our work reported here.

3. DSM, Reflective Memory, and Memory Channels, at some level, are all
systems and protocols which allow reads and writes on physically distant
memories in a networked environment. Thus, we call them Remote Memory
Systems. DSM is a higher level protocol than both Reflective Memory and
Memory Channels, but still provides remote memory services.

value. In either case, the reader usually can read the latest
copy on its local processor. Synchronization only needs to
occur when the local copy is being actually updated. More
importantly, full DSM support will magnify many worst
case delay bounds for data updates where multiple writers/
multiple readers issue writes and reads. In a real-time
system, we must consider this worst case delay.

2.2 Why Not Reflective Memory?

Hardware supported reflective memory, such as what is
provided by SCRAMNet of VME Microsystems, Inc. [16],
replicates (or reflects) data in all nodes of the network in a
bounded amount of time (e.g., lusec/node latency). These
reflective memory systems, based on a ring topology, can
only support a limited physical memory size, typically 1 to
16 MByte, and a limited number of nodes (up to 256). These
hardware reflective memory systems are very expensive.
Since we do not need to distribute data to all the nodes all
the time, reflective memory will greatly limit the amount of
actual memory we can support. For example, for an N-node
system, we need K x N system memory, assuming each
node needs to reflect data of size K.

2.3 Why Not Memory Channels?

Memory Channel is a hardware-software combined tech-
nology from Digital Equipment Corp., originally licensed
from Encore Computer Corp [7]. It is designed for low
latency high performance clustered parallel computing and
is in the middle ground as far as performance and
scalability are concerned between symmetric multiproces-
sors and ATM. A Memory Channel is shared. Reads and
writes on a Memory Channel are supported directly by
DEC’s PCI-MC adaptors. For writes, the adaptor can send
writes to a single node, or multiple nodes, on a per page
basis. Reads are supported via nonswappable physical
memory—the adaptor can DMA incoming data with a
known shared address space map into the corresponding
physical memory.

Memory Channel can only support a limited number of
nodes (up to eight AlphaServers) and a limited distance
(three-meter link from the Memory Channel Hub to a
server). Although Memory Channel is a useful concept, we
need to support, potentially, up to hundreds of nodes in a
network and we need data updates (i.e., data reflection)
with specifiable time bounds and frequency.

In summary, our Real-Time Channel-based Reflective
Memory is much more flexible compared with either
hardware supported reflective memory and memory
channels or software supported distributed shared mem-
ory. In hardware supported reflective memory, the data is
reflected immediately in a bounded amount of time to other
nodes as soon as the writer application deposits its new
data. In distributed shared memory, the new data is made
available to other readers or writers with one of two
methods: either upon data release or upon data acquisition.
There is no time constraint guarantee associated with either
of these methods. In RT-CRM, we allow the reader
application to specify when it wants the data to be reflected
and we guarantee the timeliness of this reflection using a
real-time writer-push model.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

Writer’s Node Reader’s Node

Reflective

RT-CRM Components

DPA-thread_0

NOVEMBER 2000

TR

DPA-thread

Writer’s
thread

Reader’s thread i

Fig. 2. RT-CRM high level architecture.

'
Writer's 1
thread /’

3 RT-CRM: DESIGN, API, AND APPLICATION ,
PROGRAMMING SUPPORT '

’
connect
’

PA_threads

DPA-thread;

3.1 Overview of RT-CRM [croaion]

In Real-Time Channel-based Reflective Memory (RT-CRM),
we combine the benefits from 1) Reflective Memory (i.e.,
updates propagated in bounded amount of time), 2) Mem-
ory Channel (i.e., hardware assisted, virtual connection-
based memory to memory transfer of data), and 3) open
standard high speed networks such as ATM and Fast
Ethernet. The unidirectional access pattern and bounded
update reflection time of the applications require reflective,
rather than shared, memory semantics. To eliminate the lack
of scalability problem in traditional Reflective Memory, we
use the concept of channels.

In a distributed real-time monitoring and control system,
we require applications to specify, at memory channel
establishment time, 1) who needs the data, and 2) when or
how often a reader needs the data. The schedulability or
admissibility of read and write operations can be deter-
mined. This allows RT-CRM to use a writer-push (vs. a
reader-pull) underlying model in which data produced
remotely will be actively pushed through the network and
written into a reader’s memory without the reader explicitly
requesting the data at run time.

Fig. 2 depicts the high level architecture of RT-CRM.
RT-CRM is an association between a writer’s memory and a
reader’s memory on two different nodes in a network with
a set of protocols for memory channel establishment and
data update transfer. A writer has a memory area where it
stores its current data, while a reader establishes a similar
memory area on its own local node to receive the data
reflected from the writer. Data reflection is accomplished by

a data push agent thread, a DPA-thread, residing on the
writer’s node and sharing the writer’s memory area. This 5
agent thread represents the reader’s QoS and data reflection '
requirements. A virtual channel is established between the

agent thread and the reader’s memory area through which

the writer’s data is actively transmitted and written into the

reader’s local memory area. In this architecture, we support
the following features:

o

A reader memory area may be connected to multiple
remote writer memory areas sirnultaneously. How-
ever, at any moment, only one writer is permitted to

write into the reader’s memory area via the
associated agent thread.

i

oo QoS Mapper
memory arca
/\/ T LCAC GCAC [%_ 7| LCAC GCAC
N _A“’ﬂm p
High Speed Network \\ Writer's Node , N Reader’s Node
N
IR S —C \

RT-CRM
receiver thread

r~_Local ReMA

Readerf's thread T_r
i

Z .
id w_name size” QoS rcader ids

R ~| Detach

Global reflective memory area definition table

3.2 Detailed Design of RT-CRM

Fig. 3. Reflected memory area, threads, and system tables in RT-CRM.

A writer memory area may be connected to many
remote reader memory areas simultaneously. There
can be many data push agent threads representing

many readers associated with the same writer
memory area.

These features enable us to satisfy the application
requirements described in Section 1, yet minimize the
complexity of the design on the writer’s node. The writer
only needs to deposit its data into the designated memory
area, while all the other more complicated operations and
QoS support are handled by the data push agent threads
and the readers. In essence, RT-CRM is a distributed
programming service provided in MidART. Many other
more sophisticated or useful application functions, such as

histories of data, continuous video, and video alarm, can be
built on top of this service.

