
Using Windows NT for Real-Time Applications:
Experimental Observations and Recommendations�

Krithi Ramamritham, Chia Shen(†),
Oscar González, Subhabrata Sen and Shreedhar Shirgurkar

Computer Science Department
University of Massachusetts

Amherst, MA 01003 (krithi, ogonzale, sen, shree@cs.umass.edu)
(†) MERL - A Mitsubishi Electric Research Lab

Cambridge, MA 02139 (shen@merl.com)

Abstract
Windows NT was not designed as a real-time operating

system, but market forces and the acceptance of NT in in-
dustrial applications have generated a need for achieving
real-time functionality with NT. As its use for real-time ap-
plicationsproliferates, based on an experimental evaluation
of NT, we quantitatively characterize the obstacles placed
by NT. As a result of these observations, we provide a set
of recommendations for users to consider while building
real-time applications on NT. These are validated by the use
of NT for a prototype application involving real-time con-
trol that includes multimedia information processing. The
results of the above study should provide system designers
with guidelines, as well as insight, into the design of an
architecture based on NT for supporting applications with
components having real-time constraints.

1. Introduction

Ideally, for supporting real-time applications, a real-time
operating system ought to be used. However, market forces
and the acceptance of NT in industrial applications have
generated a need for achieving real-time functionality using
NT. Many real-time systems and applications desire to use
NT as is, so as not to incur the overhead of either the instal-
lation of other kernels and facilities beyond those provided
in the standard NT package, or the usage of some other APIs
that run in parallel with NT’s Win32.

The purpose of this paper is to examine NT from the per-
spective of real-time constraints and systematically arrive at
guidelines and recommendations that will be useful for real-
time system designers as they build applications using NT.�Supported in part by NSF under Grant CDA-9502639 and by MERL-
A Mitsubishi Electric Research Laboratory.

Because NT was not designed with predictability in mind,
it is neither advisable nor feasible to use NT for hard real-
time applications, for example, at the controller level with
sub-millisecond precision. But, used judiciously, it may be
useful for applications that (1) can tolerate occasional dead-
line misses, and (2) have delay/response time requirements
in the tens to hundreds of milliseconds range such as those
described in [5, 7, 9]. To this end, a key element of our
study is to see to what extent the unpredictable parts of NT
can be “masked”.

We begin, in Section 2, by giving an overview of the capa-
bilities of NT that are potentially useful to real-time system
builders. We then critically evaluate their performance char-
acteristics via a series of experiments. The experiments and
the observations derived from them are summarized in Sec-
tion 3. These observations are then used to build a prototype
of an application involving real-time control that includes
multimedia information processing. Section 4 describes the
components of the prototype along with the resulting as-
sessment of NT’s suitability for such real-time applications.
This section also contains a set of guidelines and recommen-
dations that emerge from the experimental evaluation of NT
for real-time uses.

In this work our intention is to evaluate NT “as is” for
real-time uses. On the other hand, various commercial ef-
forts are aggressively working towards extending NT (typ-
ically by modifying NT or its underlying layers [8], [14]).
Section 5 critically evaluates these efforts as well as Win-
dows CE (intended for embedded applications) and other
research efforts.

Although there have been efforts in qualitatively ana-
lyzing Windows NT’s suitability for real-time applications
[11], this paper is the first effort in quantitatively study-
ing NT via an experimental approach. We hope this paper,
based on systematic experimental evaluations, will provide

guidelines, as well as insight, needed to design a software ar-
chitecture based on Windows NT capable of supportinghard
and soft real-time tasks. This architecture is the foundation
of an operating systems test-bed that we are currently build-
ing to help in the development and evaluation of scheduling
techniques that support, in a synergistic manner, the needs
of tasks having a variety of real-time and non real-time re-
quirements.

2. Windows NT as a Real-Time OS

NT’s use of threads and thirty two possible priority levels
can be helpful in constructing real-time applications. So we
discuss these first.

Each process belongs to one of the following priority
classes: IDLE, NORMAL, HIGH and REALTIME. By default,
the priority class of a process is NORMAL. Processes that
monitor the system, such as screen savers or applications that
periodically update a display, use the priority class IDLE. A
process with HIGH priority class has precedence over a pro-
cess with NORMAL priority class. The REALTIME priority
class is provided as a support for real-time applications.

Windows NT assigns a scheduling base priority to each
thread. This base priority is determined by the combination
of the priority class of its process and the priority level of
the thread. A thread can have any of the following seven
priority levels: IDLE, LOWEST, BELOW NORMAL, NOR-
MAL, ABOVE NORMAL, HIGHEST, and TIME CRITICAL.
The base priorities range from zero (lowest priority) to 31
(highest priority).

Given this priority structure, Windows NT performs pri-
ority based preemptive scheduling. When two threads have
the same base priority, a time sharing approach is used.
REALTIME priority class threads have non-degradable pri-
orities, while NORMAL and HIGH priorities can be decayed
by the NT scheduler.

However, at a fundamental level, Windows NT was
designed as a general purpose OS and many of the poli-
cies/mechanisms are geared towards optimizing the average
case, and this is at odds with the high predictability require-
ments of many real-time environments. The following are
some of the limitations in Windows NT – due mostly to
the lack of provisions that take into account the priority
of an event/object by various services/mechanisms – that
may contribute to unpredictable delays for user applications
[8, 11, 14].

The priority level of interrupts is always higher than that
of a user-level thread, including threads in the real-time
class. When an interrupt occurs, the trap handler saves the
machine’s state and calls the interrupt dispatcher. The in-
terrupt dispatcher among other things, makes the system
execute an Interrupt Service Routine (ISR). Only critical
processing is performed in the ISR and the bulk of the pro-
cessing is done in a Deferred Procedure Call (DPC).