Fig. 3 illustrates the key components and operations of
RT-CRM. Discussions throughout this section will refer to
the figure. A RT-CRM consists of:

a writer thread that updates the reflective memory
area periodically according to the writer’s QoS,

a reflective memory area (ReMA) owned by the
writer node,

a set of QoS parameters,
a semaphore (sem) with priority inheritance,

one or more data push agent threads, DPA_threads,
one for each reader connection, defined by readers
QoS parameters,
one or more receiver threads on the reader’s node if
direct memory access from a network interface if not
available, and

a set of one or more readers, each of which has a
local copy of the ReMA.

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 5

Note that the writer and the reader threads are
applications threads, thus they are not really part of
RT-CRM.

3.2.1 Creation

We allow a ReMA to be created by either a writer or a
reader. This flexibility is necessary to support a LAN-based
real-time application where nodes may join and leave
dynamically and new data may be requested to be added
into the system by any node. At creation time, each
reflective memory area is associated with a global id, a
size, QoS in terms of update period/frequency, and a
semaphore for read-write conflict resolution on the writer’s
node. This information is initialized in the reflective
memory area definition table. The table is a network-wide
global table, allowing all potential readers and writers to
know what the QoS/period of the writer is for this reflective
memory area. DPA-threads are created when readers
request attachment to this reflective memory area. In the
case when a ReMA is created by a reader, the QoS will be
replaced by a writer’s QoS later. The global definition table
will be updated when other information regarding a
particular ReMA becomes available.

3.2.2 Mapping and Attachment

Once created, a reader can “attach” itself to a ReMA by
allocating a corresponding reflective memory area on the
reader’s local node and associating these two remote
reflective memory areas. The reader’s real-time data
reflection requirement is specified as a) periodic (with or
without a deadline), b) upon every data update, or
¢) conditional (i.e., when some condition X becomes true).
The reader’s period or minimum interarrival time must be
greater than or equal to the update period of the writer’s
reflective memory area. The attachment to an ReMA
includes the following actions:

1. The reader specifies its data reflection QoS require-
ment (i.e., type a), b), or c) as described above).

2. The reader also specifies the number of past data
copies (i.e., history) H it requires.

3. Upon receiving a reader’s request, the following
must be done:

3.1. The schedulability on both the reader’s and
writer’s nodes must be examined by LCAC and
GCAC (Local and Global Connection Admission
Control). LCAC on the reader’s node examines
whether the data reflection QoS requested by
the reader can be scheduled on the reader’s local
CPU. Similarly, the LCAC on the writer’s node
must check the schedulability of the DPA-thread
with the QoS requested by the reader on the
writer’s CPU. The reader’s QoS must be equal to
or less strict than that of the writer’'s. Mean-
while, GCAC examines the schedulability of the

4. This network-wide global table is only a logical design. To address
bottleneck and reliability issues, the actual implementation can be
distributed—one option is for each node to keep a local copy of the table
and a separate control channel is set up such that table updates can be
broadcast to all nodes. Since table updates do not occur frequently, this will
not result in wasted usage of network bandwidth.

data reflection QoS requirements on the net-
work. The attachment of a reader to a ReMA can
be admitted into the system only when both
LCAC and GCAC are successful. We discuss the
algorithms used for LCAC and GCAC in
Section 5.

3.2. Sets up a connection between the reader and the
writer according to the reader’s QoS.

3.3. Allocates a circular buffer area of size = N *
the size of one reflective memory area. This
circular buffer is shared (or mapped to)
between the application and the network
interface (where the network interface sup-
ports direct memory access [11] by the inter-
face card) or between the application and an
RT-CRM receiving thread (where the network
interface does not support direct memory
access by the interface card). Note that this
set of N buffers is allocated on the reader’s
machine. (How to determine the minimum
value of N will be described in Section 4.2.)

3.4. Creates a data push agent thread, DPA_thread,
on the writer’s node on behalf of the reader. This
thread will either be a periodic thread or a
thread waiting on a signal. Once activated
(either periodically or upon an update signal),
this DPA_thread will lock and read the reflec-
tive memory area, unlock, and transmit the data
over the established VC.

Similarly, a writer can “map” itself to a ReMA. If the
ReMA has been created by a reader, this mapping includes
allocating a corresponding reflective memory area on its
own node.

Since a reader’s real-time data reflection requirement can
be specified as a) periodic, b) upon every data update, or
¢) conditional (i.e., when some condition X becomes true),
DPA_threads can also be of three types, respectively.
DPA_threads of type a) are asynchronous with respect to
the writer’s thread, while DPA_threads of type b) and c) are
synchronous. If the reader requires data reflection of
types b) or c), the corresponding DPA_thread may be
signaled whenever the writer thread completes a write
operation in the reflective memory area. Since the periodic
writer thread is an application thread, it should only do the
write operation in a critical section and then release the
lock. Whether the writer thread should evaluate conditions
to activate any DPA_threads (for type c) data reflection)
depends on the specific application. For example, if the
writer is associated with an operator’s command task, then
the writer thread should wake up the DPA_thread to
transmit the operator’s commands. On the other hand, if the
writer is a periodic sensor, there may be many DPA_threads
reading/waiting on the associated reflective memory area.
Then, we do not want to force the writer’s thread to take the
responsibility of evaluating conditions and signaling all the
waiting DPA_threads.

3.3 Support for Application Programming

Our design of the RT-CRM with an underlying writer-push
model and the DPA-threads allows us to decouple how

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

TABLE 1
S = Synch., A = Async., B = Blocking, N = Nonblocking, AtA = Application-to-Application, MtM = Memory-to-Memory

| Combination | Data Transmission

| Delay Bound Required | Application Example |

SB Sporadic AtA Command issuing
AB Periodic AtA Trend graph

SN Sporadic MtM Plant data

AN Periodic or Sporadic MtM Video or file transfer

data is updated on the writer’s node from how the data is
reflected to the reader. Given a reflective memory area,
since a DPA-thread is a separate thread of control from the
writer’s application thread, the DPA-thread can either push
the data to the reader’s node synchronously or asynchro-
nously with respect to the write operations conducted by
the writer’s thread. In particular, RT-CRM supports the
following types of data push and read operation modes:

e Data Push Operations:

- Synchronous Data Push: Pushes are triggered by
application writes.

When the writer’s application thread does a
write in the reflective memory area, the
DPA-thread sends/pushes the contents of the
reflective memory area to the reader/receiver
immediately or conditionally. This can be
implemented with a signal to the DPA-thread
from the writer’s thread.

- Asynchronous Data Push: Pushes are performed
periodically.

The DPA-thread sends the contents of the
reflective memory area to the reader periodi-
cally, i.e., with independent timing from that of
the writer’s application.

e Read operations:

- Blocking Read: Application reads block while
awaiting the arrival of a data update from the
writer’s node. When the new data is received,
the reader application thread is signalled.

- Nonblocking Read: Application reads return the
current contents of the reflective memory area.
That is, the reader’s application thread will not
be notified upon the arrival of data update
messages.

With this set of data push and read operation modes, we
can support at least four combinations for application
programming, as listed in Table 1. In the table, the
Combination column lists the possible data-push and read
operation mode. With respect to each type of Combination,
Data Transmission shows the corresponding traffic that will
be generated into the network, Delay Bounds defines what
level end-to-end QoS guarantee RT-CRM must provide, and
Application Example gives the potential usage of the
Combination. For example, to implement remote operator
command issuing, one can use the combination of SB, i.e., as
soon as the operator enters a control command, the
corresponding DPA-thread will be signaled to push the
command data to the appropriate plant controller, while

blocking read is used on the plant controller computer to
receive the remote command. This combination provides
Application-to-Application delay guarantee. On the other
hand, one can imagine situations where only Memory-to-
Memory delay guarantee is required. In these cases, the
application designer can choose the nonblocking read
mode.

3.4 Application Programming Interface

We provide 16 basic interface functions for applications to
access RT-CRM services. Table 2 lists the API of RT-CRM.
Most of the API are intuitive. Below, we discuss a few that
contain special features.

CRM_Create creates a reflective memory area entry in
the global reflective memory area definition table. A
globally unique id for this reflective memory area is
returned in m_id. The value of m_mode can be either
shared or exclusive. If m_mode is set to shared, more
than one local thread can map this reflective memory
area into its address space and thus become the writer of
the reflective memory area. To allow different threads to
map to the same memory area will allow the application
threads to be upgraded/modified/replaced at any time
without having to reestablish network connections or to
recreate DPA-threads. In this way, RT-CRM can become
the plug-and-play interface points. Also, allowing more
than one local asynchronous threads to access/write into
the same memory area provides flexibility to writer
applications. If two application threads want to reflect
their values to the same reader, they can do so. On the
other hand, there might be applications that would like to
restrict the number of writers of a reflective memory area
to be only one for security or safety reason. Then, the
value of m_mode should be set to exclusive.

If the reflective memory area has not been created yet
(this would be the case if the ReMA has been created by a
reader), CRM_Map creates a reflective memory area of m_H
buffers, with each buffer equal to the size specified in the
global reflective memory area definition table, then maps
the reflective memory area pointed to by *m_addr to the
calling thread. If the reflective memory area already exists,
then the calling thread must reside on the local node where
the reflective memory area is allocated and this memory
area must have been created with the the value of m_mode
equal to shared. With this library function, we allow a
reflective memory area to have more than one local writer
thread.

As we described at the beginning of the paper, usually
an operator would like to be able to monitor a subset of
the controllers and devices in a system and, at times,

TABLE 2
RT-CRM Application Programming Interface

//* Creates a reflective memory area by making an entry
in the global reflective memory area definition table. *//
CRM_Create(int m_size; int m w_period; void
*m_addr; int m_mode; int m_id)

//* Removes the reflective memory area identified by m_id.
It also terminates all of the DPA-threads and the net-
work channel connections to the readers associated with
this memory area. *//

CRM_Destroy(int m_id; void *m_addr)

//* Allocates a reflective memory area of m_H buffers. Maps
the reflective memory area pointed to by *m_addr to the
calling thread. This memory area must have been created
with the the value of mmode equal to shared. *//
CRM_Map(int m_id; void #*m_addr; int m_H)

//* Tears down the mapping between the calling thread
and the reflective memory area. *//

CRM_Unmap (int m_id)

//* Allocates a reflective memory area ofm H number of
buffers if *m_addr is null. Attaches a reader’s thread to the
reflective memory area and establish network connections
with the writer’s ReMA. *//

CRM_Attach(int m_id; int mH; int m r_period; int
m_deadline; void #*m_addr; int DR-FLAG)

//* Detaches a reader thread from the reflective memory
area by removing the associated DPA-thread and its con-
nection. *//

CRM_Detach(int m_id)

//* Activates the associated DPA-thread on the writer’s
node for the calling reader thread. *//

CRM_Start(int m_id)

//* Fills the reader’s buffers with existing data from the
writer’s buffers. *//

CRM_StartInitH(int m_id; void #*m_addr)

//* Halts the reflection of the memory area by suspending
the associated DPA-thread. *//

CRM_Stop(int m_id)

//* Read a single memory buffer. By definition, it will be
the most recent available data. *//

CRM_Read (int m_id; void *m_addr)

//* Read h buffers counting back from the most recently
updated buffer. *//

CRM_ReadH(int m_id; void *m_addr; int h)

//* Read all available data in the buffers. howmany returns
the number of data buffers read. *//

CRM_ReadAll(int m_id; void *m_addr; int howmany)
//* Writes the data pointed to by *m_data into the memory
area pointed to by *m_addr. *//

CRM_Write(int m_id; void *m_addr; void *m_data)
//* Locks the memory area for exclusive use. Priority
Inheritance must be enforced here. *//

CRM_Lock(int m_id)

//* Releases the lock of the memory area after exclusive
use. *//

CRM_UnLock(int m_id)

//* Resets all the contents of the reflective memory area.
*//

CRM_Reset (int m_id)

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 7

operators switch the membership of this subset. In
particular, to optimize the usage of memory, we would
like to use the same memory buffer on the reader’s node
to potentially receive data reflected from different writers.
The API functions CRM_Attach, CRM_Start, CRM_Stop,
and CRM_StartInitH support this flexibility. With
CRM_Attach, a reader can use the same local memory
area to attach to different remote reflective memory areas.
When the reader needs to switch from the data reflected
from one writer to that of another, CRM_Stop will halt the
reflection of a memory area by suspending the associated
DPA-thread on the current writer’s node and CRM_Start
will activate the associated DPA-thread on the other
writer’s node for the calling reader thread. Then,
CRM_StartInitH will fill the reader’s buffers with
existing data from the new writer’s reflective memory area.