DPCs are queued in the system DPC queue, in a First In
First Out (FIFO) manner. While this separation of ISR and
DPC ensures quick response to any further interrupts, it has
the disadvantage that the priority structure at the interrupt
level is not maintained in the DPC queues. A DPC is not
preemptable by another DPC, but can be preempted by an
(unimportant) interrupt. As a result of all this, the interrupt
handling and the DPC mechanisms introduce unpredictable
delays both for interrupt processing and for real-time com-
putations. More generally, the lack of provision for avoiding
priority inversions is the primary problem for real-time ap-
plications. Windows CE, another operating system from
Microsoft designed for embedded communication and en-
tertainment applications, supports priority inheritance (See
Section 5).

Threads executing in kernel mode are not preemptable by
user level threads and execute with dispatching temporarily
disabled, but interrupts can occur during the execution of
the kernel. As kernel level threads can mask some or all
interrupts by raising the CPU’s current IRQL (Interrupt re-
quest levels), the responsiveness at any point in time to an
interrupt depends on the mask set by kernel entities at that
time, and the execution time of the corresponding kernel
entities. Also, since only kernel level threads are allowed to
mask and unmask interrupts, even an unimportant interrupt
can adversely affect a real-time priority user level thread.
All of these do not bode well for real-time processing.

Unpredictability also occurs because some system calls
(e.g., some GUI calls) are synchronous and are executed by
system processes running at a non-real-time class priority.

Given these, the natural question to ask is: What are
the conditions under which NT can in fact be used for real-
time applications? This is what we intend to explore in the
rest of the paper, first by studying the behavior of the real-
time related NT components and then by using them in a
prototype real-time application.

3. Real-Time Features of Windows NT

In this section, we report on the results of experiments
conducted to evaluate real-time features of Windows NT
Workstation 4.0.

The platform used was a PC equipped with a 233MHz
Pentium processor, 64MB of RAM and 256KB of cache.
Where communication is called for, the network involved
was a 10Mb Ethernet. Each PC uses 3Com3C590 combo
Ethernet card connected via department wide network. Tim-
ing of events and the time taken for various activities was de-
termined using NT’s QueryPerformanceCounter(),
a counter with a a resolution of 0.83 �seconds.

3.1. I/O Interference on Real-Time Threads

Our experiments were targeted towards the behavior of
threads at REALTIME priority class and their effect on the

I/O Subsystem, and visa versa. To this end, we used two
threads both with same thread priority in the REALTIME
class, one performing I/O and another CPU-intensive thread
performing a continuous For loop. The following three
experiments were conducted:

Experiment 1: To study the effect on keyboard and
mouse I/O, the I/O thread was made to read from the key-
board/mouse. When the CPU-intensive thread was running,
it was observed that no I/O activity took place. After the
CPU-intensive thread completed, all the keyboard inputs
were processed. This shows that the CPU-intensive real-
time thread essentially shuts out keyboard/mouse I/O even
when this I/O occurs from/to a real-time thread.

Experiment 2: To study the effect on disk I/O, the I/O
thread was made to write a file, specifically, 40,000 64-bit
values were written. The time-stamps for the I/O and CPU-
intensive activities were found to be interleaved indicating
time-sharing between the two threads. This shows that a
CPU-intensive real-time thread did not shut out disk I/O.

Experiment 3: To study the effect on network I/O, the
I/O thread was made to read data from a remote server
using Windows Sockets API. Again here, the time-stamps
for the two activities were found to interleave indicating
time-sharing between the two threads. This shows that a
CPU-intensive real-time thread has no adverse impact on
network I/O.

To explain the above observations, we must briefly ex-
plain how NT handles I/O – beyond the use of DPCs. In
the Windows NT I/O subsystem, I/O requests pass through
several stages of processing:

1. The I/O manager sends the request in the form of an
I/O request packet (IRP) to the device driver. The
driver starts the I/O operation.

2. The device completes the I/O operation and interrupts.
The device driver then services the interrupt. (This
involves execution of ISR and queuing of a DPC.)

3. The I/O manager completes the I/O request.

In the third step of I/O processing, the system writes the data
from the I/O operation into the address space of the thread
which requested the I/O. In this step, two mechanisms are
used [1]:� Buffered I/O: Used for slower I/O devices where the

data transfer first takes place into the system memory
area and an Asynchronous Procedure Call (APC) is
queued to copy this data into the user thread’ s local
area.� Direct I/O: Used for faster devices like the disk. The
data transfer directly takes place into the user thread’s
local address space, which is locked by the system.

In Experiment 1, since the keyboard and mouse I/O are
performed as Buffered I/O, the execution of APCs respon-
sible for copying of the data into the user thread’s address

Win32API Function Name Time
(�secs)

CreateProcess() 2600
SetPriorityClass()
from normal to real-time priority class 240
SetPriorityClass()
for all others combinations 125
SetThreadPriority()
for a thread to set its own priority 9
SetThreadPriority()
for a thread to set priority of another thread
of the same process

10

QueryPerformanceCounter()
to obtain the current time-stamp 6

Table 1. Time Taken for System Operations

space was not possible until the CPU-intensive thread was
completed. This is because the input processing for key-
board/mouse is actually done by threads in the kernel, which
are not running with real-time priority. Since priority inher-
itance is not being done, the threads processing input are not
executed until the CPU-intensive thread completes.