4 IMPLEMENTATION ISSUES

In this section, we address a few important implementation
issues. These include concurrency control for read and
write operations to the same reflective memory area, buffer
management schemes, and QoS guarantees.

4.1 Concurrency Control and Synchronization

For predictability, we strictly impose writer-push for
updates. Reflective memory has always been writer-
pushed. This also is useful for video transmission. All
locks/semaphores are local. All read operations are local in
nature, even though the writer/owner of the reflective
memory area is remote. That is, we do not need to deal with
remote reads and page faults. Each reader has an agent
thread on the writer’'s machine representing the reader,
called the data push agent thread (DPA-thread). This thread
performs the read locally on the writer’s machine and then
sends the read value via the network into the reader’s
address space on the reader’s machine.

On a writer’s node, two alternative methods for con-
currency control are used. If the data item to be reflected is
of size less than or equal to one word (32 bits) and the writer
node is a single CPU machine, then we can safely allow the
write and reads to occur concurrently. This is actually quite
often the case in real-time monitoring and control applica-
tions, where the sensor data is generally some integer
number. On the other hand, if the application is dealing
with more complicated data, we use lock-based concur-
rency control between the writer's thread and all the
readers’ DPA-threads for potential read-write conflicts.
One single semaphore is used for one-writer-multiple-
reader access of a particular reflective memory area on the
writer’s machine. The semaphore state should be set to
priority inheritance to avoid unbounded wait of the writer
when one or more readers are waiting simultaneously for
the semaphore. This way, we can ensure that the writer will
not block more than one reader’s critical section since the
writer has a higher priority than all the other reader
threads. For scalability, reads with the same QoS should be
grouped together as one read operation.

On the reader’s node, no locking is needed. Concurrency
control is done via sufficient buffer replication as described
below.

Writer’s Node Reader’s Node

data area local copy
N =H + 2 buffers
Hach buffer size = DS

DPA-thrcad_0
data arca
size=DS | T m

write-pointer

O
Reader’s thrcad Tr

T r 1
¢ Py)

Fig. 4. Terminology illustration for buffer management.

4.2 Buffer Management on Reader Nodes

In this section, we describe the details of how the buffer
space on the reader’s node is managed in RT-CRM for
correct and efficient data reflection.

4.2.1 Overview

Upon a reader’s request to attach to a specific reflective
memory area D, we allocate a circular buffer area of size =
N« DS that is shared (or mapped) between the reader
application and the network interface (or a message
receiving thread), where DS is the size of the reflective
memory area D. (See Fig. 4.) This set of N buffers is
allocated on the reader’s machine. Among the set of QoS
parameters provided by the reader for its reflective memory
area attachment, the amount of past data history required
by the reader is specified by H. The value N is calculated
from H. If the reader needs a maximum H of past data, N
will be equal to H + 2. For example, if the reader only needs
a single copy of the reflective memory area (i.e., the most
recent available data), N will be equal to 3. This buffer
allocation scheme simplifies the design—we do not need
locking on the reader’s node. A write-pointer is used that points
to the next buffer area in the circular buffer into which that
the next new incoming data will be written. Then, the
reader application can always read the buffer area until it
reaches the buffer just before the write-pointer. This design
also supports history or other types of higher level
applications (e.g., video transmission) that need to read
more than one buffer at a time.

The design of the buffer management for RT-CRM
includes a proof of the minimum value for N and a
concrete design that uses only the minimum number N of
buffers, including the specification of a set of primitive
operations for reading and writing the buffers, and the
implementation details of a set of basic APL. These are
described in the following sections.

4.2.2 Minimum Value of N

Locking restricts concurrency and also is an expensive
operation, especially if it is required for every read and
update operation. Thus, we would like to avoid using locks
as much as possible in our design. In this section, we prove
that N = H + 2 is the minimum number of buffers that is
necessary and sufficient to avoid locking each buffer for
concurrent reads and/or updates on the reader’s machine
under the assumptions discussed below. Since MidART is a

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

NOVEMBER 2000

distributed real-time system, to prove the minimum value
for N, we must reason about the worst case scenario
between the reads and updates, taking into consideration
the minimum interarrival time of the reads and the updates,
as well as the worst case network jitter that the update
messages will incur.

Terminology, Assumptions, and the Worst Case Sce-
nario. DPA_thread; is a thread on the writer’s machine to
reflect data to the reader according to the reader’s QoS.
Thus, DPA_thread; will transmit a data update message ML"
to the reader’s node either periodically or with a minimum
interarrival time. Let P be the period or the minimum
interarrival time of the messages from DPA_thread; for an
application reader thread 7;. Remember that P has already
been guaranteed for DPA_thread; when DPA_thread; was
created at the time the reader attached itself to the reflective
memory area. Let C] be the worst case computation time of
the operations in thread 7} that 1) calculate the index to a
buffer to be read next and 2) read the buffer. Thus, with
respect to the particular circular buffer used by 7 on the
reader’s node, P is the period of the writes.

We assume that C} < P. This is a very reasonable
assumption since reading the contents of a local data buffer
should require less time than the time required to
1) transmit the same amount of data over the network
and 2) writing the data into the data buffer.

Due to network queuing and packet scheduling jitter,
any data update message MF from DPA_thread; can

max
k
minimum network delay of D;\”[‘L" If]V[,L-’" incursMb iy
M!+! only incurs D, then the two updates from M and
M1 will be back-to-back, i.e., MF will update the data buffer
at the end of the current P while M**! will update the next

data buffer at the beginning of the next P}. This is the worst

and a

max

experience a maximum network delay of D
and

case scenario we must guard against when a reader is
reading a buffer to avoid race conditions.

We prove the following theorem for the minimum
number of buffers needed to allow concurrent reads and
writes into the circular buffer without locking.

Theorem 1. N = H + 2 buffers are necessary and sufficient to
ensure that concurrent reads and writes are not issued to the
same buffer.

Proof. We will prove for the case of H =1 since it implies
the general case for all H > 1. That is, we will prove for
N =3.

Necessary: Since we need at least two buffers to
accommodate the worst case when updates from two
messages MF and M!*' arrive back-to-back from the
network in any two consecutive P/ periods, we must
have a third buffer for reading concurrently. Thus, the
necessary part is obvious.

Sufficient: Let the buffers be indexed by I = {1, 2,3}
and a write-pointer always points to the buffer that is
either currently being updated or is the next buffer to be
updated if no update operation is in progress. Assume
that reads and writes always proceed from buffer I to
buffer (I + 1) mod 3. In this protocol, the read starts at
(write-pointer + 2) mod3.

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 9

Suppose that the current write-pointer is pointing to
buffer 1 and a read starts in buffer 3. Since we know that
C] < P!, then even in the worst case when a back-to-back
update occurs—as soon as the read starts, the write into
buffer 1 completes and the write-pointer is incremented to
buffer 2—we are still guaranteed that the read in buffer 3
will finish before the write to buffer 2 can complete.
Thus, N = 3 is sufficient. O

4.2.3 A Design with N = H + 2 Buffers
In this section, we first give a concrete design of a circular
buffer with a set of associated primitive operations. Then,
we will show how to use the design to implement the
associated API functions in RT-CRM.

We define a circular buffer area as a memory area
allocated on the reader’s node and consisting of (see Fig. 5):

e N reflective memory area buffers, each reflective
memory area buffer is of size DS, where N > 3,

e an index I for each buffer, where I = {1,2..., N},

e a write-pointer that always points to the buffer which
is either currently being written into (i.e., being
refreshed) or is the buffer to be written into next if
there are no write operations in progress, and

e a read-pointer that points to the buffer that is
currently being read.

Below is the set of protocols for primitive read and write

operations that must be followed.

e All read and write operations are always performed
in the direction of increasing values of / mod N.
e Start read

- If T is the index of the buffer that the write-
pointer is pointing to, then the start read
operation will return the buffer indexed by I,
where

it N >3

I' > (I4+2)mod N
= if N=3.

(I 4+2)mod N

e Stop read

The read operation always stops at the buffer
indexed by I"” = (I — 1) mod N, where I is the buffer
pointed to by the write-pointer.

Note that if only the most recent data is to be
read, then Start read will be the same as Stop
read. In the case of N = 3, one should notice that
(I +2) mod N is the same as (I — 1) mod N. Thus, for
N =3, we always read the buffer that is two away
from the write-pointer. However, when N > 3, we
must use the calculation in Stop read for reading
only the most recent data buffer.

o Write

- Write the new data into the buffer I pointed to
by the write-pointer and move the write-pointer
forward such that I = (I + 1) mod N.

Algorithms M_Read, M_Read_History, and M_Read_All
implement the API functions CRM_Read () ,CRM_ReadH (),

Algorithm M_Read

begin

Read write-pointer I;
Read buffer ((I-1) mod N);
end

. Start readStop read

Implementation <— write-pointer

of
CRM_Read

) writer’s direction

Fig. 5. Reading the most recent reflective memory area.

and CRM_ReadAll (), respectively. The algorithms are
presented in pseudocode shown in Figs. 5, 6, and 7. In Figs. 6
and 7, t_0 is the time when the read operations start and t_e
is when the read operations complete.

5 DISCUSSION

Although we do not directly address the problem of
network interface design and the problem of QoS guarantee
algorithms for the host system and the network in this
paper, these are issues that closely influence how RT-CRM
achieves its goals.

5.1 Network Interface Support

The RT-CRM architecture on the reader side can be
implemented in two ways, depending on the type of
network interface hardware and software available.

1. With direct memory deposit capability from the
network interface, such as those discussed in [11],

Algorithm M_Read_History
begin
Read write-pointer I;
I'=((I+ 2) mod N) + (H-h);
fori=1toh do
Read buffer I’;
r=7r+1;
end

o~ Stop read(t_e)

~— write-pointer(t_0)

Implementation

of
CRM _ReadH) writer’s direction
" Start read(_0)
(Suppose h =H)

Reader’s direction

write-pointer(t_e)

Fig. 6. Reading a history of size h.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

Algorithm M_Read_All
begin
Read write-pointer I;
I'=(+ 2) mod N;
while I’ not equal to ((T - 1) mod N) do
Read buffer I’;
r=>r+1i;
end

Implementation <— write-pointer(t_0)

of
CRM_ReadAll . N
e writer’s direction

Start read(t_0)

\
’\ /'eader’s direction

Stop read(t_e)
(Return avail =H + 3)

write-pointer(t_e)

Fig. 7. Reading all available history up to now.

we do not need a receiving thread in the middleware
on the reader’s node. Upon receiving a message with
the newly updated data from a DPA-thread, we can
identify the memory area/buffer address into which
the data update message should be written and do
the correct calculation for the circular buffer indexes,
as described in Section 4.2. This will no doubt
provide a much more efficient and low latency data
reflection path.

2. Without any direct memory deposit facility from the
network interface, we will need to create a receiving
daemon or driver thread on the reader’s node. This
daemon thread will be mapped into the same data
area circular buffer memory as our application
reader’s thread. This is our current implementation
since we do not yet have any network interface with
direct memory deposit capability available.