On the other hand, for Experiments 2 and 3, since the
disk and network I/O are performed as Direct I/O, the sys-
tem locks the corresponding threads’ buffer space intomem-
ory. This ensures that the I/O is performed even if a CPU-
intensive real-time thread of the same priority is running,
which is possible due to time sharing between threads of the
same priority.

3.2. Time Taken for Process/Thread System Calls

In order to perform user-level scheduling of real-time
threads, which we consider as a possible approach to run
real-time applications on Windows NT, we conducted ex-
periments to find the time taken for the completion of var-
ious process/thread related Win32 API calls. The values
obtained from our experiments are listed in Table 1. The
times listed (in �secs) are times that fall within the 90th
percentile, i.e., 90% of the 1000 observations had values
that were equal to or less than the reported number. We
are reporting this and not worst-case (or averages) because
of our interest in soft real-time and not hard real-time (or
timesharing) applications.

3.3. Time Taken by System Activities

The next set of experiments was done to identify the sys-
tem activities taking place in the background and worst case
processor time needed to perform these activities. To this
end, we observed the system without any other application
running and logged the activity every second for a continu-
ous period of 30 minutes. The followingwere (individually)
observed in at least one of the logs.

� Process ’system’ had 23 threads, thread1 getting a
maximum of 53ms.� Process ’csrss’ had 10 threads, thread4 getting a max-
imum of 50ms.� Process ’services’ had 18 threads, thread15 getting a
maximum of 50ms.� Process ’perfmon’ had 2 threads, thread1 getting a
maximum of 53ms.

Other threads of these processes consumed negligible
processor time. Even though the above were not observed
within the same second, the observations mean that system
activities can take at most a total of 153ms in a one second
interval (discounting the time Process ’perfmon’ takes since
this is a performance monitor we instantiated, not a system
activity).

It should be noted that when user processes are running
in the system they may generate some system activity such
as page-faults.

3.4. Summary and Recommendations

From a real-time perspective, the above observations im-
ply that to use Windows NT for real-time applications, the
following principles should be practiced:

(a) Lock pages in memory for real-time threads. Ensure
that real-time threads are not inactive for a long time,
since NT may unlock pages of inactive threads.

(b) The potential blocking time due to NT system activity
must be taken into account when accounting for the
delays incurred by an application thread.

(c) If there are processes or threads doing network or disk
I/O, the effect of systemwide FIFO DPC queues may
lead to unbounded response times even for real-time
threads. If the duration of I/O activity in a given
period can be characterized, it may be possible to
pessimistically compute the response times.

(d) One should not depend on the Windows NT scheduler
to accomplish the correct “fair sharing” behavior in
cases where screen, keyboard and mouse interactions
are at the same level of priority as the other real-time
CPU-intensive tasks.

(e) To achieve more predictability for real-time tasks
in general, and to achieve responsiveness for oper-
ator/human inputs in particular, a real-time system
designer must not design the system such that real-
time threads monopolize the CPU and I/O all the time.
One must leave some computation and I/O time for
those important but non-real-time NT tasks, such as
those servicing the interactive I/O activities, to exe-
cute. These non-real-time NT tasks are not under our
(user-level) control, but will have adverse effect on
the intended real-time tasks if not executed in time.
To accomplish this goal, one approach is to use peri-
odic execution with user-level controlled cooperative

preemptions, i.e., to design all threads in the real-time
class as periodic tasks using a heartbeat timer mecha-
nism described in the next section, such that real-time
threads voluntarily give up the CPU to allow interac-
tive I/O operations to complete.

4. Evaluating NT in a Real-Time Setting

To understand NT better, we prototyped a real-time con-
trol scenario involving multimedia information. In partic-
ular the focus was on the operator’s workstation [9]. The
software running on the workstation has the following com-
ponents [10].

Operator input: The operator inputs control messages
and actuator settings. An input has to be recognized, pro-
cessed and sent to a remote destination through the network.
The control message is processed at the remote node and the
necessary control action is taken. After this an acknowledg-
ment will be sent back to the operator station.

Incoming sensor data: Data arrives from sensors at reg-
ular intervals and must be stored in a ring buffer in main
memory. A consumer process reads a single record from
the buffer, performs some computation, and displays the
result on the screen in a graphical format.

Incoming video streams: Also executing at the operator
workstation is one video process responsible for retrieving
streaming video from the network and displaying it on the
screen. It is reasonable to assume that such a software will
most likely be COTS (commercial off the shelf).

4.1. Design

The following general principles were followed in de-
signing the prototype application:� Efficiency through threads: For reasons of efficiency

we attempted to use threads wherever possible, and
processes elsewhere.� Achieving periodicity functionality: Some of the pro-
cessing, e.g., sensor data processing, is periodic. We
achieved this periodicity by implementing a heartbeat
timer. This is a process running at the highest real-
time priority. It periodically sets events on which dif-
ferent processes or threads wait. Each time an event is
set, the corresponding thread or process can execute
one periodic instance and then once again wait for the
event to be set. Currently, the heartbeat timer uses the
Sleep() call to suspend itself till it is time to signal
the next event.

In addition to designing the operator workstation, there
was a need to model the entity with which the operator
interacts. This entity may correspond for example, to the
local controller on the factory work floor, which actually
carries out the operator’s instructions, monitors the local

state and sends state information back to the operator. Such
an entity was modeled as a remote server. UDP was used
for communicating between operator station and the remote
server. The source of the video stream was just another
node on the network to which the operator workstation is
connected.

Besides the Heartbeat timer, the main entities at the re-
mote server are:

Remote producer: This periodically generates sensor
data and sends it to the operator workstation.

Remote operator input process: This entity waits for op-
erator input data from the operator workstation. Currently,
this acknowledges the data by sending the same data back
to another thread on the operator workstation.