5.2 End-to-End QoS Support

Although real-time task scheduling in the host system, as
well as network message transmission scheduling, is
orthogonal to the issues that RT-CRM addresses, RT-CRM
relies on these underlying end-to-end scheduling mechan-
isms to guarantee the timeliness of the data push opera-
tions. There is a large body of research results on the subject
of real-time task scheduling and real-time message com-
munication. In particular, for the first target network for
RT-CRM, ATM, we used ATM traffic class CBR, which
provides a constant cell rate service and bounded cell
delay variation. Real-time communication can be sup-
ported by this traffic class with appropriate network
switch scheduling [1], [17]. For scheduling the DPA-
threads, writers as well as readers in the host systems, we
used rate-monotonic scheduling algorithms [5], [12] with
operating system support on QNX. In our current
implementation on Windows NT 4.0 over Fast Ethernet,
the end-to-end support is achieved via 1) explicit rate

NOVEMBER 2000

control of the amount of communication at the sending
nodes and 2) user-level dual priority scheduling of real-
time threads in Windows NT [15].

Moreover, in scheduling a writer thread and the DPA-
threads associated with the same writer’s reflective memory
area, we use a Writer-QoS based correctness model—the
writer has higher priority over readers (i.e.,, the DPA-
threads). This is because the writer is usually constrained by
either the physical plant control components (e.g., sensor
sensing rate) or the operator’s command issuing timing
constraints. In either case, it does not make sense to give the
writer a lower priority than the readers.

6 PERFORMANCE EVALUATION

6.1 Performance over ATM with Real-Time
Operating System Support

We have implemented the first version of RT-CRM on an
ATM-based LAN environment. The host systems are
Digital’s VENTURIS FX (Pentium 133Mhz, PCI bus) PCs
running QNX real-time operating system version 4.23. Since
our version of QNX does not support POSIX threads, we
implemented all the DPA-threads as processes. The net-
work interface cards on the PCs are FORE Systems PCA-
200ePC for PCI bus. We used one ATM switch, FORE
Systems ASX-200BX, to connect the host systems. Since
current ATM software does not support CBR and rt-VBR
traffic classes in switched virtual channels, our implemen-
tation used PVCs. We would like to eventually implement
RT-CRM using native ATM, but again, currently for the first
version, we must live with available commercial ATM
software which only supports IP interface.

We focused our performance tests on two aspects of
RT-CRM. One is how much overhead RT-CRM really incurs
compared with raw UDP/IP. The other is the delay in
switching from one writer's ReMA to another writer’s
ReMA for a reader. Table 3 lists the tasks and the
parameters we used in all of our experiments reported
here. All the writer tasks and the DPA tasks reside on one
host, while all the reader tasks reside on a remote host. The
priorities of tasks are such that a higher number indicates a
lower priority. Since it is very difficult to measure the
overhead for one-way communication in a LAN environ-
ment without sychronized clocks, our measurements are all
round-trip times. To do this, we must use synchronous data
push operation mode and blocking read, as described in
Section 3.3. In particular, our overhead measurements were
all done with respect to writer #5, DPA #5, and reader #5 in
Table 3. In the performance results shown below, for each
data message size, we did 100 runs on an unloaded system
and network and extracted the minimum, the maximum,
and the average latencies.

Table 4 shows the performance of round-trip latency
RTT. To compare the round-trip latency of RT-CRM with
that of raw UDP/IP, each measurement includes the time
executing the following steps:

e Wiriter #5 starts a timer and writes into the ReMA on
its own local node.

e Writer #5 signals DPA #5.

e DPA #5 sends data to the reader host.

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 11

TABLE 3
Task Parameters

| Tasks | Period (sec) | Priority | Mode |

writer #1 1.00 19

writer #2 0.50 21

writer #3 0.20 23

writer #4 0.10 25

writer #5 0.05 27

DPA #1 1.00 20 | ADD
DPA #2 0.50 22 ADP
DPA #3 0.20 24 ADP
DPA #4 0.10 26 ADP
DPA #5 28 | SDP

reader #1 1.00 19 NBR

reader #2 0.50 19 NBR

reader #3 0.20 19 NBR

reader #4 0.10 19 NBR

reader #5 19 BR
receiver 29

ADP = Async data push, SDP = Sync data push, NBR = Non-blk read,
BR = Blocking read.

e A receiver task on the reader host receives the data
and deposits into the ReMA.

e Reader #5 reads the data and sends an acknowl-
edgment back to the writer’s host to stop the timer.

The worst-case and average round trip time RTT in
Table 4 is almost proportional to messsage size. And, more
importantly, most of the RTT is the overhead of IP/UDP
itself. RT-CRM itself incurs very little extra overhead.

Table 5 shows the total latency in switching from one
writer’s ReMA to another writer’'s ReMA for a reader. This
switching incurs two round-trip overhead cost. It requires a
reader to send stop control signal (using the CRM_Stop call)
to the current writer and, upon receiving an acknowl-
edgment, the reader sends a start signal (i.e., CRM_Start
call) to a different writer. Only after receiving the newly
reflected data from the second writer do we stop the timer
for measurement. This experiment tells us whether
RT-CRM can support interactive RT-CRM memory channel

switch for plant operators. In this experiment, the reader
makes a request to switch from writer #4 to writer #5 every
1.01 sec. We used such a period in order to avoid phasing
problems between the switching requests and write opera-
tions in the writer node. Strictly speaking, the performance
numbers shown in Table 5 really includes the waiting time
for the next period of writer #5 and, therefore, we should
expect a difference between the min and max of about 50
msec (i.e., the period of writer #5). Thus, the min values
should be very close to the pure switching time of RT-CRM.
Remember that the latency requirement for this switching
operation in our application domain is the actual inter-
activity requirement of the human operator with the
machines. The min values are definitely sufficient for
human operator interactivity requirement.

6.2 Performance over Fast Ethernet with
Windows NT

The objective of our performance tests is to characterize and
validate our current implementation. In particular, we are
interested in the following three aspects about our
implementation: 1) measure the application-to-application
latency introduced between the writer and the reader of a
ReMA, 2) determine the overhead that RT-CRM incurs
compared with raw UDP/IP, and 3) measure the overhead
costs of certain non-real-time API calls involved in the
creation/destroy of reflective memory areas.

The performance experiments discussed below were
conducted using two single CPU Pentium Pro 160MHz PCs
with 32MB of RAM running Windows NT 4.0. We used an
Eagle FastEthernet switch from Microdyne to connect the
two machines.