Besides the Heartbeat timer, the main entities at the op-
erator workstation are:

Receiver: This is a periodic process that receives sensor
data from the remote server. It then stores the same data in
a circular buffer.

Consumer: This is a periodic process with the same pe-
riod as the receiver. It reads sensor data from the circular
buffer and stores it in memory. A precedence relation ex-
ists between the receiver and consumer, enforced using an
event which the receiver has to set to allow the consumer to
proceed. The buffer management protocol has the follow-
ing retrieval semantics: The consumer always receives the
most recent data. Many consumers will require this type
of semantics. For example, the operator is interested in the
most recent speed measured within a turbine. However,
the implemented buffer data structure is general enough to
accommodate a wide variety of retrieval semantics.

Operator input process: This process waits for the oper-
ator to provide commands and sends them out to the remote
server.

In order not to be affected by NT’s inability to handle
mouse/keyboard processing and screen displays in a timely
fashion, all of the operator interactions with the system were
simulated via memory reads/writes. Specifically, operator
input was implemented by reading 1K bytes of information
from a specified memory location. At the end of this sec-
tion, we discuss approaches to accommodate such operator
interactions and experiment with one possible approach.

Operator ack process: This waits for acknowledgments
sent by the remote server in response to operator input mes-
sages. It stores the received acknowledgments in memory.

4.2. Implementation Details

At the operator workstation, a single process clmain is
launched. It initializes global events on the operator side
and spawns 2 processes:

1. Heartbeat timer.
2. Main operator process. This, in turn, spawns 4 threads

corresponding to receiver, consumer, operator input

and operator ack processing entities.

At the remote server a single process remmain is
launched. It initializes global events on the remote server
and spawns 2 processes:

1. Heartbeat timer.
2. Main remote process. This, in turn, spawns 2 threads

corresponding to remote producer and operator input
processing entities.

The heartbeat timer on each side is also used to control
various housekeeping activities and to terminate the differ-
ent threads and processes gracefully.

Probes are inserted into the code for taking tim-
ing measurements. As before, the high frequency
QueryPerformancecounter() function is used by
the probes for these measurements. In-memory logs are
maintained of the various events and their timing. At the
end of the experiment, the logged data is written to disk by
the parent process on each side.

4.3. Experimental Setup
The following processes were running for this set of ex-

periments.� Operator workstation entities.� Remote server entities.� Realvideo player, transmitting distance learning
course material. 1

We observed that when launched, the video player
spawns a few threads which run at various priorities in the
HIGH priority class. This type of priority enhancement is
used by COTS applications to boost their performance. Us-
ing the performance monitor to observe the player’s load
indicated that there are occasional bursts of activity during
which the player uses up to 70� 90% of the CPU. This is
perhaps due to the local buffers being filled after a network
congestion. Each experiment was run with the video stream
started at roughly the same place. This was to ensure that
the workload was comparable.

In all the experiments, the entities at the remote server
side were run in the REALTIME priority class:� The priority of the heartbeat timer is always set to

HIGHEST level within the REALTIME priority class.� The priority of remote producer and operator input
processing entities are set to the NORMAL level within
the REALTIME priority class.

This was done to allow the measured delays to reflect activity
at the operator end and not be affected by delays due to other
activities at the remote server.

At the operator workstation the priority of the processes
was varied between the NORMAL, HIGH and REALTIME
classes and the priority of all threads was set to NORMAL.1Note that we have no control over the Realvideo player, including what
threads it spawns and what priorities these threads execute at.

4.4. Experimental Results

Of interest to us are the timing properties of the three
types of processes – video display, sensor data processing,
and operator command processing – as a function of the
priority level at the operator side, the offered load, and
the size of the data shipped by the operator. As for the
workload tested, what we have experimented with is a real
work load [10] characterizing a typical operator workstation
which experiences periodic sensor data input in 1K byte
sizes, sends out sporadic operator commands not more often
than every 100ms, and displays one video window.

The quality of the video output was used as an indica-
tor of the effect on the video player’s performance. How-
ever, we saw no perceivable differences in the quality of
the video output as we experimented with different param-
eters. Similarly, in all cases, the sensor data processing (by
the receiver-consumer pair) was not affected. This pair was
found to execute at the specified frequency with almost no
jitter. So we focus on the Round Trip Time (RTT) as seen
by the operator input process.

4.4.1 Round Trip Delays

In this set of experiments, operator input and receiver-
consumer entities run at the same frequency. Figures 1,
2, 3 respectively plot the round trip delays experienced by1000 1KB operator commands for operator input frequen-
cies of 30; 50; and 100ms. Also, some important measures
(maximum, mean, variance) of the round trip delays are
shown in Table 2. These clearly indicate that:� The round trip delay for the operator input vary much

more if the operator input processes are at NORMAL
priority. There is significantly less variance if HIGH
or REAL TIME priorities are used.� Even through the average round trip delay is very
similar in all cases, the average decreases as prior-
ity increases. For example, for a operator input pe-
riod of 50ms, the average round trip delay ranges
from 3:356ms corresponding to NORMAL priority to2:428ms for REALTIME priority.� The maximum value also tends to decrease with in-
creasing priority.� The most dramatic change is in the variance. For
instance, for a 50ms operator input period,it decreases
from 19:721 (normal) to 5:879 (high) to 0:242 (real-
time). This augurs well for predictability.

The above results indicate that even with all the processes
running, the system has enough processing power to han-
dle all the tasks. The large variance at NORMAL priority,
therefore, can be at least partially attributed to the Realvideo
player as well as system activities which are running at a
higher priority. As the process priority is increased, this ef-
fect diminishes, resulting in lower variance. The real-time

processes in the prototype are typically not computationally
intensive, but have strict delay requirements. System activ-
ities on the other hand can suffer some amount of jitter. As
such, it makes sense to elevate the priority of these real-time
processes to ensure that their delay requirements can be met.

Priority Period Max. Mean Variance
(ms) (ms) (ms)

Normal 30 75.297 2.654 8.846
High 30 27.938 2.523 2.571
Real-Time 30 16.583 2.362 0.260

Normal 50 43.759 3.356 19.721
High 50 44.098 2.673 5.879
Real-Time 50 9.475 2.428 0.242

Normal 100 54.858 3.104 16.523
High 100 32.740 2.765 5.184
Real-Time 100 2.884 2.379 0.004

Table 2. Statistics for round trip delay.

4.4.2 Better Response for Operator Thread

To exercise the system even further, we experimented
with different message lengths (corresponding to differing
amounts of operator input) and a higher rate of operator
input (needless to say that an operator input every 10ms is
humanly impossible, but helps stress the system).

In the experiments discussed thus far, the threads in the
operator and remote processes had the same priority level
(NORMAL). So, these threads ran in a timeshared fash-
ion. With a view to improve the responsiveness to oper-
ator threads we experimented with an alternative approach
whereby as soon as the operator input thread was given a
ticket to run, the priority of the operator input and acknowl-
edgment was raised to HIGHEST, thereby giving them a pri-
ority higher than the sensor data threads. This ensures that
the operator input and acknowledgment are processed with a
higher priority than the sensor data threads. Table 3 gives the
RTTs for these experiments. (Column “Size” refers to the
size of the message containing operator input/commands.)
It was observed that there was no effect on the timeliness of
sensor data threads.

Size RT Prio. Max Mean Variance
(bytes) (ms) (ms)

1K Normal 9.473 2.496 0.69
1K Highest 6.990 2.445 0.143
1.5K Normal 10.735 3.495 0.2
1.5K Highest 7.211 3.351 0.025
2K Normal 14.15 4.738 0.693
2K Highest 6.043 4.212 0.014

Table 3. Statistics for RTT with 10ms period.

� NORMAL PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (a)

 Sample no.

 R
T

T
(m

s)

��������
�
�
����

�

��������������������������

�

�������������

��

���
��
����

�

����������������������
��
������������������
�
�������

�

��
���

�

������������
��
�������
�
��

�

��������������������
�
�

��

�

���

�

������������������������

�

��������������������������

�

������������������������
�
���

�

������������������������
�
��������������������������

�

���������
����
�
����������

�

��������������������������

�

������������������������
�
������������������������

�

���������

�

���
�
��������������������������
�
���

�

���

�

����

�

�������������������
�
��
�
�����������������������

�

������������������������
�
������������������������

�

��������������������������

�

������������������������

�

��������������
�
�

����
��
����

�

������������������
��
��
���
��

� HIGH PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (b)

 Sample no.

 R
T

T
(m

s)

���������������

�

��
��
���������������������������������

�

�����������������

�

���

�

�����������

�

���

�

��������������������
�
��

�

�����������������

�

���
�
��

���

�

��

�

���

�

���

�

��������
�
���

��
���������������������������
�������

�

�����������������
�
�����������������������������������

�

����������������������������������

� REALTIME PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (c)

 Sample no.

 R
T

T
(m

s)

���
�������������������������
�
���
��

�

�

�����������������������
�
��

�
��

�
��

��
�
����
�
������������
�

�

��

Figure 1. RTT with operator commands every 30ms.

� NORMAL PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (a)

 Sample no.

 R
T

T
(m

s)

�
������

�

�
�

�

�
�
�

�

����

�

����

�

���������������
�
�
��
�
����������������������������������

�
��

�

����

�

����

�

����

�

����

�

����

�

����

�

��
�
�����������
���

��������������������������
��
����������������������������������

�

����

�

����

�

����

�

����

�

����

�

����

�

�������������������
�
�����������������������������

�
���

�

����

�

����

�

����

�

����

�

����

�

��

�

�����������������������������
�
��

�

����

�

����

�

���
��
���������

�

�������

�

�

��
��
���

�

����

�

��
��

��

�

�����

�

�
�

�

�

���

�

�
����

�

���
��
�

�

�

��
�
���

�
�

�
������

�

����

�

���

�

�

��
�

�

��

�

��

�

�����������

�

����
�
����

�

����

�

����

�

���������

�

��������������

��

���
��
���������

� HIGH PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|
 (b)

 Sample no.

 R
T

T
(m

s)

���
������������������������������������

�

�����������������������������������

�

�����������������

�

���������������������
��������������
�
���

�

��

�

���

�

�����������������������������������

�

�����������������

�

��
���������������������������

�

�����������������������������������

�

��������������������������������������
�
��

�

���

�

�����������������������������������

�

���������������
��
������������������

�

��������������

�

���
����������������������������������

�

������������������������������������

� REALTIME PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (c)

 Sample no.

 R
T

T
(m

s)

��
��

�
��

�
��

�
������

�

��������
�
��������

�

�
�
�

���

�

�

��

�����������������������
�
�

�

�
�
�

�

��
�
�����������������������

�

��

�

�

������������������������������������

�

��
��

Figure 2. RTT with operator commands every 50ms.

The maximum delay was considerably lower when we
increased the priority of the operator thread to the HIGHEST
level from NORMAL. In fact, because the maximum is larger
than the period when NORMALpriority level was used, some
of the messages miss their deadlines. Specifically, we found
that for a message size of 1.5K, and NORMAL priority, there
were 2 tardy messages and for a message size of 2K there
were 4 tardy messages out of 300 messages. No tardy
messages were observed when the priority was raised to
HIGHEST level.