6.2.1 Latency

To determine the latency introduced by RT-CRM, we again
measured the application-to-application round-trip time
(RTT) of a write event. For all of the experiments described
in this section, each data point is the result of 1,000 runs on
an unloaded system and network.

In our first experiment, we create a writer thread at one
node and a reader thread at the other node. The reflective
memory area is attached under a synchronous data push
operation mode and blocking read mode. The period for the
writer is 50 milliseconds. Figs. 8 and 9 show the average and

TABLE 4
Round Trip Latency

| msg size (byte) | UDP(avg) | UDP(max) | RT-CRM(avg) | RT-CRM(max) | ratio(avg) | ratio(max) |

1 2.710293 3.300402 2977183 3.337278 1.10 1.01
512 3.172350 3.742914 3.545074 4.047141 1.12 1.08
1024 3.571846 4.572624 4.097753 5.319363 1.15 1.16
1536 3.895765 4.526529 4.516572 5.116545 1.16 1.13
2048 4.268332 5.678904 5.723155 7.153944 1.34 1.26
2560 4.660573 5.807970 5.806402 6.785184 1.25 1.17
3072 4.878141 6.075321 6.586975 8.121939 1.35 1.34
3584 5.190481 6.324234 6.737245 8.002092 1.30 1.27
4096 5674294 7.052535 7.611298 10.666383 1.34 1.51

ratio - RT-CRM/UDP. Time is in msec.

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 11,

TABLE 5
ReMA Switching Latency

| msg size (byte) | max | min | avg |

1 59.103009 | 9.136029 | 34.579086
512 58.420803 | 10.168557 | 34.222680
1024 60.126318 | 10.242309 | 35.609863
1536 62.495601 | 10.306842 | 36.405831
2048 60.089442 | 11.035143 | 35.974197
2560 61.675110 | 11.579064 | 36.941271
3072 62.255907 | 12.252051 | 37.623661
3584 61.739643 | 12.288927 | 37.094951
4096 67.298700 | 12.740658 | 38.838356

Time is in msec.

maximum RTT, respectively, for different message sizes
and Windows NT priority classes assigned to threads
involved (DPA, receiver, writer, and reader). The priority
classes are: Real-Time, High, and Normal. For each
performance curve, all the threads involved in the measure-
ments are assigned to the same priority class. One
important result of this experiment is that, under all the
class priorities, the average RTT is acceptable for a wide
range of applications. The worst case (i.e., maximum) only
occured very rarely. We are currently investigating the

1.80 -

Time {msec)

1.20 |-

[OJ——I1 NORMAL
f,—— 2 HIGH

0.90 Ly
®——@ RT

0.60

030 -

| | | | | | | |
0.00
0 1000 2000 3000 4000 5000 6000 7000 8000

Size (bytes)

Fig. 8. Average RTT with one writer.

iy

o

o
|

Time (msec)
w
()]
o

3.00

250

2.00

1.50

1.00 T]——"1 NORMAL
A——4 HIGH
®——@ RT

0.50 |-

0.00 | | | ! L | | L
0 1000 2000 3000 4000 5000 6000 7000 8000

Size (bytes)

Fig. 9. Maximum RTT with one reader-writer.

NOVEMBER 2000

TABLE 6
Round Trip Latency

msg size (byte) | UDP(avg) | RT-CRM (avg)
1 0.459240 0.626410
512 0.526845 0.709782
1024 0.582634 0.776303
2048 0.763597 0.988170
4096 0.978962 1.266156
8192 1.460686 1.828897

Time in msec.

cause of such worst case occurrences. Moreover, the worst-
case RTT using Real-Time priorities remains linearly
proportional with the message size, which is not the case
for the other two priority classes.

The overhead that RT-CRM incurs compared with raw
UDP/IP for this experiment is shown in Table 6. The major
source of overhead cost comes from the additional memory-
to-memory copies done in RT-CRM.

We have done additional experiments measuring the
stability of the RTT with interfering load in the system.
Instead of running only one application writer-reader pair,
we vary the number of write-reader pairs from 1 to 50 and
measure the stability of the RTT for the writer-reader pair
with Windows NT’s highest real-time priority and a period
of 50 msec. All other readers and writers have lower
priorities—50 percent of them have Windows NT’s normal
real-time priority with a 100 msec period and the other
50 percent have below normal real-time priority with
200 msec period. Our results in Fig. 10 show that the end-
to-end delay is quite stable.

6.2.2 Overhead Costs of API Calls

Overhead costs of the API calls are important in order to
obtain a characterization of the implementation on
Windows NT. At the same time, they provide us with
feedback, which can be used to fine tune the implementa-
tion or to review some of the design decisions made. The
cost of each of the calls evaluated is shown in Table 7. Each

Time (msec)
2
1

o
@
=3

I
[
1
%\J

060 1— r

0401

0201

0.00 | | | | | | | |
0 6 12 18 24 30 36 42 48

Number of reader/writers

RTT high priority reader/writer Size = 1024 bytes

Fig. 10. Round trip latency of the highest Priority real-time writer-reader.

SHEN AND MIZUNUMA: RT-CRM: REAL-TIME CHANNEL-BASED REFLECTIVE MEMORY 13

TABLE 7
Overhead Cost of API Calls in Milliseconds
API Call | Average | Maximum
Create 7.144702 | 7.854627
Destroy | 3.134065 | 3.27359

data point is the result of 100 runs in an unloaded system
and network.

A Create call incurs more overhead because it must go
through the following steps:

1. Contacts global server to obtain id.

2. Creates memory area (allocates buffers and locks
them into memory).

3. Creates mutex for read/write access.

4. Creates an event to synchronize with DPA thread.

7 CoNCLUDING REMARKS

We have described in detail the design, API, implementa-
tion, and preliminary performance results of RT-CRM. We
demonstrated how distributed real-time applications can
utilize RT-CRM to facilitate its remote data reflection. Our
performance tests show that RT-CRM incurs very little
overhead and is a feasible solution for many real-time
application environments.

The proposed RT-CRM is similar in many ways to the
Publisher/Subscriber model [13] found in many of today’s
distributed programming services. The key difference is our
emphasis on data distribution as memory-to-memory data
transfer, rather than as message passing.