Even though the mean delays do not differ by much,
the variance becomes very small when the operator thread’s
priority is increased to HIGHEST. For example, for a 1.5K
message size, an order of magnitude improvement is seen.

These experiments suggest that by systematic manipula-
tion of thread priorities,better and more predictable response
times can be achieved.

4.4.3 Accommodating Interactions with Operator

Since no deadlines were missed even with the period set
to 10 msecs for both operator and sensor, we decided to
evaluate the effect of allowing keyboard/screen I/O from the
operator thread. To this end, we made the operator thread
display the acknowledgment from the remote server on the
operator’s screen. This experiment was done with a message
size of 1K and as described earlier, the whole message is

returned as the acknowledgment, and is then displayed to
the operator. Results (see Table 4) indicate that when the
period is set to 10 or 20ms, because screen I/O is handled at
lower priorities, many of the deadlines are missed and this
has a cascading effect. However, increasing the period of
the operator thread to 100ms alleviates these problems. At
this period, even with screen I/O, no deadlines are missed
and the variance in the round trip delay is low. These results
are very encouraging in that, given human response times,
operator interactions are likely to occur at relatively low
frequencies, i.e., higher periods. So it should be possible to
accommodate them in many situations. Characterizing such
situations is one of our next steps.

Period Max. Mean Variance
(ms) (ms) (ms)

10 126.873 6.150 93.12
20 52.278 3.55 14.067
100 30.913 2.615 1.81

Table 4. Statistics for RTT with screen I/O.

An alternative to assigning or requiring higher periods
for operator threads is to permit controlled preemption of
different real-time threads so that operator interactions can
take place. We plan to explore this avenue also.

� NORMAL PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (a)

 Sample no.

 R
T

T
(m

s)

����������

�

�

��

�

����

�

����

�

����

�

������������������������
�
������������
�
����������������
�
�����������������

�

���������

�

��
�
����������

�

����

�

����

�

��

�

�����������������

�

��
�
���������������������������������

�

���

�

�

����

�

���
����������
�
�����������������������

�

����

�

����

�

���

�

������������������������

�

����

�

���������

�

��

�

����

�

����

�

���������������������������������
�������
�������������������

�

�����������

�

�

�

�

��

�

���������

�

�

�������������������
���

�

����

�

����

�

����������������

�

��
�
����
�
����

�

��

� HIGH PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (b)

 Sample no.

 R
T

T
 (

m
s)

���������������

�

�����������������������������������

�

���

�
�

���

�

�����������������

�

�����������������

�

�����������������

�

���

�

��

�

������������

�

�����������������

�

���������

�

����
�
�
�
�

��

�

��

�

�������
�
���������

�

��

�

������

��

��������

�

�����

�

��
�
�����

�

�

��������������

�

�������

�

�

�

�����������������

�

�����������������
�����������

�

���

�

�

���������
�
����������������������

�

������������������������

�

������������������������������������
��

�

�����������������

�

�

�

������������������
�
��������������

�

�����������������

�

����������������������������
�

�

�����

�

�����

�

�����
������

�

�����������������
�
���������������������

� REALTIME PRIORITY

|
0

|
200

|
400

|
600

|
800

|
1000

|0

|7

|14

|21

|28

|35

|42

|49

|56

| | | | | |

|
|

|
|

|
|

|
|

|

 (c)

 Sample no.

 R
T

T
(m

s)

���
��

���

Figure 3. RTT with operator commands every 100ms

4.5. Summary of Results
The prototype implementation models a simple multi-

media operator workstation for factory operations. The
prototype is parameterized, so different configurations and
workloads can be tested. In particular, the frequency of the
operator input as well as the receiver-consumer pair are tun-
able parameters, as is the message size. A simple heartbeat
timer mechanism along with events was used to emulate
periodic processes. This heartbeat timer is an ideal candi-
date for implementing meta-level scheduling functionality
in Windows NT. Even without using specialized scheduling,
it was observed that just using HIGH or REAL TIME prior-
ity significantly reduces the variability in response times,
without any observable degradation in system performance.
This suggests that as long as the application tasks do not
monopolize the CPU for long durations, and there is suffi-
cient CPU capacity, using these priority assignments may
be sufficient to meet the performance requirements of these
processes – even when I/O is involved. However, if the peri-
odic workload per process is high, or if a process is a COTS
application whose workload varies, it will be necessary to
impose some additional controls on the amount of time al-
located to a task. We are currently exercising the different
elements of the prototype to experiment with these situa-
tions in order to evaluate several scheduling approaches to
meet timeliness requirements. We are also evaluating differ-
ent approaches to allow keyboard/screen/mouse I/O under
controlled conditions.

5. Other Approaches towards Predictable NT
Our goal in this paper has been to understand NT’s capa-

bilities and the extent to which NT can be used judiciously
as is by being “careful” while exploiting NT’s capabilities.

We now discuss other approaches that can be envisaged
for overcoming the limitations of NT [8].� Use a highly constrained and fine tuned Windows

NT and application environment. This approach is
suitable mainly for applications whose worst case re-
source behavior can be determined beforehand. The

solution involves using a restricted set of support from
Windows NT, and using careful analysis to reduce the
timing unpredictability. Once such an application is
implemented, changes are either disallowed or require
a complete overhaul in order to guarantee the timing
requirements.� Modify the Windows NT kernel [4]. This option
requires continuous changes to the modifications as
new versions of NT appear.� Couple real-time operating systems with Windows
NT, with each OS running in a different machine.� Provide a Win32 API wrapper around a real-time OS.
This alternative does not meet the requirement of run-
ning Windows NT applications in unison with the
real-time tasks.� Modify the Hardware Abstraction Layer (HAL). This
is only a partial solution, which needs to be coupled
with a small real-time executive as is done in Ventur-
com’s RTX [14] and Real-Time Linux [13].� Compose a Windows NT driver to run all the time
critical threads. This is the approach taken in [6]. This
approach has the drawback of (1) having to create a
totally new API for users to construct real-time tasks
to run in this driver environment, and (2) potentially
still incurring all potential blocking from other ISR
and DPCs.

The above do not appear to be adequate or feasible for
our purpose. In contrast, many commercial extensions to
NT for real-time complement Windows NT kernel with a
real-time kernel. There are two alternatives. In the first
alternative, the real-time OS co-exists with Windows NT. In
the second alternative, the real-time kernel becomes part of
Windows NT in the form of a device driver. The objective
of the device driver is to provide the services which are not
supported by NT and to trap hardware interrupts.

The following is a description of commercial products
using these approaches:

RadiSys [8] places INtime, a real-time kernel based on
iRMX, outside the Windows NT address space. The two

OSs are able to communicate via an extension to the Win-
dows NT API. This mechanism uses hardware support in
order to achieve a complete separation between two co-
resident operating systems. This approach is similar to the
work done by Jeffay and Bollela [3]. The latter work imple-
mented a small CPU executive which multiplexes the CPU
between their own real-time kernel and an IBM microkernel
with an OSF1 server. The difference between INtime and
[3] is that INtime runs Windows NT as its lowest priority
process and in [3] the CPU is shared between the two operat-
ing systems. The measures adopted to impart predictability
include:� The INtime real-time kernel is based on the iRMX ker-

nel, and unlike NT, application threads and interrupt
handlers share the same priority structure, allowing
suitable priority assignment to threads and interrupts.� INtime runs Windows NT as its lowest priority pro-
cess. Real-time interruptsand active real-time threads
immediately preempt any running NT thread, and
also disable all non-real-time interrupts. Assuming
that iRMX implements some sort of priority inver-
sion handling protocol, this arrangement should be
able to alleviate the unpredictable delays (at least for
the real-time threads).� The HAL has been modified to ensure that interrupts
reserved for real-time use are never masked. The
HAL trappings attempt to assign interrupt handlers to
interrupts reserved for real-time kernel use.� RadiSys also claims to maintain complete address
space isolation and memory protection between real-
time and Windows NT processes.

Anther commercial solution is the one offered by Imag-
ination Systems [2]. Their real-time subsystem called Hy-
perKernel has its own scheduler, its own set of services,
and its own internal kernel. From the literature, it seems
that they are using hardware support to achieve a complete
separation between two co-resident operating systems and
also do not modify the HAL. Also, it seems that interrupts
are controlled by direct access to the Interrupt controller.
Superficially at least, their methodology appears to have el-
ements of commonality to the approach taken by RadiSys
as well as the work by Jeffay and Bollela [3].

The VenturCom approach [14] places a real-time OS
(RTX) as a subsystem inside Windows NT in the form of
a device driver. RTX facilities include priority scheduling,
non-degrading priorities, inversion management, IPC sup-
port, fast clocks and timers, memory allocation and page
fault elimination. We believe that NT is also considered the
lowest priority process, but have not been able to confirm
this. The approach taken by VenturCom is similar to the
one taken in Real-Time Linux [13]. Here a software emula-
tion of the interrupt control hardware interacts with the OS.

Interrupts directed to Linux are passed to the emulation soft-
ware after real-time tasks are executed by a small real-time
executive. The VenturCom approach also modifies the HAL
in order to isolate interrupts between NT and the real-time
subsystem.

Although these techniques may considerably amelio-
rate the unpredictability of standard Windows NT, potential
problems arise due to changes they entail to NT or HAL as
well as due to the additional API or Operating System that
one needs to master. Most of these products are still in the
development or initial deployment stage and more details
of their approaches are needed for in-depth evaluation and
understanding.

Another alternative to NT is Windows CE [12] that is
targeted at embedded applications.

Unlike Windows NT, Windows CE does not provide pro-
cess priority classes. At any time, there can be a maximum of
32 processes within the system. Within a process, threads
can have any one of the 8 possible thread priority levels:
TIME CRITICAL, HIGHEST, ABOVE NORMAL, NORMAL,
BELOW NORMAL, LOWEST, ABOVE IDLE and IDLE. The
level ABOVE IDLE is not present on Windows NT. Time-
critical threads have the highest priority and are not time
shared. Whereas Windows NT dynamically adjusts its pri-
orities for threads in dynamic priority class, Windows CE
does not change the priorities of any of the threads dynam-
ically – this may be detrimental to non real-time computa-
tions that compete for processing resources. Windows CE
does modify the priorities to handle priority inversion. As
noted earlier, Windows NT does not support any priority
inheritance, not even at real-time priority class.

Paging activity in Windows CE uses the above mecha-
nism to avoid priorityinversion. Normally, the kernel thread
handling page faults runs at priority level NORMAL. When
a thread with priority level higher than NORMAL suffers a
page fault, the priority of the kernel paging thread is raised
to the priority of the thread causing the fault. This ensures
that a thread is not blocked by another lower priority thread
even if it suffers a page-fault. Also, a thread running at
the highest priority can be guaranteed to execute within a
known period of time. This is not possible in Windows
NT as some of the system threads are not run at inherited
priority (as observed in our keyboard I/O experiment at real-
time priorities). Unbounded delays due to system wide DPC
queues (observed in Windows NT) are avoided as priority
inheritance is applicable to each and every system thread
including the paging activity thread. Windows CE queues
waiting threads in priority order rather than simple FIFO as
in Windows NT. Each thread priority has a different FIFO
queue.