RT-CRM has been applied to two industrial applications.
One is a LAN-based power plant control system. The other
is a water treatment plant. RT-CRM can be obtained for
research purpose as part of the real-time network middle-
ware package MidART [3]. To fully explore the potential of
RT-CRM as a standard real-time communication service
model, further research is underway to construct RT-CRM
as a new CORBA service [4].

REFERENCES

[1] A. Raha, S. Kamat, and W. Zhao, “Admission Control for Hard
Real-Time Connections in ATM LANs,” Proc. 15th IEEE
INFOCOM, Mar. 1996.

[21 C.Amza, A.L.Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,
W. Yu, and W. Zwaenepoel, “TreadMarks: Shared Memory
Computing on Networks of Workstations,” Computer, pp. 18-28,

Feb. 1996.
[3] C. Shen, “MidART: Middleware for Distributed Real-Time
Systems,” www.merl.com/projects/midart, 1999.

[4] S.-T. Chung, O. Gonzalez, K. Ramamritham, and C. Shen,
“CReMeS: A CORBA Compliant Reflective Memory Based Real-
time Communication Service,” Proc. IEEE Real-Time Systems
Symp., Nov. 2000.

[5] C.L. Liu and J.W. Layland, “Scheduling Algorithm for Multi-
programming in a Hard-Real-Time Environment,” J. ACM, vol. 20,
no. 1, Jan. 1973.

[6] D. Ferrari and D. Verma, “A Scheme for Real-Time Channel
Establishment in Wide-Area Networks,” IEEE |. Selected Areas in
Comm., vol. 8, no. 3, Apr. 1990.

[7]1 Digital Equigment Corp., “Memory Channel Overview,” www.
unix.digital. com/bin/textit/cluster/memchanl/memchanl.html,
29 May 1996.

[8] O. Gonzalez, C. Shen, I. Mizunuma, and M. Takegaki, “Imple-
mentation and Performance of MidART,” Proc. IEEE Workshop
Middleware for Distributed Real-Time Systems and Services, Dec. 1997.

[91 A. Mehra, A. Indiresan, and K.G. Shin, “Resource Management
for Real-Time Communication: Making Theory Meet Practice,”
Proc. IEEE Real-Time Technology and Applications Symp., June 1996.

[10] I. Mizunuma, C. Shen, and M. Takegaki, “Middleware for
Distributed Industrial Real-Time Systems on ATM Networks,”
Proc. 17th IEEE Real-Time Systems Symp., Dec. 1996.

[11] R. Osborne, Q. Zheng, J. Howard, R. Casley, D. Hahn, and T.
Nakabayashi, “DART—A Low Overhead ATM Network Interface
Chip,” Proc. Hot Interconnects 96, Aug. 1996.

[12] R. Rajkumar, Synchronization in Real-Time Systems: A Priority
Inheritance Approach. Norwell, Mass.: Kluwer Academic, 1991.

[13] R.Rajkuma, M. Gagliardi, and L. Sha, “The Real-Time Publisher/
Subscriber Inter-Process Communication Model for Distributed
Real-Time Systems: Design and Implementation,” Proc. IEEE Real-
Time Technology and Applications Symp., May 1995.

[14] S. Bocking, “Sockets++: A Uniform Application Programming
Interface for Basic-Level Communication Services,” IEEE Comm.
Magazine, vol. 34, no. 12, Dec. 1996.

[15] C. Shen, O. Gonzalez, K. Ramamritham, and I. Mizunuma, “User
Level Scheduling of Communicating Real-Time Tasks,” Proc. IEEE
Real-Time Technology and Applications Symp., June 1999.

[16] VME Microsystems Int’l Corp., “Reflective Memory Network,”
white paper, Feb. 1996.

[17]1 Q. Zheng, T. Yokotani, T. Ichihashi, and Y. Nemoto, “Connection
Admission Control for Hard Real-Time Communication in ATM
Networks,” 17th Int’l Conf. Distributed Computing Systems,
submitted, 1997.

Chia Shen received her MS and PhD degrees in
computer science from the University of Massa-
chusetts, Amherst, in 1986 and 1992, respec-
tively. In her PhD thesis research, she worked in
the areas of real-time multiprocessor scheduling
theory, resource and task allocation, and multi-
processor operating system support for real-time
4 systems. She is a senior research scientist at
\ MERL, Mitsubishi Electric Research Labs, Cam-

| bridge Research Lab in Cambridge, Massachu-
setts which she joined in 1992. From 1993-1996, she served as the
primary representative in the ATM Forum for Mitsubishi Electric Corp.
Dr. Shen’s research interest has been in distributed real-time and
multimedia systems. She is particularly interested in the nontraditional
use of standard high speed networks for future distributed industrial
control applications and distributed multimedia environments. Her latest
research project, MidART, is a distributed real-time application devel-
opment software package providing easy-to-use programming interface
for real-time data acquisition and communication. MidART supports
real-time applications where humans need to interact, control, and
monitor instruments and devices in a network environment through
computer interfaces. She is a member of the IEEE.

\
{
/

Ichiro Mizunuma received the BS and the MS
degrees in information science from Kyoto
University, Kyoto, Japan, in 1990 and 1992,
respectively. He joined Mitsubishi Electric Corp.,
Japan, in 1992 and has worked in the Industrial
Electronics & Systems Laboratory at Mitsubishi
Electric Corp. as a research engineer. In the
laboratory, he has engaged in the development
of real-time systems, fault-tolerant systems, and
distributed systems, mainly for plant monitoring
and control applications. He is currently working on intelligent
transportation systems as a visiting scientist in the Intelligent Transpor-
tation Research Center (ITRC) at the Massachusetts Institute of
Technology, Cambridge, since January 2000. Dr. Mizunama is a
member of the Institute of Electronics, Information, and Communications
Engineers (IEICE), the Information Processing Society of Japan (IPSJ),
and the IEEE Computer Society.

	Title Page
	Title Page
	page 2

	RT-CRM: Real-Time Channel-Based Reflective Memory
	title page
	page 2

	RT-CRM: Real-Time Channel-Based Reflective Memory
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13