Interrupt processing in CE is done in two steps:

1. ISR : performs minimal processing, runs at higher
priority than ISTs.

2. IST : Interrupt Service Thread, these usually run at
top two priority levels, ensuring that they run quickly.

Nested interrupts are not supported. (i.e. no interrupt is
recognized when ISR runs) The time for their execution
can be bounded only if it is guaranteed that the ISTs run
at the same priority as the thread causing it (i.e. priority
inheritance applies to ISTs). From the available literature,
it seems that ISTs run at the two top priority levels.

In summary, Windows CE provides more levels of thread
priorities, priority inheritance is supported, and so interrupt
latencies can be bounded slightlymore easily than Windows
NT.

6. Conclusion and Future Work

By measuring the delays involved in NT’s real-time func-
tions we have gained a number of insights regarding the fea-
sibility of Windows NT for real-time applications. And, by
building a prototype application which models a simple mul-
timedia operator workstation, we have demonstrated how to
use these insights in the design of such real-time applica-
tions. With the use of real-time priorities, we have shown
that it is possible to improve the stability of certain real-time
tasks.

The one place that Windows NT is very platform depen-
dent is how I/O interrupts are handled. A designer needs to
be aware of the effect of the systemwide FIFO DPC queue
on any user thread. This queue has priority over all user-
level threads. This may lead to unbounded delays if a badly
designed driver is used. Thus this is the part of Windows NT
about which one cannot make general analytical or quanti-
tative statements for all potential platforms. A user needs
to know what devices and what drivers he/she is using, and
what performance characteristics a particular driver will in-
duce on the system. If it is possible to characterize various
I/O activities and their contributions to the DPC queue, one
can possibly place some pessimistic bound on the response
time for real-time threads. Soft real-time applications which
can tolerate occasional delays due to factors like systemwide
DPC queues can be realized using NT. Windows CE has sev-
eral improvements to correct this problem, through priority
inheritance.

To achieve more predictability for real-time tasks in gen-
eral in Windows NT, and to achieve responsiveness for op-
erator/human inputs in particular, in this paper, we offer
the following key recommendation to a real-time system
designer using NT:

Design the system such that real-time threads do not mo-
nopolize the CPU and I/O all the time. Some computation
and I/O time must be left for executing important but non-
real-time NT activities, such as those servicing interactive
I/O. These non-real-time NT tasks are not under our (user-
level) control, but will have adverse effects on the intended

real-time tasks if not executed in time. To this end we ex-
perimented with one approach in this paper: facilitating pe-
riodic execution with user-level controlled cooperative pre-
emption. So, all threads in the real-time class were designed
to execute periodically using a heartbeat timer mechanism
such that real-time threads voluntarily gave up the CPU to
allow interactive I/O operations to complete.

We plan to implement a systematic rate-based user-level
scheduler to schedule tasks in a given real-time environment.
The prototype system described in this paper provides a
suitable test-bed tool to experiment with different user-level
scheduling schemes. The heartbeat timer can be effectively
used for such user-level scheduling.

7. Acknowledgments

Our thanks to John Howard for his careful review of a
previous version of this paper and for his valuable sugges-
tions.

References

[1] H. Custer, “Inside Windows NT”, Microsoft Press, 1993.
[2] HyperKernel, http://www.imagination.com/.
[3] G. Bollella and K. Jeffay. “Support for Real-Time Computing

within General Purpose Operating Systems”, In Proceedings
of the IEEE Real-Time Technology and Applications Sympo-
sium, Chicago, IL, May 1995, pp.4-14.

[4] Z. Deng and J.W.S. Liu. Scheduling Real-Time Applications
in an Open Environment. 18th Real-Time Systems Sympo-
sium, Dec 1997, pp. 308-319.

[5] O. González,C. Shen, I. Mizunuma, and M. Takegaki. Imple-
mentation and Performance of MidART. In IEEE Workshop
on Middleware for Distributed Real-time systems and Ser-
vices, San Francisco, CA, December 1997.

[6] I. Kawakami, Y. Katayama, and H. Kurosawa. A Newly
Structured Real-Time Control Mechanism based on Personal
Computers(RT-PC). In International Conference on Electri-
cal Engineering, Matsue, Japan, July 1997.

[7] I. Mizunuma, C. Shen, and M. Takegaki. Middleware for Dis-
tributed Industrial Real-Time Systems on ATM Networks. In
17th IEEE Real-Time Systems Symposium, December 1996.

[8] “Approaches to Real-Time Windows NT”,
http://www.radisys.com/products/rtos/intime app.html.

[9] C. Shen and I. Mizunuma. RT-CRM: Real-Time Channel-
Based Reflective Memory. In IEEE Real-Time Technology
and Applications Symposium, June 1997.

[10] H. Shimakawa, Mitsubishi Electric Corporation, personal
communication, 1996.

[11] M. Timmerman, “Windows NT as Real-Time OS”,
Real Time Magazine, 1Q97 Issue, http://www.realtime-
info.be/encyc/magazine/articles/winnt/winnt.htm#backfive.

[12] Windows CE web pages:
http://www.microsoft.com/windowsce/

[13] V. Yodaiken, “A Real-Time Linux”,
http://luz.cs.nmt.edu/ rtlinux/.

[14] VenturCom home page: http://www.vci.com/.

